mac.c 46.8 KB
Newer Older
1 2 3
/*******************************************************************************

  Intel PRO/1000 Linux driver
B
Bruce Allan 已提交
4
  Copyright(c) 1999 - 2012 Intel Corporation.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Contact Information:
  Linux NICS <linux.nics@intel.com>
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/

#include "e1000.h"

/**
 *  e1000e_get_bus_info_pcie - Get PCIe bus information
 *  @hw: pointer to the HW structure
 *
 *  Determines and stores the system bus information for a particular
 *  network interface.  The following bus information is determined and stored:
 *  bus speed, bus width, type (PCIe), and PCIe function.
 **/
s32 e1000e_get_bus_info_pcie(struct e1000_hw *hw)
{
41
	struct e1000_mac_info *mac = &hw->mac;
42 43
	struct e1000_bus_info *bus = &hw->bus;
	struct e1000_adapter *adapter = hw->adapter;
44
	u16 pcie_link_status, cap_offset;
45

46
	cap_offset = adapter->pdev->pcie_cap;
47 48 49 50 51 52 53 54 55 56 57
	if (!cap_offset) {
		bus->width = e1000_bus_width_unknown;
	} else {
		pci_read_config_word(adapter->pdev,
				     cap_offset + PCIE_LINK_STATUS,
				     &pcie_link_status);
		bus->width = (enum e1000_bus_width)((pcie_link_status &
						     PCIE_LINK_WIDTH_MASK) >>
						    PCIE_LINK_WIDTH_SHIFT);
	}

58
	mac->ops.set_lan_id(hw);
59 60 61 62

	return 0;
}

63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
/**
 *  e1000_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
 *
 *  @hw: pointer to the HW structure
 *
 *  Determines the LAN function id by reading memory-mapped registers
 *  and swaps the port value if requested.
 **/
void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw)
{
	struct e1000_bus_info *bus = &hw->bus;
	u32 reg;

	/*
	 * The status register reports the correct function number
	 * for the device regardless of function swap state.
	 */
	reg = er32(STATUS);
	bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT;
}

/**
 *  e1000_set_lan_id_single_port - Set LAN id for a single port device
 *  @hw: pointer to the HW structure
 *
 *  Sets the LAN function id to zero for a single port device.
 **/
void e1000_set_lan_id_single_port(struct e1000_hw *hw)
{
	struct e1000_bus_info *bus = &hw->bus;

	bus->func = 0;
}

97
/**
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
 *  e1000_clear_vfta_generic - Clear VLAN filter table
 *  @hw: pointer to the HW structure
 *
 *  Clears the register array which contains the VLAN filter table by
 *  setting all the values to 0.
 **/
void e1000_clear_vfta_generic(struct e1000_hw *hw)
{
	u32 offset;

	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0);
		e1e_flush();
	}
}

/**
 *  e1000_write_vfta_generic - Write value to VLAN filter table
116 117 118 119 120 121 122
 *  @hw: pointer to the HW structure
 *  @offset: register offset in VLAN filter table
 *  @value: register value written to VLAN filter table
 *
 *  Writes value at the given offset in the register array which stores
 *  the VLAN filter table.
 **/
123
void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value)
124 125 126 127 128 129 130 131 132 133
{
	E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
	e1e_flush();
}

/**
 *  e1000e_init_rx_addrs - Initialize receive address's
 *  @hw: pointer to the HW structure
 *  @rar_count: receive address registers
 *
B
Bruce Allan 已提交
134
 *  Setup the receive address registers by setting the base receive address
135 136 137 138 139 140
 *  register to the devices MAC address and clearing all the other receive
 *  address registers to 0.
 **/
void e1000e_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
{
	u32 i;
141
	u8 mac_addr[ETH_ALEN] = { 0 };
142 143

	/* Setup the receive address */
144
	e_dbg("Programming MAC Address into RAR[0]\n");
145 146 147 148

	e1000e_rar_set(hw, hw->mac.addr, 0);

	/* Zero out the other (rar_entry_count - 1) receive addresses */
149
	e_dbg("Clearing RAR[1-%u]\n", rar_count - 1);
150 151
	for (i = 1; i < rar_count; i++)
		e1000e_rar_set(hw, mac_addr, i);
152 153
}

