ov519.c 118.0 KB
Newer Older
1 2 3 4
/**
 * OV519 driver
 *
 * Copyright (C) 2008 Jean-Francois Moine (http://moinejf.free.fr)
5
 * Copyright (C) 2009 Hans de Goede <hdegoede@redhat.com>
6
 *
7 8 9 10 11
 * This module is adapted from the ov51x-jpeg package, which itself
 * was adapted from the ov511 driver.
 *
 * Original copyright for the ov511 driver is:
 *
12
 * Copyright (c) 1999-2006 Mark W. McClelland
13
 * Support for OV519, OV8610 Copyright (c) 2003 Joerg Heckenbach
14 15 16 17
 * Many improvements by Bret Wallach <bwallac1@san.rr.com>
 * Color fixes by by Orion Sky Lawlor <olawlor@acm.org> (2/26/2000)
 * OV7620 fixes by Charl P. Botha <cpbotha@ieee.org>
 * Changes by Claudio Matsuoka <claudio@conectiva.com>
18 19 20 21 22
 *
 * ov51x-jpeg original copyright is:
 *
 * Copyright (c) 2004-2007 Romain Beauxis <toots@rastageeks.org>
 * Support for OV7670 sensors was contributed by Sam Skipsey <aoanla@yahoo.com>
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 *
 */
#define MODULE_NAME "ov519"

#include "gspca.h"

MODULE_AUTHOR("Jean-Francois Moine <http://moinejf.free.fr>");
MODULE_DESCRIPTION("OV519 USB Camera Driver");
MODULE_LICENSE("GPL");

/* global parameters */
static int frame_rate;

/* Number of times to retry a failed I2C transaction. Increase this if you
 * are getting "Failed to read sensor ID..." */
static int i2c_detect_tries = 10;

/* ov519 device descriptor */
struct sd {
	struct gspca_dev gspca_dev;		/* !! must be the first item */

58 59
	__u8 packet_nr;

60 61 62 63 64 65
	char bridge;
#define BRIDGE_OV511		0
#define BRIDGE_OV511PLUS	1
#define BRIDGE_OV518		2
#define BRIDGE_OV518PLUS	3
#define BRIDGE_OV519		4
66
#define BRIDGE_OVFX2		5
67
#define BRIDGE_W9968CF		6
68 69 70 71
#define BRIDGE_MASK		7

	char invert_led;
#define BRIDGE_INVERT_LED	8
72

73
	/* Determined by sensor type */
74
	__u8 sif;
75

76 77 78
	__u8 brightness;
	__u8 contrast;
	__u8 colors;
79 80
	__u8 hflip;
	__u8 vflip;
81 82
	__u8 autobrightness;
	__u8 freq;
83

84
	__u8 stopped;		/* Streaming is temporarily paused */
85

86 87
	__u8 frame_rate;	/* current Framerate */
	__u8 clockdiv;		/* clockdiv override */
88 89 90

	char sensor;		/* Type of image sensor chip (SEN_*) */
#define SEN_UNKNOWN 0
91 92 93 94 95 96 97 98 99 100 101
#define SEN_OV2610 1
#define SEN_OV3610 2
#define SEN_OV6620 3
#define SEN_OV6630 4
#define SEN_OV66308AF 5
#define SEN_OV7610 6
#define SEN_OV7620 7
#define SEN_OV7640 8
#define SEN_OV7670 9
#define SEN_OV76BE 10
#define SEN_OV8610 11
102 103 104 105

	u8 sensor_addr;
	int sensor_width;
	int sensor_height;
106
	int sensor_reg_cache[256];
107 108
};

109 110 111 112 113
/* Note this is a bit of a hack, but the w9968cf driver needs the code for all
   the ov sensors which is already present here. When we have the time we
   really should move the sensor drivers to v4l2 sub drivers. */
#include "w996Xcf.c"

114 115 116 117 118 119 120
/* V4L2 controls supported by the driver */
static int sd_setbrightness(struct gspca_dev *gspca_dev, __s32 val);
static int sd_getbrightness(struct gspca_dev *gspca_dev, __s32 *val);
static int sd_setcontrast(struct gspca_dev *gspca_dev, __s32 val);
static int sd_getcontrast(struct gspca_dev *gspca_dev, __s32 *val);
static int sd_setcolors(struct gspca_dev *gspca_dev, __s32 val);
static int sd_getcolors(struct gspca_dev *gspca_dev, __s32 *val);
121 122 123 124
static int sd_sethflip(struct gspca_dev *gspca_dev, __s32 val);
static int sd_gethflip(struct gspca_dev *gspca_dev, __s32 *val);
static int sd_setvflip(struct gspca_dev *gspca_dev, __s32 val);
static int sd_getvflip(struct gspca_dev *gspca_dev, __s32 *val);
125 126 127 128
static int sd_setautobrightness(struct gspca_dev *gspca_dev, __s32 val);
static int sd_getautobrightness(struct gspca_dev *gspca_dev, __s32 *val);
static int sd_setfreq(struct gspca_dev *gspca_dev, __s32 val);
static int sd_getfreq(struct gspca_dev *gspca_dev, __s32 *val);
129 130 131
static void setbrightness(struct gspca_dev *gspca_dev);
static void setcontrast(struct gspca_dev *gspca_dev);
static void setcolors(struct gspca_dev *gspca_dev);
132 133
static void setautobrightness(struct sd *sd);
static void setfreq(struct sd *sd);
134

135
static const struct ctrl sd_ctrls[] = {
136 137 138 139 140 141 142 143
	{
	    {
		.id      = V4L2_CID_BRIGHTNESS,
		.type    = V4L2_CTRL_TYPE_INTEGER,
		.name    = "Brightness",
		.minimum = 0,
		.maximum = 255,
		.step    = 1,
144 145
#define BRIGHTNESS_DEF 127
		.default_value = BRIGHTNESS_DEF,
146 147 148 149 150 151 152 153 154 155 156 157
	    },
	    .set = sd_setbrightness,
	    .get = sd_getbrightness,
	},
	{
	    {
		.id      = V4L2_CID_CONTRAST,
		.type    = V4L2_CTRL_TYPE_INTEGER,
		.name    = "Contrast",
		.minimum = 0,
		.maximum = 255,
		.step    = 1,
158 159
#define CONTRAST_DEF 127
		.default_value = CONTRAST_DEF,
160 161 162 163 164 165 166 167
	    },
	    .set = sd_setcontrast,
	    .get = sd_getcontrast,
	},
	{
	    {
		.id      = V4L2_CID_SATURATION,
		.type    = V4L2_CTRL_TYPE_INTEGER,
168
		.name    = "Color",
169 170 171
		.minimum = 0,
		.maximum = 255,
		.step    = 1,
172 173
#define COLOR_DEF 127
		.default_value = COLOR_DEF,
174 175 176 177
	    },
	    .set = sd_setcolors,
	    .get = sd_getcolors,
	},
178
/* The flip controls work with ov7670 only */
179
#define HFLIP_IDX 3
180 181 182 183 184 185 186 187 188 189 190 191 192 193
	{
	    {
		.id      = V4L2_CID_HFLIP,
		.type    = V4L2_CTRL_TYPE_BOOLEAN,
		.name    = "Mirror",
		.minimum = 0,
		.maximum = 1,
		.step    = 1,
#define HFLIP_DEF 0
		.default_value = HFLIP_DEF,
	    },
	    .set = sd_sethflip,
	    .get = sd_gethflip,
	},
194
#define VFLIP_IDX 4
195 196 197 198 199 200 201 202 203 204 205 206 207 208
	{
	    {
		.id      = V4L2_CID_VFLIP,
		.type    = V4L2_CTRL_TYPE_BOOLEAN,
		.name    = "Vflip",
		.minimum = 0,
		.maximum = 1,
		.step    = 1,
#define VFLIP_DEF 0
		.default_value = VFLIP_DEF,
	    },
	    .set = sd_setvflip,
	    .get = sd_getvflip,
	},
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
#define AUTOBRIGHT_IDX 5
	{
	    {
		.id      = V4L2_CID_AUTOBRIGHTNESS,
		.type    = V4L2_CTRL_TYPE_BOOLEAN,
		.name    = "Auto Brightness",
		.minimum = 0,
		.maximum = 1,
		.step    = 1,
#define AUTOBRIGHT_DEF 1
		.default_value = AUTOBRIGHT_DEF,
	    },
	    .set = sd_setautobrightness,
	    .get = sd_getautobrightness,
	},
#define FREQ_IDX 6
	{
	    {
		.id	 = V4L2_CID_POWER_LINE_FREQUENCY,
		.type    = V4L2_CTRL_TYPE_MENU,
		.name    = "Light frequency filter",
		.minimum = 0,
		.maximum = 2,	/* 0: 0, 1: 50Hz, 2:60Hz */
		.step    = 1,
#define FREQ_DEF 0
		.default_value = FREQ_DEF,
	    },
	    .set = sd_setfreq,
	    .get = sd_getfreq,
	},
#define OV7670_FREQ_IDX 7
	{
	    {
		.id	 = V4L2_CID_POWER_LINE_FREQUENCY,
		.type    = V4L2_CTRL_TYPE_MENU,
		.name    = "Light frequency filter",
		.minimum = 0,
		.maximum = 3,	/* 0: 0, 1: 50Hz, 2:60Hz 3: Auto Hz */
		.step    = 1,
#define OV7670_FREQ_DEF 3
		.default_value = OV7670_FREQ_DEF,
	    },
	    .set = sd_setfreq,
	    .get = sd_getfreq,
	},
254 255
};

256
static const struct v4l2_pix_format ov519_vga_mode[] = {
257 258
	{320, 240, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
		.bytesperline = 320,
259
		.sizeimage = 320 * 240 * 3 / 8 + 590,
260 261 262 263 264 265 266
		.colorspace = V4L2_COLORSPACE_JPEG,
		.priv = 1},
	{640, 480, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
		.bytesperline = 640,
		.sizeimage = 640 * 480 * 3 / 8 + 590,
		.colorspace = V4L2_COLORSPACE_JPEG,
		.priv = 0},
267
};
268
static const struct v4l2_pix_format ov519_sif_mode[] = {
269 270 271 272 273
	{160, 120, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
		.bytesperline = 160,
		.sizeimage = 160 * 120 * 3 / 8 + 590,
		.colorspace = V4L2_COLORSPACE_JPEG,
		.priv = 3},
274 275
	{176, 144, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
		.bytesperline = 176,
276
		.sizeimage = 176 * 144 * 3 / 8 + 590,
277 278
		.colorspace = V4L2_COLORSPACE_JPEG,
		.priv = 1},
279 280 281 282 283
	{320, 240, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
		.bytesperline = 320,
		.sizeimage = 320 * 240 * 3 / 8 + 590,
		.colorspace = V4L2_COLORSPACE_JPEG,
		.priv = 2},
284 285
	{352, 288, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
		.bytesperline = 352,
286
		.sizeimage = 352 * 288 * 3 / 8 + 590,
287 288
		.colorspace = V4L2_COLORSPACE_JPEG,
		.priv = 0},
289 290
};

291 292 293 294 295 296
/* Note some of the sizeimage values for the ov511 / ov518 may seem
   larger then necessary, however they need to be this big as the ov511 /
   ov518 always fills the entire isoc frame, using 0 padding bytes when
   it doesn't have any data. So with low framerates the amount of data
   transfered can become quite large (libv4l will remove all the 0 padding
   in userspace). */
297 298 299
static const struct v4l2_pix_format ov518_vga_mode[] = {
	{320, 240, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
		.bytesperline = 320,
300
		.sizeimage = 320 * 240 * 3,
301 302 303 304
		.colorspace = V4L2_COLORSPACE_JPEG,
		.priv = 1},
	{640, 480, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
		.bytesperline = 640,
305
		.sizeimage = 640 * 480 * 2,
306 307 308 309
		.colorspace = V4L2_COLORSPACE_JPEG,
		.priv = 0},
};
static const struct v4l2_pix_format ov518_sif_mode[] = {
310 311
	{160, 120, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
		.bytesperline = 160,
312
		.sizeimage = 70000,
313 314
		.colorspace = V4L2_COLORSPACE_JPEG,
		.priv = 3},
315 316
	{176, 144, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
		.bytesperline = 176,
317
		.sizeimage = 70000,
318 319
		.colorspace = V4L2_COLORSPACE_JPEG,
		.priv = 1},
320 321
	{320, 240, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
		.bytesperline = 320,
322
		.sizeimage = 320 * 240 * 3,
323 324
		.colorspace = V4L2_COLORSPACE_JPEG,
		.priv = 2},
325 326
	{352, 288, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
		.bytesperline = 352,
327
		.sizeimage = 352 * 288 * 3,
328 329 330 331
		.colorspace = V4L2_COLORSPACE_JPEG,
		.priv = 0},
};

332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
static const struct v4l2_pix_format ov511_vga_mode[] = {
	{320, 240, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
		.bytesperline = 320,
		.sizeimage = 320 * 240 * 3,
		.colorspace = V4L2_COLORSPACE_JPEG,
		.priv = 1},
	{640, 480, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
		.bytesperline = 640,
		.sizeimage = 640 * 480 * 2,
		.colorspace = V4L2_COLORSPACE_JPEG,
		.priv = 0},
};
static const struct v4l2_pix_format ov511_sif_mode[] = {
	{160, 120, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
		.bytesperline = 160,
347
		.sizeimage = 70000,
348 349 350 351
		.colorspace = V4L2_COLORSPACE_JPEG,
		.priv = 3},
	{176, 144, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
		.bytesperline = 176,
352
		.sizeimage = 70000,
353 354 355 356 357 358 359 360 361 362 363 364 365
		.colorspace = V4L2_COLORSPACE_JPEG,
		.priv = 1},
	{320, 240, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
		.bytesperline = 320,
		.sizeimage = 320 * 240 * 3,
		.colorspace = V4L2_COLORSPACE_JPEG,
		.priv = 2},
	{352, 288, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
		.bytesperline = 352,
		.sizeimage = 352 * 288 * 3,
		.colorspace = V4L2_COLORSPACE_JPEG,
		.priv = 0},
};
366

367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
static const struct v4l2_pix_format ovfx2_vga_mode[] = {
	{320, 240, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
		.bytesperline = 320,
		.sizeimage = 320 * 240,
		.colorspace = V4L2_COLORSPACE_SRGB,
		.priv = 1},
	{640, 480, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
		.bytesperline = 640,
		.sizeimage = 640 * 480,
		.colorspace = V4L2_COLORSPACE_SRGB,
		.priv = 0},
};
static const struct v4l2_pix_format ovfx2_cif_mode[] = {
	{160, 120, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
		.bytesperline = 160,
		.sizeimage = 160 * 120,
		.colorspace = V4L2_COLORSPACE_SRGB,
		.priv = 3},
	{176, 144, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
		.bytesperline = 176,
		.sizeimage = 176 * 144,
		.colorspace = V4L2_COLORSPACE_SRGB,
		.priv = 1},
	{320, 240, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
		.bytesperline = 320,
		.sizeimage = 320 * 240,
		.colorspace = V4L2_COLORSPACE_SRGB,
		.priv = 2},
	{352, 288, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
		.bytesperline = 352,
		.sizeimage = 352 * 288,
		.colorspace = V4L2_COLORSPACE_SRGB,
		.priv = 0},
};
static const struct v4l2_pix_format ovfx2_ov2610_mode[] = {
	{1600, 1200, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
		.bytesperline = 1600,
		.sizeimage = 1600 * 1200,
		.colorspace = V4L2_COLORSPACE_SRGB},
};
static const struct v4l2_pix_format ovfx2_ov3610_mode[] = {
	{640, 480, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
		.bytesperline = 640,
		.sizeimage = 640 * 480,
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
		.colorspace = V4L2_COLORSPACE_SRGB,
		.priv = 1},
	{800, 600, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
		.bytesperline = 800,
		.sizeimage = 800 * 600,
		.colorspace = V4L2_COLORSPACE_SRGB,
		.priv = 1},
	{1024, 768, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
		.bytesperline = 1024,
		.sizeimage = 1024 * 768,
		.colorspace = V4L2_COLORSPACE_SRGB,
		.priv = 1},
	{1600, 1200, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
		.bytesperline = 1600,
		.sizeimage = 1600 * 1200,
		.colorspace = V4L2_COLORSPACE_SRGB,
		.priv = 0},
	{2048, 1536, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
		.bytesperline = 2048,
		.sizeimage = 2048 * 1536,
		.colorspace = V4L2_COLORSPACE_SRGB,
		.priv = 0},
433 434 435
};


436
/* Registers common to OV511 / OV518 */
437
#define R51x_FIFO_PSIZE			0x30	/* 2 bytes wide w/ OV518(+) */
438
#define R51x_SYS_RESET          	0x50
439 440
	/* Reset type flags */
	#define	OV511_RESET_OMNICE	0x08
441 442 443 444 445 446
#define R51x_SYS_INIT         		0x53
#define R51x_SYS_SNAP			0x52
#define R51x_SYS_CUST_ID		0x5F
#define R51x_COMP_LUT_BEGIN		0x80

/* OV511 Camera interface register numbers */
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
#define R511_CAM_DELAY			0x10
#define R511_CAM_EDGE			0x11
#define R511_CAM_PXCNT			0x12
#define R511_CAM_LNCNT			0x13
#define R511_CAM_PXDIV			0x14
#define R511_CAM_LNDIV			0x15
#define R511_CAM_UV_EN			0x16
#define R511_CAM_LINE_MODE		0x17
#define R511_CAM_OPTS			0x18

#define R511_SNAP_FRAME			0x19
#define R511_SNAP_PXCNT			0x1A
#define R511_SNAP_LNCNT			0x1B
#define R511_SNAP_PXDIV			0x1C
#define R511_SNAP_LNDIV			0x1D
#define R511_SNAP_UV_EN			0x1E
#define R511_SNAP_UV_EN			0x1E
#define R511_SNAP_OPTS			0x1F

#define R511_DRAM_FLOW_CTL		0x20
#define R511_FIFO_OPTS			0x31
#define R511_I2C_CTL			0x40
469
#define R511_SYS_LED_CTL		0x55	/* OV511+ only */
470 471
#define R511_COMP_EN			0x78
#define R511_COMP_LUT_EN		0x79
472 473 474 475 476

/* OV518 Camera interface register numbers */
#define R518_GPIO_OUT			0x56	/* OV518(+) only */
#define R518_GPIO_CTL			0x57	/* OV518(+) only */

477
/* OV519 Camera interface register numbers */
478 479 480 481 482 483 484 485 486
#define OV519_R10_H_SIZE		0x10
#define OV519_R11_V_SIZE		0x11
#define OV519_R12_X_OFFSETL		0x12
#define OV519_R13_X_OFFSETH		0x13
#define OV519_R14_Y_OFFSETL		0x14
#define OV519_R15_Y_OFFSETH		0x15
#define OV519_R16_DIVIDER		0x16
#define OV519_R20_DFR			0x20
#define OV519_R25_FORMAT		0x25
487 488 489 490 491 492 493 494 495 496

/* OV519 System Controller register numbers */
#define OV519_SYS_RESET1 0x51
#define OV519_SYS_EN_CLK1 0x54

#define OV519_GPIO_DATA_OUT0		0x71
#define OV519_GPIO_IO_CTRL0		0x72

#define OV511_ENDPOINT_ADDRESS  1	/* Isoc endpoint number */

497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
/*
 * The FX2 chip does not give us a zero length read at end of frame.
 * It does, however, give a short read at the end of a frame, if
 * neccessary, rather than run two frames together.
 *
 * By choosing the right bulk transfer size, we are guaranteed to always
 * get a short read for the last read of each frame.  Frame sizes are
 * always a composite number (width * height, or a multiple) so if we
 * choose a prime number, we are guaranteed that the last read of a
 * frame will be short.
 *
 * But it isn't that easy: the 2.6 kernel requires a multiple of 4KB,
 * otherwise EOVERFLOW "babbling" errors occur.  I have not been able
 * to figure out why.  [PMiller]
 *
 * The constant (13 * 4096) is the largest "prime enough" number less than 64KB.
 *
 * It isn't enough to know the number of bytes per frame, in case we
 * have data dropouts or buffer overruns (even though the FX2 double
 * buffers, there are some pretty strict real time constraints for
 * isochronous transfer for larger frame sizes).
 */
#define OVFX2_BULK_SIZE (13 * 4096)

521 522 523 524 525 526 527
/* I2C registers */
#define R51x_I2C_W_SID		0x41
#define R51x_I2C_SADDR_3	0x42
#define R51x_I2C_SADDR_2	0x43
#define R51x_I2C_R_SID		0x44
#define R51x_I2C_DATA		0x45
#define R518_I2C_CTL		0x47	/* OV518(+) only */
528
#define OVFX2_I2C_ADDR		0x00
529 530 531

/* I2C ADDRESSES */
#define OV7xx0_SID   0x42
532
#define OV_HIRES_SID 0x60		/* OV9xxx / OV2xxx / OV3xxx */
533 534 535 536 537
#define OV8xx0_SID   0xa0
#define OV6xx0_SID   0xc0

/* OV7610 registers */
#define OV7610_REG_GAIN		0x00	/* gain setting (5:0) */
538 539
#define OV7610_REG_BLUE		0x01	/* blue channel balance */
#define OV7610_REG_RED		0x02	/* red channel balance */
540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
#define OV7610_REG_SAT		0x03	/* saturation */
#define OV8610_REG_HUE		0x04	/* 04 reserved */
#define OV7610_REG_CNT		0x05	/* Y contrast */
#define OV7610_REG_BRT		0x06	/* Y brightness */
#define OV7610_REG_COM_C	0x14	/* misc common regs */
#define OV7610_REG_ID_HIGH	0x1c	/* manufacturer ID MSB */
#define OV7610_REG_ID_LOW	0x1d	/* manufacturer ID LSB */
#define OV7610_REG_COM_I	0x29	/* misc settings */

