edma.c 29.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * TI EDMA DMA engine driver
 *
 * Copyright 2012 Texas Instruments
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation version 2.
 *
 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
 * kind, whether express or implied; without even the implied warranty
 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/spinlock.h>

27
#include <linux/platform_data/edma.h>
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

#include "dmaengine.h"
#include "virt-dma.h"

/*
 * This will go away when the private EDMA API is folded
 * into this driver and the platform device(s) are
 * instantiated in the arch code. We can only get away
 * with this simplification because DA8XX may not be built
 * in the same kernel image with other DaVinci parts. This
 * avoids having to sprinkle dmaengine driver platform devices
 * and data throughout all the existing board files.
 */
#ifdef CONFIG_ARCH_DAVINCI_DA8XX
#define EDMA_CTLRS	2
#define EDMA_CHANS	32
#else
#define EDMA_CTLRS	1
#define EDMA_CHANS	64
#endif /* CONFIG_ARCH_DAVINCI_DA8XX */

49 50 51 52 53 54 55 56
/*
 * Max of 20 segments per channel to conserve PaRAM slots
 * Also note that MAX_NR_SG should be atleast the no.of periods
 * that are required for ASoC, otherwise DMA prep calls will
 * fail. Today davinci-pcm is the only user of this driver and
 * requires atleast 17 slots, so we setup the default to 20.
 */
#define MAX_NR_SG		20
57 58 59
#define EDMA_MAX_SLOTS		MAX_NR_SG
#define EDMA_DESCRIPTORS	16

60
struct edma_pset {
61 62
	u32				len;
	dma_addr_t			addr;
63 64 65
	struct edmacc_param		param;
};

66 67 68
struct edma_desc {
	struct virt_dma_desc		vdesc;
	struct list_head		node;
69
	enum dma_transfer_direction	direction;
70
	int				cyclic;
71 72
	int				absync;
	int				pset_nr;
73
	struct edma_chan		*echan;
74
	int				processed;
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

	/*
	 * The following 4 elements are used for residue accounting.
	 *
	 * - processed_stat: the number of SG elements we have traversed
	 * so far to cover accounting. This is updated directly to processed
	 * during edma_callback and is always <= processed, because processed
	 * refers to the number of pending transfer (programmed to EDMA
	 * controller), where as processed_stat tracks number of transfers
	 * accounted for so far.
	 *
	 * - residue: The amount of bytes we have left to transfer for this desc
	 *
	 * - residue_stat: The residue in bytes of data we have covered
	 * so far for accounting. This is updated directly to residue
	 * during callbacks to keep it current.
	 *
	 * - sg_len: Tracks the length of the current intermediate transfer,
	 * this is required to update the residue during intermediate transfer
	 * completion callback.
	 */
96 97
	int				processed_stat;
	u32				sg_len;
98
	u32				residue;
99
	u32				residue_stat;
100

101
	struct edma_pset		pset[0];
102 103 104 105 106 107 108 109 110 111 112 113
};

struct edma_cc;

struct edma_chan {
	struct virt_dma_chan		vchan;
	struct list_head		node;
	struct edma_desc		*edesc;
	struct edma_cc			*ecc;
	int				ch_num;
	bool				alloced;
	int				slot[EDMA_MAX_SLOTS];
114
	int				missed;
115
	struct dma_slave_config		cfg;
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
};

struct edma_cc {
	int				ctlr;
	struct dma_device		dma_slave;
	struct edma_chan		slave_chans[EDMA_CHANS];
	int				num_slave_chans;
	int				dummy_slot;
};

static inline struct edma_cc *to_edma_cc(struct dma_device *d)
{
	return container_of(d, struct edma_cc, dma_slave);
}

static inline struct edma_chan *to_edma_chan(struct dma_chan *c)
{
	return container_of(c, struct edma_chan, vchan.chan);
}

static inline struct edma_desc
*to_edma_desc(struct dma_async_tx_descriptor *tx)
{
	return container_of(tx, struct edma_desc, vdesc.tx);
}

static void edma_desc_free(struct virt_dma_desc *vdesc)
{
	kfree(container_of(vdesc, struct edma_desc, vdesc));
}

/* Dispatch a queued descriptor to the controller (caller holds lock) */
static void edma_execute(struct edma_chan *echan)
{
150
	struct virt_dma_desc *vdesc;
151
	struct edma_desc *edesc;
152 153 154 155 156 157 158 159 160 161 162 163 164 165
	struct device *dev = echan->vchan.chan.device->dev;
	int i, j, left, nslots;

	/* If either we processed all psets or we're still not started */
	if (!echan->edesc ||
	    echan->edesc->pset_nr == echan->edesc->processed) {
		/* Get next vdesc */
		vdesc = vchan_next_desc(&echan->vchan);
		if (!vdesc) {
			echan->edesc = NULL;
			return;
		}
		list_del(&vdesc->node);
		echan->edesc = to_edma_desc(&vdesc->tx);
166 167
	}