154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
/**
 *  e1000_check_alt_mac_addr_generic - Check for alternate MAC addr
 *  @hw: pointer to the HW structure
 *
 *  Checks the nvm for an alternate MAC address.  An alternate MAC address
 *  can be setup by pre-boot software and must be treated like a permanent
 *  address and must override the actual permanent MAC address. If an
 *  alternate MAC address is found it is programmed into RAR0, replacing
 *  the permanent address that was installed into RAR0 by the Si on reset.
 *  This function will return SUCCESS unless it encounters an error while
 *  reading the EEPROM.
 **/
s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw)
{
	u32 i;
	s32 ret_val = 0;
	u16 offset, nvm_alt_mac_addr_offset, nvm_data;
	u8 alt_mac_addr[ETH_ALEN];

173 174 175 176
	ret_val = e1000_read_nvm(hw, NVM_COMPAT, 1, &nvm_data);
	if (ret_val)
		goto out;

177 178
	/* not supported on 82573 */
	if (hw->mac.type == e1000_82573)
179 180
		goto out;

181
	ret_val = e1000_read_nvm(hw, NVM_ALT_MAC_ADDR_PTR, 1,
182
				 &nvm_alt_mac_addr_offset);
183 184 185 186 187
	if (ret_val) {
		e_dbg("NVM Read Error\n");
		goto out;
	}

188 189
	if ((nvm_alt_mac_addr_offset == 0xFFFF) ||
	    (nvm_alt_mac_addr_offset == 0x0000))
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
		/* There is no Alternate MAC Address */
		goto out;

	if (hw->bus.func == E1000_FUNC_1)
		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
	for (i = 0; i < ETH_ALEN; i += 2) {
		offset = nvm_alt_mac_addr_offset + (i >> 1);
		ret_val = e1000_read_nvm(hw, offset, 1, &nvm_data);
		if (ret_val) {
			e_dbg("NVM Read Error\n");
			goto out;
		}

		alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
		alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
	}

	/* if multicast bit is set, the alternate address will not be used */
208
	if (is_multicast_ether_addr(alt_mac_addr)) {
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
		e_dbg("Ignoring Alternate Mac Address with MC bit set\n");
		goto out;
	}

	/*
	 * We have a valid alternate MAC address, and we want to treat it the
	 * same as the normal permanent MAC address stored by the HW into the
	 * RAR. Do this by mapping this address into RAR0.
	 */
	e1000e_rar_set(hw, alt_mac_addr, 0);

out:
	return ret_val;
}

224 225 226 227 228 229 230 231 232 233 234 235 236
/**
 *  e1000e_rar_set - Set receive address register
 *  @hw: pointer to the HW structure
 *  @addr: pointer to the receive address
 *  @index: receive address array register
 *
 *  Sets the receive address array register at index to the address passed
 *  in by addr.
 **/
void e1000e_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
{
	u32 rar_low, rar_high;

237 238
	/*
	 * HW expects these in little endian so we reverse the byte order
239 240
	 * from network order (big endian) to little endian
	 */
241 242
	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
243

244
	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
245

246 247 248
	/* If MAC address zero, no need to set the AV bit */
	if (rar_low || rar_high)
		rar_high |= E1000_RAH_AV;
249

250 251 252 253 254 255 256 257 258
	/*
	 * Some bridges will combine consecutive 32-bit writes into
	 * a single burst write, which will malfunction on some parts.
	 * The flushes avoid this.
	 */
	ew32(RAL(index), rar_low);
	e1e_flush();
	ew32(RAH(index), rar_high);
	e1e_flush();
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
}

/**
 *  e1000_hash_mc_addr - Generate a multicast hash value
 *  @hw: pointer to the HW structure
 *  @mc_addr: pointer to a multicast address
 *
 *  Generates a multicast address hash value which is used to determine
 *  the multicast filter table array address and new table value.  See
 *  e1000_mta_set_generic()
 **/
static u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
{
	u32 hash_value, hash_mask;
	u8 bit_shift = 0;

	/* Register count multiplied by bits per register */
	hash_mask = (hw->mac.mta_reg_count * 32) - 1;

278 279 280 281
	/*
	 * For a mc_filter_type of 0, bit_shift is the number of left-shifts
	 * where 0xFF would still fall within the hash mask.
	 */
282 283 284
	while (hash_mask >> bit_shift != 0xFF)
		bit_shift++;