/* OV7670 registers */
#define OV7670_REG_GAIN        0x00    /* Gain lower 8 bits (rest in vref) */
#define OV7670_REG_BLUE        0x01    /* blue gain */
#define OV7670_REG_RED         0x02    /* red gain */
#define OV7670_REG_VREF        0x03    /* Pieces of GAIN, VSTART, VSTOP */
#define OV7670_REG_COM1        0x04    /* Control 1 */
#define OV7670_REG_AECHH       0x07    /* AEC MS 5 bits */
#define OV7670_REG_COM3        0x0c    /* Control 3 */
#define OV7670_REG_COM4        0x0d    /* Control 4 */
#define OV7670_REG_COM5        0x0e    /* All "reserved" */
#define OV7670_REG_COM6        0x0f    /* Control 6 */
#define OV7670_REG_AECH        0x10    /* More bits of AEC value */
#define OV7670_REG_CLKRC       0x11    /* Clock control */
#define OV7670_REG_COM7        0x12    /* Control 7 */
#define   OV7670_COM7_FMT_VGA    0x00
#define   OV7670_COM7_YUV        0x00    /* YUV */
#define   OV7670_COM7_FMT_QVGA   0x10    /* QVGA format */
#define   OV7670_COM7_FMT_MASK   0x38
#define   OV7670_COM7_RESET      0x80    /* Register reset */
#define OV7670_REG_COM8        0x13    /* Control 8 */
#define   OV7670_COM8_AEC        0x01    /* Auto exposure enable */
#define   OV7670_COM8_AWB        0x02    /* White balance enable */
#define   OV7670_COM8_AGC        0x04    /* Auto gain enable */
#define   OV7670_COM8_BFILT      0x20    /* Band filter enable */
#define   OV7670_COM8_AECSTEP    0x40    /* Unlimited AEC step size */
#define   OV7670_COM8_FASTAEC    0x80    /* Enable fast AGC/AEC */
#define OV7670_REG_COM9        0x14    /* Control 9  - gain ceiling */
#define OV7670_REG_COM10       0x15    /* Control 10 */
#define OV7670_REG_HSTART      0x17    /* Horiz start high bits */
#define OV7670_REG_HSTOP       0x18    /* Horiz stop high bits */
#define OV7670_REG_VSTART      0x19    /* Vert start high bits */
#define OV7670_REG_VSTOP       0x1a    /* Vert stop high bits */
#define OV7670_REG_MVFP        0x1e    /* Mirror / vflip */
582
#define   OV7670_MVFP_VFLIP	 0x10    /* vertical flip */
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
#define   OV7670_MVFP_MIRROR     0x20    /* Mirror image */
#define OV7670_REG_AEW         0x24    /* AGC upper limit */
#define OV7670_REG_AEB         0x25    /* AGC lower limit */
#define OV7670_REG_VPT         0x26    /* AGC/AEC fast mode op region */
#define OV7670_REG_HREF        0x32    /* HREF pieces */
#define OV7670_REG_TSLB        0x3a    /* lots of stuff */
#define OV7670_REG_COM11       0x3b    /* Control 11 */
#define   OV7670_COM11_EXP       0x02
#define   OV7670_COM11_HZAUTO    0x10    /* Auto detect 50/60 Hz */
#define OV7670_REG_COM12       0x3c    /* Control 12 */
#define OV7670_REG_COM13       0x3d    /* Control 13 */
#define   OV7670_COM13_GAMMA     0x80    /* Gamma enable */
#define   OV7670_COM13_UVSAT     0x40    /* UV saturation auto adjustment */
#define OV7670_REG_COM14       0x3e    /* Control 14 */
#define OV7670_REG_EDGE        0x3f    /* Edge enhancement factor */
#define OV7670_REG_COM15       0x40    /* Control 15 */
#define   OV7670_COM15_R00FF     0xc0    /*            00 to FF */
#define OV7670_REG_COM16       0x41    /* Control 16 */
#define   OV7670_COM16_AWBGAIN   0x08    /* AWB gain enable */
#define OV7670_REG_BRIGHT      0x55    /* Brightness */
#define OV7670_REG_CONTRAS     0x56    /* Contrast control */
#define OV7670_REG_GFIX        0x69    /* Fix gain control */
#define OV7670_REG_RGB444      0x8c    /* RGB 444 control */
#define OV7670_REG_HAECC1      0x9f    /* Hist AEC/AGC control 1 */
#define OV7670_REG_HAECC2      0xa0    /* Hist AEC/AGC control 2 */
#define OV7670_REG_BD50MAX     0xa5    /* 50hz banding step limit */
#define OV7670_REG_HAECC3      0xa6    /* Hist AEC/AGC control 3 */
#define OV7670_REG_HAECC4      0xa7    /* Hist AEC/AGC control 4 */
#define OV7670_REG_HAECC5      0xa8    /* Hist AEC/AGC control 5 */
#define OV7670_REG_HAECC6      0xa9    /* Hist AEC/AGC control 6 */
#define OV7670_REG_HAECC7      0xaa    /* Hist AEC/AGC control 7 */
#define OV7670_REG_BD60MAX     0xab    /* 60hz banding step limit */

616 617 618 619 620 621 622 623 624
struct ov_regvals {
	__u8 reg;
	__u8 val;
};
struct ov_i2c_regvals {
	__u8 reg;
	__u8 val;
};

625 626 627
/* Settings for OV2610 camera chip */
static const struct ov_i2c_regvals norm_2610[] =
{
628
	{ 0x12, 0x80 },	/* reset */
629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
};

static const struct ov_i2c_regvals norm_3620b[] =
{
	/*
	 * From the datasheet: "Note that after writing to register COMH
	 * (0x12) to change the sensor mode, registers related to the
	 * sensor’s cropping window will be reset back to their default
	 * values."
	 *
	 * "wait 4096 external clock ... to make sure the sensor is
	 * stable and ready to access registers" i.e. 160us at 24MHz
	 */

	{ 0x12, 0x80 }, /* COMH reset */
	{ 0x12, 0x00 }, /* QXGA, master */

	/*
	 * 11 CLKRC "Clock Rate Control"
	 * [7] internal frequency doublers: on
	 * [6] video port mode: master
	 * [5:0] clock divider: 1
	 */
	{ 0x11, 0x80 },

	/*
	 * 13 COMI "Common Control I"
	 *                  = 192 (0xC0) 11000000
	 *    COMI[7] "AEC speed selection"
	 *                  =   1 (0x01) 1....... "Faster AEC correction"
	 *    COMI[6] "AEC speed step selection"
	 *                  =   1 (0x01) .1...... "Big steps, fast"
	 *    COMI[5] "Banding filter on off"
	 *                  =   0 (0x00) ..0..... "Off"
	 *    COMI[4] "Banding filter option"
	 *                  =   0 (0x00) ...0.... "Main clock is 48 MHz and
	 *                                         the PLL is ON"
	 *    COMI[3] "Reserved"
	 *                  =   0 (0x00) ....0...
	 *    COMI[2] "AGC auto manual control selection"
	 *                  =   0 (0x00) .....0.. "Manual"
	 *    COMI[1] "AWB auto manual control selection"
	 *                  =   0 (0x00) ......0. "Manual"
	 *    COMI[0] "Exposure control"
	 *                  =   0 (0x00) .......0 "Manual"
	 */
	{ 0x13, 0xC0 },

	/*
	 * 09 COMC "Common Control C"
	 *                  =   8 (0x08) 00001000
	 *    COMC[7:5] "Reserved"
	 *                  =   0 (0x00) 000.....
	 *    COMC[4] "Sleep Mode Enable"
	 *                  =   0 (0x00) ...0.... "Normal mode"
	 *    COMC[3:2] "Sensor sampling reset timing selection"
	 *                  =   2 (0x02) ....10.. "Longer reset time"
	 *    COMC[1:0] "Output drive current select"
	 *                  =   0 (0x00) ......00 "Weakest"
	 */
	{ 0x09, 0x08 },

	/*
	 * 0C COMD "Common Control D"
	 *                  =   8 (0x08) 00001000
	 *    COMD[7] "Reserved"
	 *                  =   0 (0x00) 0.......
	 *    COMD[6] "Swap MSB and LSB at the output port"
	 *                  =   0 (0x00) .0...... "False"
	 *    COMD[5:3] "Reserved"
	 *                  =   1 (0x01) ..001...
	 *    COMD[2] "Output Average On Off"
	 *                  =   0 (0x00) .....0.. "Output Normal"
	 *    COMD[1] "Sensor precharge voltage selection"
	 *                  =   0 (0x00) ......0. "Selects internal
	 *                                         reference precharge
	 *                                         voltage"
	 *    COMD[0] "Snapshot option"
	 *                  =   0 (0x00) .......0 "Enable live video output
	 *                                         after snapshot sequence"
	 */
	{ 0x0c, 0x08 },

	/*
	 * 0D COME "Common Control E"
	 *                  = 161 (0xA1) 10100001
	 *    COME[7] "Output average option"
	 *                  =   1 (0x01) 1....... "Output average of 4 pixels"
	 *    COME[6] "Anti-blooming control"
	 *                  =   0 (0x00) .0...... "Off"
	 *    COME[5:3] "Reserved"
	 *                  =   4 (0x04) ..100...
	 *    COME[2] "Clock output power down pin status"
	 *                  =   0 (0x00) .....0.. "Tri-state data output pin
	 *                                         on power down"
	 *    COME[1] "Data output pin status selection at power down"
	 *                  =   0 (0x00) ......0. "Tri-state VSYNC, PCLK,
	 *                                         HREF, and CHSYNC pins on
	 *                                         power down"
	 *    COME[0] "Auto zero circuit select"
	 *                  =   1 (0x01) .......1 "On"
	 */
	{ 0x0d, 0xA1 },

	/*
	 * 0E COMF "Common Control F"
	 *                  = 112 (0x70) 01110000
	 *    COMF[7] "System clock selection"
	 *                  =   0 (0x00) 0....... "Use 24 MHz system clock"
	 *    COMF[6:4] "Reserved"
	 *                  =   7 (0x07) .111....
	 *    COMF[3] "Manual auto negative offset canceling selection"
	 *                  =   0 (0x00) ....0... "Auto detect negative
	 *                                         offset and cancel it"
	 *    COMF[2:0] "Reserved"
	 *                  =   0 (0x00) .....000
	 */
	{ 0x0e, 0x70 },

	/*
	 * 0F COMG "Common Control G"
	 *                  =  66 (0x42) 01000010
	 *    COMG[7] "Optical black output selection"
	 *                  =   0 (0x00) 0....... "Disable"
	 *    COMG[6] "Black level calibrate selection"
	 *                  =   1 (0x01) .1...... "Use optical black pixels
	 *                                         to calibrate"
	 *    COMG[5:4] "Reserved"
	 *                  =   0 (0x00) ..00....
	 *    COMG[3] "Channel offset adjustment"
	 *                  =   0 (0x00) ....0... "Disable offset adjustment"
	 *    COMG[2] "ADC black level calibration option"
	 *                  =   0 (0x00) .....0.. "Use B/G line and G/R
	 *                                         line to calibrate each
	 *                                         channel's black level"
	 *    COMG[1] "Reserved"
	 *                  =   1 (0x01) ......1.
	 *    COMG[0] "ADC black level calibration enable"
	 *                  =   0 (0x00) .......0 "Disable"
	 */
	{ 0x0f, 0x42 },

	/*
	 * 14 COMJ "Common Control J"
	 *                  = 198 (0xC6) 11000110
	 *    COMJ[7:6] "AGC gain ceiling"
	 *                  =   3 (0x03) 11...... "8x"
	 *    COMJ[5:4] "Reserved"
	 *                  =   0 (0x00) ..00....
	 *    COMJ[3] "Auto banding filter"
	 *                  =   0 (0x00) ....0... "Banding filter is always
	 *                                         on off depending on
	 *                                         COMI[5] setting"
	 *    COMJ[2] "VSYNC drop option"
	 *                  =   1 (0x01) .....1.. "SYNC is dropped if frame
	 *                                         data is dropped"
	 *    COMJ[1] "Frame data drop"
	 *                  =   1 (0x01) ......1. "Drop frame data if
	 *                                         exposure is not within
	 *                                         tolerance.  In AEC mode,
	 *                                         data is normally dropped
	 *                                         when data is out of
	 *                                         range."
	 *    COMJ[0] "Reserved"
	 *                  =   0 (0x00) .......0
	 */
	{ 0x14, 0xC6 },

	/*
	 * 15 COMK "Common Control K"
	 *                  =   2 (0x02) 00000010
	 *    COMK[7] "CHSYNC pin output swap"
	 *                  =   0 (0x00) 0....... "CHSYNC"
	 *    COMK[6] "HREF pin output swap"
	 *                  =   0 (0x00) .0...... "HREF"
	 *    COMK[5] "PCLK output selection"
	 *                  =   0 (0x00) ..0..... "PCLK always output"
	 *    COMK[4] "PCLK edge selection"
	 *                  =   0 (0x00) ...0.... "Data valid on falling edge"
	 *    COMK[3] "HREF output polarity"
	 *                  =   0 (0x00) ....0... "positive"
	 *    COMK[2] "Reserved"
	 *                  =   0 (0x00) .....0..
	 *    COMK[1] "VSYNC polarity"
	 *                  =   1 (0x01) ......1. "negative"
	 *    COMK[0] "HSYNC polarity"
	 *                  =   0 (0x00) .......0 "positive"
	 */
	{ 0x15, 0x02 },

	/*
	 * 33 CHLF "Current Control"
	 *                  =   9 (0x09) 00001001
	 *    CHLF[7:6] "Sensor current control"
	 *                  =   0 (0x00) 00......
	 *    CHLF[5] "Sensor current range control"
	 *                  =   0 (0x00) ..0..... "normal range"
	 *    CHLF[4] "Sensor current"
	 *                  =   0 (0x00) ...0.... "normal current"
	 *    CHLF[3] "Sensor buffer current control"
	 *                  =   1 (0x01) ....1... "half current"
	 *    CHLF[2] "Column buffer current control"
	 *                  =   0 (0x00) .....0.. "normal current"
	 *    CHLF[1] "Analog DSP current control"
	 *                  =   0 (0x00) ......0. "normal current"
	 *    CHLF[1] "ADC current control"
	 *                  =   0 (0x00) ......0. "normal current"
	 */
	{ 0x33, 0x09 },

	/*
	 * 34 VBLM "Blooming Control"
	 *                  =  80 (0x50) 01010000
	 *    VBLM[7] "Hard soft reset switch"
	 *                  =   0 (0x00) 0....... "Hard reset"
	 *    VBLM[6:4] "Blooming voltage selection"
	 *                  =   5 (0x05) .101....
	 *    VBLM[3:0] "Sensor current control"
	 *                  =   0 (0x00) ....0000
	 */
	{ 0x34, 0x50 },

	/*
	 * 36 VCHG "Sensor Precharge Voltage Control"
	 *                  =   0 (0x00) 00000000
	 *    VCHG[7] "Reserved"
	 *                  =   0 (0x00) 0.......
	 *    VCHG[6:4] "Sensor precharge voltage control"
	 *                  =   0 (0x00) .000....
	 *    VCHG[3:0] "Sensor array common reference"
	 *                  =   0 (0x00) ....0000
	 */
	{ 0x36, 0x00 },

	/*
	 * 37 ADC "ADC Reference Control"
	 *                  =   4 (0x04) 00000100
	 *    ADC[7:4] "Reserved"
	 *                  =   0 (0x00) 0000....
	 *    ADC[3] "ADC input signal range"
	 *                  =   0 (0x00) ....0... "Input signal 1.0x"
	 *    ADC[2:0] "ADC range control"
	 *                  =   4 (0x04) .....100
	 */
	{ 0x37, 0x04 },

	/*
	 * 38 ACOM "Analog Common Ground"
	 *                  =  82 (0x52) 01010010
	 *    ACOM[7] "Analog gain control"
	 *                  =   0 (0x00) 0....... "Gain 1x"
	 *    ACOM[6] "Analog black level calibration"
	 *                  =   1 (0x01) .1...... "On"
	 *    ACOM[5:0] "Reserved"
	 *                  =  18 (0x12) ..010010
	 */
	{ 0x38, 0x52 },

	/*
	 * 3A FREFA "Internal Reference Adjustment"
	 *                  =   0 (0x00) 00000000
	 *    FREFA[7:0] "Range"
	 *                  =   0 (0x00) 00000000
	 */
	{ 0x3a, 0x00 },

	/*
	 * 3C FVOPT "Internal Reference Adjustment"
	 *                  =  31 (0x1F) 00011111
	 *    FVOPT[7:0] "Range"
	 *                  =  31 (0x1F) 00011111
	 */
	{ 0x3c, 0x1F },

	/*
	 * 44 Undocumented  =   0 (0x00) 00000000
	 *    44[7:0] "It's a secret"
	 *                  =   0 (0x00) 00000000
	 */
	{ 0x44, 0x00 },

	/*
	 * 40 Undocumented  =   0 (0x00) 00000000
	 *    40[7:0] "It's a secret"
	 *                  =   0 (0x00) 00000000
	 */
	{ 0x40, 0x00 },

	/*
	 * 41 Undocumented  =   0 (0x00) 00000000
	 *    41[7:0] "It's a secret"
	 *                  =   0 (0x00) 00000000
	 */
	{ 0x41, 0x00 },

	/*
	 * 42 Undocumented  =   0 (0x00) 00000000
	 *    42[7:0] "It's a secret"
	 *                  =   0 (0x00) 00000000
	 */
	{ 0x42, 0x00 },

	/*
	 * 43 Undocumented  =   0 (0x00) 00000000
	 *    43[7:0] "It's a secret"
	 *                  =   0 (0x00) 00000000
	 */
	{ 0x43, 0x00 },

	/*
	 * 45 Undocumented  = 128 (0x80) 10000000
	 *    45[7:0] "It's a secret"
	 *                  = 128 (0x80) 10000000
	 */
	{ 0x45, 0x80 },

	/*
	 * 48 Undocumented  = 192 (0xC0) 11000000
	 *    48[7:0] "It's a secret"
	 *                  = 192 (0xC0) 11000000
	 */
	{ 0x48, 0xC0 },

	/*
	 * 49 Undocumented  =  25 (0x19) 00011001
	 *    49[7:0] "It's a secret"
	 *                  =  25 (0x19) 00011001
	 */
	{ 0x49, 0x19 },

	/*
	 * 4B Undocumented  = 128 (0x80) 10000000
	 *    4B[7:0] "It's a secret"
	 *                  = 128 (0x80) 10000000
	 */
	{ 0x4B, 0x80 },

	/*
	 * 4D Undocumented  = 196 (0xC4) 11000100
	 *    4D[7:0] "It's a secret"
	 *                  = 196 (0xC4) 11000100
	 */
	{ 0x4D, 0xC4 },

	/*
	 * 35 VREF "Reference Voltage Control"
	 *                  =  76 (0x4C) 01001100
	 *    VREF[7:5] "Column high reference control"
	 *                  =   2 (0x02) 010..... "higher voltage"
	 *    VREF[4:2] "Column low reference control"
	 *                  =   3 (0x03) ...011.. "Highest voltage"
	 *    VREF[1:0] "Reserved"
	 *                  =   0 (0x00) ......00
	 */
	{ 0x35, 0x4C },

	/*
	 * 3D Undocumented  =   0 (0x00) 00000000
	 *    3D[7:0] "It's a secret"
	 *                  =   0 (0x00) 00000000
	 */
	{ 0x3D, 0x00 },

	/*
	 * 3E Undocumented  =   0 (0x00) 00000000
	 *    3E[7:0] "It's a secret"
	 *                  =   0 (0x00) 00000000
	 */
	{ 0x3E, 0x00 },

	/*
	 * 3B FREFB "Internal Reference Adjustment"
	 *                  =  24 (0x18) 00011000
	 *    FREFB[7:0] "Range"
	 *                  =  24 (0x18) 00011000
	 */
	{ 0x3b, 0x18 },

	/*
	 * 33 CHLF "Current Control"
	 *                  =  25 (0x19) 00011001
	 *    CHLF[7:6] "Sensor current control"
	 *                  =   0 (0x00) 00......
	 *    CHLF[5] "Sensor current range control"
	 *                  =   0 (0x00) ..0..... "normal range"
	 *    CHLF[4] "Sensor current"
	 *                  =   1 (0x01) ...1.... "double current"
	 *    CHLF[3] "Sensor buffer current control"
	 *                  =   1 (0x01) ....1... "half current"
	 *    CHLF[2] "Column buffer current control"
	 *                  =   0 (0x00) .....0.. "normal current"
	 *    CHLF[1] "Analog DSP current control"
	 *                  =   0 (0x00) ......0. "normal current"
	 *    CHLF[1] "ADC current control"
	 *                  =   0 (0x00) ......0. "normal current"
	 */
	{ 0x33, 0x19 },

	/*
	 * 34 VBLM "Blooming Control"
	 *                  =  90 (0x5A) 01011010
	 *    VBLM[7] "Hard soft reset switch"
	 *                  =   0 (0x00) 0....... "Hard reset"
	 *    VBLM[6:4] "Blooming voltage selection"
	 *                  =   5 (0x05) .101....
	 *    VBLM[3:0] "Sensor current control"
	 *                  =  10 (0x0A) ....1010
	 */
	{ 0x34, 0x5A },

	/*
	 * 3B FREFB "Internal Reference Adjustment"
	 *                  =   0 (0x00) 00000000
	 *    FREFB[7:0] "Range"
	 *                  =   0 (0x00) 00000000
	 */
	{ 0x3b, 0x00 },

	/*
	 * 33 CHLF "Current Control"
	 *                  =   9 (0x09) 00001001
	 *    CHLF[7:6] "Sensor current control"
	 *                  =   0 (0x00) 00......
	 *    CHLF[5] "Sensor current range control"
	 *                  =   0 (0x00) ..0..... "normal range"
	 *    CHLF[4] "Sensor current"
	 *                  =   0 (0x00) ...0.... "normal current"
	 *    CHLF[3] "Sensor buffer current control"
	 *                  =   1 (0x01) ....1... "half current"
	 *    CHLF[2] "Column buffer current control"
	 *                  =   0 (0x00) .....0.. "normal current"
	 *    CHLF[1] "Analog DSP current control"
	 *                  =   0 (0x00) ......0. "normal current"
	 *    CHLF[1] "ADC current control"
	 *                  =   0 (0x00) ......0. "normal current"
	 */
	{ 0x33, 0x09 },

	/*
	 * 34 VBLM "Blooming Control"
	 *                  =  80 (0x50) 01010000
	 *    VBLM[7] "Hard soft reset switch"
	 *                  =   0 (0x00) 0....... "Hard reset"
	 *    VBLM[6:4] "Blooming voltage selection"
	 *                  =   5 (0x05) .101....
	 *    VBLM[3:0] "Sensor current control"
	 *                  =   0 (0x00) ....0000
	 */
	{ 0x34, 0x50 },