168
	edesc = echan->edesc;
169

170 171 172
	/* Find out how many left */
	left = edesc->pset_nr - edesc->processed;
	nslots = min(MAX_NR_SG, left);
173
	edesc->sg_len = 0;
174 175

	/* Write descriptor PaRAM set(s) */
176 177
	for (i = 0; i < nslots; i++) {
		j = i + edesc->processed;
178
		edma_write_slot(echan->slot[i], &edesc->pset[j].param);
179
		edesc->sg_len += edesc->pset[j].len;
180
		dev_vdbg(echan->vchan.chan.device->dev,
181 182 183 184 185 186 187 188 189 190 191
			"\n pset[%d]:\n"
			"  chnum\t%d\n"
			"  slot\t%d\n"
			"  opt\t%08x\n"
			"  src\t%08x\n"
			"  dst\t%08x\n"
			"  abcnt\t%08x\n"
			"  ccnt\t%08x\n"
			"  bidx\t%08x\n"
			"  cidx\t%08x\n"
			"  lkrld\t%08x\n",
192
			j, echan->ch_num, echan->slot[i],
193 194 195 196 197 198 199 200
			edesc->pset[j].param.opt,
			edesc->pset[j].param.src,
			edesc->pset[j].param.dst,
			edesc->pset[j].param.a_b_cnt,
			edesc->pset[j].param.ccnt,
			edesc->pset[j].param.src_dst_bidx,
			edesc->pset[j].param.src_dst_cidx,
			edesc->pset[j].param.link_bcntrld);
201
		/* Link to the previous slot if not the last set */
202
		if (i != (nslots - 1))
203 204 205
			edma_link(echan->slot[i], echan->slot[i+1]);
	}

206 207
	edesc->processed += nslots;

208 209 210 211 212
	/*
	 * If this is either the last set in a set of SG-list transactions
	 * then setup a link to the dummy slot, this results in all future
	 * events being absorbed and that's OK because we're done
	 */
213 214 215 216 217 218 219
	if (edesc->processed == edesc->pset_nr) {
		if (edesc->cyclic)
			edma_link(echan->slot[nslots-1], echan->slot[1]);
		else
			edma_link(echan->slot[nslots-1],
				  echan->ecc->dummy_slot);
	}
220

221
	if (edesc->processed <= MAX_NR_SG) {
222 223
		dev_dbg(dev, "first transfer starting on channel %d\n",
			echan->ch_num);
224
		edma_start(echan->ch_num);
225 226 227 228
	} else {
		dev_dbg(dev, "chan: %d: completed %d elements, resuming\n",
			echan->ch_num, edesc->processed);
		edma_resume(echan->ch_num);
229
	}
230 231 232 233 234 235 236

	/*
	 * This happens due to setup times between intermediate transfers
	 * in long SG lists which have to be broken up into transfers of
	 * MAX_NR_SG
	 */
	if (echan->missed) {
237
		dev_dbg(dev, "missed event on channel %d\n", echan->ch_num);
238 239 240 241 242 243
		edma_clean_channel(echan->ch_num);
		edma_stop(echan->ch_num);
		edma_start(echan->ch_num);
		edma_trigger_channel(echan->ch_num);
		echan->missed = 0;
	}
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
}

static int edma_terminate_all(struct edma_chan *echan)
{
	unsigned long flags;
	LIST_HEAD(head);

	spin_lock_irqsave(&echan->vchan.lock, flags);

	/*
	 * Stop DMA activity: we assume the callback will not be called
	 * after edma_dma() returns (even if it does, it will see
	 * echan->edesc is NULL and exit.)
	 */
	if (echan->edesc) {
		echan->edesc = NULL;
		edma_stop(echan->ch_num);
	}

	vchan_get_all_descriptors(&echan->vchan, &head);
	spin_unlock_irqrestore(&echan->vchan.lock, flags);
	vchan_dma_desc_free_list(&echan->vchan, &head);

	return 0;
}

static int edma_slave_config(struct edma_chan *echan,
271
	struct dma_slave_config *cfg)
272
{
273 274
	if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
	    cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
275 276
		return -EINVAL;

277
	memcpy(&echan->cfg, cfg, sizeof(echan->cfg));
278 279 280 281

	return 0;
}

282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
static int edma_dma_pause(struct edma_chan *echan)
{
	/* Pause/Resume only allowed with cyclic mode */
	if (!echan->edesc->cyclic)
		return -EINVAL;

	edma_pause(echan->ch_num);
	return 0;
}

static int edma_dma_resume(struct edma_chan *echan)
{
	/* Pause/Resume only allowed with cyclic mode */
	if (!echan->edesc->cyclic)
		return -EINVAL;

	edma_resume(echan->ch_num);
	return 0;
}

302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
static int edma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
			unsigned long arg)
{
	int ret = 0;
	struct dma_slave_config *config;
	struct edma_chan *echan = to_edma_chan(chan);

	switch (cmd) {
	case DMA_TERMINATE_ALL:
		edma_terminate_all(echan);
		break;
	case DMA_SLAVE_CONFIG:
		config = (struct dma_slave_config *)arg;
		ret = edma_slave_config(echan, config);
		break;
317 318 319 320 321 322 323 324
	case DMA_PAUSE:
		ret = edma_dma_pause(echan);
		break;

	case DMA_RESUME:
		ret = edma_dma_resume(echan);
		break;

