pid_namespace.c 8.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
/*
 * Pid namespaces
 *
 * Authors:
 *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
 *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
 *     Many thanks to Oleg Nesterov for comments and help
 *
 */

#include <linux/pid.h>
#include <linux/pid_namespace.h>
13
#include <linux/user_namespace.h>
14 15
#include <linux/syscalls.h>
#include <linux/err.h>
16
#include <linux/acct.h>
17
#include <linux/slab.h>
18
#include <linux/proc_fs.h>
19
#include <linux/reboot.h>
E
Eric W. Biederman 已提交
20
#include <linux/export.h>
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

#define BITS_PER_PAGE		(PAGE_SIZE*8)

struct pid_cache {
	int nr_ids;
	char name[16];
	struct kmem_cache *cachep;
	struct list_head list;
};

static LIST_HEAD(pid_caches_lh);
static DEFINE_MUTEX(pid_caches_mutex);
static struct kmem_cache *pid_ns_cachep;

/*
 * creates the kmem cache to allocate pids from.
 * @nr_ids: the number of numerical ids this pid will have to carry
 */

static struct kmem_cache *create_pid_cachep(int nr_ids)
{
	struct pid_cache *pcache;
	struct kmem_cache *cachep;

	mutex_lock(&pid_caches_mutex);
	list_for_each_entry(pcache, &pid_caches_lh, list)
		if (pcache->nr_ids == nr_ids)
			goto out;

	pcache = kmalloc(sizeof(struct pid_cache), GFP_KERNEL);
	if (pcache == NULL)
		goto err_alloc;

	snprintf(pcache->name, sizeof(pcache->name), "pid_%d", nr_ids);
	cachep = kmem_cache_create(pcache->name,
			sizeof(struct pid) + (nr_ids - 1) * sizeof(struct upid),
			0, SLAB_HWCACHE_ALIGN, NULL);
	if (cachep == NULL)
		goto err_cachep;

	pcache->nr_ids = nr_ids;
	pcache->cachep = cachep;
	list_add(&pcache->list, &pid_caches_lh);
out:
	mutex_unlock(&pid_caches_mutex);
	return pcache->cachep;

err_cachep:
	kfree(pcache);
err_alloc:
	mutex_unlock(&pid_caches_mutex);
	return NULL;
}

75 76 77 78 79 80
static void proc_cleanup_work(struct work_struct *work)
{
	struct pid_namespace *ns = container_of(work, struct pid_namespace, proc_work);
	pid_ns_release_proc(ns);
}

81 82 83
/* MAX_PID_NS_LEVEL is needed for limiting size of 'struct pid' */
#define MAX_PID_NS_LEVEL 32

84 85
static struct pid_namespace *create_pid_namespace(struct user_namespace *user_ns,
	struct pid_namespace *parent_pid_ns)
86 87
{
	struct pid_namespace *ns;
88
	unsigned int level = parent_pid_ns->level + 1;
89 90 91 92 93 94 95
	int i;
	int err;

	if (level > MAX_PID_NS_LEVEL) {
		err = -EINVAL;
		goto out;
	}
96

97
	err = -ENOMEM;
98
	ns = kmem_cache_zalloc(pid_ns_cachep, GFP_KERNEL);
99 100 101 102 103 104 105 106 107 108 109
	if (ns == NULL)
		goto out;

	ns->pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
	if (!ns->pidmap[0].page)
		goto out_free;

	ns->pid_cachep = create_pid_cachep(level + 1);
	if (ns->pid_cachep == NULL)
		goto out_free_map;

110 111 112 113
	err = proc_alloc_inum(&ns->proc_inum);
	if (err)
		goto out_free_map;

114 115
	kref_init(&ns->kref);
	ns->level = level;
116
	ns->parent = get_pid_ns(parent_pid_ns);
117
	ns->user_ns = get_user_ns(user_ns);
118
	INIT_WORK(&ns->proc_work, proc_cleanup_work);
119 120 121 122

	set_bit(0, ns->pidmap[0].page);
	atomic_set(&ns->pidmap[0].nr_free, BITS_PER_PAGE - 1);