	/*
	 * 12 COMH "Common Control H"
	 *                  =  64 (0x40) 01000000
	 *    COMH[7] "SRST"
	 *                  =   0 (0x00) 0....... "No-op"
	 *    COMH[6:4] "Resolution selection"
	 *                  =   4 (0x04) .100.... "XGA"
	 *    COMH[3] "Master slave selection"
	 *                  =   0 (0x00) ....0... "Master mode"
	 *    COMH[2] "Internal B/R channel option"
	 *                  =   0 (0x00) .....0.. "B/R use same channel"
	 *    COMH[1] "Color bar test pattern"
	 *                  =   0 (0x00) ......0. "Off"
	 *    COMH[0] "Reserved"
	 *                  =   0 (0x00) .......0
	 */
	{ 0x12, 0x40 },

	/*
	 * 17 HREFST "Horizontal window start"
	 *                  =  31 (0x1F) 00011111
	 *    HREFST[7:0] "Horizontal window start, 8 MSBs"
	 *                  =  31 (0x1F) 00011111
	 */
	{ 0x17, 0x1F },

	/*
	 * 18 HREFEND "Horizontal window end"
	 *                  =  95 (0x5F) 01011111
	 *    HREFEND[7:0] "Horizontal Window End, 8 MSBs"
	 *                  =  95 (0x5F) 01011111
	 */
	{ 0x18, 0x5F },

	/*
	 * 19 VSTRT "Vertical window start"
	 *                  =   0 (0x00) 00000000
	 *    VSTRT[7:0] "Vertical Window Start, 8 MSBs"
	 *                  =   0 (0x00) 00000000
	 */
	{ 0x19, 0x00 },

	/*
	 * 1A VEND "Vertical window end"
	 *                  =  96 (0x60) 01100000
	 *    VEND[7:0] "Vertical Window End, 8 MSBs"
	 *                  =  96 (0x60) 01100000
	 */
	{ 0x1a, 0x60 },

	/*
	 * 32 COMM "Common Control M"
	 *                  =  18 (0x12) 00010010
	 *    COMM[7:6] "Pixel clock divide option"
	 *                  =   0 (0x00) 00...... "/1"
	 *    COMM[5:3] "Horizontal window end position, 3 LSBs"
	 *                  =   2 (0x02) ..010...
	 *    COMM[2:0] "Horizontal window start position, 3 LSBs"
	 *                  =   2 (0x02) .....010
	 */
	{ 0x32, 0x12 },

	/*
	 * 03 COMA "Common Control A"
	 *                  =  74 (0x4A) 01001010
	 *    COMA[7:4] "AWB Update Threshold"
	 *                  =   4 (0x04) 0100....
	 *    COMA[3:2] "Vertical window end line control 2 LSBs"
	 *                  =   2 (0x02) ....10..
	 *    COMA[1:0] "Vertical window start line control 2 LSBs"
	 *                  =   2 (0x02) ......10
	 */
	{ 0x03, 0x4A },

	/*
	 * 11 CLKRC "Clock Rate Control"
	 *                  = 128 (0x80) 10000000
	 *    CLKRC[7] "Internal frequency doublers on off seclection"
	 *                  =   1 (0x01) 1....... "On"
	 *    CLKRC[6] "Digital video master slave selection"
	 *                  =   0 (0x00) .0...... "Master mode, sensor
	 *                                         provides PCLK"
	 *    CLKRC[5:0] "Clock divider { CLK = PCLK/(1+CLKRC[5:0]) }"
	 *                  =   0 (0x00) ..000000
	 */
	{ 0x11, 0x80 },

	/*
	 * 12 COMH "Common Control H"
	 *                  =   0 (0x00) 00000000
	 *    COMH[7] "SRST"
	 *                  =   0 (0x00) 0....... "No-op"
	 *    COMH[6:4] "Resolution selection"
	 *                  =   0 (0x00) .000.... "QXGA"
	 *    COMH[3] "Master slave selection"
	 *                  =   0 (0x00) ....0... "Master mode"
	 *    COMH[2] "Internal B/R channel option"
	 *                  =   0 (0x00) .....0.. "B/R use same channel"
	 *    COMH[1] "Color bar test pattern"
	 *                  =   0 (0x00) ......0. "Off"
	 *    COMH[0] "Reserved"
	 *                  =   0 (0x00) .......0
	 */
	{ 0x12, 0x00 },

	/*
	 * 12 COMH "Common Control H"
	 *                  =  64 (0x40) 01000000
	 *    COMH[7] "SRST"
	 *                  =   0 (0x00) 0....... "No-op"
	 *    COMH[6:4] "Resolution selection"
	 *                  =   4 (0x04) .100.... "XGA"
	 *    COMH[3] "Master slave selection"
	 *                  =   0 (0x00) ....0... "Master mode"
	 *    COMH[2] "Internal B/R channel option"
	 *                  =   0 (0x00) .....0.. "B/R use same channel"
	 *    COMH[1] "Color bar test pattern"
	 *                  =   0 (0x00) ......0. "Off"
	 *    COMH[0] "Reserved"
	 *                  =   0 (0x00) .......0
	 */
	{ 0x12, 0x40 },

	/*
	 * 17 HREFST "Horizontal window start"
	 *                  =  31 (0x1F) 00011111
	 *    HREFST[7:0] "Horizontal window start, 8 MSBs"
	 *                  =  31 (0x1F) 00011111
	 */
	{ 0x17, 0x1F },

	/*
	 * 18 HREFEND "Horizontal window end"
	 *                  =  95 (0x5F) 01011111
	 *    HREFEND[7:0] "Horizontal Window End, 8 MSBs"
	 *                  =  95 (0x5F) 01011111
	 */
	{ 0x18, 0x5F },

	/*
	 * 19 VSTRT "Vertical window start"
	 *                  =   0 (0x00) 00000000
	 *    VSTRT[7:0] "Vertical Window Start, 8 MSBs"
	 *                  =   0 (0x00) 00000000
	 */
	{ 0x19, 0x00 },

	/*
	 * 1A VEND "Vertical window end"
	 *                  =  96 (0x60) 01100000
	 *    VEND[7:0] "Vertical Window End, 8 MSBs"
	 *                  =  96 (0x60) 01100000
	 */
	{ 0x1a, 0x60 },

	/*
	 * 32 COMM "Common Control M"
	 *                  =  18 (0x12) 00010010
	 *    COMM[7:6] "Pixel clock divide option"
	 *                  =   0 (0x00) 00...... "/1"
	 *    COMM[5:3] "Horizontal window end position, 3 LSBs"
	 *                  =   2 (0x02) ..010...
	 *    COMM[2:0] "Horizontal window start position, 3 LSBs"
	 *                  =   2 (0x02) .....010
	 */
	{ 0x32, 0x12 },

	/*
	 * 03 COMA "Common Control A"
	 *                  =  74 (0x4A) 01001010
	 *    COMA[7:4] "AWB Update Threshold"
	 *                  =   4 (0x04) 0100....
	 *    COMA[3:2] "Vertical window end line control 2 LSBs"
	 *                  =   2 (0x02) ....10..
	 *    COMA[1:0] "Vertical window start line control 2 LSBs"
	 *                  =   2 (0x02) ......10
	 */
	{ 0x03, 0x4A },

	/*
	 * 02 RED "Red Gain Control"
	 *                  = 175 (0xAF) 10101111
	 *    RED[7] "Action"
	 *                  =   1 (0x01) 1....... "gain = 1/(1+bitrev([6:0]))"
	 *    RED[6:0] "Value"
	 *                  =  47 (0x2F) .0101111
	 */
	{ 0x02, 0xAF },

	/*
	 * 2D ADDVSL "VSYNC Pulse Width"
	 *                  = 210 (0xD2) 11010010
	 *    ADDVSL[7:0] "VSYNC pulse width, LSB"
	 *                  = 210 (0xD2) 11010010
	 */
	{ 0x2d, 0xD2 },

	/*
	 * 00 GAIN          =  24 (0x18) 00011000
	 *    GAIN[7:6] "Reserved"
	 *                  =   0 (0x00) 00......
	 *    GAIN[5] "Double"
	 *                  =   0 (0x00) ..0..... "False"
	 *    GAIN[4] "Double"
	 *                  =   1 (0x01) ...1.... "True"
	 *    GAIN[3:0] "Range"
	 *                  =   8 (0x08) ....1000
	 */
	{ 0x00, 0x18 },

	/*
	 * 01 BLUE "Blue Gain Control"
	 *                  = 240 (0xF0) 11110000
	 *    BLUE[7] "Action"
	 *                  =   1 (0x01) 1....... "gain = 1/(1+bitrev([6:0]))"
	 *    BLUE[6:0] "Value"
	 *                  = 112 (0x70) .1110000
	 */
	{ 0x01, 0xF0 },

	/*
	 * 10 AEC "Automatic Exposure Control"
	 *                  =  10 (0x0A) 00001010
	 *    AEC[7:0] "Automatic Exposure Control, 8 MSBs"
	 *                  =  10 (0x0A) 00001010
	 */
	{ 0x10, 0x0A },

	{ 0xE1, 0x67 },
	{ 0xE3, 0x03 },
	{ 0xE4, 0x26 },
	{ 0xE5, 0x3E },
	{ 0xF8, 0x01 },
	{ 0xFF, 0x01 },
};

1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
static const struct ov_i2c_regvals norm_6x20[] = {
	{ 0x12, 0x80 }, /* reset */
	{ 0x11, 0x01 },
	{ 0x03, 0x60 },
	{ 0x05, 0x7f }, /* For when autoadjust is off */
	{ 0x07, 0xa8 },
	/* The ratio of 0x0c and 0x0d  controls the white point */
	{ 0x0c, 0x24 },
	{ 0x0d, 0x24 },
	{ 0x0f, 0x15 }, /* COMS */
	{ 0x10, 0x75 }, /* AEC Exposure time */
	{ 0x12, 0x24 }, /* Enable AGC */
	{ 0x14, 0x04 },
	/* 0x16: 0x06 helps frame stability with moving objects */
	{ 0x16, 0x06 },
/*	{ 0x20, 0x30 },  * Aperture correction enable */
	{ 0x26, 0xb2 }, /* BLC enable */
	/* 0x28: 0x05 Selects RGB format if RGB on */
	{ 0x28, 0x05 },
	{ 0x2a, 0x04 }, /* Disable framerate adjust */
/*	{ 0x2b, 0xac },  * Framerate; Set 2a[7] first */
1336
	{ 0x2d, 0x85 },
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
	{ 0x33, 0xa0 }, /* Color Processing Parameter */
	{ 0x34, 0xd2 }, /* Max A/D range */
	{ 0x38, 0x8b },
	{ 0x39, 0x40 },

	{ 0x3c, 0x39 }, /* Enable AEC mode changing */
	{ 0x3c, 0x3c }, /* Change AEC mode */
	{ 0x3c, 0x24 }, /* Disable AEC mode changing */

	{ 0x3d, 0x80 },
	/* These next two registers (0x4a, 0x4b) are undocumented.
	 * They control the color balance */
	{ 0x4a, 0x80 },
	{ 0x4b, 0x80 },
	{ 0x4d, 0xd2 }, /* This reduces noise a bit */
	{ 0x4e, 0xc1 },
	{ 0x4f, 0x04 },
/* Do 50-53 have any effect? */
/* Toggle 0x12[2] off and on here? */
};

static const struct ov_i2c_regvals norm_6x30[] = {
	{ 0x12, 0x80 }, /* Reset */
	{ 0x00, 0x1f }, /* Gain */
	{ 0x01, 0x99 }, /* Blue gain */
	{ 0x02, 0x7c }, /* Red gain */
	{ 0x03, 0xc0 }, /* Saturation */
	{ 0x05, 0x0a }, /* Contrast */
	{ 0x06, 0x95 }, /* Brightness */
	{ 0x07, 0x2d }, /* Sharpness */
	{ 0x0c, 0x20 },
	{ 0x0d, 0x20 },
1369
	{ 0x0e, 0xa0 }, /* Was 0x20, bit7 enables a 2x gain which we need */
1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
	{ 0x0f, 0x05 },
	{ 0x10, 0x9a },
	{ 0x11, 0x00 }, /* Pixel clock = fastest */
	{ 0x12, 0x24 }, /* Enable AGC and AWB */
	{ 0x13, 0x21 },
	{ 0x14, 0x80 },
	{ 0x15, 0x01 },
	{ 0x16, 0x03 },
	{ 0x17, 0x38 },
	{ 0x18, 0xea },
	{ 0x19, 0x04 },
	{ 0x1a, 0x93 },
	{ 0x1b, 0x00 },
	{ 0x1e, 0xc4 },
	{ 0x1f, 0x04 },
	{ 0x20, 0x20 },
	{ 0x21, 0x10 },
	{ 0x22, 0x88 },
	{ 0x23, 0xc0 }, /* Crystal circuit power level */
	{ 0x25, 0x9a }, /* Increase AEC black ratio */
	{ 0x26, 0xb2 }, /* BLC enable */
	{ 0x27, 0xa2 },
	{ 0x28, 0x00 },
	{ 0x29, 0x00 },
	{ 0x2a, 0x84 }, /* 60 Hz power */
	{ 0x2b, 0xa8 }, /* 60 Hz power */
	{ 0x2c, 0xa0 },
	{ 0x2d, 0x95 }, /* Enable auto-brightness */
	{ 0x2e, 0x88 },
	{ 0x33, 0x26 },
	{ 0x34, 0x03 },
	{ 0x36, 0x8f },
	{ 0x37, 0x80 },
	{ 0x38, 0x83 },
	{ 0x39, 0x80 },
	{ 0x3a, 0x0f },
	{ 0x3b, 0x3c },
	{ 0x3c, 0x1a },
	{ 0x3d, 0x80 },
	{ 0x3e, 0x80 },
	{ 0x3f, 0x0e },
	{ 0x40, 0x00 }, /* White bal */
	{ 0x41, 0x00 }, /* White bal */
	{ 0x42, 0x80 },
	{ 0x43, 0x3f }, /* White bal */
	{ 0x44, 0x80 },
	{ 0x45, 0x20 },
	{ 0x46, 0x20 },
	{ 0x47, 0x80 },
	{ 0x48, 0x7f },
	{ 0x49, 0x00 },
	{ 0x4a, 0x00 },
	{ 0x4b, 0x80 },
	{ 0x4c, 0xd0 },
	{ 0x4d, 0x10 }, /* U = 0.563u, V = 0.714v */
	{ 0x4e, 0x40 },
	{ 0x4f, 0x07 }, /* UV avg., col. killer: max */
	{ 0x50, 0xff },
	{ 0x54, 0x23 }, /* Max AGC gain: 18dB */
	{ 0x55, 0xff },
	{ 0x56, 0x12 },
	{ 0x57, 0x81 },
	{ 0x58, 0x75 },
	{ 0x59, 0x01 }, /* AGC dark current comp.: +1 */
	{ 0x5a, 0x2c },
	{ 0x5b, 0x0f }, /* AWB chrominance levels */
	{ 0x5c, 0x10 },
	{ 0x3d, 0x80 },
	{ 0x27, 0xa6 },
	{ 0x12, 0x20 }, /* Toggle AWB */
	{ 0x12, 0x24 },
};

/* Lawrence Glaister <lg@jfm.bc.ca> reports:
 *
 * Register 0x0f in the 7610 has the following effects:
 *
 * 0x85 (AEC method 1): Best overall, good contrast range
 * 0x45 (AEC method 2): Very overexposed
 * 0xa5 (spec sheet default): Ok, but the black level is
 *	shifted resulting in loss of contrast
 * 0x05 (old driver setting): very overexposed, too much
 *	contrast
 */
static const struct ov_i2c_regvals norm_7610[] = {
	{ 0x10, 0xff },
	{ 0x16, 0x06 },
	{ 0x28, 0x24 },
	{ 0x2b, 0xac },
	{ 0x12, 0x00 },
	{ 0x38, 0x81 },
	{ 0x28, 0x24 },	/* 0c */
	{ 0x0f, 0x85 },	/* lg's setting */
	{ 0x15, 0x01 },
	{ 0x20, 0x1c },
	{ 0x23, 0x2a },
	{ 0x24, 0x10 },
	{ 0x25, 0x8a },
	{ 0x26, 0xa2 },
	{ 0x27, 0xc2 },
	{ 0x2a, 0x04 },
	{ 0x2c, 0xfe },
	{ 0x2d, 0x93 },
	{ 0x30, 0x71 },
	{ 0x31, 0x60 },
	{ 0x32, 0x26 },
	{ 0x33, 0x20 },
	{ 0x34, 0x48 },
	{ 0x12, 0x24 },
	{ 0x11, 0x01 },
	{ 0x0c, 0x24 },
	{ 0x0d, 0x24 },
};

static const struct ov_i2c_regvals norm_7620[] = {
1485
	{ 0x12, 0x80 },		/* reset */
1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
	{ 0x00, 0x00 },		/* gain */
	{ 0x01, 0x80 },		/* blue gain */
	{ 0x02, 0x80 },		/* red gain */
	{ 0x03, 0xc0 },		/* OV7670_REG_VREF */
	{ 0x06, 0x60 },
	{ 0x07, 0x00 },
	{ 0x0c, 0x24 },
	{ 0x0c, 0x24 },
	{ 0x0d, 0x24 },
	{ 0x11, 0x01 },
	{ 0x12, 0x24 },
	{ 0x13, 0x01 },
	{ 0x14, 0x84 },
	{ 0x15, 0x01 },
	{ 0x16, 0x03 },
	{ 0x17, 0x2f },
	{ 0x18, 0xcf },
	{ 0x19, 0x06 },
	{ 0x1a, 0xf5 },
	{ 0x1b, 0x00 },
	{ 0x20, 0x18 },
	{ 0x21, 0x80 },
	{ 0x22, 0x80 },
	{ 0x23, 0x00 },
	{ 0x26, 0xa2 },
	{ 0x27, 0xea },
1512
	{ 0x28, 0x22 }, /* Was 0x20, bit1 enables a 2x gain which we need */
1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
	{ 0x29, 0x00 },
	{ 0x2a, 0x10 },
	{ 0x2b, 0x00 },
	{ 0x2c, 0x88 },
	{ 0x2d, 0x91 },
	{ 0x2e, 0x80 },
	{ 0x2f, 0x44 },
	{ 0x60, 0x27 },
	{ 0x61, 0x02 },
	{ 0x62, 0x5f },
	{ 0x63, 0xd5 },
	{ 0x64, 0x57 },
	{ 0x65, 0x83 },
	{ 0x66, 0x55 },
	{ 0x67, 0x92 },
	{ 0x68, 0xcf },
	{ 0x69, 0x76 },
	{ 0x6a, 0x22 },
	{ 0x6b, 0x00 },
	{ 0x6c, 0x02 },
	{ 0x6d, 0x44 },
	{ 0x6e, 0x80 },
	{ 0x6f, 0x1d },
	{ 0x70, 0x8b },
	{ 0x71, 0x00 },
	{ 0x72, 0x14 },
	{ 0x73, 0x54 },
	{ 0x74, 0x00 },
	{ 0x75, 0x8e },
	{ 0x76, 0x00 },
	{ 0x77, 0xff },
	{ 0x78, 0x80 },
	{ 0x79, 0x80 },
	{ 0x7a, 0x80 },
	{ 0x7b, 0xe2 },
	{ 0x7c, 0x00 },
};

/* 7640 and 7648. The defaults should be OK for most registers. */
static const struct ov_i2c_regvals norm_7640[] = {
	{ 0x12, 0x80 },
	{ 0x12, 0x14 },
};

/* 7670. Defaults taken from OmniVision provided data,
*  as provided by Jonathan Corbet of OLPC		*/
static const struct ov_i2c_regvals norm_7670[] = {
	{ OV7670_REG_COM7, OV7670_COM7_RESET },
	{ OV7670_REG_TSLB, 0x04 },		/* OV */
	{ OV7670_REG_COM7, OV7670_COM7_FMT_VGA }, /* VGA */
	{ OV7670_REG_CLKRC, 0x01 },
/*
 * Set the hardware window.  These values from OV don't entirely
 * make sense - hstop is less than hstart.  But they work...
 */
	{ OV7670_REG_HSTART, 0x13 },
	{ OV7670_REG_HSTOP, 0x01 },
	{ OV7670_REG_HREF, 0xb6 },
	{ OV7670_REG_VSTART, 0x02 },
	{ OV7670_REG_VSTOP, 0x7a },
	{ OV7670_REG_VREF, 0x0a },

1575 1576
	{ OV7670_REG_COM3, 0x00 },
	{ OV7670_REG_COM14, 0x00 },
1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
/* Mystery scaling numbers */
	{ 0x70, 0x3a },
	{ 0x71, 0x35 },
	{ 0x72, 0x11 },
	{ 0x73, 0xf0 },
	{ 0xa2, 0x02 },
/*	{ OV7670_REG_COM10, 0x0 }, */

/* Gamma curve values */
	{ 0x7a, 0x20 },
	{ 0x7b, 0x10 },
	{ 0x7c, 0x1e },
	{ 0x7d, 0x35 },
	{ 0x7e, 0x5a },
	{ 0x7f, 0x69 },
	{ 0x80, 0x76 },
	{ 0x81, 0x80 },
	{ 0x82, 0x88 },
	{ 0x83, 0x8f },
	{ 0x84, 0x96 },
	{ 0x85, 0xa3 },
	{ 0x86, 0xaf },
	{ 0x87, 0xc4 },
	{ 0x88, 0xd7 },
	{ 0x89, 0xe8 },

/* AGC and AEC parameters.  Note we start by disabling those features,
   then turn them only after tweaking the values. */
	{ OV7670_REG_COM8, OV7670_COM8_FASTAEC
			 | OV7670_COM8_AECSTEP
			 | OV7670_COM8_BFILT },
1608 1609
	{ OV7670_REG_GAIN, 0x00 },
	{ OV7670_REG_AECH, 0x00 },
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646
	{ OV7670_REG_COM4, 0x40 }, /* magic reserved bit */
	{ OV7670_REG_COM9, 0x18 }, /* 4x gain + magic rsvd bit */
	{ OV7670_REG_BD50MAX, 0x05 },
	{ OV7670_REG_BD60MAX, 0x07 },
	{ OV7670_REG_AEW, 0x95 },
	{ OV7670_REG_AEB, 0x33 },
	{ OV7670_REG_VPT, 0xe3 },
	{ OV7670_REG_HAECC1, 0x78 },
	{ OV7670_REG_HAECC2, 0x68 },
	{ 0xa1, 0x03 }, /* magic */
	{ OV7670_REG_HAECC3, 0xd8 },
	{ OV7670_REG_HAECC4, 0xd8 },
	{ OV7670_REG_HAECC5, 0xf0 },
	{ OV7670_REG_HAECC6, 0x90 },
	{ OV7670_REG_HAECC7, 0x94 },
	{ OV7670_REG_COM8, OV7670_COM8_FASTAEC
			| OV7670_COM8_AECSTEP
			| OV7670_COM8_BFILT
			| OV7670_COM8_AGC
			| OV7670_COM8_AEC },