325 326 327 328 329 330 331
	default:
		ret = -ENOSYS;
	}

	return ret;
}

332 333 334 335 336 337 338 339 340 341 342
/*
 * A PaRAM set configuration abstraction used by other modes
 * @chan: Channel who's PaRAM set we're configuring
 * @pset: PaRAM set to initialize and setup.
 * @src_addr: Source address of the DMA
 * @dst_addr: Destination address of the DMA
 * @burst: In units of dev_width, how much to send
 * @dev_width: How much is the dev_width
 * @dma_length: Total length of the DMA transfer
 * @direction: Direction of the transfer
 */
343
static int edma_config_pset(struct dma_chan *chan, struct edma_pset *epset,
344 345 346 347 348 349
	dma_addr_t src_addr, dma_addr_t dst_addr, u32 burst,
	enum dma_slave_buswidth dev_width, unsigned int dma_length,
	enum dma_transfer_direction direction)
{
	struct edma_chan *echan = to_edma_chan(chan);
	struct device *dev = chan->device->dev;
350
	struct edmacc_param *param = &epset->param;
351 352 353 354 355
	int acnt, bcnt, ccnt, cidx;
	int src_bidx, dst_bidx, src_cidx, dst_cidx;
	int absync;

	acnt = dev_width;
356 357 358 359

	/* src/dst_maxburst == 0 is the same case as src/dst_maxburst == 1 */
	if (!burst)
		burst = 1;
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
	/*
	 * If the maxburst is equal to the fifo width, use
	 * A-synced transfers. This allows for large contiguous
	 * buffer transfers using only one PaRAM set.
	 */
	if (burst == 1) {
		/*
		 * For the A-sync case, bcnt and ccnt are the remainder
		 * and quotient respectively of the division of:
		 * (dma_length / acnt) by (SZ_64K -1). This is so
		 * that in case bcnt over flows, we have ccnt to use.
		 * Note: In A-sync tranfer only, bcntrld is used, but it
		 * only applies for sg_dma_len(sg) >= SZ_64K.
		 * In this case, the best way adopted is- bccnt for the
		 * first frame will be the remainder below. Then for
		 * every successive frame, bcnt will be SZ_64K-1. This
		 * is assured as bcntrld = 0xffff in end of function.
		 */
		absync = false;
		ccnt = dma_length / acnt / (SZ_64K - 1);
		bcnt = dma_length / acnt - ccnt * (SZ_64K - 1);
		/*
		 * If bcnt is non-zero, we have a remainder and hence an
		 * extra frame to transfer, so increment ccnt.
		 */
		if (bcnt)
			ccnt++;
		else
			bcnt = SZ_64K - 1;
		cidx = acnt;
	} else {
		/*
		 * If maxburst is greater than the fifo address_width,
		 * use AB-synced transfers where A count is the fifo
		 * address_width and B count is the maxburst. In this
		 * case, we are limited to transfers of C count frames
		 * of (address_width * maxburst) where C count is limited
		 * to SZ_64K-1. This places an upper bound on the length
		 * of an SG segment that can be handled.
		 */
		absync = true;
		bcnt = burst;
		ccnt = dma_length / (acnt * bcnt);
		if (ccnt > (SZ_64K - 1)) {
			dev_err(dev, "Exceeded max SG segment size\n");
			return -EINVAL;
		}
		cidx = acnt * bcnt;
	}

410 411
	epset->len = dma_length;

412 413 414 415 416
	if (direction == DMA_MEM_TO_DEV) {
		src_bidx = acnt;
		src_cidx = cidx;
		dst_bidx = 0;
		dst_cidx = 0;
417
		epset->addr = src_addr;
418 419 420 421 422
	} else if (direction == DMA_DEV_TO_MEM)  {
		src_bidx = 0;
		src_cidx = 0;
		dst_bidx = acnt;
		dst_cidx = cidx;
423
		epset->addr = dst_addr;
424 425 426 427 428
	} else if (direction == DMA_MEM_TO_MEM)  {
		src_bidx = acnt;
		src_cidx = cidx;
		dst_bidx = acnt;
		dst_cidx = cidx;
429 430 431 432 433
	} else {
		dev_err(dev, "%s: direction not implemented yet\n", __func__);
		return -EINVAL;
	}

434
	param->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num));
435 436
	/* Configure A or AB synchronized transfers */
	if (absync)
437
		param->opt |= SYNCDIM;
438

439 440
	param->src = src_addr;
	param->dst = dst_addr;
441

442 443
	param->src_dst_bidx = (dst_bidx << 16) | src_bidx;
	param->src_dst_cidx = (dst_cidx << 16) | src_cidx;
444

