pid_namespace.c 8.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
/*
 * Pid namespaces
 *
 * Authors:
 *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
 *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
 *     Many thanks to Oleg Nesterov for comments and help
 *
 */

#include <linux/pid.h>
#include <linux/pid_namespace.h>
13
#include <linux/user_namespace.h>
14 15
#include <linux/syscalls.h>
#include <linux/err.h>
16
#include <linux/acct.h>
17
#include <linux/slab.h>
18
#include <linux/proc_fs.h>
19
#include <linux/reboot.h>
E
Eric W. Biederman 已提交
20
#include <linux/export.h>
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

#define BITS_PER_PAGE		(PAGE_SIZE*8)

struct pid_cache {
	int nr_ids;
	char name[16];
	struct kmem_cache *cachep;
	struct list_head list;
};

static LIST_HEAD(pid_caches_lh);
static DEFINE_MUTEX(pid_caches_mutex);
static struct kmem_cache *pid_ns_cachep;

/*
 * creates the kmem cache to allocate pids from.
 * @nr_ids: the number of numerical ids this pid will have to carry
 */

static struct kmem_cache *create_pid_cachep(int nr_ids)
{
	struct pid_cache *pcache;
	struct kmem_cache *cachep;

	mutex_lock(&pid_caches_mutex);
	list_for_each_entry(pcache, &pid_caches_lh, list)
		if (pcache->nr_ids == nr_ids)
			goto out;

	pcache = kmalloc(sizeof(struct pid_cache), GFP_KERNEL);
	if (pcache == NULL)
		goto err_alloc;

	snprintf(pcache->name, sizeof(pcache->name), "pid_%d", nr_ids);
	cachep = kmem_cache_create(pcache->name,
			sizeof(struct pid) + (nr_ids - 1) * sizeof(struct upid),
			0, SLAB_HWCACHE_ALIGN, NULL);
	if (cachep == NULL)
		goto err_cachep;

	pcache->nr_ids = nr_ids;
	pcache->cachep = cachep;
	list_add(&pcache->list, &pid_caches_lh);
out:
	mutex_unlock(&pid_caches_mutex);
	return pcache->cachep;

err_cachep:
	kfree(pcache);
err_alloc:
	mutex_unlock(&pid_caches_mutex);
	return NULL;
}

75 76 77 78 79 80
static void proc_cleanup_work(struct work_struct *work)
{
	struct pid_namespace *ns = container_of(work, struct pid_namespace, proc_work);
	pid_ns_release_proc(ns);
}

81 82 83
/* MAX_PID_NS_LEVEL is needed for limiting size of 'struct pid' */
#define MAX_PID_NS_LEVEL 32

84 85
static struct pid_namespace *create_pid_namespace(struct user_namespace *user_ns,
	struct pid_namespace *parent_pid_ns)
86 87
{
	struct pid_namespace *ns;
88
	unsigned int level = parent_pid_ns->level + 1;
89 90 91 92 93 94 95
	int i;
	int err;

	if (level > MAX_PID_NS_LEVEL) {
		err = -EINVAL;
		goto out;
	}
96

97
	err = -ENOMEM;
98
	ns = kmem_cache_zalloc(pid_ns_cachep, GFP_KERNEL);
99 100 101 102 103 104 105 106 107 108 109 110 111
	if (ns == NULL)
		goto out;

	ns->pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
	if (!ns->pidmap[0].page)
		goto out_free;

	ns->pid_cachep = create_pid_cachep(level + 1);
	if (ns->pid_cachep == NULL)
		goto out_free_map;

	kref_init(&ns->kref);
	ns->level = level;
112
	ns->parent = get_pid_ns(parent_pid_ns);
113
	ns->user_ns = get_user_ns(user_ns);
114
	INIT_WORK(&ns->proc_work, proc_cleanup_work);
115 116 117 118

	set_bit(0, ns->pidmap[0].page);
	atomic_set(&ns->pidmap[0].nr_free, BITS_PER_PAGE - 1);