/* Almost all of these are magic "reserved" values.  */
	{ OV7670_REG_COM5, 0x61 },
	{ OV7670_REG_COM6, 0x4b },
	{ 0x16, 0x02 },
	{ OV7670_REG_MVFP, 0x07 },
	{ 0x21, 0x02 },
	{ 0x22, 0x91 },
	{ 0x29, 0x07 },
	{ 0x33, 0x0b },
	{ 0x35, 0x0b },
	{ 0x37, 0x1d },
	{ 0x38, 0x71 },
	{ 0x39, 0x2a },
	{ OV7670_REG_COM12, 0x78 },
	{ 0x4d, 0x40 },
	{ 0x4e, 0x20 },
1647
	{ OV7670_REG_GFIX, 0x00 },
1648 1649 1650
	{ 0x6b, 0x4a },
	{ 0x74, 0x10 },
	{ 0x8d, 0x4f },
1651 1652 1653 1654 1655 1656
	{ 0x8e, 0x00 },
	{ 0x8f, 0x00 },
	{ 0x90, 0x00 },
	{ 0x91, 0x00 },
	{ 0x96, 0x00 },
	{ 0x9a, 0x00 },
1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
	{ 0xb0, 0x84 },
	{ 0xb1, 0x0c },
	{ 0xb2, 0x0e },
	{ 0xb3, 0x82 },
	{ 0xb8, 0x0a },

/* More reserved magic, some of which tweaks white balance */
	{ 0x43, 0x0a },
	{ 0x44, 0xf0 },
	{ 0x45, 0x34 },
	{ 0x46, 0x58 },
	{ 0x47, 0x28 },
	{ 0x48, 0x3a },
	{ 0x59, 0x88 },
	{ 0x5a, 0x88 },
	{ 0x5b, 0x44 },
	{ 0x5c, 0x67 },
	{ 0x5d, 0x49 },
	{ 0x5e, 0x0e },
	{ 0x6c, 0x0a },
	{ 0x6d, 0x55 },
	{ 0x6e, 0x11 },
	{ 0x6f, 0x9f },
					/* "9e for advance AWB" */
	{ 0x6a, 0x40 },
	{ OV7670_REG_BLUE, 0x40 },
	{ OV7670_REG_RED, 0x60 },
	{ OV7670_REG_COM8, OV7670_COM8_FASTAEC
			| OV7670_COM8_AECSTEP
			| OV7670_COM8_BFILT
			| OV7670_COM8_AGC
			| OV7670_COM8_AEC
			| OV7670_COM8_AWB },

/* Matrix coefficients */
	{ 0x4f, 0x80 },
	{ 0x50, 0x80 },
1694
	{ 0x51, 0x00 },
1695 1696 1697 1698 1699 1700
	{ 0x52, 0x22 },
	{ 0x53, 0x5e },
	{ 0x54, 0x80 },
	{ 0x58, 0x9e },

	{ OV7670_REG_COM16, OV7670_COM16_AWBGAIN },
1701
	{ OV7670_REG_EDGE, 0x00 },
1702 1703
	{ 0x75, 0x05 },
	{ 0x76, 0xe1 },
1704
	{ 0x4c, 0x00 },
1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
	{ 0x77, 0x01 },
	{ OV7670_REG_COM13, OV7670_COM13_GAMMA
			  | OV7670_COM13_UVSAT
			  | 2},		/* was 3 */
	{ 0x4b, 0x09 },
	{ 0xc9, 0x60 },
	{ OV7670_REG_COM16, 0x38 },
	{ 0x56, 0x40 },

	{ 0x34, 0x11 },
	{ OV7670_REG_COM11, OV7670_COM11_EXP|OV7670_COM11_HZAUTO },
	{ 0xa4, 0x88 },
1717
	{ 0x96, 0x00 },
1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841
	{ 0x97, 0x30 },
	{ 0x98, 0x20 },
	{ 0x99, 0x30 },
	{ 0x9a, 0x84 },
	{ 0x9b, 0x29 },
	{ 0x9c, 0x03 },
	{ 0x9d, 0x4c },
	{ 0x9e, 0x3f },
	{ 0x78, 0x04 },

/* Extra-weird stuff.  Some sort of multiplexor register */
	{ 0x79, 0x01 },
	{ 0xc8, 0xf0 },
	{ 0x79, 0x0f },
	{ 0xc8, 0x00 },
	{ 0x79, 0x10 },
	{ 0xc8, 0x7e },
	{ 0x79, 0x0a },
	{ 0xc8, 0x80 },
	{ 0x79, 0x0b },
	{ 0xc8, 0x01 },
	{ 0x79, 0x0c },
	{ 0xc8, 0x0f },
	{ 0x79, 0x0d },
	{ 0xc8, 0x20 },
	{ 0x79, 0x09 },
	{ 0xc8, 0x80 },
	{ 0x79, 0x02 },
	{ 0xc8, 0xc0 },
	{ 0x79, 0x03 },
	{ 0xc8, 0x40 },
	{ 0x79, 0x05 },
	{ 0xc8, 0x30 },
	{ 0x79, 0x26 },
};

static const struct ov_i2c_regvals norm_8610[] = {
	{ 0x12, 0x80 },
	{ 0x00, 0x00 },
	{ 0x01, 0x80 },
	{ 0x02, 0x80 },
	{ 0x03, 0xc0 },
	{ 0x04, 0x30 },
	{ 0x05, 0x30 }, /* was 0x10, new from windrv 090403 */
	{ 0x06, 0x70 }, /* was 0x80, new from windrv 090403 */
	{ 0x0a, 0x86 },
	{ 0x0b, 0xb0 },
	{ 0x0c, 0x20 },
	{ 0x0d, 0x20 },
	{ 0x11, 0x01 },
	{ 0x12, 0x25 },
	{ 0x13, 0x01 },
	{ 0x14, 0x04 },
	{ 0x15, 0x01 }, /* Lin and Win think different about UV order */
	{ 0x16, 0x03 },
	{ 0x17, 0x38 }, /* was 0x2f, new from windrv 090403 */
	{ 0x18, 0xea }, /* was 0xcf, new from windrv 090403 */
	{ 0x19, 0x02 }, /* was 0x06, new from windrv 090403 */
	{ 0x1a, 0xf5 },
	{ 0x1b, 0x00 },
	{ 0x20, 0xd0 }, /* was 0x90, new from windrv 090403 */
	{ 0x23, 0xc0 }, /* was 0x00, new from windrv 090403 */
	{ 0x24, 0x30 }, /* was 0x1d, new from windrv 090403 */
	{ 0x25, 0x50 }, /* was 0x57, new from windrv 090403 */
	{ 0x26, 0xa2 },
	{ 0x27, 0xea },
	{ 0x28, 0x00 },
	{ 0x29, 0x00 },
	{ 0x2a, 0x80 },
	{ 0x2b, 0xc8 }, /* was 0xcc, new from windrv 090403 */
	{ 0x2c, 0xac },
	{ 0x2d, 0x45 }, /* was 0xd5, new from windrv 090403 */
	{ 0x2e, 0x80 },
	{ 0x2f, 0x14 }, /* was 0x01, new from windrv 090403 */
	{ 0x4c, 0x00 },
	{ 0x4d, 0x30 }, /* was 0x10, new from windrv 090403 */
	{ 0x60, 0x02 }, /* was 0x01, new from windrv 090403 */
	{ 0x61, 0x00 }, /* was 0x09, new from windrv 090403 */
	{ 0x62, 0x5f }, /* was 0xd7, new from windrv 090403 */
	{ 0x63, 0xff },
	{ 0x64, 0x53 }, /* new windrv 090403 says 0x57,
			 * maybe thats wrong */
	{ 0x65, 0x00 },
	{ 0x66, 0x55 },
	{ 0x67, 0xb0 },
	{ 0x68, 0xc0 }, /* was 0xaf, new from windrv 090403 */
	{ 0x69, 0x02 },
	{ 0x6a, 0x22 },
	{ 0x6b, 0x00 },
	{ 0x6c, 0x99 }, /* was 0x80, old windrv says 0x00, but
			 * deleting bit7 colors the first images red */
	{ 0x6d, 0x11 }, /* was 0x00, new from windrv 090403 */
	{ 0x6e, 0x11 }, /* was 0x00, new from windrv 090403 */
	{ 0x6f, 0x01 },
	{ 0x70, 0x8b },
	{ 0x71, 0x00 },
	{ 0x72, 0x14 },
	{ 0x73, 0x54 },
	{ 0x74, 0x00 },/* 0x60? - was 0x00, new from windrv 090403 */
	{ 0x75, 0x0e },
	{ 0x76, 0x02 }, /* was 0x02, new from windrv 090403 */
	{ 0x77, 0xff },
	{ 0x78, 0x80 },
	{ 0x79, 0x80 },
	{ 0x7a, 0x80 },
	{ 0x7b, 0x10 }, /* was 0x13, new from windrv 090403 */
	{ 0x7c, 0x00 },
	{ 0x7d, 0x08 }, /* was 0x09, new from windrv 090403 */
	{ 0x7e, 0x08 }, /* was 0xc0, new from windrv 090403 */
	{ 0x7f, 0xfb },
	{ 0x80, 0x28 },
	{ 0x81, 0x00 },
	{ 0x82, 0x23 },
	{ 0x83, 0x0b },
	{ 0x84, 0x00 },
	{ 0x85, 0x62 }, /* was 0x61, new from windrv 090403 */
	{ 0x86, 0xc9 },
	{ 0x87, 0x00 },
	{ 0x88, 0x00 },
	{ 0x89, 0x01 },
	{ 0x12, 0x20 },
	{ 0x12, 0x25 }, /* was 0x24, new from windrv 090403 */
};

1842 1843 1844 1845 1846 1847 1848 1849
static unsigned char ov7670_abs_to_sm(unsigned char v)
{
	if (v > 127)
		return v & 0x7f;
	return (128 - v) | 0x80;
}

/* Write a OV519 register */
1850
static int reg_w(struct sd *sd, __u16 index, __u16 value)
1851
{
1852
	int ret, req = 0;
1853 1854 1855 1856 1857 1858 1859

	switch (sd->bridge) {
	case BRIDGE_OV511:
	case BRIDGE_OV511PLUS:
		req = 2;
		break;
	case BRIDGE_OVFX2:
1860 1861 1862
		req = 0x0a;
		/* fall through */
	case BRIDGE_W9968CF:
1863 1864
		ret = usb_control_msg(sd->gspca_dev.dev,
			usb_sndctrlpipe(sd->gspca_dev.dev, 0),
1865
			req,
1866
			USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
1867
			value, index, NULL, 0, 500);
1868 1869 1870 1871
		goto leave;
	default:
		req = 1;
	}
1872

1873
	sd->gspca_dev.usb_buf[0] = value;
1874 1875
	ret = usb_control_msg(sd->gspca_dev.dev,
			usb_sndctrlpipe(sd->gspca_dev.dev, 0),
1876
			req,
1877 1878
			USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
			0, index,
1879
			sd->gspca_dev.usb_buf, 1, 500);
1880
leave:
1881 1882 1883 1884 1885 1886 1887 1888
	if (ret < 0) {
		PDEBUG(D_ERR, "Write reg 0x%04x -> [0x%02x] failed",
		       value, index);
		return ret;
	}

	PDEBUG(D_USBO, "Write reg 0x%04x -> [0x%02x]", value, index);
	return 0;
1889 1890
}

1891
/* Read from a OV519 register, note not valid for the w9968cf!! */
1892 1893 1894 1895
/* returns: negative is error, pos or zero is data */
static int reg_r(struct sd *sd, __u16 index)
{
	int ret;
1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
	int req;

	switch (sd->bridge) {
	case BRIDGE_OV511:
	case BRIDGE_OV511PLUS:
		req = 3;
		break;
	case BRIDGE_OVFX2:
		req = 0x0b;
		break;
	default:
		req = 1;
	}
1909 1910 1911

	ret = usb_control_msg(sd->gspca_dev.dev,
			usb_rcvctrlpipe(sd->gspca_dev.dev, 0),
1912
			req,
1913
			USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
1914
			0, index, sd->gspca_dev.usb_buf, 1, 500);
1915

1916
	if (ret >= 0) {
1917
		ret = sd->gspca_dev.usb_buf[0];
1918 1919
		PDEBUG(D_USBI, "Read reg [0x%02X] -> 0x%04X", index, ret);
	} else
1920
		PDEBUG(D_ERR, "Read reg [0x%02x] failed", index);
1921

1922 1923 1924 1925 1926
	return ret;
}

/* Read 8 values from a OV519 register */
static int reg_r8(struct sd *sd,
1927
		  __u16 index)
1928 1929 1930 1931 1932 1933 1934
{
	int ret;

	ret = usb_control_msg(sd->gspca_dev.dev,
			usb_rcvctrlpipe(sd->gspca_dev.dev, 0),
			1,			/* REQ_IO */
			USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
1935
			0, index, sd->gspca_dev.usb_buf, 8, 500);
1936 1937

	if (ret >= 0)
1938
		ret = sd->gspca_dev.usb_buf[0];
1939 1940
	else
		PDEBUG(D_ERR, "Read reg 8 [0x%02x] failed", index);
1941

1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
	return ret;
}

/*
 * Writes bits at positions specified by mask to an OV51x reg. Bits that are in
 * the same position as 1's in "mask" are cleared and set to "value". Bits
 * that are in the same position as 0's in "mask" are preserved, regardless
 * of their respective state in "value".
 */
static int reg_w_mask(struct sd *sd,
			__u16 index,
			__u8 value,
			__u8 mask)
{
	int ret;
	__u8 oldval;

	if (mask != 0xff) {
		value &= mask;			/* Enforce mask on value */
		ret = reg_r(sd, index);
		if (ret < 0)
			return ret;

		oldval = ret & ~mask;		/* Clear the masked bits */
		value |= oldval;		/* Set the desired bits */
	}
	return reg_w(sd, index, value);
}

1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
/*
 * Writes multiple (n) byte value to a single register. Only valid with certain
 * registers (0x30 and 0xc4 - 0xce).
 */
static int ov518_reg_w32(struct sd *sd, __u16 index, u32 value, int n)
{
	int ret;

	*((u32 *)sd->gspca_dev.usb_buf) = __cpu_to_le32(value);

	ret = usb_control_msg(sd->gspca_dev.dev,
			usb_sndctrlpipe(sd->gspca_dev.dev, 0),
			1 /* REG_IO */,
			USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
			0, index,
			sd->gspca_dev.usb_buf, n, 500);
1987
	if (ret < 0) {
1988
		PDEBUG(D_ERR, "Write reg32 [%02x] %08x failed", index, value);
1989 1990 1991 1992
		return ret;
	}

	return 0;
1993 1994
}

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109
static int ov511_i2c_w(struct sd *sd, __u8 reg, __u8 value)
{
	int rc, retries;

	PDEBUG(D_USBO, "i2c 0x%02x -> [0x%02x]", value, reg);

	/* Three byte write cycle */
	for (retries = 6; ; ) {
		/* Select camera register */
		rc = reg_w(sd, R51x_I2C_SADDR_3, reg);
		if (rc < 0)
			return rc;

		/* Write "value" to I2C data port of OV511 */
		rc = reg_w(sd, R51x_I2C_DATA, value);
		if (rc < 0)
			return rc;

		/* Initiate 3-byte write cycle */
		rc = reg_w(sd, R511_I2C_CTL, 0x01);
		if (rc < 0)
			return rc;

		do
			rc = reg_r(sd, R511_I2C_CTL);
		while (rc > 0 && ((rc & 1) == 0)); /* Retry until idle */

		if (rc < 0)
			return rc;

		if ((rc & 2) == 0) /* Ack? */
			break;
		if (--retries < 0) {
			PDEBUG(D_USBO, "i2c write retries exhausted");
			return -1;
		}
	}

	return 0;
}

static int ov511_i2c_r(struct sd *sd, __u8 reg)
{
	int rc, value, retries;

	/* Two byte write cycle */
	for (retries = 6; ; ) {
		/* Select camera register */
		rc = reg_w(sd, R51x_I2C_SADDR_2, reg);
		if (rc < 0)
			return rc;

		/* Initiate 2-byte write cycle */
		rc = reg_w(sd, R511_I2C_CTL, 0x03);
		if (rc < 0)
			return rc;

		do
			rc = reg_r(sd, R511_I2C_CTL);
		while (rc > 0 && ((rc & 1) == 0)); /* Retry until idle */

		if (rc < 0)
			return rc;

		if ((rc & 2) == 0) /* Ack? */
			break;

		/* I2C abort */
		reg_w(sd, R511_I2C_CTL, 0x10);

		if (--retries < 0) {
			PDEBUG(D_USBI, "i2c write retries exhausted");
			return -1;
		}
	}

	/* Two byte read cycle */
	for (retries = 6; ; ) {
		/* Initiate 2-byte read cycle */
		rc = reg_w(sd, R511_I2C_CTL, 0x05);
		if (rc < 0)
			return rc;

		do
			rc = reg_r(sd, R511_I2C_CTL);
		while (rc > 0 && ((rc & 1) == 0)); /* Retry until idle */

		if (rc < 0)
			return rc;

		if ((rc & 2) == 0) /* Ack? */
			break;

		/* I2C abort */
		rc = reg_w(sd, R511_I2C_CTL, 0x10);
		if (rc < 0)
			return rc;

		if (--retries < 0) {
			PDEBUG(D_USBI, "i2c read retries exhausted");
			return -1;
		}
	}

	value = reg_r(sd, R51x_I2C_DATA);

	PDEBUG(D_USBI, "i2c [0x%02X] -> 0x%02X", reg, value);

	/* This is needed to make i2c_w() work */
	rc = reg_w(sd, R511_I2C_CTL, 0x05);
	if (rc < 0)
		return rc;

	return value;
}
2110

2111 2112 2113 2114 2115
/*
 * The OV518 I2C I/O procedure is different, hence, this function.
 * This is normally only called from i2c_w(). Note that this function
 * always succeeds regardless of whether the sensor is present and working.
 */
2116
static int ov518_i2c_w(struct sd *sd,
2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135
		__u8 reg,
		__u8 value)
{
	int rc;

	PDEBUG(D_USBO, "i2c 0x%02x -> [0x%02x]", value, reg);

	/* Select camera register */
	rc = reg_w(sd, R51x_I2C_SADDR_3, reg);
	if (rc < 0)
		return rc;

	/* Write "value" to I2C data port of OV511 */
	rc = reg_w(sd, R51x_I2C_DATA, value);
	if (rc < 0)
		return rc;

	/* Initiate 3-byte write cycle */
	rc = reg_w(sd, R518_I2C_CTL, 0x01);
2136 2137
	if (rc < 0)
		return rc;
2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150

	/* wait for write complete */
	msleep(4);
	return reg_r8(sd, R518_I2C_CTL);
}

/*
 * returns: negative is error, pos or zero is data
 *
 * The OV518 I2C I/O procedure is different, hence, this function.
 * This is normally only called from i2c_r(). Note that this function
 * always succeeds regardless of whether the sensor is present and working.
 */
2151
static int ov518_i2c_r(struct sd *sd, __u8 reg)
2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173
{
	int rc, value;

	/* Select camera register */
	rc = reg_w(sd, R51x_I2C_SADDR_2, reg);
	if (rc < 0)
		return rc;

	/* Initiate 2-byte write cycle */
	rc = reg_w(sd, R518_I2C_CTL, 0x03);
	if (rc < 0)
		return rc;

	/* Initiate 2-byte read cycle */
	rc = reg_w(sd, R518_I2C_CTL, 0x05);
	if (rc < 0)
		return rc;
	value = reg_r(sd, R51x_I2C_DATA);
	PDEBUG(D_USBI, "i2c [0x%02X] -> 0x%02X", reg, value);
	return value;
}

2174 2175 2176 2177 2178 2179 2180 2181 2182 2183
static int ovfx2_i2c_w(struct sd *sd, __u8 reg, __u8 value)
{
	int ret;

	ret = usb_control_msg(sd->gspca_dev.dev,
			usb_sndctrlpipe(sd->gspca_dev.dev, 0),
			0x02,
			USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
			(__u16)value, (__u16)reg, NULL, 0, 500);

2184
	if (ret < 0) {
2185
		PDEBUG(D_ERR, "i2c 0x%02x -> [0x%02x] failed", value, reg);
2186 2187
		return ret;
	}
2188

2189 2190
	PDEBUG(D_USBO, "i2c 0x%02x -> [0x%02x]", value, reg);
	return 0;
2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211
}

static int ovfx2_i2c_r(struct sd *sd, __u8 reg)
{
	int ret;

	ret = usb_control_msg(sd->gspca_dev.dev,
			usb_rcvctrlpipe(sd->gspca_dev.dev, 0),
			0x03,
			USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
			0, (__u16)reg, sd->gspca_dev.usb_buf, 1, 500);

	if (ret >= 0) {
		ret = sd->gspca_dev.usb_buf[0];
		PDEBUG(D_USBI, "i2c [0x%02X] -> 0x%02X", reg, ret);
	} else
		PDEBUG(D_ERR, "i2c read [0x%02x] failed", reg);

	return ret;
}

2212 2213
static int i2c_w(struct sd *sd, __u8 reg, __u8 value)
{
2214 2215 2216 2217 2218
	int ret = -1;

	if (sd->sensor_reg_cache[reg] == value)
		return 0;

2219 2220 2221
	switch (sd->bridge) {
	case BRIDGE_OV511:
	case BRIDGE_OV511PLUS:
2222 2223
		ret = ov511_i2c_w(sd, reg, value);
		break;
2224 2225 2226
	case BRIDGE_OV518:
	case BRIDGE_OV518PLUS:
	case BRIDGE_OV519:
2227 2228
		ret = ov518_i2c_w(sd, reg, value);
		break;
2229
	case BRIDGE_OVFX2:
2230 2231
		ret = ovfx2_i2c_w(sd, reg, value);
		break;
2232
	case BRIDGE_W9968CF:
2233 2234
		ret = w9968cf_i2c_w(sd, reg, value);
		break;
2235
	}
2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246

	if (ret >= 0) {
		/* Up on sensor reset empty the register cache */
		if (reg == 0x12 && (value & 0x80))
			memset(sd->sensor_reg_cache, -1,
			       sizeof(sd->sensor_reg_cache));
		else
			sd->sensor_reg_cache[reg] = value;
	}

	return ret;
2247 2248 2249 2250
}

static int i2c_r(struct sd *sd, __u8 reg)
{
2251
	int ret = -1;
2252 2253 2254 2255

	if (sd->sensor_reg_cache[reg] != -1)
		return sd->sensor_reg_cache[reg];