445 446
	param->a_b_cnt = bcnt << 16 | acnt;
	param->ccnt = ccnt;
447 448 449 450 451 452
	/*
	 * Only time when (bcntrld) auto reload is required is for
	 * A-sync case, and in this case, a requirement of reload value
	 * of SZ_64K-1 only is assured. 'link' is initially set to NULL
	 * and then later will be populated by edma_execute.
	 */
453
	param->link_bcntrld = 0xffffffff;
454 455 456
	return absync;
}

457 458 459 460 461 462 463 464
static struct dma_async_tx_descriptor *edma_prep_slave_sg(
	struct dma_chan *chan, struct scatterlist *sgl,
	unsigned int sg_len, enum dma_transfer_direction direction,
	unsigned long tx_flags, void *context)
{
	struct edma_chan *echan = to_edma_chan(chan);
	struct device *dev = chan->device->dev;
	struct edma_desc *edesc;
465
	dma_addr_t src_addr = 0, dst_addr = 0;
466 467
	enum dma_slave_buswidth dev_width;
	u32 burst;
468
	struct scatterlist *sg;
469
	int i, nslots, ret;
470 471 472 473

	if (unlikely(!echan || !sgl || !sg_len))
		return NULL;

474
	if (direction == DMA_DEV_TO_MEM) {
475
		src_addr = echan->cfg.src_addr;
476 477 478
		dev_width = echan->cfg.src_addr_width;
		burst = echan->cfg.src_maxburst;
	} else if (direction == DMA_MEM_TO_DEV) {
479
		dst_addr = echan->cfg.dst_addr;
480 481 482
		dev_width = echan->cfg.dst_addr_width;
		burst = echan->cfg.dst_maxburst;
	} else {
483
		dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
484 485 486 487
		return NULL;
	}

	if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
488
		dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
489 490 491 492 493 494
		return NULL;
	}

	edesc = kzalloc(sizeof(*edesc) + sg_len *
		sizeof(edesc->pset[0]), GFP_ATOMIC);
	if (!edesc) {
495
		dev_err(dev, "%s: Failed to allocate a descriptor\n", __func__);
496 497 498 499
		return NULL;
	}

	edesc->pset_nr = sg_len;
500
	edesc->residue = 0;
501
	edesc->direction = direction;
502
	edesc->echan = echan;
503

504 505 506 507
	/* Allocate a PaRAM slot, if needed */
	nslots = min_t(unsigned, MAX_NR_SG, sg_len);

	for (i = 0; i < nslots; i++) {
508 509 510 511 512
		if (echan->slot[i] < 0) {
			echan->slot[i] =
				edma_alloc_slot(EDMA_CTLR(echan->ch_num),
						EDMA_SLOT_ANY);
			if (echan->slot[i] < 0) {
V
Valentin Ilie 已提交
513
				kfree(edesc);
514 515
				dev_err(dev, "%s: Failed to allocate slot\n",
					__func__);
516 517 518
				return NULL;
			}
		}
519 520 521 522
	}

	/* Configure PaRAM sets for each SG */
	for_each_sg(sgl, sg, sg_len, i) {
523 524 525 526 527
		/* Get address for each SG */
		if (direction == DMA_DEV_TO_MEM)
			dst_addr = sg_dma_address(sg);
		else
			src_addr = sg_dma_address(sg);
528

529 530 531
		ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
				       dst_addr, burst, dev_width,
				       sg_dma_len(sg), direction);
V
Vinod Koul 已提交
532 533
		if (ret < 0) {
			kfree(edesc);
534
			return NULL;
535 536
		}

537
		edesc->absync = ret;
538
		edesc->residue += sg_dma_len(sg);
539 540 541 542

		/* If this is the last in a current SG set of transactions,
		   enable interrupts so that next set is processed */
		if (!((i+1) % MAX_NR_SG))
543
			edesc->pset[i].param.opt |= TCINTEN;
544

545 546
		/* If this is the last set, enable completion interrupt flag */
		if (i == sg_len - 1)
547
			edesc->pset[i].param.opt |= TCINTEN;
548
	}
549
	edesc->residue_stat = edesc->residue;
550 551 552 553

	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
}

554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
struct dma_async_tx_descriptor *edma_prep_dma_memcpy(
	struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
	size_t len, unsigned long tx_flags)
{
	int ret;
	struct edma_desc *edesc;
	struct device *dev = chan->device->dev;
	struct edma_chan *echan = to_edma_chan(chan);

	if (unlikely(!echan || !len))
		return NULL;

	edesc = kzalloc(sizeof(*edesc) + sizeof(edesc->pset[0]), GFP_ATOMIC);
	if (!edesc) {
		dev_dbg(dev, "Failed to allocate a descriptor\n");
		return NULL;
	}

	edesc->pset_nr = 1;

	ret = edma_config_pset(chan, &edesc->pset[0], src, dest, 1,
			       DMA_SLAVE_BUSWIDTH_4_BYTES, len, DMA_MEM_TO_MEM);
	if (ret < 0)
		return NULL;

	edesc->absync = ret;