285 286
	/*
	 * The portion of the address that is used for the hash table
287 288 289 290 291 292 293 294 295 296
	 * is determined by the mc_filter_type setting.
	 * The algorithm is such that there is a total of 8 bits of shifting.
	 * The bit_shift for a mc_filter_type of 0 represents the number of
	 * left-shifts where the MSB of mc_addr[5] would still fall within
	 * the hash_mask.  Case 0 does this exactly.  Since there are a total
	 * of 8 bits of shifting, then mc_addr[4] will shift right the
	 * remaining number of bits. Thus 8 - bit_shift.  The rest of the
	 * cases are a variation of this algorithm...essentially raising the
	 * number of bits to shift mc_addr[5] left, while still keeping the
	 * 8-bit shifting total.
297 298
	 *
	 * For example, given the following Destination MAC Address and an
299 300 301 302 303
	 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
	 * we can see that the bit_shift for case 0 is 4.  These are the hash
	 * values resulting from each mc_filter_type...
	 * [0] [1] [2] [3] [4] [5]
	 * 01  AA  00  12  34  56
304
	 * LSB           MSB
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
	 *
	 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
	 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
	 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
	 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
	 */
	switch (hw->mac.mc_filter_type) {
	default:
	case 0:
		break;
	case 1:
		bit_shift += 1;
		break;
	case 2:
		bit_shift += 2;
		break;
	case 3:
		bit_shift += 4;
		break;
	}

	hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
327
				   (((u16)mc_addr[5]) << bit_shift)));
328 329 330 331 332

	return hash_value;
}

/**
333
 *  e1000e_update_mc_addr_list_generic - Update Multicast addresses
334 335 336 337
 *  @hw: pointer to the HW structure
 *  @mc_addr_list: array of multicast addresses to program
 *  @mc_addr_count: number of multicast addresses to program
 *
338
 *  Updates entire Multicast Table Array.
339 340
 *  The caller must have a packed mc_addr_list of multicast addresses.
 **/
341
void e1000e_update_mc_addr_list_generic(struct e1000_hw *hw,
342
					u8 *mc_addr_list, u32 mc_addr_count)
343
{
344 345
	u32 hash_value, hash_bit, hash_reg;
	int i;
346

347 348
	/* clear mta_shadow */
	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
349

350
	/* update mta_shadow from mc_addr_list */
351
	for (i = 0; (u32)i < mc_addr_count; i++) {
352
		hash_value = e1000_hash_mc_addr(hw, mc_addr_list);
353

354 355 356
		hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
		hash_bit = hash_value & 0x1F;

357 358 359
		hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit);
		mc_addr_list += (ETH_ALEN);
	}
360

361 362 363
	/* replace the entire MTA table */
	for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, hw->mac.mta_shadow[i]);
364
	e1e_flush();
365 366 367 368 369 370 371 372 373 374
}

/**
 *  e1000e_clear_hw_cntrs_base - Clear base hardware counters
 *  @hw: pointer to the HW structure
 *
 *  Clears the base hardware counters by reading the counter registers.
 **/
void e1000e_clear_hw_cntrs_base(struct e1000_hw *hw)
{
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
	er32(CRCERRS);
	er32(SYMERRS);
	er32(MPC);
	er32(SCC);
	er32(ECOL);
	er32(MCC);
	er32(LATECOL);
	er32(COLC);
	er32(DC);
	er32(SEC);
	er32(RLEC);
	er32(XONRXC);
	er32(XONTXC);
	er32(XOFFRXC);
	er32(XOFFTXC);
	er32(FCRUC);
	er32(GPRC);
	er32(BPRC);
	er32(MPRC);
	er32(GPTC);
	er32(GORCL);
	er32(GORCH);
	er32(GOTCL);
	er32(GOTCH);
	er32(RNBC);
	er32(RUC);
	er32(RFC);
	er32(ROC);
	er32(RJC);
	er32(TORL);
	er32(TORH);
	er32(TOTL);
	er32(TOTH);
	er32(TPR);
	er32(TPT);
	er32(MPTC);
	er32(BPTC);
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
}

/**
 *  e1000e_check_for_copper_link - Check for link (Copper)
 *  @hw: pointer to the HW structure
 *
 *  Checks to see of the link status of the hardware has changed.  If a
 *  change in link status has been detected, then we read the PHY registers
 *  to get the current speed/duplex if link exists.
 **/
s32 e1000e_check_for_copper_link(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;
	s32 ret_val;
	bool link;

428 429
	/*
	 * We only want to go out to the PHY registers to see if Auto-Neg
430 431 432 433 434 435 436
	 * has completed and/or if our link status has changed.  The
	 * get_link_status flag is set upon receiving a Link Status
	 * Change or Rx Sequence Error interrupt.
	 */
	if (!mac->get_link_status)
		return 0;