123
	for (i = 1; i < PIDMAP_ENTRIES; i++)
124 125 126 127 128 129 130 131 132
		atomic_set(&ns->pidmap[i].nr_free, BITS_PER_PAGE);

	return ns;

out_free_map:
	kfree(ns->pidmap[0].page);
out_free:
	kmem_cache_free(pid_ns_cachep, ns);
out:
133
	return ERR_PTR(err);
134 135 136 137 138 139
}

static void destroy_pid_namespace(struct pid_namespace *ns)
{
	int i;

140
	proc_free_inum(ns->proc_inum);
141 142
	for (i = 0; i < PIDMAP_ENTRIES; i++)
		kfree(ns->pidmap[i].page);
143
	put_user_ns(ns->user_ns);
144 145 146
	kmem_cache_free(pid_ns_cachep, ns);
}

147 148
struct pid_namespace *copy_pid_ns(unsigned long flags,
	struct user_namespace *user_ns, struct pid_namespace *old_ns)
149 150
{
	if (!(flags & CLONE_NEWPID))
A
Alexey Dobriyan 已提交
151
		return get_pid_ns(old_ns);
152 153
	if (task_active_pid_ns(current) != old_ns)
		return ERR_PTR(-EINVAL);
154
	return create_pid_namespace(user_ns, old_ns);
155 156
}

157
static void free_pid_ns(struct kref *kref)
158
{
159
	struct pid_namespace *ns;
160 161 162

	ns = container_of(kref, struct pid_namespace, kref);
	destroy_pid_namespace(ns);
163
}
164

165 166 167 168 169 170 171 172 173 174
void put_pid_ns(struct pid_namespace *ns)
{
	struct pid_namespace *parent;

	while (ns != &init_pid_ns) {
		parent = ns->parent;
		if (!kref_put(&ns->kref, free_pid_ns))
			break;
		ns = parent;
	}
175
}
176
EXPORT_SYMBOL_GPL(put_pid_ns);
177 178 179 180 181

void zap_pid_ns_processes(struct pid_namespace *pid_ns)
{
	int nr;
	int rc;
182 183 184 185 186 187
	struct task_struct *task, *me = current;

	/* Ignore SIGCHLD causing any terminated children to autoreap */
	spin_lock_irq(&me->sighand->siglock);
	me->sighand->action[SIGCHLD - 1].sa.sa_handler = SIG_IGN;
	spin_unlock_irq(&me->sighand->siglock);
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204

	/*
	 * The last thread in the cgroup-init thread group is terminating.
	 * Find remaining pid_ts in the namespace, signal and wait for them
	 * to exit.
	 *
	 * Note:  This signals each threads in the namespace - even those that
	 * 	  belong to the same thread group, To avoid this, we would have
	 * 	  to walk the entire tasklist looking a processes in this
	 * 	  namespace, but that could be unnecessarily expensive if the
	 * 	  pid namespace has just a few processes. Or we need to
	 * 	  maintain a tasklist for each pid namespace.
	 *
	 */
	read_lock(&tasklist_lock);
	nr = next_pidmap(pid_ns, 1);
	while (nr > 0) {
205 206 207
		rcu_read_lock();

		task = pid_task(find_vpid(nr), PIDTYPE_PID);
208 209
		if (task && !__fatal_signal_pending(task))
			send_sig_info(SIGKILL, SEND_SIG_FORCED, task);
210 211 212

		rcu_read_unlock();

213 214 215 216
		nr = next_pidmap(pid_ns, nr);
	}
	read_unlock(&tasklist_lock);

217
	/* Firstly reap the EXIT_ZOMBIE children we may have. */
218 219 220 221 222
	do {
		clear_thread_flag(TIF_SIGPENDING);
		rc = sys_wait4(-1, NULL, __WALL, NULL);
	} while (rc != -ECHILD);

223 224
	/*
	 * sys_wait4() above can't reap the TASK_DEAD children.
225
	 * Make sure they all go away, see free_pid().
226 227
	 */
	for (;;) {
228 229
		set_current_state(TASK_UNINTERRUPTIBLE);
		if (pid_ns->nr_hashed == 1)
230 231 232
			break;
		schedule();
	}
233
	__set_current_state(TASK_RUNNING);
234

235 236 237
	if (pid_ns->reboot)
		current->signal->group_exit_code = pid_ns->reboot;