119
	for (i = 1; i < PIDMAP_ENTRIES; i++)
120 121 122 123 124 125 126 127 128
		atomic_set(&ns->pidmap[i].nr_free, BITS_PER_PAGE);

	return ns;

out_free_map:
	kfree(ns->pidmap[0].page);
out_free:
	kmem_cache_free(pid_ns_cachep, ns);
out:
129
	return ERR_PTR(err);
130 131 132 133 134 135 136 137
}

static void destroy_pid_namespace(struct pid_namespace *ns)
{
	int i;

	for (i = 0; i < PIDMAP_ENTRIES; i++)
		kfree(ns->pidmap[i].page);
138
	put_user_ns(ns->user_ns);
139 140 141
	kmem_cache_free(pid_ns_cachep, ns);
}

142 143
struct pid_namespace *copy_pid_ns(unsigned long flags,
	struct user_namespace *user_ns, struct pid_namespace *old_ns)
144 145
{
	if (!(flags & CLONE_NEWPID))
A
Alexey Dobriyan 已提交
146
		return get_pid_ns(old_ns);
147 148
	if (task_active_pid_ns(current) != old_ns)
		return ERR_PTR(-EINVAL);
149
	return create_pid_namespace(user_ns, old_ns);
150 151
}

152
static void free_pid_ns(struct kref *kref)
153
{
154
	struct pid_namespace *ns;
155 156 157

	ns = container_of(kref, struct pid_namespace, kref);
	destroy_pid_namespace(ns);
158
}
159

160 161 162 163 164 165 166 167 168 169
void put_pid_ns(struct pid_namespace *ns)
{
	struct pid_namespace *parent;

	while (ns != &init_pid_ns) {
		parent = ns->parent;
		if (!kref_put(&ns->kref, free_pid_ns))
			break;
		ns = parent;
	}
170
}
171
EXPORT_SYMBOL_GPL(put_pid_ns);
172 173 174 175 176

void zap_pid_ns_processes(struct pid_namespace *pid_ns)
{
	int nr;
	int rc;
177 178 179 180 181 182
	struct task_struct *task, *me = current;

	/* Ignore SIGCHLD causing any terminated children to autoreap */
	spin_lock_irq(&me->sighand->siglock);
	me->sighand->action[SIGCHLD - 1].sa.sa_handler = SIG_IGN;
	spin_unlock_irq(&me->sighand->siglock);
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199

	/*
	 * The last thread in the cgroup-init thread group is terminating.
	 * Find remaining pid_ts in the namespace, signal and wait for them
	 * to exit.
	 *
	 * Note:  This signals each threads in the namespace - even those that
	 * 	  belong to the same thread group, To avoid this, we would have
	 * 	  to walk the entire tasklist looking a processes in this
	 * 	  namespace, but that could be unnecessarily expensive if the
	 * 	  pid namespace has just a few processes. Or we need to
	 * 	  maintain a tasklist for each pid namespace.
	 *
	 */
	read_lock(&tasklist_lock);
	nr = next_pidmap(pid_ns, 1);
	while (nr > 0) {
200 201 202
		rcu_read_lock();

		task = pid_task(find_vpid(nr), PIDTYPE_PID);
203 204
		if (task && !__fatal_signal_pending(task))
			send_sig_info(SIGKILL, SEND_SIG_FORCED, task);
205 206 207

		rcu_read_unlock();

208 209 210 211
		nr = next_pidmap(pid_ns, nr);
	}
	read_unlock(&tasklist_lock);

212
	/* Firstly reap the EXIT_ZOMBIE children we may have. */
213 214 215 216 217
	do {
		clear_thread_flag(TIF_SIGPENDING);
		rc = sys_wait4(-1, NULL, __WALL, NULL);
	} while (rc != -ECHILD);

218 219
	/*
	 * sys_wait4() above can't reap the TASK_DEAD children.
220
	 * Make sure they all go away, see free_pid().
221 222
	 */
	for (;;) {
223 224
		set_current_state(TASK_UNINTERRUPTIBLE);
		if (pid_ns->nr_hashed == 1)
225 226 227
			break;
		schedule();
	}
228
	__set_current_state(TASK_RUNNING);
229