437 438
	/*
	 * First we want to see if the MII Status Register reports
439 440 441 442 443 444 445 446
	 * link.  If so, then we want to get the current speed/duplex
	 * of the PHY.
	 */
	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
	if (ret_val)
		return ret_val;

	if (!link)
447
		return ret_val;	/* No link detected */
448

449
	mac->get_link_status = false;
450

451 452 453 454
	/*
	 * Check if there was DownShift, must be checked
	 * immediately after link-up
	 */
455 456
	e1000e_check_downshift(hw);

457 458
	/*
	 * If we are forcing speed/duplex, then we simply return since
459 460
	 * we have already determined whether we have link or not.
	 */
461 462
	if (!mac->autoneg)
		return -E1000_ERR_CONFIG;
463

464 465
	/*
	 * Auto-Neg is enabled.  Auto Speed Detection takes care
466 467 468 469 470
	 * of MAC speed/duplex configuration.  So we only need to
	 * configure Collision Distance in the MAC.
	 */
	e1000e_config_collision_dist(hw);

471 472
	/*
	 * Configure Flow Control now that Auto-Neg has completed.
473 474 475 476 477
	 * First, we need to restore the desired flow control
	 * settings because we may have had to re-autoneg with a
	 * different link partner.
	 */
	ret_val = e1000e_config_fc_after_link_up(hw);
B
Bruce Allan 已提交
478
	if (ret_val)
479
		e_dbg("Error configuring flow control\n");
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502

	return ret_val;
}

/**
 *  e1000e_check_for_fiber_link - Check for link (Fiber)
 *  @hw: pointer to the HW structure
 *
 *  Checks for link up on the hardware.  If link is not up and we have
 *  a signal, then we need to force link up.
 **/
s32 e1000e_check_for_fiber_link(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;
	u32 rxcw;
	u32 ctrl;
	u32 status;
	s32 ret_val;

	ctrl = er32(CTRL);
	status = er32(STATUS);
	rxcw = er32(RXCW);

503 504
	/*
	 * If we don't have link (auto-negotiation failed or link partner
505 506 507 508 509 510 511
	 * cannot auto-negotiate), the cable is plugged in (we have signal),
	 * and our link partner is not trying to auto-negotiate with us (we
	 * are receiving idles or data), we need to force link up. We also
	 * need to give auto-negotiation time to complete, in case the cable
	 * was just plugged in. The autoneg_failed flag does this.
	 */
	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
512 513
	if ((ctrl & E1000_CTRL_SWDPIN1) && !(status & E1000_STATUS_LU) &&
	    !(rxcw & E1000_RXCW_C)) {
514 515
		if (!mac->autoneg_failed) {
			mac->autoneg_failed = true;
516 517
			return 0;
		}
518
		e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
519 520 521 522 523 524 525 526 527 528 529 530

		/* Disable auto-negotiation in the TXCW register */
		ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));

		/* Force link-up and also force full-duplex. */
		ctrl = er32(CTRL);
		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
		ew32(CTRL, ctrl);

		/* Configure Flow Control after forcing link up. */
		ret_val = e1000e_config_fc_after_link_up(hw);
		if (ret_val) {
531
			e_dbg("Error configuring flow control\n");
532 533 534
			return ret_val;
		}
	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
535 536
		/*
		 * If we are forcing link and we are receiving /C/ ordered
537 538 539 540
		 * sets, re-enable auto-negotiation in the TXCW register
		 * and disable forced link in the Device Control register
		 * in an attempt to auto-negotiate with our link partner.
		 */
541
		e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
542 543 544
		ew32(TXCW, mac->txcw);
		ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));

545
		mac->serdes_has_link = true;
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
	}

	return 0;
}

/**
 *  e1000e_check_for_serdes_link - Check for link (Serdes)
 *  @hw: pointer to the HW structure
 *
 *  Checks for link up on the hardware.  If link is not up and we have
 *  a signal, then we need to force link up.
 **/
s32 e1000e_check_for_serdes_link(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;
	u32 rxcw;
	u32 ctrl;
	u32 status;
	s32 ret_val;

	ctrl = er32(CTRL);
	status = er32(STATUS);
	rxcw = er32(RXCW);