2256 2257 2258
	switch (sd->bridge) {
	case BRIDGE_OV511:
	case BRIDGE_OV511PLUS:
2259 2260
		ret = ov511_i2c_r(sd, reg);
		break;
2261 2262 2263
	case BRIDGE_OV518:
	case BRIDGE_OV518PLUS:
	case BRIDGE_OV519:
2264 2265
		ret = ov518_i2c_r(sd, reg);
		break;
2266
	case BRIDGE_OVFX2:
2267 2268
		ret = ovfx2_i2c_r(sd, reg);
		break;
2269
	case BRIDGE_W9968CF:
2270 2271
		ret = w9968cf_i2c_r(sd, reg);
		break;
2272
	}
2273 2274 2275 2276 2277

	if (ret >= 0)
		sd->sensor_reg_cache[reg] = ret;

	return ret;
2278 2279
}

2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305
/* Writes bits at positions specified by mask to an I2C reg. Bits that are in
 * the same position as 1's in "mask" are cleared and set to "value". Bits
 * that are in the same position as 0's in "mask" are preserved, regardless
 * of their respective state in "value".
 */
static int i2c_w_mask(struct sd *sd,
		   __u8 reg,
		   __u8 value,
		   __u8 mask)
{
	int rc;
	__u8 oldval;

	value &= mask;			/* Enforce mask on value */
	rc = i2c_r(sd, reg);
	if (rc < 0)
		return rc;
	oldval = rc & ~mask;		/* Clear the masked bits */
	value |= oldval;		/* Set the desired bits */
	return i2c_w(sd, reg, value);
}

/* Temporarily stops OV511 from functioning. Must do this before changing
 * registers while the camera is streaming */
static inline int ov51x_stop(struct sd *sd)
{
2306 2307
	int ret;

2308 2309
	PDEBUG(D_STREAM, "stopping");
	sd->stopped = 1;
2310 2311 2312 2313 2314 2315 2316 2317 2318
	switch (sd->bridge) {
	case BRIDGE_OV511:
	case BRIDGE_OV511PLUS:
		return reg_w(sd, R51x_SYS_RESET, 0x3d);
	case BRIDGE_OV518:
	case BRIDGE_OV518PLUS:
		return reg_w_mask(sd, R51x_SYS_RESET, 0x3a, 0x3a);
	case BRIDGE_OV519:
		return reg_w(sd, OV519_SYS_RESET1, 0x0f);
2319 2320
	case BRIDGE_OVFX2:
		return reg_w_mask(sd, 0x0f, 0x00, 0x02);
2321 2322 2323 2324 2325
	case BRIDGE_W9968CF:
		ret  = reg_w(sd, 0x3c, 0x0a05); /* stop USB transfer */
		ret += reg_w(sd, 0x39, 0x0000); /* disable JPEG encoder */
		ret += reg_w(sd, 0x16, 0x0000); /* stop video capture */
		return ret;
2326 2327 2328
	}

	return 0;
2329 2330 2331 2332 2333 2334
}

/* Restarts OV511 after ov511_stop() is called. Has no effect if it is not
 * actually stopped (for performance). */
static inline int ov51x_restart(struct sd *sd)
{
2335 2336
	int rc;

2337 2338 2339 2340 2341 2342
	PDEBUG(D_STREAM, "restarting");
	if (!sd->stopped)
		return 0;
	sd->stopped = 0;

	/* Reinitialize the stream */
2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354
	switch (sd->bridge) {
	case BRIDGE_OV511:
	case BRIDGE_OV511PLUS:
		return reg_w(sd, R51x_SYS_RESET, 0x00);
	case BRIDGE_OV518:
	case BRIDGE_OV518PLUS:
		rc = reg_w(sd, 0x2f, 0x80);
		if (rc < 0)
			return rc;
		return reg_w(sd, R51x_SYS_RESET, 0x00);
	case BRIDGE_OV519:
		return reg_w(sd, OV519_SYS_RESET1, 0x00);
2355 2356
	case BRIDGE_OVFX2:
		return reg_w_mask(sd, 0x0f, 0x02, 0x02);
2357 2358
	case BRIDGE_W9968CF:
		return reg_w(sd, 0x3c, 0x8a05); /* USB FIFO enable */
2359 2360 2361
	}

	return 0;
2362 2363
}

2364 2365
static int ov51x_set_slave_ids(struct sd *sd, __u8 slave);

2366 2367 2368
/* This does an initial reset of an OmniVision sensor and ensures that I2C
 * is synchronized. Returns <0 on failure.
 */
2369
static int init_ov_sensor(struct sd *sd, __u8 slave)
2370
{
2371
	int i;
2372

2373 2374 2375
	if (ov51x_set_slave_ids(sd, slave) < 0)
		return -EIO;

2376 2377 2378 2379 2380 2381 2382
	/* Reset the sensor */
	if (i2c_w(sd, 0x12, 0x80) < 0)
		return -EIO;

	/* Wait for it to initialize */
	msleep(150);

2383
	for (i = 0; i < i2c_detect_tries; i++) {
2384 2385
		if (i2c_r(sd, OV7610_REG_ID_HIGH) == 0x7f &&
		    i2c_r(sd, OV7610_REG_ID_LOW) == 0xa2) {
2386 2387
			PDEBUG(D_PROBE, "I2C synced in %d attempt(s)", i);
			return 0;
2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398
		}

		/* Reset the sensor */
		if (i2c_w(sd, 0x12, 0x80) < 0)
			return -EIO;
		/* Wait for it to initialize */
		msleep(150);
		/* Dummy read to sync I2C */
		if (i2c_r(sd, 0x00) < 0)
			return -EIO;
	}
2399
	return -EIO;
2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411
}

/* Set the read and write slave IDs. The "slave" argument is the write slave,
 * and the read slave will be set to (slave + 1).
 * This should not be called from outside the i2c I/O functions.
 * Sets I2C read and write slave IDs. Returns <0 for error
 */
static int ov51x_set_slave_ids(struct sd *sd,
				__u8 slave)
{
	int rc;

2412 2413
	switch (sd->bridge) {
	case BRIDGE_OVFX2:
2414
		return reg_w(sd, OVFX2_I2C_ADDR, slave);
2415 2416 2417 2418
	case BRIDGE_W9968CF:
		sd->sensor_addr = slave;
		return 0;
	}
2419

2420 2421 2422 2423 2424 2425 2426
	rc = reg_w(sd, R51x_I2C_W_SID, slave);
	if (rc < 0)
		return rc;
	return reg_w(sd, R51x_I2C_R_SID, slave + 1);
}

static int write_regvals(struct sd *sd,
2427
			 const struct ov_regvals *regvals,
2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441
			 int n)
{
	int rc;

	while (--n >= 0) {
		rc = reg_w(sd, regvals->reg, regvals->val);
		if (rc < 0)
			return rc;
		regvals++;
	}
	return 0;
}

static int write_i2c_regvals(struct sd *sd,
2442
			     const struct ov_i2c_regvals *regvals,
2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461
			     int n)
{
	int rc;

	while (--n >= 0) {
		rc = i2c_w(sd, regvals->reg, regvals->val);
		if (rc < 0)
			return rc;
		regvals++;
	}
	return 0;
}

/****************************************************************************
 *
 * OV511 and sensor configuration
 *
 ***************************************************************************/

2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494
/* This initializes the OV2x10 / OV3610 / OV3620 */
static int ov_hires_configure(struct sd *sd)
{
	int high, low;

	if (sd->bridge != BRIDGE_OVFX2) {
		PDEBUG(D_ERR, "error hires sensors only supported with ovfx2");
		return -1;
	}

	PDEBUG(D_PROBE, "starting ov hires configuration");

	/* Detect sensor (sub)type */
	high = i2c_r(sd, 0x0a);
	low = i2c_r(sd, 0x0b);
	/* info("%x, %x", high, low); */
	if (high == 0x96 && low == 0x40) {
		PDEBUG(D_PROBE, "Sensor is an OV2610");
		sd->sensor = SEN_OV2610;
	} else if (high == 0x36 && (low & 0x0f) == 0x00) {
		PDEBUG(D_PROBE, "Sensor is an OV3610");
		sd->sensor = SEN_OV3610;
	} else {
		PDEBUG(D_ERR, "Error unknown sensor type: 0x%02x%02x",
		       high, low);
		return -1;
	}

	/* Set sensor-specific vars */
	return 0;
}


2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553
/* This initializes the OV8110, OV8610 sensor. The OV8110 uses
 * the same register settings as the OV8610, since they are very similar.
 */
static int ov8xx0_configure(struct sd *sd)
{
	int rc;

	PDEBUG(D_PROBE, "starting ov8xx0 configuration");

	/* Detect sensor (sub)type */
	rc = i2c_r(sd, OV7610_REG_COM_I);
	if (rc < 0) {
		PDEBUG(D_ERR, "Error detecting sensor type");
		return -1;
	}
	if ((rc & 3) == 1) {
		sd->sensor = SEN_OV8610;
	} else {
		PDEBUG(D_ERR, "Unknown image sensor version: %d", rc & 3);
		return -1;
	}

	/* Set sensor-specific vars */
	return 0;
}

/* This initializes the OV7610, OV7620, or OV76BE sensor. The OV76BE uses
 * the same register settings as the OV7610, since they are very similar.
 */
static int ov7xx0_configure(struct sd *sd)
{
	int rc, high, low;


	PDEBUG(D_PROBE, "starting OV7xx0 configuration");

	/* Detect sensor (sub)type */
	rc = i2c_r(sd, OV7610_REG_COM_I);

	/* add OV7670 here
	 * it appears to be wrongly detected as a 7610 by default */
	if (rc < 0) {
		PDEBUG(D_ERR, "Error detecting sensor type");
		return -1;
	}
	if ((rc & 3) == 3) {
		/* quick hack to make OV7670s work */
		high = i2c_r(sd, 0x0a);
		low = i2c_r(sd, 0x0b);
		/* info("%x, %x", high, low); */
		if (high == 0x76 && low == 0x73) {
			PDEBUG(D_PROBE, "Sensor is an OV7670");
			sd->sensor = SEN_OV7670;
		} else {
			PDEBUG(D_PROBE, "Sensor is an OV7610");
			sd->sensor = SEN_OV7610;
		}
	} else if ((rc & 3) == 1) {
		/* I don't know what's different about the 76BE yet. */
2554
		if (i2c_r(sd, 0x15) & 1) {
2555
			PDEBUG(D_PROBE, "Sensor is an OV7620AE");
2556 2557
			sd->sensor = SEN_OV7620;
		} else {
2558
			PDEBUG(D_PROBE, "Sensor is an OV76BE");
2559 2560
			sd->sensor = SEN_OV76BE;
		}
2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573
	} else if ((rc & 3) == 0) {
		/* try to read product id registers */
		high = i2c_r(sd, 0x0a);
		if (high < 0) {
			PDEBUG(D_ERR, "Error detecting camera chip PID");
			return high;
		}
		low = i2c_r(sd, 0x0b);
		if (low < 0) {
			PDEBUG(D_ERR, "Error detecting camera chip VER");
			return low;
		}
		if (high == 0x76) {
2574 2575
			switch (low) {
			case 0x30:
2576
				PDEBUG(D_PROBE, "Sensor is an OV7630/OV7635");
2577 2578 2579
				PDEBUG(D_ERR,
				      "7630 is not supported by this driver");
				return -1;
2580
			case 0x40:
2581 2582
				PDEBUG(D_PROBE, "Sensor is an OV7645");
				sd->sensor = SEN_OV7640; /* FIXME */
2583 2584
				break;
			case 0x45:
2585 2586
				PDEBUG(D_PROBE, "Sensor is an OV7645B");
				sd->sensor = SEN_OV7640; /* FIXME */
2587 2588
				break;
			case 0x48:
2589 2590
				PDEBUG(D_PROBE, "Sensor is an OV7648");
				sd->sensor = SEN_OV7640; /* FIXME */
2591 2592 2593
				break;
			default:
				PDEBUG(D_PROBE, "Unknown sensor: 0x76%x", low);
2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612
				return -1;
			}
		} else {
			PDEBUG(D_PROBE, "Sensor is an OV7620");
			sd->sensor = SEN_OV7620;
		}
	} else {
		PDEBUG(D_ERR, "Unknown image sensor version: %d", rc & 3);
		return -1;
	}

	/* Set sensor-specific vars */
	return 0;
}

/* This initializes the OV6620, OV6630, OV6630AE, or OV6630AF sensor. */
static int ov6xx0_configure(struct sd *sd)
{
	int rc;
2613
	PDEBUG(D_PROBE, "starting OV6xx0 configuration");
2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624

	/* Detect sensor (sub)type */
	rc = i2c_r(sd, OV7610_REG_COM_I);
	if (rc < 0) {
		PDEBUG(D_ERR, "Error detecting sensor type");
		return -1;
	}

	/* Ugh. The first two bits are the version bits, but
	 * the entire register value must be used. I guess OVT
	 * underestimated how many variants they would make. */
2625 2626
	switch (rc) {
	case 0x00:
2627 2628 2629 2630
		sd->sensor = SEN_OV6630;
		PDEBUG(D_ERR,
			"WARNING: Sensor is an OV66308. Your camera may have");
		PDEBUG(D_ERR, "been misdetected in previous driver versions.");
2631 2632
		break;
	case 0x01:
2633
		sd->sensor = SEN_OV6620;
2634
		PDEBUG(D_PROBE, "Sensor is an OV6620");
2635 2636
		break;
	case 0x02:
2637 2638
		sd->sensor = SEN_OV6630;
		PDEBUG(D_PROBE, "Sensor is an OV66308AE");
2639 2640
		break;
	case 0x03:
2641
		sd->sensor = SEN_OV66308AF;
2642
		PDEBUG(D_PROBE, "Sensor is an OV66308AF");
2643 2644
		break;
	case 0x90:
2645 2646 2647 2648
		sd->sensor = SEN_OV6630;
		PDEBUG(D_ERR,
			"WARNING: Sensor is an OV66307. Your camera may have");
		PDEBUG(D_ERR, "been misdetected in previous driver versions.");
2649 2650
		break;
	default:
2651 2652 2653 2654 2655
		PDEBUG(D_ERR, "FATAL: Unknown sensor version: 0x%02x", rc);
		return -1;
	}

	/* Set sensor-specific vars */
2656
	sd->sif = 1;
2657 2658 2659 2660 2661 2662 2663

	return 0;
}

/* Turns on or off the LED. Only has an effect with OV511+/OV518(+)/OV519 */
static void ov51x_led_control(struct sd *sd, int on)
{
2664 2665 2666
	if (sd->invert_led)
		on = !on;

2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679
	switch (sd->bridge) {
	/* OV511 has no LED control */
	case BRIDGE_OV511PLUS:
		reg_w(sd, R511_SYS_LED_CTL, on ? 1 : 0);
		break;
	case BRIDGE_OV518:
	case BRIDGE_OV518PLUS:
		reg_w_mask(sd, R518_GPIO_OUT, on ? 0x02 : 0x00, 0x02);
		break;
	case BRIDGE_OV519:
		reg_w_mask(sd, OV519_GPIO_DATA_OUT0, !on, 1);	/* 0 / 1 */
		break;
	}
2680 2681
}

2682
static int ov51x_upload_quan_tables(struct sd *sd)
2683
{
2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706
	const unsigned char yQuanTable511[] = {
		0, 1, 1, 2, 2, 3, 3, 4,
		1, 1, 1, 2, 2, 3, 4, 4,
		1, 1, 2, 2, 3, 4, 4, 4,
		2, 2, 2, 3, 4, 4, 4, 4,
		2, 2, 3, 4, 4, 5, 5, 5,
		3, 3, 4, 4, 5, 5, 5, 5,
		3, 4, 4, 4, 5, 5, 5, 5,
		4, 4, 4, 4, 5, 5, 5, 5
	};

	const unsigned char uvQuanTable511[] = {
		0, 2, 2, 3, 4, 4, 4, 4,
		2, 2, 2, 4, 4, 4, 4, 4,
		2, 2, 3, 4, 4, 4, 4, 4,
		3, 4, 4, 4, 4, 4, 4, 4,
		4, 4, 4, 4, 4, 4, 4, 4,
		4, 4, 4, 4, 4, 4, 4, 4,
		4, 4, 4, 4, 4, 4, 4, 4,
		4, 4, 4, 4, 4, 4, 4, 4
	};

	/* OV518 quantization tables are 8x4 (instead of 8x8) */
2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720
	const unsigned char yQuanTable518[] = {
		5, 4, 5, 6, 6, 7, 7, 7,
		5, 5, 5, 5, 6, 7, 7, 7,
		6, 6, 6, 6, 7, 7, 7, 8,
		7, 7, 6, 7, 7, 7, 8, 8
	};

	const unsigned char uvQuanTable518[] = {
		6, 6, 6, 7, 7, 7, 7, 7,
		6, 6, 6, 7, 7, 7, 7, 7,
		6, 6, 6, 7, 7, 7, 7, 8,
		7, 7, 7, 7, 7, 7, 8, 8
	};

2721
	const unsigned char *pYTable, *pUVTable;
2722
	unsigned char val0, val1;
2723
	int i, size, rc, reg = R51x_COMP_LUT_BEGIN;
2724 2725 2726

	PDEBUG(D_PROBE, "Uploading quantization tables");

2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737
	if (sd->bridge == BRIDGE_OV511 || sd->bridge == BRIDGE_OV511PLUS) {
		pYTable = yQuanTable511;
		pUVTable = uvQuanTable511;
		size  = 32;
	} else {
		pYTable = yQuanTable518;
		pUVTable = uvQuanTable518;
		size  = 16;
	}

	for (i = 0; i < size; i++) {
2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751
		val0 = *pYTable++;
		val1 = *pYTable++;
		val0 &= 0x0f;
		val1 &= 0x0f;
		val0 |= val1 << 4;
		rc = reg_w(sd, reg, val0);
		if (rc < 0)
			return rc;

		val0 = *pUVTable++;
		val1 = *pUVTable++;
		val0 &= 0x0f;
		val1 &= 0x0f;
		val0 |= val1 << 4;
2752
		rc = reg_w(sd, reg + size, val0);
2753 2754 2755 2756 2757 2758 2759 2760 2761
		if (rc < 0)
			return rc;

		reg++;
	}

	return 0;
}

2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842
/* This initializes the OV511/OV511+ and the sensor */
static int ov511_configure(struct gspca_dev *gspca_dev)
{
	struct sd *sd = (struct sd *) gspca_dev;
	int rc;

	/* For 511 and 511+ */
	const struct ov_regvals init_511[] = {
		{ R51x_SYS_RESET,	0x7f },
		{ R51x_SYS_INIT,	0x01 },
		{ R51x_SYS_RESET,	0x7f },
		{ R51x_SYS_INIT,	0x01 },
		{ R51x_SYS_RESET,	0x3f },
		{ R51x_SYS_INIT,	0x01 },
		{ R51x_SYS_RESET,	0x3d },
	};

	const struct ov_regvals norm_511[] = {
		{ R511_DRAM_FLOW_CTL, 	0x01 },
		{ R51x_SYS_SNAP,	0x00 },
		{ R51x_SYS_SNAP,	0x02 },
		{ R51x_SYS_SNAP,	0x00 },
		{ R511_FIFO_OPTS,	0x1f },
		{ R511_COMP_EN,		0x00 },
		{ R511_COMP_LUT_EN,	0x03 },
	};

	const struct ov_regvals norm_511_p[] = {
		{ R511_DRAM_FLOW_CTL,	0xff },
		{ R51x_SYS_SNAP,	0x00 },
		{ R51x_SYS_SNAP,	0x02 },
		{ R51x_SYS_SNAP,	0x00 },
		{ R511_FIFO_OPTS,	0xff },
		{ R511_COMP_EN,		0x00 },
		{ R511_COMP_LUT_EN,	0x03 },
	};

	const struct ov_regvals compress_511[] = {
		{ 0x70, 0x1f },
		{ 0x71, 0x05 },
		{ 0x72, 0x06 },
		{ 0x73, 0x06 },
		{ 0x74, 0x14 },
		{ 0x75, 0x03 },
		{ 0x76, 0x04 },
		{ 0x77, 0x04 },
	};

	PDEBUG(D_PROBE, "Device custom id %x", reg_r(sd, R51x_SYS_CUST_ID));

	rc = write_regvals(sd, init_511, ARRAY_SIZE(init_511));
	if (rc < 0)
		return rc;

	switch (sd->bridge) {
	case BRIDGE_OV511:
		rc = write_regvals(sd, norm_511, ARRAY_SIZE(norm_511));
		if (rc < 0)
			return rc;
		break;
	case BRIDGE_OV511PLUS:
		rc = write_regvals(sd, norm_511_p, ARRAY_SIZE(norm_511_p));
		if (rc < 0)
			return rc;
		break;
	}

	/* Init compression */
	rc = write_regvals(sd, compress_511, ARRAY_SIZE(compress_511));
	if (rc < 0)
		return rc;

	rc = ov51x_upload_quan_tables(sd);
	if (rc < 0) {
		PDEBUG(D_ERR, "Error uploading quantization tables");
		return rc;
	}

	return 0;
}

2843 2844
/* This initializes the OV518/OV518+ and the sensor */
static int ov518_configure(struct gspca_dev *gspca_dev)
2845 2846
{
	struct sd *sd = (struct sd *) gspca_dev;
2847 2848 2849
	int rc;

	/* For 518 and 518+ */
2850
	const struct ov_regvals init_518[] = {
2851 2852 2853 2854 2855 2856 2857 2858 2859 2860
		{ R51x_SYS_RESET,	0x40 },
		{ R51x_SYS_INIT,	0xe1 },
		{ R51x_SYS_RESET,	0x3e },
		{ R51x_SYS_INIT,	0xe1 },
		{ R51x_SYS_RESET,	0x00 },
		{ R51x_SYS_INIT,	0xe1 },
		{ 0x46,			0x00 },
		{ 0x5d,			0x03 },
	};

2861
	const struct ov_regvals norm_518[] = {
2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873
		{ R51x_SYS_SNAP,	0x02 }, /* Reset */
		{ R51x_SYS_SNAP,	0x01 }, /* Enable */
		{ 0x31, 		0x0f },
		{ 0x5d,			0x03 },
		{ 0x24,			0x9f },
		{ 0x25,			0x90 },
		{ 0x20,			0x00 },
		{ 0x51,			0x04 },
		{ 0x71,			0x19 },
		{ 0x2f,			0x80 },
	};