238
	acct_exit_ns(pid_ns);
239 240 241
	return;
}

242
#ifdef CONFIG_CHECKPOINT_RESTORE
243 244 245
static int pid_ns_ctl_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp, loff_t *ppos)
{
246
	struct pid_namespace *pid_ns = task_active_pid_ns(current);
247 248
	struct ctl_table tmp = *table;

249
	if (write && !ns_capable(pid_ns->user_ns, CAP_SYS_ADMIN))
250 251 252 253 254 255 256 257
		return -EPERM;

	/*
	 * Writing directly to ns' last_pid field is OK, since this field
	 * is volatile in a living namespace anyway and a code writing to
	 * it should synchronize its usage with external means.
	 */

258
	tmp.data = &pid_ns->last_pid;
259
	return proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
260 261
}

262 263
extern int pid_max;
static int zero = 0;
264 265 266 267 268 269
static struct ctl_table pid_ns_ctl_table[] = {
	{
		.procname = "ns_last_pid",
		.maxlen = sizeof(int),
		.mode = 0666, /* permissions are checked in the handler */
		.proc_handler = pid_ns_ctl_handler,
270 271
		.extra1 = &zero,
		.extra2 = &pid_max,
272 273 274 275
	},
	{ }
};
static struct ctl_path kern_path[] = { { .procname = "kernel", }, { } };
276
#endif	/* CONFIG_CHECKPOINT_RESTORE */
277

278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd)
{
	if (pid_ns == &init_pid_ns)
		return 0;

	switch (cmd) {
	case LINUX_REBOOT_CMD_RESTART2:
	case LINUX_REBOOT_CMD_RESTART:
		pid_ns->reboot = SIGHUP;
		break;

	case LINUX_REBOOT_CMD_POWER_OFF:
	case LINUX_REBOOT_CMD_HALT:
		pid_ns->reboot = SIGINT;
		break;
	default:
		return -EINVAL;
	}

	read_lock(&tasklist_lock);
	force_sig(SIGKILL, pid_ns->child_reaper);
	read_unlock(&tasklist_lock);

	do_exit(0);

	/* Not reached */
	return 0;
}

E
Eric W. Biederman 已提交
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
static void *pidns_get(struct task_struct *task)
{
	struct pid_namespace *ns;

	rcu_read_lock();
	ns = get_pid_ns(task_active_pid_ns(task));
	rcu_read_unlock();

	return ns;
}

static void pidns_put(void *ns)
{
	put_pid_ns(ns);
}

static int pidns_install(struct nsproxy *nsproxy, void *ns)
{
	struct pid_namespace *active = task_active_pid_ns(current);
	struct pid_namespace *ancestor, *new = ns;

328 329
	if (!ns_capable(new->user_ns, CAP_SYS_ADMIN) ||
	    !nsown_capable(CAP_SYS_ADMIN))
E
Eric W. Biederman 已提交
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
		return -EPERM;

	/*
	 * Only allow entering the current active pid namespace
	 * or a child of the current active pid namespace.
	 *
	 * This is required for fork to return a usable pid value and
	 * this maintains the property that processes and their
	 * children can not escape their current pid namespace.
	 */
	if (new->level < active->level)
		return -EINVAL;

	ancestor = new;
	while (ancestor->level > active->level)
		ancestor = ancestor->parent;
	if (ancestor != active)
		return -EINVAL;

	put_pid_ns(nsproxy->pid_ns);
	nsproxy->pid_ns = get_pid_ns(new);
	return 0;
}

354 355 356 357 358 359
static unsigned int pidns_inum(void *ns)
{
	struct pid_namespace *pid_ns = ns;
	return pid_ns->proc_inum;
}

E
Eric W. Biederman 已提交
360 361 362 363 364 365
const struct proc_ns_operations pidns_operations = {
	.name		= "pid",
	.type		= CLONE_NEWPID,
	.get		= pidns_get,
	.put		= pidns_put,
	.install	= pidns_install,
366
	.inum		= pidns_inum,
E
Eric W. Biederman 已提交
367 368
};

369 370 371
static __init int pid_namespaces_init(void)
{
	pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC);
372 373

#ifdef CONFIG_CHECKPOINT_RESTORE
374
	register_sysctl_paths(kern_path, pid_ns_ctl_table);
375
#endif
376 377 378 379
	return 0;
}

__initcall(pid_namespaces_init);