570 571
	/*
	 * If we don't have link (auto-negotiation failed or link partner
572 573 574 575 576 577
	 * cannot auto-negotiate), and our link partner is not trying to
	 * auto-negotiate with us (we are receiving idles or data),
	 * we need to force link up. We also need to give auto-negotiation
	 * time to complete.
	 */
	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
578
	if (!(status & E1000_STATUS_LU) && !(rxcw & E1000_RXCW_C)) {
579 580
		if (!mac->autoneg_failed) {
			mac->autoneg_failed = true;
581 582
			return 0;
		}
583
		e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
584 585 586 587 588 589 590 591 592 593 594 595

		/* Disable auto-negotiation in the TXCW register */
		ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));

		/* Force link-up and also force full-duplex. */
		ctrl = er32(CTRL);
		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
		ew32(CTRL, ctrl);

		/* Configure Flow Control after forcing link up. */
		ret_val = e1000e_config_fc_after_link_up(hw);
		if (ret_val) {
596
			e_dbg("Error configuring flow control\n");
597 598 599
			return ret_val;
		}
	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
600 601
		/*
		 * If we are forcing link and we are receiving /C/ ordered
602 603 604 605
		 * sets, re-enable auto-negotiation in the TXCW register
		 * and disable forced link in the Device Control register
		 * in an attempt to auto-negotiate with our link partner.
		 */
606
		e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
607 608 609
		ew32(TXCW, mac->txcw);
		ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));

610
		mac->serdes_has_link = true;
611
	} else if (!(E1000_TXCW_ANE & er32(TXCW))) {
612 613
		/*
		 * If we force link for non-auto-negotiation switch, check
614 615 616 617 618
		 * link status based on MAC synchronization for internal
		 * serdes media type.
		 */
		/* SYNCH bit and IV bit are sticky. */
		udelay(10);
619 620
		rxcw = er32(RXCW);
		if (rxcw & E1000_RXCW_SYNCH) {
621
			if (!(rxcw & E1000_RXCW_IV)) {
622
				mac->serdes_has_link = true;
623
				e_dbg("SERDES: Link up - forced.\n");
624 625
			}
		} else {
626
			mac->serdes_has_link = false;
627
			e_dbg("SERDES: Link down - force failed.\n");
628 629 630 631 632
		}
	}

	if (E1000_TXCW_ANE & er32(TXCW)) {
		status = er32(STATUS);
633 634 635 636 637 638 639
		if (status & E1000_STATUS_LU) {
			/* SYNCH bit and IV bit are sticky, so reread rxcw.  */
			udelay(10);
			rxcw = er32(RXCW);
			if (rxcw & E1000_RXCW_SYNCH) {
				if (!(rxcw & E1000_RXCW_IV)) {
					mac->serdes_has_link = true;
640
					e_dbg("SERDES: Link up - autoneg completed successfully.\n");
641 642
				} else {
					mac->serdes_has_link = false;
643
					e_dbg("SERDES: Link down - invalid codewords detected in autoneg.\n");
644 645 646
				}
			} else {
				mac->serdes_has_link = false;
647
				e_dbg("SERDES: Link down - no sync.\n");
648 649 650
			}
		} else {
			mac->serdes_has_link = false;
651
			e_dbg("SERDES: Link down - autoneg failed\n");
652
		}
653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
	}

	return 0;
}

/**
 *  e1000_set_default_fc_generic - Set flow control default values
 *  @hw: pointer to the HW structure
 *
 *  Read the EEPROM for the default values for flow control and store the
 *  values.
 **/
static s32 e1000_set_default_fc_generic(struct e1000_hw *hw)
{
	s32 ret_val;
	u16 nvm_data;

670 671
	/*
	 * Read and store word 0x0F of the EEPROM. This word contains bits
672 673 674 675 676 677 678 679 680 681
	 * that determine the hardware's default PAUSE (flow control) mode,
	 * a bit that determines whether the HW defaults to enabling or
	 * disabling auto-negotiation, and the direction of the
	 * SW defined pins. If there is no SW over-ride of the flow
	 * control setting, then the variable hw->fc will
	 * be initialized based on a value in the EEPROM.
	 */
	ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data);

	if (ret_val) {
682
		e_dbg("NVM Read Error\n");
683 684 685 686
		return ret_val;
	}

	if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0)
687
		hw->fc.requested_mode = e1000_fc_none;
688
	else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == NVM_WORD0F_ASM_DIR)
689
		hw->fc.requested_mode = e1000_fc_tx_pause;
690
	else
691
		hw->fc.requested_mode = e1000_fc_full;
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710

	return 0;
}

/**
 *  e1000e_setup_link - Setup flow control and link settings
 *  @hw: pointer to the HW structure
 *
 *  Determines which flow control settings to use, then configures flow
 *  control.  Calls the appropriate media-specific link configuration
 *  function.  Assuming the adapter has a valid link partner, a valid link
 *  should be established.  Assumes the hardware has previously been reset
 *  and the transmitter and receiver are not enabled.
 **/
s32 e1000e_setup_link(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;
	s32 ret_val;