230 231 232
	if (pid_ns->reboot)
		current->signal->group_exit_code = pid_ns->reboot;

233
	acct_exit_ns(pid_ns);
234 235 236
	return;
}

237
#ifdef CONFIG_CHECKPOINT_RESTORE
238 239 240
static int pid_ns_ctl_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp, loff_t *ppos)
{
241
	struct pid_namespace *pid_ns = task_active_pid_ns(current);
242 243
	struct ctl_table tmp = *table;

244
	if (write && !ns_capable(pid_ns->user_ns, CAP_SYS_ADMIN))
245 246 247 248 249 250 251 252
		return -EPERM;

	/*
	 * Writing directly to ns' last_pid field is OK, since this field
	 * is volatile in a living namespace anyway and a code writing to
	 * it should synchronize its usage with external means.
	 */

253
	tmp.data = &pid_ns->last_pid;
254
	return proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
255 256
}

257 258
extern int pid_max;
static int zero = 0;
259 260 261 262 263 264
static struct ctl_table pid_ns_ctl_table[] = {
	{
		.procname = "ns_last_pid",
		.maxlen = sizeof(int),
		.mode = 0666, /* permissions are checked in the handler */
		.proc_handler = pid_ns_ctl_handler,
265 266
		.extra1 = &zero,
		.extra2 = &pid_max,
267 268 269 270
	},
	{ }
};
static struct ctl_path kern_path[] = { { .procname = "kernel", }, { } };
271
#endif	/* CONFIG_CHECKPOINT_RESTORE */
272

273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd)
{
	if (pid_ns == &init_pid_ns)
		return 0;

	switch (cmd) {
	case LINUX_REBOOT_CMD_RESTART2:
	case LINUX_REBOOT_CMD_RESTART:
		pid_ns->reboot = SIGHUP;
		break;

	case LINUX_REBOOT_CMD_POWER_OFF:
	case LINUX_REBOOT_CMD_HALT:
		pid_ns->reboot = SIGINT;
		break;
	default:
		return -EINVAL;
	}

	read_lock(&tasklist_lock);
	force_sig(SIGKILL, pid_ns->child_reaper);
	read_unlock(&tasklist_lock);

	do_exit(0);

	/* Not reached */
	return 0;
}

E
Eric W. Biederman 已提交
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
static void *pidns_get(struct task_struct *task)
{
	struct pid_namespace *ns;

	rcu_read_lock();
	ns = get_pid_ns(task_active_pid_ns(task));
	rcu_read_unlock();

	return ns;
}

static void pidns_put(void *ns)
{
	put_pid_ns(ns);
}

static int pidns_install(struct nsproxy *nsproxy, void *ns)
{
	struct pid_namespace *active = task_active_pid_ns(current);
	struct pid_namespace *ancestor, *new = ns;

	if (!ns_capable(new->user_ns, CAP_SYS_ADMIN))
		return -EPERM;

	/*
	 * Only allow entering the current active pid namespace
	 * or a child of the current active pid namespace.
	 *
	 * This is required for fork to return a usable pid value and
	 * this maintains the property that processes and their
	 * children can not escape their current pid namespace.
	 */
	if (new->level < active->level)
		return -EINVAL;

	ancestor = new;
	while (ancestor->level > active->level)
		ancestor = ancestor->parent;
	if (ancestor != active)
		return -EINVAL;

	put_pid_ns(nsproxy->pid_ns);
	nsproxy->pid_ns = get_pid_ns(new);
	return 0;
}

const struct proc_ns_operations pidns_operations = {
	.name		= "pid",
	.type		= CLONE_NEWPID,
	.get		= pidns_get,
	.put		= pidns_put,
	.install	= pidns_install,
};

356 357 358
static __init int pid_namespaces_init(void)
{
	pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC);
359 360

#ifdef CONFIG_CHECKPOINT_RESTORE
361
	register_sysctl_paths(kern_path, pid_ns_ctl_table);
362
#endif
363 364 365 366
	return 0;
}

__initcall(pid_namespaces_init);