	/*
	 * Enable intermediate transfer chaining to re-trigger channel
	 * on completion of every TR, and enable transfer-completion
	 * interrupt on completion of the whole transfer.
	 */
586 587
	edesc->pset[0].param.opt |= ITCCHEN;
	edesc->pset[0].param.opt |= TCINTEN;
588 589 590 591

	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
}

592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
static struct dma_async_tx_descriptor *edma_prep_dma_cyclic(
	struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
	size_t period_len, enum dma_transfer_direction direction,
	unsigned long tx_flags, void *context)
{
	struct edma_chan *echan = to_edma_chan(chan);
	struct device *dev = chan->device->dev;
	struct edma_desc *edesc;
	dma_addr_t src_addr, dst_addr;
	enum dma_slave_buswidth dev_width;
	u32 burst;
	int i, ret, nslots;

	if (unlikely(!echan || !buf_len || !period_len))
		return NULL;

	if (direction == DMA_DEV_TO_MEM) {
		src_addr = echan->cfg.src_addr;
		dst_addr = buf_addr;
		dev_width = echan->cfg.src_addr_width;
		burst = echan->cfg.src_maxburst;
	} else if (direction == DMA_MEM_TO_DEV) {
		src_addr = buf_addr;
		dst_addr = echan->cfg.dst_addr;
		dev_width = echan->cfg.dst_addr_width;
		burst = echan->cfg.dst_maxburst;
	} else {
619
		dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
620 621 622 623
		return NULL;
	}

	if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
624
		dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
		return NULL;
	}

	if (unlikely(buf_len % period_len)) {
		dev_err(dev, "Period should be multiple of Buffer length\n");
		return NULL;
	}

	nslots = (buf_len / period_len) + 1;

	/*
	 * Cyclic DMA users such as audio cannot tolerate delays introduced
	 * by cases where the number of periods is more than the maximum
	 * number of SGs the EDMA driver can handle at a time. For DMA types
	 * such as Slave SGs, such delays are tolerable and synchronized,
	 * but the synchronization is difficult to achieve with Cyclic and
	 * cannot be guaranteed, so we error out early.
	 */
	if (nslots > MAX_NR_SG)
		return NULL;

	edesc = kzalloc(sizeof(*edesc) + nslots *
		sizeof(edesc->pset[0]), GFP_ATOMIC);
	if (!edesc) {
649
		dev_err(dev, "%s: Failed to allocate a descriptor\n", __func__);
650 651 652 653 654
		return NULL;
	}

	edesc->cyclic = 1;
	edesc->pset_nr = nslots;
655
	edesc->residue = edesc->residue_stat = buf_len;
656
	edesc->direction = direction;
657
	edesc->echan = echan;
658

659 660
	dev_dbg(dev, "%s: channel=%d nslots=%d period_len=%zu buf_len=%zu\n",
		__func__, echan->ch_num, nslots, period_len, buf_len);
661 662 663 664 665 666 667 668

	for (i = 0; i < nslots; i++) {
		/* Allocate a PaRAM slot, if needed */
		if (echan->slot[i] < 0) {
			echan->slot[i] =
				edma_alloc_slot(EDMA_CTLR(echan->ch_num),
						EDMA_SLOT_ANY);
			if (echan->slot[i] < 0) {
669
				kfree(edesc);
670 671
				dev_err(dev, "%s: Failed to allocate slot\n",
					__func__);
672 673 674 675 676 677 678 679 680 681 682 683 684
				return NULL;
			}
		}

		if (i == nslots - 1) {
			memcpy(&edesc->pset[i], &edesc->pset[0],
			       sizeof(edesc->pset[0]));
			break;
		}

		ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
				       dst_addr, burst, dev_width, period_len,
				       direction);
685 686
		if (ret < 0) {
			kfree(edesc);
687
			return NULL;
688
		}
689

690 691 692 693
		if (direction == DMA_DEV_TO_MEM)
			dst_addr += period_len;
		else
			src_addr += period_len;
694

695 696
		dev_vdbg(dev, "%s: Configure period %d of buf:\n", __func__, i);
		dev_vdbg(dev,
697 698 699 700 701 702 703 704 705 706 707 708
			"\n pset[%d]:\n"
			"  chnum\t%d\n"
			"  slot\t%d\n"
			"  opt\t%08x\n"
			"  src\t%08x\n"
			"  dst\t%08x\n"
			"  abcnt\t%08x\n"
			"  ccnt\t%08x\n"
			"  bidx\t%08x\n"
			"  cidx\t%08x\n"
			"  lkrld\t%08x\n",
			i, echan->ch_num, echan->slot[i],
709 710 711 712 713 714 715 716
			edesc->pset[i].param.opt,
			edesc->pset[i].param.src,
			edesc->pset[i].param.dst,
			edesc->pset[i].param.a_b_cnt,
			edesc->pset[i].param.ccnt,
			edesc->pset[i].param.src_dst_bidx,
			edesc->pset[i].param.src_dst_cidx,
			edesc->pset[i].param.link_bcntrld);
717 718 719 720 721 722 723

		edesc->absync = ret;