711 712
	/*
	 * In the case of the phy reset being blocked, we already have a link.
713 714 715 716 717
	 * We do not need to set it up again.
	 */
	if (e1000_check_reset_block(hw))
		return 0;

718
	/*
719 720
	 * If requested flow control is set to default, set flow control
	 * based on the EEPROM flow control settings.
721
	 */
722
	if (hw->fc.requested_mode == e1000_fc_default) {
723 724 725 726
		ret_val = e1000_set_default_fc_generic(hw);
		if (ret_val)
			return ret_val;
	}
727

728
	/*
729 730
	 * Save off the requested flow control mode for use later.  Depending
	 * on the link partner's capabilities, we may or may not use this mode.
731
	 */
732
	hw->fc.current_mode = hw->fc.requested_mode;
733

734
	e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
735 736 737 738 739 740

	/* Call the necessary media_type subroutine to configure the link. */
	ret_val = mac->ops.setup_physical_interface(hw);
	if (ret_val)
		return ret_val;

741 742
	/*
	 * Initialize the flow control address, type, and PAUSE timer
743 744 745 746
	 * registers to their default values.  This is done even if flow
	 * control is disabled, because it does not hurt anything to
	 * initialize these registers.
	 */
747
	e_dbg("Initializing the Flow Control address, type and timer regs\n");
748 749 750 751
	ew32(FCT, FLOW_CONTROL_TYPE);
	ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH);
	ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW);

752
	ew32(FCTTV, hw->fc.pause_time);
753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768

	return e1000e_set_fc_watermarks(hw);
}

/**
 *  e1000_commit_fc_settings_generic - Configure flow control
 *  @hw: pointer to the HW structure
 *
 *  Write the flow control settings to the Transmit Config Word Register (TXCW)
 *  base on the flow control settings in e1000_mac_info.
 **/
static s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;
	u32 txcw;

769 770
	/*
	 * Check for a software override of the flow control settings, and
771 772 773 774 775 776 777 778 779 780
	 * setup the device accordingly.  If auto-negotiation is enabled, then
	 * software will have to set the "PAUSE" bits to the correct value in
	 * the Transmit Config Word Register (TXCW) and re-start auto-
	 * negotiation.  However, if auto-negotiation is disabled, then
	 * software will have to manually configure the two flow control enable
	 * bits in the CTRL register.
	 *
	 * The possible values of the "fc" parameter are:
	 *      0:  Flow control is completely disabled
	 *      1:  Rx flow control is enabled (we can receive pause frames,
781
	 *          but not send pause frames).
782
	 *      2:  Tx flow control is enabled (we can send pause frames but we
783
	 *          do not support receiving pause frames).
784
	 *      3:  Both Rx and Tx flow control (symmetric) are enabled.
785
	 */
786
	switch (hw->fc.current_mode) {
787 788 789 790 791
	case e1000_fc_none:
		/* Flow control completely disabled by a software over-ride. */
		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
		break;
	case e1000_fc_rx_pause:
792 793
		/*
		 * Rx Flow control is enabled and Tx Flow control is disabled
794
		 * by a software over-ride. Since there really isn't a way to
795 796
		 * advertise that we are capable of Rx Pause ONLY, we will
		 * advertise that we support both symmetric and asymmetric Rx
797 798 799 800 801 802
		 * PAUSE.  Later, we will disable the adapter's ability to send
		 * PAUSE frames.
		 */
		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
		break;
	case e1000_fc_tx_pause:
803 804
		/*
		 * Tx Flow control is enabled, and Rx Flow control is disabled,
805 806 807 808 809
		 * by a software over-ride.
		 */
		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
		break;
	case e1000_fc_full:
810 811
		/*
		 * Flow control (both Rx and Tx) is enabled by a software
812 813 814 815 816
		 * over-ride.
		 */
		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
		break;
	default:
817
		e_dbg("Flow control param set incorrectly\n");
818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
		return -E1000_ERR_CONFIG;
		break;
	}

	ew32(TXCW, txcw);
	mac->txcw = txcw;

	return 0;
}

/**
 *  e1000_poll_fiber_serdes_link_generic - Poll for link up
 *  @hw: pointer to the HW structure
 *
 *  Polls for link up by reading the status register, if link fails to come
 *  up with auto-negotiation, then the link is forced if a signal is detected.
 **/
static s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;
	u32 i, status;
	s32 ret_val;