2874
	const struct ov_regvals norm_518_p[] = {
2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904
		{ R51x_SYS_SNAP,	0x02 }, /* Reset */
		{ R51x_SYS_SNAP,	0x01 }, /* Enable */
		{ 0x31, 		0x0f },
		{ 0x5d,			0x03 },
		{ 0x24,			0x9f },
		{ 0x25,			0x90 },
		{ 0x20,			0x60 },
		{ 0x51,			0x02 },
		{ 0x71,			0x19 },
		{ 0x40,			0xff },
		{ 0x41,			0x42 },
		{ 0x46,			0x00 },
		{ 0x33,			0x04 },
		{ 0x21,			0x19 },
		{ 0x3f,			0x10 },
		{ 0x2f,			0x80 },
	};

	/* First 5 bits of custom ID reg are a revision ID on OV518 */
	PDEBUG(D_PROBE, "Device revision %d",
	       0x1F & reg_r(sd, R51x_SYS_CUST_ID));

	rc = write_regvals(sd, init_518, ARRAY_SIZE(init_518));
	if (rc < 0)
		return rc;

	/* Set LED GPIO pin to output mode */
	rc = reg_w_mask(sd, R518_GPIO_CTL, 0x00, 0x02);
	if (rc < 0)
		return rc;
2905

2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918
	switch (sd->bridge) {
	case BRIDGE_OV518:
		rc = write_regvals(sd, norm_518, ARRAY_SIZE(norm_518));
		if (rc < 0)
			return rc;
		break;
	case BRIDGE_OV518PLUS:
		rc = write_regvals(sd, norm_518_p, ARRAY_SIZE(norm_518_p));
		if (rc < 0)
			return rc;
		break;
	}

2919
	rc = ov51x_upload_quan_tables(sd);
2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933
	if (rc < 0) {
		PDEBUG(D_ERR, "Error uploading quantization tables");
		return rc;
	}

	rc = reg_w(sd, 0x2f, 0x80);
	if (rc < 0)
		return rc;

	return 0;
}

static int ov519_configure(struct sd *sd)
{
2934
	static const struct ov_regvals init_519[] = {
2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949
		{ 0x5a,  0x6d }, /* EnableSystem */
		{ 0x53,  0x9b },
		{ 0x54,  0xff }, /* set bit2 to enable jpeg */
		{ 0x5d,  0x03 },
		{ 0x49,  0x01 },
		{ 0x48,  0x00 },
		/* Set LED pin to output mode. Bit 4 must be cleared or sensor
		 * detection will fail. This deserves further investigation. */
		{ OV519_GPIO_IO_CTRL0,   0xee },
		{ 0x51,  0x0f }, /* SetUsbInit */
		{ 0x51,  0x00 },
		{ 0x22,  0x00 },
		/* windows reads 0x55 at this point*/
	};

2950 2951 2952
	return write_regvals(sd, init_519, ARRAY_SIZE(init_519));
}

2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969
static int ovfx2_configure(struct sd *sd)
{
	static const struct ov_regvals init_fx2[] = {
		{ 0x00, 0x60 },
		{ 0x02, 0x01 },
		{ 0x0f, 0x1d },
		{ 0xe9, 0x82 },
		{ 0xea, 0xc7 },
		{ 0xeb, 0x10 },
		{ 0xec, 0xf6 },
	};

	sd->stopped = 1;

	return write_regvals(sd, init_fx2, ARRAY_SIZE(init_fx2));
}

2970 2971 2972 2973 2974
/* this function is called at probe time */
static int sd_config(struct gspca_dev *gspca_dev,
			const struct usb_device_id *id)
{
	struct sd *sd = (struct sd *) gspca_dev;
2975
	struct cam *cam = &gspca_dev->cam;
2976 2977
	int ret = 0;

2978 2979
	sd->bridge = id->driver_info & BRIDGE_MASK;
	sd->invert_led = id->driver_info & BRIDGE_INVERT_LED;
2980 2981

	switch (sd->bridge) {
2982 2983 2984 2985
	case BRIDGE_OV511:
	case BRIDGE_OV511PLUS:
		ret = ov511_configure(gspca_dev);
		break;
2986 2987 2988 2989 2990 2991 2992
	case BRIDGE_OV518:
	case BRIDGE_OV518PLUS:
		ret = ov518_configure(gspca_dev);
		break;
	case BRIDGE_OV519:
		ret = ov519_configure(sd);
		break;
2993 2994 2995 2996 2997 2998
	case BRIDGE_OVFX2:
		ret = ovfx2_configure(sd);
		cam->bulk_size = OVFX2_BULK_SIZE;
		cam->bulk_nurbs = MAX_NURBS;
		cam->bulk = 1;
		break;
2999 3000 3001 3002
	case BRIDGE_W9968CF:
		ret = w9968cf_configure(sd);
		cam->reverse_alts = 1;
		break;
3003 3004 3005
	}

	if (ret)
3006
		goto error;
3007

3008 3009 3010 3011 3012
	ov51x_led_control(sd, 0);	/* turn LED off */

	/* The OV519 must be more aggressive about sensor detection since
	 * I2C write will never fail if the sensor is not present. We have
	 * to try to initialize the sensor to detect its presence */
3013 3014 3015

	/* Test for 76xx */
	if (init_ov_sensor(sd, OV7xx0_SID) >= 0) {
3016 3017 3018 3019
		if (ov7xx0_configure(sd) < 0) {
			PDEBUG(D_ERR, "Failed to configure OV7xx0");
			goto error;
		}
3020 3021 3022 3023 3024 3025 3026 3027 3028 3029
	/* Test for 6xx0 */
	} else if (init_ov_sensor(sd, OV6xx0_SID) >= 0) {
		if (ov6xx0_configure(sd) < 0) {
			PDEBUG(D_ERR, "Failed to configure OV6xx0");
			goto error;
		}
	/* Test for 8xx0 */
	} else if (init_ov_sensor(sd, OV8xx0_SID) >= 0) {
		if (ov8xx0_configure(sd) < 0) {
			PDEBUG(D_ERR, "Failed to configure OV8xx0");
3030 3031
			goto error;
		}
3032 3033 3034 3035 3036 3037
	/* Test for 3xxx / 2xxx */
	} else if (init_ov_sensor(sd, OV_HIRES_SID) >= 0) {
		if (ov_hires_configure(sd) < 0) {
			PDEBUG(D_ERR, "Failed to configure high res OV");
			goto error;
		}
3038 3039 3040
	} else {
		PDEBUG(D_ERR, "Can't determine sensor slave IDs");
		goto error;
3041 3042
	}

3043
	switch (sd->bridge) {
3044 3045 3046 3047 3048 3049 3050 3051 3052 3053
	case BRIDGE_OV511:
	case BRIDGE_OV511PLUS:
		if (!sd->sif) {
			cam->cam_mode = ov511_vga_mode;
			cam->nmodes = ARRAY_SIZE(ov511_vga_mode);
		} else {
			cam->cam_mode = ov511_sif_mode;
			cam->nmodes = ARRAY_SIZE(ov511_sif_mode);
		}
		break;
3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072
	case BRIDGE_OV518:
	case BRIDGE_OV518PLUS:
		if (!sd->sif) {
			cam->cam_mode = ov518_vga_mode;
			cam->nmodes = ARRAY_SIZE(ov518_vga_mode);
		} else {
			cam->cam_mode = ov518_sif_mode;
			cam->nmodes = ARRAY_SIZE(ov518_sif_mode);
		}
		break;
	case BRIDGE_OV519:
		if (!sd->sif) {
			cam->cam_mode = ov519_vga_mode;
			cam->nmodes = ARRAY_SIZE(ov519_vga_mode);
		} else {
			cam->cam_mode = ov519_sif_mode;
			cam->nmodes = ARRAY_SIZE(ov519_sif_mode);
		}
		break;
3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087
	case BRIDGE_OVFX2:
		if (sd->sensor == SEN_OV2610) {
			cam->cam_mode = ovfx2_ov2610_mode;
			cam->nmodes = ARRAY_SIZE(ovfx2_ov2610_mode);
		} else if (sd->sensor == SEN_OV3610) {
			cam->cam_mode = ovfx2_ov3610_mode;
			cam->nmodes = ARRAY_SIZE(ovfx2_ov3610_mode);
		} else if (!sd->sif) {
			cam->cam_mode = ov519_vga_mode;
			cam->nmodes = ARRAY_SIZE(ov519_vga_mode);
		} else {
			cam->cam_mode = ov519_sif_mode;
			cam->nmodes = ARRAY_SIZE(ov519_sif_mode);
		}
		break;
3088 3089 3090 3091 3092 3093 3094 3095 3096 3097
	case BRIDGE_W9968CF:
		cam->cam_mode = w9968cf_vga_mode;
		cam->nmodes = ARRAY_SIZE(w9968cf_vga_mode);
		/* if (sd->sif)
			cam->nmodes--; */

		/* w9968cf needs initialisation once the sensor is known */
		if (w9968cf_init(sd) < 0)
			goto error;
		break;
3098
	}
3099
	sd->brightness = BRIGHTNESS_DEF;
3100 3101 3102 3103
	if (sd->sensor == SEN_OV6630 || sd->sensor == SEN_OV66308AF)
		sd->contrast = 200; /* The default is too low for the ov6630 */
	else
		sd->contrast = CONTRAST_DEF;
3104
	sd->colors = COLOR_DEF;
3105 3106
	sd->hflip = HFLIP_DEF;
	sd->vflip = VFLIP_DEF;
3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120
	sd->autobrightness = AUTOBRIGHT_DEF;
	if (sd->sensor == SEN_OV7670) {
		sd->freq = OV7670_FREQ_DEF;
		gspca_dev->ctrl_dis = 1 << FREQ_IDX;
	} else {
		sd->freq = FREQ_DEF;
		gspca_dev->ctrl_dis = (1 << HFLIP_IDX) | (1 << VFLIP_IDX) |
				      (1 << OV7670_FREQ_IDX);
	}
	if (sd->sensor == SEN_OV7640 || sd->sensor == SEN_OV7670)
		gspca_dev->ctrl_dis |= 1 << AUTOBRIGHT_IDX;
	/* OV8610 Frequency filter control should work but needs testing */
	if (sd->sensor == SEN_OV8610)
		gspca_dev->ctrl_dis |= 1 << FREQ_IDX;
3121 3122 3123
	/* No controls for the OV2610/OV3610 */
	if (sd->sensor == SEN_OV2610 || sd->sensor == SEN_OV3610)
		gspca_dev->ctrl_dis |= 0xFF;
3124

3125 3126 3127 3128 3129 3130
	return 0;
error:
	PDEBUG(D_ERR, "OV519 Config failed");
	return -EBUSY;
}

3131 3132
/* this function is called at probe and resume time */
static int sd_init(struct gspca_dev *gspca_dev)
3133
{
3134 3135 3136 3137
	struct sd *sd = (struct sd *) gspca_dev;

	/* initialize the sensor */
	switch (sd->sensor) {
3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
	case SEN_OV2610:
		if (write_i2c_regvals(sd, norm_2610, ARRAY_SIZE(norm_2610)))
			return -EIO;
		/* Enable autogain, autoexpo, awb, bandfilter */
		if (i2c_w_mask(sd, 0x13, 0x27, 0x27) < 0)
			return -EIO;
		break;
	case SEN_OV3610:
		if (write_i2c_regvals(sd, norm_3620b, ARRAY_SIZE(norm_3620b)))
			return -EIO;
		/* Enable autogain, autoexpo, awb, bandfilter */
		if (i2c_w_mask(sd, 0x13, 0x27, 0x27) < 0)
			return -EIO;
		break;
3152 3153 3154 3155 3156
	case SEN_OV6620:
		if (write_i2c_regvals(sd, norm_6x20, ARRAY_SIZE(norm_6x20)))
			return -EIO;
		break;
	case SEN_OV6630:
3157
	case SEN_OV66308AF:
3158 3159 3160 3161 3162 3163 3164 3165
		if (write_i2c_regvals(sd, norm_6x30, ARRAY_SIZE(norm_6x30)))
			return -EIO;
		break;
	default:
/*	case SEN_OV7610: */
/*	case SEN_OV76BE: */
		if (write_i2c_regvals(sd, norm_7610, ARRAY_SIZE(norm_7610)))
			return -EIO;
3166 3167
		if (i2c_w_mask(sd, 0x0e, 0x00, 0x40))
			return -EIO;
3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185
		break;
	case SEN_OV7620:
		if (write_i2c_regvals(sd, norm_7620, ARRAY_SIZE(norm_7620)))
			return -EIO;
		break;
	case SEN_OV7640:
		if (write_i2c_regvals(sd, norm_7640, ARRAY_SIZE(norm_7640)))
			return -EIO;
		break;
	case SEN_OV7670:
		if (write_i2c_regvals(sd, norm_7670, ARRAY_SIZE(norm_7670)))
			return -EIO;
		break;
	case SEN_OV8610:
		if (write_i2c_regvals(sd, norm_8610, ARRAY_SIZE(norm_8610)))
			return -EIO;
		break;
	}
3186 3187 3188
	return 0;
}

3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247
/* Set up the OV511/OV511+ with the given image parameters.
 *
 * Do not put any sensor-specific code in here (including I2C I/O functions)
 */
static int ov511_mode_init_regs(struct sd *sd)
{
	int hsegs, vsegs, packet_size, fps, needed;
	int interlaced = 0;
	struct usb_host_interface *alt;
	struct usb_interface *intf;

	intf = usb_ifnum_to_if(sd->gspca_dev.dev, sd->gspca_dev.iface);
	alt = usb_altnum_to_altsetting(intf, sd->gspca_dev.alt);
	if (!alt) {
		PDEBUG(D_ERR, "Couldn't get altsetting");
		return -EIO;
	}

	packet_size = le16_to_cpu(alt->endpoint[0].desc.wMaxPacketSize);
	reg_w(sd, R51x_FIFO_PSIZE, packet_size >> 5);

	reg_w(sd, R511_CAM_UV_EN, 0x01);
	reg_w(sd, R511_SNAP_UV_EN, 0x01);
	reg_w(sd, R511_SNAP_OPTS, 0x03);

	/* Here I'm assuming that snapshot size == image size.
	 * I hope that's always true. --claudio
	 */
	hsegs = (sd->gspca_dev.width >> 3) - 1;
	vsegs = (sd->gspca_dev.height >> 3) - 1;

	reg_w(sd, R511_CAM_PXCNT, hsegs);
	reg_w(sd, R511_CAM_LNCNT, vsegs);
	reg_w(sd, R511_CAM_PXDIV, 0x00);
	reg_w(sd, R511_CAM_LNDIV, 0x00);

	/* YUV420, low pass filter on */
	reg_w(sd, R511_CAM_OPTS, 0x03);

	/* Snapshot additions */
	reg_w(sd, R511_SNAP_PXCNT, hsegs);
	reg_w(sd, R511_SNAP_LNCNT, vsegs);
	reg_w(sd, R511_SNAP_PXDIV, 0x00);
	reg_w(sd, R511_SNAP_LNDIV, 0x00);

	/******** Set the framerate ********/
	if (frame_rate > 0)
		sd->frame_rate = frame_rate;

	switch (sd->sensor) {
	case SEN_OV6620:
		/* No framerate control, doesn't like higher rates yet */
		sd->clockdiv = 3;
		break;

	/* Note once the FIXME's in mode_init_ov_sensor_regs() are fixed
	   for more sensors we need to do this for them too */
	case SEN_OV7620:
	case SEN_OV7640:
3248
	case SEN_OV76BE:
3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308
		if (sd->gspca_dev.width == 320)
			interlaced = 1;
		/* Fall through */
	case SEN_OV6630:
	case SEN_OV7610:
	case SEN_OV7670:
		switch (sd->frame_rate) {
		case 30:
		case 25:
			/* Not enough bandwidth to do 640x480 @ 30 fps */
			if (sd->gspca_dev.width != 640) {
				sd->clockdiv = 0;
				break;
			}
			/* Fall through for 640x480 case */
		default:
/*		case 20: */
/*		case 15: */
			sd->clockdiv = 1;
			break;
		case 10:
			sd->clockdiv = 2;
			break;
		case 5:
			sd->clockdiv = 5;
			break;
		}
		if (interlaced) {
			sd->clockdiv = (sd->clockdiv + 1) * 2 - 1;
			/* Higher then 10 does not work */
			if (sd->clockdiv > 10)
				sd->clockdiv = 10;
		}
		break;

	case SEN_OV8610:
		/* No framerate control ?? */
		sd->clockdiv = 0;
		break;
	}

	/* Check if we have enough bandwidth to disable compression */
	fps = (interlaced ? 60 : 30) / (sd->clockdiv + 1) + 1;
	needed = fps * sd->gspca_dev.width * sd->gspca_dev.height * 3 / 2;
	/* 1400 is a conservative estimate of the max nr of isoc packets/sec */
	if (needed > 1400 * packet_size) {
		/* Enable Y and UV quantization and compression */
		reg_w(sd, R511_COMP_EN, 0x07);
		reg_w(sd, R511_COMP_LUT_EN, 0x03);
	} else {
		reg_w(sd, R511_COMP_EN, 0x06);
		reg_w(sd, R511_COMP_LUT_EN, 0x00);
	}

	reg_w(sd, R51x_SYS_RESET, OV511_RESET_OMNICE);
	reg_w(sd, R51x_SYS_RESET, 0);

	return 0;
}

3309 3310 3311 3312 3313 3314 3315 3316 3317
/* Sets up the OV518/OV518+ with the given image parameters
 *
 * OV518 needs a completely different approach, until we can figure out what
 * the individual registers do. Also, only 15 FPS is supported now.
 *
 * Do not put any sensor-specific code in here (including I2C I/O functions)
 */
static int ov518_mode_init_regs(struct sd *sd)
{
3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330
	int hsegs, vsegs, packet_size;
	struct usb_host_interface *alt;
	struct usb_interface *intf;

	intf = usb_ifnum_to_if(sd->gspca_dev.dev, sd->gspca_dev.iface);
	alt = usb_altnum_to_altsetting(intf, sd->gspca_dev.alt);
	if (!alt) {
		PDEBUG(D_ERR, "Couldn't get altsetting");
		return -EIO;
	}

	packet_size = le16_to_cpu(alt->endpoint[0].desc.wMaxPacketSize);
	ov518_reg_w32(sd, R51x_FIFO_PSIZE, packet_size & ~7, 2);
3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366

	/******** Set the mode ********/

	reg_w(sd, 0x2b, 0);
	reg_w(sd, 0x2c, 0);
	reg_w(sd, 0x2d, 0);
	reg_w(sd, 0x2e, 0);
	reg_w(sd, 0x3b, 0);
	reg_w(sd, 0x3c, 0);
	reg_w(sd, 0x3d, 0);
	reg_w(sd, 0x3e, 0);

	if (sd->bridge == BRIDGE_OV518) {
		/* Set 8-bit (YVYU) input format */
		reg_w_mask(sd, 0x20, 0x08, 0x08);

		/* Set 12-bit (4:2:0) output format */
		reg_w_mask(sd, 0x28, 0x80, 0xf0);
		reg_w_mask(sd, 0x38, 0x80, 0xf0);
	} else {
		reg_w(sd, 0x28, 0x80);
		reg_w(sd, 0x38, 0x80);
	}

	hsegs = sd->gspca_dev.width / 16;
	vsegs = sd->gspca_dev.height / 4;

	reg_w(sd, 0x29, hsegs);
	reg_w(sd, 0x2a, vsegs);

	reg_w(sd, 0x39, hsegs);
	reg_w(sd, 0x3a, vsegs);

	/* Windows driver does this here; who knows why */
	reg_w(sd, 0x2f, 0x80);

3367 3368
	/******** Set the framerate  ********/
	sd->clockdiv = 1;
3369 3370

	/* Mode independent, but framerate dependent, regs */
3371 3372
	/* 0x51: Clock divider; Only works on some cams which use 2 crystals */
	reg_w(sd, 0x51, 0x04);
3373 3374 3375
	reg_w(sd, 0x22, 0x18);
	reg_w(sd, 0x23, 0xff);

3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390
	if (sd->bridge == BRIDGE_OV518PLUS) {
		switch (sd->sensor) {
		case SEN_OV7620:
			if (sd->gspca_dev.width == 320) {
				reg_w(sd, 0x20, 0x00);
				reg_w(sd, 0x21, 0x19);
			} else {
				reg_w(sd, 0x20, 0x60);
				reg_w(sd, 0x21, 0x1f);
			}
			break;
		default:
			reg_w(sd, 0x21, 0x19);
		}
	} else
3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430
		reg_w(sd, 0x71, 0x17);	/* Compression-related? */

	/* FIXME: Sensor-specific */
	/* Bit 5 is what matters here. Of course, it is "reserved" */
	i2c_w(sd, 0x54, 0x23);

	reg_w(sd, 0x2f, 0x80);

	if (sd->bridge == BRIDGE_OV518PLUS) {
		reg_w(sd, 0x24, 0x94);
		reg_w(sd, 0x25, 0x90);
		ov518_reg_w32(sd, 0xc4,    400, 2);	/* 190h   */
		ov518_reg_w32(sd, 0xc6,    540, 2);	/* 21ch   */
		ov518_reg_w32(sd, 0xc7,    540, 2);	/* 21ch   */
		ov518_reg_w32(sd, 0xc8,    108, 2);	/* 6ch    */
		ov518_reg_w32(sd, 0xca, 131098, 3);	/* 2001ah */
		ov518_reg_w32(sd, 0xcb,    532, 2);	/* 214h   */
		ov518_reg_w32(sd, 0xcc,   2400, 2);	/* 960h   */
		ov518_reg_w32(sd, 0xcd,     32, 2);	/* 20h    */
		ov518_reg_w32(sd, 0xce,    608, 2);	/* 260h   */
	} else {
		reg_w(sd, 0x24, 0x9f);
		reg_w(sd, 0x25, 0x90);
		ov518_reg_w32(sd, 0xc4,    400, 2);	/* 190h   */
		ov518_reg_w32(sd, 0xc6,    381, 2);	/* 17dh   */
		ov518_reg_w32(sd, 0xc7,    381, 2);	/* 17dh   */
		ov518_reg_w32(sd, 0xc8,    128, 2);	/* 80h    */
		ov518_reg_w32(sd, 0xca, 183331, 3);	/* 2cc23h */
		ov518_reg_w32(sd, 0xcb,    746, 2);	/* 2eah   */
		ov518_reg_w32(sd, 0xcc,   1750, 2);	/* 6d6h   */
		ov518_reg_w32(sd, 0xcd,     45, 2);	/* 2dh    */
		ov518_reg_w32(sd, 0xce,    851, 2);	/* 353h   */
	}

	reg_w(sd, 0x2f, 0x80);

	return 0;
}


3431 3432 3433 3434 3435 3436 3437
/* Sets up the OV519 with the given image parameters
 *
 * OV519 needs a completely different approach, until we can figure out what
 * the individual registers do.
 *
 * Do not put any sensor-specific code in here (including I2C I/O functions)
 */
3438
static int ov519_mode_init_regs(struct sd *sd)
3439
{
3440
	static const struct ov_regvals mode_init_519_ov7670[] = {
3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462
		{ 0x5d,	0x03 }, /* Turn off suspend mode */
		{ 0x53,	0x9f }, /* was 9b in 1.65-1.08 */
		{ 0x54,	0x0f }, /* bit2 (jpeg enable) */
		{ 0xa2,	0x20 }, /* a2-a5 are undocumented */
		{ 0xa3,	0x18 },
		{ 0xa4,	0x04 },
		{ 0xa5,	0x28 },
		{ 0x37,	0x00 },	/* SetUsbInit */
		{ 0x55,	0x02 }, /* 4.096 Mhz audio clock */
		/* Enable both fields, YUV Input, disable defect comp (why?) */
		{ 0x20,	0x0c },
		{ 0x21,	0x38 },
		{ 0x22,	0x1d },
		{ 0x17,	0x50 }, /* undocumented */
		{ 0x37,	0x00 }, /* undocumented */
		{ 0x40,	0xff }, /* I2C timeout counter */
		{ 0x46,	0x00 }, /* I2C clock prescaler */
		{ 0x59,	0x04 },	/* new from windrv 090403 */
		{ 0xff,	0x00 }, /* undocumented */
		/* windows reads 0x55 at this point, why? */
	};