		/*
		 * Enable interrupts for every period because callback
		 * has to be called for every period.
		 */
724
		edesc->pset[i].param.opt |= TCINTEN;
725 726 727 728 729 730 731 732 733 734
	}

	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
}

static void edma_callback(unsigned ch_num, u16 ch_status, void *data)
{
	struct edma_chan *echan = data;
	struct device *dev = echan->vchan.chan.device->dev;
	struct edma_desc *edesc;
735
	struct edmacc_param p;
736

737 738 739 740 741
	edesc = echan->edesc;

	/* Pause the channel for non-cyclic */
	if (!edesc || (edesc && !edesc->cyclic))
		edma_pause(echan->ch_num);
742 743

	switch (ch_status) {
744
	case EDMA_DMA_COMPLETE:
745
		spin_lock(&echan->vchan.lock);
746 747

		if (edesc) {
748 749 750
			if (edesc->cyclic) {
				vchan_cyclic_callback(&edesc->vdesc);
			} else if (edesc->processed == edesc->pset_nr) {
751
				dev_dbg(dev, "Transfer complete, stopping channel %d\n", ch_num);
752
				edesc->residue = 0;
753 754
				edma_stop(echan->ch_num);
				vchan_cookie_complete(&edesc->vdesc);
755
				edma_execute(echan);
756 757
			} else {
				dev_dbg(dev, "Intermediate transfer complete on channel %d\n", ch_num);
758 759 760 761 762 763

				/* Update statistics for tx_status */
				edesc->residue -= edesc->sg_len;
				edesc->residue_stat = edesc->residue;
				edesc->processed_stat = edesc->processed;

764
				edma_execute(echan);
765
			}
766 767
		}

768
		spin_unlock(&echan->vchan.lock);
769 770

		break;
771
	case EDMA_DMA_CC_ERROR:
772
		spin_lock(&echan->vchan.lock);
773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802

		edma_read_slot(EDMA_CHAN_SLOT(echan->slot[0]), &p);

		/*
		 * Issue later based on missed flag which will be sure
		 * to happen as:
		 * (1) we finished transmitting an intermediate slot and
		 *     edma_execute is coming up.
		 * (2) or we finished current transfer and issue will
		 *     call edma_execute.
		 *
		 * Important note: issuing can be dangerous here and
		 * lead to some nasty recursion when we are in a NULL
		 * slot. So we avoid doing so and set the missed flag.
		 */
		if (p.a_b_cnt == 0 && p.ccnt == 0) {
			dev_dbg(dev, "Error occurred, looks like slot is null, just setting miss\n");
			echan->missed = 1;
		} else {
			/*
			 * The slot is already programmed but the event got
			 * missed, so its safe to issue it here.
			 */
			dev_dbg(dev, "Error occurred but slot is non-null, TRIGGERING\n");
			edma_clean_channel(echan->ch_num);
			edma_stop(echan->ch_num);
			edma_start(echan->ch_num);
			edma_trigger_channel(echan->ch_num);
		}

803
		spin_unlock(&echan->vchan.lock);
804

805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838
		break;
	default:
		break;
	}
}

/* Alloc channel resources */
static int edma_alloc_chan_resources(struct dma_chan *chan)
{
	struct edma_chan *echan = to_edma_chan(chan);
	struct device *dev = chan->device->dev;
	int ret;
	int a_ch_num;
	LIST_HEAD(descs);

	a_ch_num = edma_alloc_channel(echan->ch_num, edma_callback,
					chan, EVENTQ_DEFAULT);

	if (a_ch_num < 0) {
		ret = -ENODEV;
		goto err_no_chan;
	}

	if (a_ch_num != echan->ch_num) {
		dev_err(dev, "failed to allocate requested channel %u:%u\n",
			EDMA_CTLR(echan->ch_num),
			EDMA_CHAN_SLOT(echan->ch_num));
		ret = -ENODEV;
		goto err_wrong_chan;
	}

	echan->alloced = true;
	echan->slot[0] = echan->ch_num;

839
	dev_dbg(dev, "allocated channel %d for %u:%u\n", echan->ch_num,
840
		EDMA_CTLR(echan->ch_num), EDMA_CHAN_SLOT(echan->ch_num));
841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875

	return 0;

err_wrong_chan:
	edma_free_channel(a_ch_num);
err_no_chan:
	return ret;
}

/* Free channel resources */
static void edma_free_chan_resources(struct dma_chan *chan)
{
	struct edma_chan *echan = to_edma_chan(chan);
	struct device *dev = chan->device->dev;
	int i;

	/* Terminate transfers */
	edma_stop(echan->ch_num);

	vchan_free_chan_resources(&echan->vchan);

	/* Free EDMA PaRAM slots */
	for (i = 1; i < EDMA_MAX_SLOTS; i++) {
		if (echan->slot[i] >= 0) {
			edma_free_slot(echan->slot[i]);
			echan->slot[i] = -1;
		}
	}