841 842
	/*
	 * If we have a signal (the cable is plugged in, or assumed true for
843 844 845 846 847 848
	 * serdes media) then poll for a "Link-Up" indication in the Device
	 * Status Register.  Time-out if a link isn't seen in 500 milliseconds
	 * seconds (Auto-negotiation should complete in less than 500
	 * milliseconds even if the other end is doing it in SW).
	 */
	for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) {
849
		usleep_range(10000, 20000);
850 851 852 853 854
		status = er32(STATUS);
		if (status & E1000_STATUS_LU)
			break;
	}
	if (i == FIBER_LINK_UP_LIMIT) {
855
		e_dbg("Never got a valid link from auto-neg!!!\n");
856
		mac->autoneg_failed = true;
857 858
		/*
		 * AutoNeg failed to achieve a link, so we'll call
859 860 861 862 863 864
		 * mac->check_for_link. This routine will force the
		 * link up if we detect a signal. This will allow us to
		 * communicate with non-autonegotiating link partners.
		 */
		ret_val = mac->ops.check_for_link(hw);
		if (ret_val) {
865
			e_dbg("Error while checking for link\n");
866 867
			return ret_val;
		}
868
		mac->autoneg_failed = false;
869
	} else {
870
		mac->autoneg_failed = false;
871
		e_dbg("Valid Link Found\n");
872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899
	}

	return 0;
}

/**
 *  e1000e_setup_fiber_serdes_link - Setup link for fiber/serdes
 *  @hw: pointer to the HW structure
 *
 *  Configures collision distance and flow control for fiber and serdes
 *  links.  Upon successful setup, poll for link.
 **/
s32 e1000e_setup_fiber_serdes_link(struct e1000_hw *hw)
{
	u32 ctrl;
	s32 ret_val;

	ctrl = er32(CTRL);

	/* Take the link out of reset */
	ctrl &= ~E1000_CTRL_LRST;

	e1000e_config_collision_dist(hw);

	ret_val = e1000_commit_fc_settings_generic(hw);
	if (ret_val)
		return ret_val;

900 901
	/*
	 * Since auto-negotiation is enabled, take the link out of reset (the
902 903 904 905 906
	 * link will be in reset, because we previously reset the chip). This
	 * will restart auto-negotiation.  If auto-negotiation is successful
	 * then the link-up status bit will be set and the flow control enable
	 * bits (RFCE and TFCE) will be set according to their negotiated value.
	 */
907
	e_dbg("Auto-negotiation enabled\n");
908 909 910

	ew32(CTRL, ctrl);
	e1e_flush();
911
	usleep_range(1000, 2000);
912

913 914
	/*
	 * For these adapters, the SW definable pin 1 is set when the optics
915 916 917
	 * detect a signal.  If we have a signal, then poll for a "Link-Up"
	 * indication.
	 */
918
	if (hw->phy.media_type == e1000_media_type_internal_serdes ||
919 920 921
	    (er32(CTRL) & E1000_CTRL_SWDPIN1)) {
		ret_val = e1000_poll_fiber_serdes_link_generic(hw);
	} else {
922
		e_dbg("No signal detected\n");
923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
	}

	return 0;
}

/**
 *  e1000e_config_collision_dist - Configure collision distance
 *  @hw: pointer to the HW structure
 *
 *  Configures the collision distance to the default value and is used
 *  during link setup. Currently no func pointer exists and all
 *  implementations are handled in the generic version of this function.
 **/
void e1000e_config_collision_dist(struct e1000_hw *hw)
{
	u32 tctl;

	tctl = er32(TCTL);

	tctl &= ~E1000_TCTL_COLD;
	tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;

	ew32(TCTL, tctl);
	e1e_flush();
}

/**
 *  e1000e_set_fc_watermarks - Set flow control high/low watermarks
 *  @hw: pointer to the HW structure
 *
 *  Sets the flow control high/low threshold (watermark) registers.  If
 *  flow control XON frame transmission is enabled, then set XON frame
955
 *  transmission as well.
956 957 958 959 960
 **/
s32 e1000e_set_fc_watermarks(struct e1000_hw *hw)
{
	u32 fcrtl = 0, fcrth = 0;