3463
	static const struct ov_regvals mode_init_519[] = {
3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486
		{ 0x5d,	0x03 }, /* Turn off suspend mode */
		{ 0x53,	0x9f }, /* was 9b in 1.65-1.08 */
		{ 0x54,	0x0f }, /* bit2 (jpeg enable) */
		{ 0xa2,	0x20 }, /* a2-a5 are undocumented */
		{ 0xa3,	0x18 },
		{ 0xa4,	0x04 },
		{ 0xa5,	0x28 },
		{ 0x37,	0x00 },	/* SetUsbInit */
		{ 0x55,	0x02 }, /* 4.096 Mhz audio clock */
		/* Enable both fields, YUV Input, disable defect comp (why?) */
		{ 0x22,	0x1d },
		{ 0x17,	0x50 }, /* undocumented */
		{ 0x37,	0x00 }, /* undocumented */
		{ 0x40,	0xff }, /* I2C timeout counter */
		{ 0x46,	0x00 }, /* I2C clock prescaler */
		{ 0x59,	0x04 },	/* new from windrv 090403 */
		{ 0xff,	0x00 }, /* undocumented */
		/* windows reads 0x55 at this point, why? */
	};

	/******** Set the mode ********/
	if (sd->sensor != SEN_OV7670) {
		if (write_regvals(sd, mode_init_519,
3487
				  ARRAY_SIZE(mode_init_519)))
3488
			return -EIO;
3489 3490
		if (sd->sensor == SEN_OV7640) {
			/* Select 8-bit input mode */
3491
			reg_w_mask(sd, OV519_R20_DFR, 0x10, 0x10);
3492
		}
3493 3494
	} else {
		if (write_regvals(sd, mode_init_519_ov7670,
3495
				  ARRAY_SIZE(mode_init_519_ov7670)))
3496 3497 3498
			return -EIO;
	}

3499 3500
	reg_w(sd, OV519_R10_H_SIZE,	sd->gspca_dev.width >> 4);
	reg_w(sd, OV519_R11_V_SIZE,	sd->gspca_dev.height >> 3);
3501 3502 3503 3504 3505
	if (sd->sensor == SEN_OV7670 &&
	    sd->gspca_dev.cam.cam_mode[sd->gspca_dev.curr_mode].priv)
		reg_w(sd, OV519_R12_X_OFFSETL, 0x04);
	else
		reg_w(sd, OV519_R12_X_OFFSETL, 0x00);
3506 3507 3508 3509 3510
	reg_w(sd, OV519_R13_X_OFFSETH,	0x00);
	reg_w(sd, OV519_R14_Y_OFFSETL,	0x00);
	reg_w(sd, OV519_R15_Y_OFFSETH,	0x00);
	reg_w(sd, OV519_R16_DIVIDER,	0x00);
	reg_w(sd, OV519_R25_FORMAT,	0x03); /* YUV422 */
3511 3512 3513 3514 3515 3516 3517 3518
	reg_w(sd, 0x26,			0x00); /* Undocumented */

	/******** Set the framerate ********/
	if (frame_rate > 0)
		sd->frame_rate = frame_rate;

/* FIXME: These are only valid at the max resolution. */
	sd->clockdiv = 0;
3519 3520
	switch (sd->sensor) {
	case SEN_OV7640:
3521
		switch (sd->frame_rate) {
3522 3523
		default:
/*		case 30: */
3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534
			reg_w(sd, 0xa4, 0x0c);
			reg_w(sd, 0x23, 0xff);
			break;
		case 25:
			reg_w(sd, 0xa4, 0x0c);
			reg_w(sd, 0x23, 0x1f);
			break;
		case 20:
			reg_w(sd, 0xa4, 0x0c);
			reg_w(sd, 0x23, 0x1b);
			break;
3535
		case 15:
3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550
			reg_w(sd, 0xa4, 0x04);
			reg_w(sd, 0x23, 0xff);
			sd->clockdiv = 1;
			break;
		case 10:
			reg_w(sd, 0xa4, 0x04);
			reg_w(sd, 0x23, 0x1f);
			sd->clockdiv = 1;
			break;
		case 5:
			reg_w(sd, 0xa4, 0x04);
			reg_w(sd, 0x23, 0x1b);
			sd->clockdiv = 1;
			break;
		}
3551 3552
		break;
	case SEN_OV8610:
3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567
		switch (sd->frame_rate) {
		default:	/* 15 fps */
/*		case 15: */
			reg_w(sd, 0xa4, 0x06);
			reg_w(sd, 0x23, 0xff);
			break;
		case 10:
			reg_w(sd, 0xa4, 0x06);
			reg_w(sd, 0x23, 0x1f);
			break;
		case 5:
			reg_w(sd, 0xa4, 0x06);
			reg_w(sd, 0x23, 0x1b);
			break;
		}
3568 3569
		break;
	case SEN_OV7670:		/* guesses, based on 7640 */
3570 3571
		PDEBUG(D_STREAM, "Setting framerate to %d fps",
				 (sd->frame_rate == 0) ? 15 : sd->frame_rate);
3572
		reg_w(sd, 0xa4, 0x10);
3573 3574 3575 3576 3577 3578 3579
		switch (sd->frame_rate) {
		case 30:
			reg_w(sd, 0x23, 0xff);
			break;
		case 20:
			reg_w(sd, 0x23, 0x1b);
			break;
3580 3581
		default:
/*		case 15: */
3582 3583 3584 3585
			reg_w(sd, 0x23, 0xff);
			sd->clockdiv = 1;
			break;
		}
3586
		break;
3587 3588 3589 3590
	}
	return 0;
}

3591
static int mode_init_ov_sensor_regs(struct sd *sd)
3592
{
3593
	struct gspca_dev *gspca_dev;
3594 3595
	int qvga, xstart, xend, ystart, yend;
	__u8 v;
3596 3597

	gspca_dev = &sd->gspca_dev;
3598
	qvga = gspca_dev->cam.cam_mode[(int) gspca_dev->curr_mode].priv & 1;
3599 3600 3601

	/******** Mode (VGA/QVGA) and sensor specific regs ********/
	switch (sd->sensor) {
3602 3603 3604 3605 3606 3607 3608 3609 3610
	case SEN_OV2610:
		i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
		i2c_w_mask(sd, 0x28, qvga ? 0x00 : 0x20, 0x20);
		i2c_w(sd, 0x24, qvga ? 0x20 : 0x3a);
		i2c_w(sd, 0x25, qvga ? 0x30 : 0x60);
		i2c_w_mask(sd, 0x2d, qvga ? 0x40 : 0x00, 0x40);
		i2c_w_mask(sd, 0x67, qvga ? 0xf0 : 0x90, 0xf0);
		i2c_w_mask(sd, 0x74, qvga ? 0x20 : 0x00, 0x20);
		return 0;
3611
	case SEN_OV3610:
3612 3613
		if (qvga) {
			xstart = (1040 - gspca_dev->width) / 2 + (0x1f << 4);
3614
			ystart = (776 - gspca_dev->height) / 2;
3615
		} else {
3616
			xstart = (2076 - gspca_dev->width) / 2 + (0x10 << 4);
3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634
			ystart = (1544 - gspca_dev->height) / 2;
		}
		xend = xstart + gspca_dev->width;
		yend = ystart + gspca_dev->height;
		/* Writing to the COMH register resets the other windowing regs
		   to their default values, so we must do this first. */
		i2c_w_mask(sd, 0x12, qvga ? 0x40 : 0x00, 0xf0);
		i2c_w_mask(sd, 0x32,
			   (((xend >> 1) & 7) << 3) | ((xstart >> 1) & 7),
			   0x3f);
		i2c_w_mask(sd, 0x03,
			   (((yend >> 1) & 3) << 2) | ((ystart >> 1) & 3),
			   0x0f);
		i2c_w(sd, 0x17, xstart >> 4);
		i2c_w(sd, 0x18, xend >> 4);
		i2c_w(sd, 0x19, ystart >> 3);
		i2c_w(sd, 0x1a, yend >> 3);
		return 0;
3635 3636 3637
	case SEN_OV8610:
		/* For OV8610 qvga means qsvga */
		i2c_w_mask(sd, OV7610_REG_COM_C, qvga ? (1 << 5) : 0, 1 << 5);
3638 3639 3640 3641
		i2c_w_mask(sd, 0x13, 0x00, 0x20); /* Select 16 bit data bus */
		i2c_w_mask(sd, 0x12, 0x04, 0x06); /* AWB: 1 Test pattern: 0 */
		i2c_w_mask(sd, 0x2d, 0x00, 0x40); /* from windrv 090403 */
		i2c_w_mask(sd, 0x28, 0x20, 0x20); /* progressive mode on */
3642 3643 3644
		break;
	case SEN_OV7610:
		i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
3645 3646 3647
		i2c_w(sd, 0x35, qvga?0x1e:0x9e);
		i2c_w_mask(sd, 0x13, 0x00, 0x20); /* Select 16 bit data bus */
		i2c_w_mask(sd, 0x12, 0x04, 0x06); /* AWB: 1 Test pattern: 0 */
3648 3649
		break;
	case SEN_OV7620:
3650
	case SEN_OV76BE:
3651 3652 3653 3654 3655
		i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
		i2c_w_mask(sd, 0x28, qvga ? 0x00 : 0x20, 0x20);
		i2c_w(sd, 0x24, qvga ? 0x20 : 0x3a);
		i2c_w(sd, 0x25, qvga ? 0x30 : 0x60);
		i2c_w_mask(sd, 0x2d, qvga ? 0x40 : 0x00, 0x40);
3656
		i2c_w_mask(sd, 0x67, qvga ? 0xb0 : 0x90, 0xf0);
3657
		i2c_w_mask(sd, 0x74, qvga ? 0x20 : 0x00, 0x20);
3658 3659 3660 3661
		i2c_w_mask(sd, 0x13, 0x00, 0x20); /* Select 16 bit data bus */
		i2c_w_mask(sd, 0x12, 0x04, 0x06); /* AWB: 1 Test pattern: 0 */
		if (sd->sensor == SEN_OV76BE)
			i2c_w(sd, 0x35, qvga ? 0x1e : 0x9e);
3662 3663 3664 3665 3666 3667 3668 3669 3670
		break;
	case SEN_OV7640:
		i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
		i2c_w_mask(sd, 0x28, qvga ? 0x00 : 0x20, 0x20);
/*		i2c_w(sd, 0x24, qvga ? 0x20 : 0x3a); */
/*		i2c_w(sd, 0x25, qvga ? 0x30 : 0x60); */
/*		i2c_w_mask(sd, 0x2d, qvga ? 0x40 : 0x00, 0x40); */
/*		i2c_w_mask(sd, 0x67, qvga ? 0xf0 : 0x90, 0xf0); */
/*		i2c_w_mask(sd, 0x74, qvga ? 0x20 : 0x00, 0x20); */
3671
		i2c_w_mask(sd, 0x12, 0x04, 0x04); /* AWB: 1 */
3672 3673 3674 3675 3676 3677 3678 3679
		break;
	case SEN_OV7670:
		/* set COM7_FMT_VGA or COM7_FMT_QVGA
		 * do we need to set anything else?
		 *	HSTART etc are set in set_ov_sensor_window itself */
		i2c_w_mask(sd, OV7670_REG_COM7,
			 qvga ? OV7670_COM7_FMT_QVGA : OV7670_COM7_FMT_VGA,
			 OV7670_COM7_FMT_MASK);
3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711
		i2c_w_mask(sd, 0x13, 0x00, 0x20); /* Select 16 bit data bus */
		i2c_w_mask(sd, OV7670_REG_COM8, OV7670_COM8_AWB,
				OV7670_COM8_AWB);
		if (qvga) {		/* QVGA from ov7670.c by
					 * Jonathan Corbet */
			xstart = 164;
			xend = 28;
			ystart = 14;
			yend = 494;
		} else {		/* VGA */
			xstart = 158;
			xend = 14;
			ystart = 10;
			yend = 490;
		}
		/* OV7670 hardware window registers are split across
		 * multiple locations */
		i2c_w(sd, OV7670_REG_HSTART, xstart >> 3);
		i2c_w(sd, OV7670_REG_HSTOP, xend >> 3);
		v = i2c_r(sd, OV7670_REG_HREF);
		v = (v & 0xc0) | ((xend & 0x7) << 3) | (xstart & 0x07);
		msleep(10);	/* need to sleep between read and write to
				 * same reg! */
		i2c_w(sd, OV7670_REG_HREF, v);

		i2c_w(sd, OV7670_REG_VSTART, ystart >> 2);
		i2c_w(sd, OV7670_REG_VSTOP, yend >> 2);
		v = i2c_r(sd, OV7670_REG_VREF);
		v = (v & 0xc0) | ((yend & 0x3) << 2) | (ystart & 0x03);
		msleep(10);	/* need to sleep between read and write to
				 * same reg! */
		i2c_w(sd, OV7670_REG_VREF, v);
3712 3713
		break;
	case SEN_OV6620:
3714 3715 3716 3717
		i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
		i2c_w_mask(sd, 0x13, 0x00, 0x20); /* Select 16 bit data bus */
		i2c_w_mask(sd, 0x12, 0x04, 0x06); /* AWB: 1 Test pattern: 0 */
		break;
3718
	case SEN_OV6630:
3719
	case SEN_OV66308AF:
3720
		i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
3721
		i2c_w_mask(sd, 0x12, 0x04, 0x06); /* AWB: 1 Test pattern: 0 */
3722 3723 3724 3725 3726 3727
		break;
	default:
		return -EINVAL;
	}

	/******** Clock programming ********/
3728
	i2c_w(sd, 0x11, sd->clockdiv);
3729 3730 3731 3732

	return 0;
}

3733
static void sethvflip(struct sd *sd)
3734
{
3735 3736
	if (sd->sensor != SEN_OV7670)
		return;
3737 3738 3739
	if (sd->gspca_dev.streaming)
		ov51x_stop(sd);
	i2c_w_mask(sd, OV7670_REG_MVFP,
3740 3741 3742
		OV7670_MVFP_MIRROR * sd->hflip
			| OV7670_MVFP_VFLIP * sd->vflip,
		OV7670_MVFP_MIRROR | OV7670_MVFP_VFLIP);
3743 3744 3745 3746
	if (sd->gspca_dev.streaming)
		ov51x_restart(sd);
}

3747
static int set_ov_sensor_window(struct sd *sd)
3748
{
3749
	struct gspca_dev *gspca_dev;
3750
	int qvga, crop;
3751
	int hwsbase, hwebase, vwsbase, vwebase, hwscale, vwscale;
3752
	int ret;
3753

3754
	/* mode setup is fully handled in mode_init_ov_sensor_regs for these */
3755 3756
	if (sd->sensor == SEN_OV2610 || sd->sensor == SEN_OV3610 ||
	    sd->sensor == SEN_OV7670)
3757 3758
		return mode_init_ov_sensor_regs(sd);

3759
	gspca_dev = &sd->gspca_dev;
3760 3761
	qvga = gspca_dev->cam.cam_mode[(int) gspca_dev->curr_mode].priv & 1;
	crop = gspca_dev->cam.cam_mode[(int) gspca_dev->curr_mode].priv & 2;
3762

3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779
	/* The different sensor ICs handle setting up of window differently.
	 * IF YOU SET IT WRONG, YOU WILL GET ALL ZERO ISOC DATA FROM OV51x!! */
	switch (sd->sensor) {
	case SEN_OV8610:
		hwsbase = 0x1e;
		hwebase = 0x1e;
		vwsbase = 0x02;
		vwebase = 0x02;
		break;
	case SEN_OV7610:
	case SEN_OV76BE:
		hwsbase = 0x38;
		hwebase = 0x3a;
		vwsbase = vwebase = 0x05;
		break;
	case SEN_OV6620:
	case SEN_OV6630:
3780
	case SEN_OV66308AF:
3781 3782 3783 3784
		hwsbase = 0x38;
		hwebase = 0x3a;
		vwsbase = 0x05;
		vwebase = 0x06;
3785
		if (sd->sensor == SEN_OV66308AF && qvga)
3786
			/* HDG: this fixes U and V getting swapped */
3787
			hwsbase++;
3788 3789 3790 3791 3792 3793
		if (crop) {
			hwsbase += 8;
			hwebase += 8;
			vwsbase += 11;
			vwebase += 11;
		}
3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811
		break;
	case SEN_OV7620:
		hwsbase = 0x2f;		/* From 7620.SET (spec is wrong) */
		hwebase = 0x2f;
		vwsbase = vwebase = 0x05;
		break;
	case SEN_OV7640:
		hwsbase = 0x1a;
		hwebase = 0x1a;
		vwsbase = vwebase = 0x03;
		break;
	default:
		return -EINVAL;
	}

	switch (sd->sensor) {
	case SEN_OV6620:
	case SEN_OV6630:
3812
	case SEN_OV66308AF:
3813
		if (qvga) {		/* QCIF */
3814 3815 3816 3817 3818 3819 3820 3821 3822
			hwscale = 0;
			vwscale = 0;
		} else {		/* CIF */
			hwscale = 1;
			vwscale = 1;	/* The datasheet says 0;
					 * it's wrong */
		}
		break;
	case SEN_OV8610:
3823
		if (qvga) {		/* QSVGA */
3824 3825 3826 3827 3828 3829 3830 3831
			hwscale = 1;
			vwscale = 1;
		} else {		/* SVGA */
			hwscale = 2;
			vwscale = 2;
		}
		break;
	default:			/* SEN_OV7xx0 */
3832
		if (qvga) {		/* QVGA */
3833 3834 3835 3836 3837 3838 3839 3840
			hwscale = 1;
			vwscale = 0;
		} else {		/* VGA */
			hwscale = 2;
			vwscale = 1;
		}
	}

3841
	ret = mode_init_ov_sensor_regs(sd);
3842 3843 3844
	if (ret < 0)
		return ret;

3845
	i2c_w(sd, 0x17, hwsbase);
3846
	i2c_w(sd, 0x18, hwebase + (sd->sensor_width >> hwscale));
3847
	i2c_w(sd, 0x19, vwsbase);
3848
	i2c_w(sd, 0x1a, vwebase + (sd->sensor_height >> vwscale));
3849 3850 3851 3852 3853

	return 0;
}

/* -- start the camera -- */
3854
static int sd_start(struct gspca_dev *gspca_dev)
3855 3856
{
	struct sd *sd = (struct sd *) gspca_dev;
3857
	int ret = 0;
3858

3859 3860 3861 3862
	/* Default for most bridges, allow bridge_mode_init_regs to override */
	sd->sensor_width = sd->gspca_dev.width;
	sd->sensor_height = sd->gspca_dev.height;

3863
	switch (sd->bridge) {
3864 3865 3866 3867
	case BRIDGE_OV511:
	case BRIDGE_OV511PLUS:
		ret = ov511_mode_init_regs(sd);
		break;
3868 3869 3870 3871 3872 3873 3874
	case BRIDGE_OV518:
	case BRIDGE_OV518PLUS:
		ret = ov518_mode_init_regs(sd);
		break;
	case BRIDGE_OV519:
		ret = ov519_mode_init_regs(sd);
		break;
3875
	/* case BRIDGE_OVFX2: nothing to do */
3876 3877 3878
	case BRIDGE_W9968CF:
		ret = w9968cf_mode_init_regs(sd);
		break;
3879
	}
3880 3881
	if (ret < 0)
		goto out;
3882

3883
	ret = set_ov_sensor_window(sd);
3884 3885 3886
	if (ret < 0)
		goto out;

3887 3888 3889
	setcontrast(gspca_dev);
	setbrightness(gspca_dev);
	setcolors(gspca_dev);
3890 3891 3892
	sethvflip(sd);
	setautobrightness(sd);
	setfreq(sd);
3893

3894
	ret = ov51x_restart(sd);
3895 3896 3897
	if (ret < 0)
		goto out;
	ov51x_led_control(sd, 1);
3898
	return 0;
3899 3900
out:
	PDEBUG(D_ERR, "camera start error:%d", ret);
3901
	return ret;
3902 3903 3904 3905
}

static void sd_stopN(struct gspca_dev *gspca_dev)
{
3906 3907 3908 3909
	struct sd *sd = (struct sd *) gspca_dev;

	ov51x_stop(sd);
	ov51x_led_control(sd, 0);
3910 3911
}

3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961
static void ov511_pkt_scan(struct gspca_dev *gspca_dev,
			struct gspca_frame *frame,	/* target */
			__u8 *in,			/* isoc packet */
			int len)			/* iso packet length */
{
	struct sd *sd = (struct sd *) gspca_dev;