	/* Free EDMA channel */
	if (echan->alloced) {
		edma_free_channel(echan->ch_num);
		echan->alloced = false;
	}

876
	dev_dbg(dev, "freeing channel for %u\n", echan->ch_num);
877 878 879 880 881 882 883 884 885 886 887 888 889 890
}

/* Send pending descriptor to hardware */
static void edma_issue_pending(struct dma_chan *chan)
{
	struct edma_chan *echan = to_edma_chan(chan);
	unsigned long flags;

	spin_lock_irqsave(&echan->vchan.lock, flags);
	if (vchan_issue_pending(&echan->vchan) && !echan->edesc)
		edma_execute(echan);
	spin_unlock_irqrestore(&echan->vchan.lock, flags);
}

891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
static u32 edma_residue(struct edma_desc *edesc)
{
	bool dst = edesc->direction == DMA_DEV_TO_MEM;
	struct edma_pset *pset = edesc->pset;
	dma_addr_t done, pos;
	int i;

	/*
	 * We always read the dst/src position from the first RamPar
	 * pset. That's the one which is active now.
	 */
	pos = edma_get_position(edesc->echan->slot[0], dst);

	/*
	 * Cyclic is simple. Just subtract pset[0].addr from pos.
	 *
	 * We never update edesc->residue in the cyclic case, so we
	 * can tell the remaining room to the end of the circular
	 * buffer.
	 */
	if (edesc->cyclic) {
		done = pos - pset->addr;
		edesc->residue_stat = edesc->residue - done;
		return edesc->residue_stat;
	}

	/*
	 * For SG operation we catch up with the last processed
	 * status.
	 */
	pset += edesc->processed_stat;

	for (i = edesc->processed_stat; i < edesc->processed; i++, pset++) {
		/*
		 * If we are inside this pset address range, we know
		 * this is the active one. Get the current delta and
		 * stop walking the psets.
		 */
		if (pos >= pset->addr && pos < pset->addr + pset->len)
			return edesc->residue_stat - (pos - pset->addr);

		/* Otherwise mark it done and update residue_stat. */
		edesc->processed_stat++;
		edesc->residue_stat -= pset->len;
	}
	return edesc->residue_stat;
}

939 940 941 942 943 944 945 946 947 948 949
/* Check request completion status */
static enum dma_status edma_tx_status(struct dma_chan *chan,
				      dma_cookie_t cookie,
				      struct dma_tx_state *txstate)
{
	struct edma_chan *echan = to_edma_chan(chan);
	struct virt_dma_desc *vdesc;
	enum dma_status ret;
	unsigned long flags;

	ret = dma_cookie_status(chan, cookie, txstate);
950
	if (ret == DMA_COMPLETE || !txstate)
951 952 953
		return ret;

	spin_lock_irqsave(&echan->vchan.lock, flags);
954
	if (echan->edesc && echan->edesc->vdesc.tx.cookie == cookie)
955
		txstate->residue = edma_residue(echan->edesc);
956 957
	else if ((vdesc = vchan_find_desc(&echan->vchan, cookie)))
		txstate->residue = to_edma_desc(&vdesc->tx)->residue;
958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982
	spin_unlock_irqrestore(&echan->vchan.lock, flags);

	return ret;
}

static void __init edma_chan_init(struct edma_cc *ecc,
				  struct dma_device *dma,
				  struct edma_chan *echans)
{
	int i, j;

	for (i = 0; i < EDMA_CHANS; i++) {
		struct edma_chan *echan = &echans[i];
		echan->ch_num = EDMA_CTLR_CHAN(ecc->ctlr, i);
		echan->ecc = ecc;
		echan->vchan.desc_free = edma_desc_free;

		vchan_init(&echan->vchan, dma);

		INIT_LIST_HEAD(&echan->node);
		for (j = 0; j < EDMA_MAX_SLOTS; j++)
			echan->slot[j] = -1;
	}
}

983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999
#define EDMA_DMA_BUSWIDTHS	(BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
				 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
				 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))

static int edma_dma_device_slave_caps(struct dma_chan *dchan,
				      struct dma_slave_caps *caps)
{
	caps->src_addr_widths = EDMA_DMA_BUSWIDTHS;
	caps->dstn_addr_widths = EDMA_DMA_BUSWIDTHS;
	caps->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
	caps->cmd_pause = true;
	caps->cmd_terminate = true;
	caps->residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR;

	return 0;
}

1000 1001 1002 1003
static void edma_dma_init(struct edma_cc *ecc, struct dma_device *dma,
			  struct device *dev)
{
	dma->device_prep_slave_sg = edma_prep_slave_sg;
1004
	dma->device_prep_dma_cyclic = edma_prep_dma_cyclic;
1005
	dma->device_prep_dma_memcpy = edma_prep_dma_memcpy;
1006 1007 1008 1009 1010
	dma->device_alloc_chan_resources = edma_alloc_chan_resources;
	dma->device_free_chan_resources = edma_free_chan_resources;
	dma->device_issue_pending = edma_issue_pending;
	dma->device_tx_status = edma_tx_status;
	dma->device_control = edma_control;
1011
	dma->device_slave_caps = edma_dma_device_slave_caps;
1012 1013
	dma->dev = dev;

1014 1015 1016 1017 1018 1019
	/*
	 * code using dma memcpy must make sure alignment of
	 * length is at dma->copy_align boundary.
	 */
	dma->copy_align = DMA_SLAVE_BUSWIDTH_4_BYTES;

1020 1021 1022
	INIT_LIST_HEAD(&dma->channels);
}

B
Bill Pemberton 已提交
1023
static int edma_probe(struct platform_device *pdev)
1024 1025 1026 1027
{
	struct edma_cc *ecc;
	int ret;

1028 1029 1030 1031
	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
	if (ret)
		return ret;

1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
	ecc = devm_kzalloc(&pdev->dev, sizeof(*ecc), GFP_KERNEL);
	if (!ecc) {
		dev_err(&pdev->dev, "Can't allocate controller\n");
		return -ENOMEM;
	}

	ecc->ctlr = pdev->id;
	ecc->dummy_slot = edma_alloc_slot(ecc->ctlr, EDMA_SLOT_ANY);
	if (ecc->dummy_slot < 0) {
		dev_err(&pdev->dev, "Can't allocate PaRAM dummy slot\n");
		return -EIO;
	}

	dma_cap_zero(ecc->dma_slave.cap_mask);
	dma_cap_set(DMA_SLAVE, ecc->dma_slave.cap_mask);
1047
	dma_cap_set(DMA_CYCLIC, ecc->dma_slave.cap_mask);
1048
	dma_cap_set(DMA_MEMCPY, ecc->dma_slave.cap_mask);
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068

	edma_dma_init(ecc, &ecc->dma_slave, &pdev->dev);

	edma_chan_init(ecc, &ecc->dma_slave, ecc->slave_chans);

	ret = dma_async_device_register(&ecc->dma_slave);
	if (ret)
		goto err_reg1;

	platform_set_drvdata(pdev, ecc);

	dev_info(&pdev->dev, "TI EDMA DMA engine driver\n");

	return 0;

err_reg1:
	edma_free_slot(ecc->dummy_slot);
	return ret;
}

1069
static int edma_remove(struct platform_device *pdev)
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
{
	struct device *dev = &pdev->dev;
	struct edma_cc *ecc = dev_get_drvdata(dev);

	dma_async_device_unregister(&ecc->dma_slave);
	edma_free_slot(ecc->dummy_slot);

	return 0;
}

static struct platform_driver edma_driver = {
	.probe		= edma_probe,
B
Bill Pemberton 已提交
1082
	.remove		= edma_remove,
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
	.driver = {
		.name = "edma-dma-engine",
		.owner = THIS_MODULE,
	},
};

bool edma_filter_fn(struct dma_chan *chan, void *param)
{
	if (chan->device->dev->driver == &edma_driver.driver) {
		struct edma_chan *echan = to_edma_chan(chan);
		unsigned ch_req = *(unsigned *)param;
		return ch_req == echan->ch_num;
	}
	return false;
}
EXPORT_SYMBOL(edma_filter_fn);

static struct platform_device *pdev0, *pdev1;

static const struct platform_device_info edma_dev_info0 = {
	.name = "edma-dma-engine",
	.id = 0,
1105
	.dma_mask = DMA_BIT_MASK(32),
1106 1107 1108 1109 1110
};

static const struct platform_device_info edma_dev_info1 = {
	.name = "edma-dma-engine",
	.id = 1,
1111
	.dma_mask = DMA_BIT_MASK(32),
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
};

static int edma_init(void)
{
	int ret = platform_driver_register(&edma_driver);

	if (ret == 0) {
		pdev0 = platform_device_register_full(&edma_dev_info0);
		if (IS_ERR(pdev0)) {
			platform_driver_unregister(&edma_driver);
			ret = PTR_ERR(pdev0);
			goto out;
		}
	}

	if (EDMA_CTLRS == 2) {
		pdev1 = platform_device_register_full(&edma_dev_info1);
		if (IS_ERR(pdev1)) {
			platform_driver_unregister(&edma_driver);
			platform_device_unregister(pdev0);
			ret = PTR_ERR(pdev1);
		}
	}

out:
	return ret;
}
subsys_initcall(edma_init);

static void __exit edma_exit(void)
{
	platform_device_unregister(pdev0);
	if (pdev1)
		platform_device_unregister(pdev1);
	platform_driver_unregister(&edma_driver);
}
module_exit(edma_exit);

J
Josh Boyer 已提交
1150
MODULE_AUTHOR("Matt Porter <matt.porter@linaro.org>");
1151 1152
MODULE_DESCRIPTION("TI EDMA DMA engine driver");
MODULE_LICENSE("GPL v2");