	/* SOF/EOF packets have 1st to 8th bytes zeroed and the 9th
	 * byte non-zero. The EOF packet has image width/height in the
	 * 10th and 11th bytes. The 9th byte is given as follows:
	 *
	 * bit 7: EOF
	 *     6: compression enabled
	 *     5: 422/420/400 modes
	 *     4: 422/420/400 modes
	 *     3: 1
	 *     2: snapshot button on
	 *     1: snapshot frame
	 *     0: even/odd field
	 */
	if (!(in[0] | in[1] | in[2] | in[3] | in[4] | in[5] | in[6] | in[7]) &&
	    (in[8] & 0x08)) {
		if (in[8] & 0x80) {
			/* Frame end */
			if ((in[9] + 1) * 8 != gspca_dev->width ||
			    (in[10] + 1) * 8 != gspca_dev->height) {
				PDEBUG(D_ERR, "Invalid frame size, got: %dx%d,"
					" requested: %dx%d\n",
					(in[9] + 1) * 8, (in[10] + 1) * 8,
					gspca_dev->width, gspca_dev->height);
				gspca_dev->last_packet_type = DISCARD_PACKET;
				return;
			}
			/* Add 11 byte footer to frame, might be usefull */
			gspca_frame_add(gspca_dev, LAST_PACKET, frame, in, 11);
			return;
		} else {
			/* Frame start */
			gspca_frame_add(gspca_dev, FIRST_PACKET, frame, in, 0);
			sd->packet_nr = 0;
		}
	}

	/* Ignore the packet number */
	len--;

	/* intermediate packet */
	gspca_frame_add(gspca_dev, INTER_PACKET, frame, in, len);
}

3962 3963 3964 3965 3966
static void ov518_pkt_scan(struct gspca_dev *gspca_dev,
			struct gspca_frame *frame,	/* target */
			__u8 *data,			/* isoc packet */
			int len)			/* iso packet length */
{
3967
	struct sd *sd = (struct sd *) gspca_dev;
3968 3969 3970 3971

	/* A false positive here is likely, until OVT gives me
	 * the definitive SOF/EOF format */
	if ((!(data[0] | data[1] | data[2] | data[3] | data[5])) && data[6]) {
3972
		frame = gspca_frame_add(gspca_dev, LAST_PACKET, frame, data, 0);
3973
		gspca_frame_add(gspca_dev, FIRST_PACKET, frame, data, 0);
3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993
		sd->packet_nr = 0;
	}

	if (gspca_dev->last_packet_type == DISCARD_PACKET)
		return;

	/* Does this device use packet numbers ? */
	if (len & 7) {
		len--;
		if (sd->packet_nr == data[len])
			sd->packet_nr++;
		/* The last few packets of the frame (which are all 0's
		   except that they may contain part of the footer), are
		   numbered 0 */
		else if (sd->packet_nr == 0 || data[len]) {
			PDEBUG(D_ERR, "Invalid packet nr: %d (expect: %d)",
				(int)data[len], (int)sd->packet_nr);
			gspca_dev->last_packet_type = DISCARD_PACKET;
			return;
		}
3994 3995 3996 3997 3998 3999 4000
	}

	/* intermediate packet */
	gspca_frame_add(gspca_dev, INTER_PACKET, frame, data, len);
}

static void ov519_pkt_scan(struct gspca_dev *gspca_dev,
4001
			struct gspca_frame *frame,	/* target */
4002
			__u8 *data,			/* isoc packet */
4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043
			int len)			/* iso packet length */
{
	/* Header of ov519 is 16 bytes:
	 *     Byte     Value      Description
	 *	0	0xff	magic
	 *	1	0xff	magic
	 *	2	0xff	magic
	 *	3	0xXX	0x50 = SOF, 0x51 = EOF
	 *	9	0xXX	0x01 initial frame without data,
	 *			0x00 standard frame with image
	 *	14	Lo	in EOF: length of image data / 8
	 *	15	Hi
	 */

	if (data[0] == 0xff && data[1] == 0xff && data[2] == 0xff) {
		switch (data[3]) {
		case 0x50:		/* start of frame */
#define HDRSZ 16
			data += HDRSZ;
			len -= HDRSZ;
#undef HDRSZ
			if (data[0] == 0xff || data[1] == 0xd8)
				gspca_frame_add(gspca_dev, FIRST_PACKET, frame,
						data, len);
			else
				gspca_dev->last_packet_type = DISCARD_PACKET;
			return;
		case 0x51:		/* end of frame */
			if (data[9] != 0)
				gspca_dev->last_packet_type = DISCARD_PACKET;
			gspca_frame_add(gspca_dev, LAST_PACKET, frame,
					data, 0);
			return;
		}
	}

	/* intermediate packet */
	gspca_frame_add(gspca_dev, INTER_PACKET, frame,
			data, len);
}

4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057
static void ovfx2_pkt_scan(struct gspca_dev *gspca_dev,
			struct gspca_frame *frame,	/* target */
			__u8 *data,			/* isoc packet */
			int len)			/* iso packet length */
{
	/* A short read signals EOF */
	if (len < OVFX2_BULK_SIZE) {
		gspca_frame_add(gspca_dev, LAST_PACKET, frame, data, len);
		gspca_frame_add(gspca_dev, FIRST_PACKET, frame, NULL, 0);
		return;
	}
	gspca_frame_add(gspca_dev, INTER_PACKET, frame, data, len);
}

4058 4059 4060 4061 4062 4063 4064 4065 4066 4067
static void sd_pkt_scan(struct gspca_dev *gspca_dev,
			struct gspca_frame *frame,	/* target */
			__u8 *data,			/* isoc packet */
			int len)			/* iso packet length */
{
	struct sd *sd = (struct sd *) gspca_dev;

	switch (sd->bridge) {
	case BRIDGE_OV511:
	case BRIDGE_OV511PLUS:
4068
		ov511_pkt_scan(gspca_dev, frame, data, len);
4069 4070 4071 4072 4073 4074 4075 4076
		break;
	case BRIDGE_OV518:
	case BRIDGE_OV518PLUS:
		ov518_pkt_scan(gspca_dev, frame, data, len);
		break;
	case BRIDGE_OV519:
		ov519_pkt_scan(gspca_dev, frame, data, len);
		break;
4077 4078 4079
	case BRIDGE_OVFX2:
		ovfx2_pkt_scan(gspca_dev, frame, data, len);
		break;
4080 4081 4082
	case BRIDGE_W9968CF:
		w9968cf_pkt_scan(gspca_dev, frame, data, len);
		break;
4083 4084 4085
	}
}

4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099
/* -- management routines -- */

static void setbrightness(struct gspca_dev *gspca_dev)
{
	struct sd *sd = (struct sd *) gspca_dev;
	int val;

	val = sd->brightness;
	switch (sd->sensor) {
	case SEN_OV8610:
	case SEN_OV7610:
	case SEN_OV76BE:
	case SEN_OV6620:
	case SEN_OV6630:
4100
	case SEN_OV66308AF:
4101 4102 4103 4104 4105
	case SEN_OV7640:
		i2c_w(sd, OV7610_REG_BRT, val);
		break;
	case SEN_OV7620:
		/* 7620 doesn't like manual changes when in auto mode */
4106
		if (!sd->autobrightness)
4107 4108 4109
			i2c_w(sd, OV7610_REG_BRT, val);
		break;
	case SEN_OV7670:
4110
/*win trace
4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128
 *		i2c_w_mask(sd, OV7670_REG_COM8, 0, OV7670_COM8_AEC); */
		i2c_w(sd, OV7670_REG_BRIGHT, ov7670_abs_to_sm(val));
		break;
	}
}

static void setcontrast(struct gspca_dev *gspca_dev)
{
	struct sd *sd = (struct sd *) gspca_dev;
	int val;

	val = sd->contrast;
	switch (sd->sensor) {
	case SEN_OV7610:
	case SEN_OV6620:
		i2c_w(sd, OV7610_REG_CNT, val);
		break;
	case SEN_OV6630:
4129
	case SEN_OV66308AF:
4130
		i2c_w_mask(sd, OV7610_REG_CNT, val >> 4, 0x0f);
4131
		break;
4132
	case SEN_OV8610: {
4133
		static const __u8 ctab[] = {
4134 4135 4136 4137 4138 4139 4140 4141
			0x03, 0x09, 0x0b, 0x0f, 0x53, 0x6f, 0x35, 0x7f
		};

		/* Use Y gamma control instead. Bit 0 enables it. */
		i2c_w(sd, 0x64, ctab[val >> 5]);
		break;
	    }
	case SEN_OV7620: {
4142
		static const __u8 ctab[] = {
4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173
			0x01, 0x05, 0x09, 0x11, 0x15, 0x35, 0x37, 0x57,
			0x5b, 0xa5, 0xa7, 0xc7, 0xc9, 0xcf, 0xef, 0xff
		};

		/* Use Y gamma control instead. Bit 0 enables it. */
		i2c_w(sd, 0x64, ctab[val >> 4]);
		break;
	    }
	case SEN_OV7640:
		/* Use gain control instead. */
		i2c_w(sd, OV7610_REG_GAIN, val >> 2);
		break;
	case SEN_OV7670:
		/* check that this isn't just the same as ov7610 */
		i2c_w(sd, OV7670_REG_CONTRAS, val >> 1);
		break;
	}
}

static void setcolors(struct gspca_dev *gspca_dev)
{
	struct sd *sd = (struct sd *) gspca_dev;
	int val;

	val = sd->colors;
	switch (sd->sensor) {
	case SEN_OV8610:
	case SEN_OV7610:
	case SEN_OV76BE:
	case SEN_OV6620:
	case SEN_OV6630:
4174
	case SEN_OV66308AF:
4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194
		i2c_w(sd, OV7610_REG_SAT, val);
		break;
	case SEN_OV7620:
		/* Use UV gamma control instead. Bits 0 & 7 are reserved. */
/*		rc = ov_i2c_write(sd->dev, 0x62, (val >> 9) & 0x7e);
		if (rc < 0)
			goto out; */
		i2c_w(sd, OV7610_REG_SAT, val);
		break;
	case SEN_OV7640:
		i2c_w(sd, OV7610_REG_SAT, val & 0xf0);
		break;
	case SEN_OV7670:
		/* supported later once I work out how to do it
		 * transparently fail now! */
		/* set REG_COM13 values for UV sat auto mode */
		break;
	}
}

4195 4196
static void setautobrightness(struct sd *sd)
{
4197 4198
	if (sd->sensor == SEN_OV7640 || sd->sensor == SEN_OV7670 ||
	    sd->sensor == SEN_OV2610 || sd->sensor == SEN_OV3610)
4199 4200 4201 4202 4203 4204 4205
		return;

	i2c_w_mask(sd, 0x2d, sd->autobrightness ? 0x10 : 0x00, 0x10);
}

static void setfreq(struct sd *sd)
{
4206 4207 4208
	if (sd->sensor == SEN_OV2610 || sd->sensor == SEN_OV3610)
		return;

4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241
	if (sd->sensor == SEN_OV7670) {
		switch (sd->freq) {
		case 0: /* Banding filter disabled */
			i2c_w_mask(sd, OV7670_REG_COM8, 0, OV7670_COM8_BFILT);
			break;
		case 1: /* 50 hz */
			i2c_w_mask(sd, OV7670_REG_COM8, OV7670_COM8_BFILT,
				   OV7670_COM8_BFILT);
			i2c_w_mask(sd, OV7670_REG_COM11, 0x08, 0x18);
			break;
		case 2: /* 60 hz */
			i2c_w_mask(sd, OV7670_REG_COM8, OV7670_COM8_BFILT,
				   OV7670_COM8_BFILT);
			i2c_w_mask(sd, OV7670_REG_COM11, 0x00, 0x18);
			break;
		case 3: /* Auto hz */
			i2c_w_mask(sd, OV7670_REG_COM8, OV7670_COM8_BFILT,
				   OV7670_COM8_BFILT);
			i2c_w_mask(sd, OV7670_REG_COM11, OV7670_COM11_HZAUTO,
				   0x18);
			break;
		}
	} else {
		switch (sd->freq) {
		case 0: /* Banding filter disabled */
			i2c_w_mask(sd, 0x2d, 0x00, 0x04);
			i2c_w_mask(sd, 0x2a, 0x00, 0x80);
			break;
		case 1: /* 50 hz (filter on and framerate adj) */
			i2c_w_mask(sd, 0x2d, 0x04, 0x04);
			i2c_w_mask(sd, 0x2a, 0x80, 0x80);
			/* 20 fps -> 16.667 fps */
			if (sd->sensor == SEN_OV6620 ||
4242 4243
			    sd->sensor == SEN_OV6630 ||
			    sd->sensor == SEN_OV66308AF)
4244 4245 4246 4247 4248 4249 4250
				i2c_w(sd, 0x2b, 0x5e);
			else
				i2c_w(sd, 0x2b, 0xac);
			break;
		case 2: /* 60 hz (filter on, ...) */
			i2c_w_mask(sd, 0x2d, 0x04, 0x04);
			if (sd->sensor == SEN_OV6620 ||
4251 4252
			    sd->sensor == SEN_OV6630 ||
			    sd->sensor == SEN_OV66308AF) {
4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264
				/* 20 fps -> 15 fps */
				i2c_w_mask(sd, 0x2a, 0x80, 0x80);
				i2c_w(sd, 0x2b, 0xa8);
			} else {
				/* no framerate adj. */
				i2c_w_mask(sd, 0x2a, 0x00, 0x80);
			}
			break;
		}
	}
}

4265 4266 4267 4268 4269
static int sd_setbrightness(struct gspca_dev *gspca_dev, __s32 val)
{
	struct sd *sd = (struct sd *) gspca_dev;

	sd->brightness = val;
4270 4271
	if (gspca_dev->streaming)
		setbrightness(gspca_dev);
4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287
	return 0;
}

static int sd_getbrightness(struct gspca_dev *gspca_dev, __s32 *val)
{
	struct sd *sd = (struct sd *) gspca_dev;

	*val = sd->brightness;
	return 0;
}

static int sd_setcontrast(struct gspca_dev *gspca_dev, __s32 val)
{
	struct sd *sd = (struct sd *) gspca_dev;

	sd->contrast = val;
4288 4289
	if (gspca_dev->streaming)
		setcontrast(gspca_dev);
4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305
	return 0;
}

static int sd_getcontrast(struct gspca_dev *gspca_dev, __s32 *val)
{
	struct sd *sd = (struct sd *) gspca_dev;

	*val = sd->contrast;
	return 0;
}

static int sd_setcolors(struct gspca_dev *gspca_dev, __s32 val)
{
	struct sd *sd = (struct sd *) gspca_dev;

	sd->colors = val;
4306 4307
	if (gspca_dev->streaming)
		setcolors(gspca_dev);
4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318
	return 0;
}

static int sd_getcolors(struct gspca_dev *gspca_dev, __s32 *val)
{
	struct sd *sd = (struct sd *) gspca_dev;

	*val = sd->colors;
	return 0;
}

4319 4320 4321 4322 4323
static int sd_sethflip(struct gspca_dev *gspca_dev, __s32 val)
{
	struct sd *sd = (struct sd *) gspca_dev;

	sd->hflip = val;
4324 4325
	if (gspca_dev->streaming)
		sethvflip(sd);
4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341
	return 0;
}

static int sd_gethflip(struct gspca_dev *gspca_dev, __s32 *val)
{
	struct sd *sd = (struct sd *) gspca_dev;

	*val = sd->hflip;
	return 0;
}

static int sd_setvflip(struct gspca_dev *gspca_dev, __s32 val)
{
	struct sd *sd = (struct sd *) gspca_dev;

	sd->vflip = val;
4342 4343
	if (gspca_dev->streaming)
		sethvflip(sd);
4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354
	return 0;
}

static int sd_getvflip(struct gspca_dev *gspca_dev, __s32 *val)
{
	struct sd *sd = (struct sd *) gspca_dev;

	*val = sd->vflip;
	return 0;
}

4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377
static int sd_setautobrightness(struct gspca_dev *gspca_dev, __s32 val)
{
	struct sd *sd = (struct sd *) gspca_dev;

	sd->autobrightness = val;
	if (gspca_dev->streaming)
		setautobrightness(sd);
	return 0;
}

static int sd_getautobrightness(struct gspca_dev *gspca_dev, __s32 *val)
{
	struct sd *sd = (struct sd *) gspca_dev;

	*val = sd->autobrightness;
	return 0;
}

static int sd_setfreq(struct gspca_dev *gspca_dev, __s32 val)
{
	struct sd *sd = (struct sd *) gspca_dev;

	sd->freq = val;
4378
	if (gspca_dev->streaming) {
4379
		setfreq(sd);
4380 4381 4382 4383
		/* Ugly but necessary */
		if (sd->bridge == BRIDGE_W9968CF)
			w9968cf_set_crop_window(sd);
	}
4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423
	return 0;
}

static int sd_getfreq(struct gspca_dev *gspca_dev, __s32 *val)
{
	struct sd *sd = (struct sd *) gspca_dev;

	*val = sd->freq;
	return 0;
}

static int sd_querymenu(struct gspca_dev *gspca_dev,
			struct v4l2_querymenu *menu)
{
	struct sd *sd = (struct sd *) gspca_dev;

	switch (menu->id) {
	case V4L2_CID_POWER_LINE_FREQUENCY:
		switch (menu->index) {
		case 0:		/* V4L2_CID_POWER_LINE_FREQUENCY_DISABLED */
			strcpy((char *) menu->name, "NoFliker");
			return 0;
		case 1:		/* V4L2_CID_POWER_LINE_FREQUENCY_50HZ */
			strcpy((char *) menu->name, "50 Hz");
			return 0;
		case 2:		/* V4L2_CID_POWER_LINE_FREQUENCY_60HZ */
			strcpy((char *) menu->name, "60 Hz");
			return 0;
		case 3:
			if (sd->sensor != SEN_OV7670)
				return -EINVAL;

			strcpy((char *) menu->name, "Automatic");
			return 0;
		}
		break;
	}
	return -EINVAL;
}

4424
/* sub-driver description */
4425
static const struct sd_desc sd_desc = {
4426 4427 4428 4429
	.name = MODULE_NAME,
	.ctrls = sd_ctrls,
	.nctrls = ARRAY_SIZE(sd_ctrls),
	.config = sd_config,
4430
	.init = sd_init,
4431 4432 4433
	.start = sd_start,
	.stopN = sd_stopN,
	.pkt_scan = sd_pkt_scan,
4434
	.querymenu = sd_querymenu,
4435 4436 4437
};

/* -- module initialisation -- */
4438
static const __devinitdata struct usb_device_id device_table[] = {
4439
	{USB_DEVICE(0x041e, 0x4003), .driver_info = BRIDGE_W9968CF },
4440 4441 4442 4443
	{USB_DEVICE(0x041e, 0x4052), .driver_info = BRIDGE_OV519 },
	{USB_DEVICE(0x041e, 0x405f), .driver_info = BRIDGE_OV519 },
	{USB_DEVICE(0x041e, 0x4060), .driver_info = BRIDGE_OV519 },
	{USB_DEVICE(0x041e, 0x4061), .driver_info = BRIDGE_OV519 },
4444 4445
	{USB_DEVICE(0x041e, 0x4064),
	 .driver_info = BRIDGE_OV519 | BRIDGE_INVERT_LED },
4446
	{USB_DEVICE(0x041e, 0x4067), .driver_info = BRIDGE_OV519 },
4447 4448
	{USB_DEVICE(0x041e, 0x4068),
	 .driver_info = BRIDGE_OV519 | BRIDGE_INVERT_LED },
4449 4450 4451
	{USB_DEVICE(0x045e, 0x028c), .driver_info = BRIDGE_OV519 },
	{USB_DEVICE(0x054c, 0x0154), .driver_info = BRIDGE_OV519 },
	{USB_DEVICE(0x054c, 0x0155), .driver_info = BRIDGE_OV519 },
4452
	{USB_DEVICE(0x05a9, 0x0511), .driver_info = BRIDGE_OV511 },
4453 4454 4455
	{USB_DEVICE(0x05a9, 0x0518), .driver_info = BRIDGE_OV518 },
	{USB_DEVICE(0x05a9, 0x0519), .driver_info = BRIDGE_OV519 },
	{USB_DEVICE(0x05a9, 0x0530), .driver_info = BRIDGE_OV519 },
4456
	{USB_DEVICE(0x05a9, 0x2800), .driver_info = BRIDGE_OVFX2 },
4457 4458
	{USB_DEVICE(0x05a9, 0x4519), .driver_info = BRIDGE_OV519 },
	{USB_DEVICE(0x05a9, 0x8519), .driver_info = BRIDGE_OV519 },
4459
	{USB_DEVICE(0x05a9, 0xa511), .driver_info = BRIDGE_OV511PLUS },
4460
	{USB_DEVICE(0x05a9, 0xa518), .driver_info = BRIDGE_OV518PLUS },
4461
	{USB_DEVICE(0x0813, 0x0002), .driver_info = BRIDGE_OV511PLUS },
4462 4463
	{USB_DEVICE(0x0b62, 0x0059), .driver_info = BRIDGE_OVFX2 },
	{USB_DEVICE(0x0e96, 0xc001), .driver_info = BRIDGE_OVFX2 },
4464
	{USB_DEVICE(0x1046, 0x9967), .driver_info = BRIDGE_W9968CF },
4465
	{USB_DEVICE(0x8020, 0xEF04), .driver_info = BRIDGE_OVFX2 },
4466 4467
	{}
};
4468

4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483
MODULE_DEVICE_TABLE(usb, device_table);

/* -- device connect -- */
static int sd_probe(struct usb_interface *intf,
			const struct usb_device_id *id)
{
	return gspca_dev_probe(intf, id, &sd_desc, sizeof(struct sd),
				THIS_MODULE);
}

static struct usb_driver sd_driver = {
	.name = MODULE_NAME,
	.id_table = device_table,
	.probe = sd_probe,
	.disconnect = gspca_disconnect,
4484 4485 4486 4487
#ifdef CONFIG_PM
	.suspend = gspca_suspend,
	.resume = gspca_resume,
#endif
4488 4489 4490 4491 4492
};

/* -- module insert / remove -- */
static int __init sd_mod_init(void)
{
4493 4494 4495
	int ret;
	ret = usb_register(&sd_driver);
	if (ret < 0)
4496
		return ret;
4497
	PDEBUG(D_PROBE, "registered");
4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510
	return 0;
}
static void __exit sd_mod_exit(void)
{
	usb_deregister(&sd_driver);
	PDEBUG(D_PROBE, "deregistered");
}

module_init(sd_mod_init);
module_exit(sd_mod_exit);

module_param(frame_rate, int, 0644);
MODULE_PARM_DESC(frame_rate, "Frame rate (5, 10, 15, 20 or 30 fps)");