961 962
	/*
	 * Set the flow control receive threshold registers.  Normally,
963 964 965 966 967
	 * these registers will be set to a default threshold that may be
	 * adjusted later by the driver's runtime code.  However, if the
	 * ability to transmit pause frames is not enabled, then these
	 * registers will be set to 0.
	 */
968
	if (hw->fc.current_mode & e1000_fc_tx_pause) {
969 970
		/*
		 * We need to set up the Receive Threshold high and low water
971 972 973
		 * marks as well as (optionally) enabling the transmission of
		 * XON frames.
		 */
974
		fcrtl = hw->fc.low_water;
975
		fcrtl |= E1000_FCRTL_XONE;
976
		fcrth = hw->fc.high_water;
977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999
	}
	ew32(FCRTL, fcrtl);
	ew32(FCRTH, fcrth);

	return 0;
}

/**
 *  e1000e_force_mac_fc - Force the MAC's flow control settings
 *  @hw: pointer to the HW structure
 *
 *  Force the MAC's flow control settings.  Sets the TFCE and RFCE bits in the
 *  device control register to reflect the adapter settings.  TFCE and RFCE
 *  need to be explicitly set by software when a copper PHY is used because
 *  autonegotiation is managed by the PHY rather than the MAC.  Software must
 *  also configure these bits when link is forced on a fiber connection.
 **/
s32 e1000e_force_mac_fc(struct e1000_hw *hw)
{
	u32 ctrl;

	ctrl = er32(CTRL);

1000 1001
	/*
	 * Because we didn't get link via the internal auto-negotiation
1002 1003 1004 1005 1006
	 * mechanism (we either forced link or we got link via PHY
	 * auto-neg), we have to manually enable/disable transmit an
	 * receive flow control.
	 *
	 * The "Case" statement below enables/disable flow control
1007
	 * according to the "hw->fc.current_mode" parameter.
1008 1009 1010 1011
	 *
	 * The possible values of the "fc" parameter are:
	 *      0:  Flow control is completely disabled
	 *      1:  Rx flow control is enabled (we can receive pause
1012
	 *          frames but not send pause frames).
1013
	 *      2:  Tx flow control is enabled (we can send pause frames
1014
	 *          frames but we do not receive pause frames).
1015
	 *      3:  Both Rx and Tx flow control (symmetric) is enabled.
1016 1017
	 *  other:  No other values should be possible at this point.
	 */
1018
	e_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode);
1019

1020
	switch (hw->fc.current_mode) {
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
	case e1000_fc_none:
		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
		break;
	case e1000_fc_rx_pause:
		ctrl &= (~E1000_CTRL_TFCE);
		ctrl |= E1000_CTRL_RFCE;
		break;
	case e1000_fc_tx_pause:
		ctrl &= (~E1000_CTRL_RFCE);
		ctrl |= E1000_CTRL_TFCE;
		break;
	case e1000_fc_full:
		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
		break;
	default:
1036
		e_dbg("Flow control param set incorrectly\n");
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
		return -E1000_ERR_CONFIG;
	}

	ew32(CTRL, ctrl);

	return 0;
}

/**
 *  e1000e_config_fc_after_link_up - Configures flow control after link
 *  @hw: pointer to the HW structure
 *
 *  Checks the status of auto-negotiation after link up to ensure that the
 *  speed and duplex were not forced.  If the link needed to be forced, then
 *  flow control needs to be forced also.  If auto-negotiation is enabled
 *  and did not fail, then we configure flow control based on our link
 *  partner.
 **/
s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;
	s32 ret_val = 0;
	u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
	u16 speed, duplex;

1062 1063
	/*
	 * Check for the case where we have fiber media and auto-neg failed
1064 1065 1066 1067
	 * so we had to force link.  In this case, we need to force the
	 * configuration of the MAC to match the "fc" parameter.
	 */
	if (mac->autoneg_failed) {
1068 1069
		if (hw->phy.media_type == e1000_media_type_fiber ||
		    hw->phy.media_type == e1000_media_type_internal_serdes)
1070 1071
			ret_val = e1000e_force_mac_fc(hw);
	} else {
1072
		if (hw->phy.media_type == e1000_media_type_copper)
1073 1074 1075 1076
			ret_val = e1000e_force_mac_fc(hw);
	}

	if (ret_val) {
1077
		e_dbg("Error forcing flow control settings\n");
1078 1079 1080
		return ret_val;
	}

1081 1082
	/*
	 * Check for the case where we have copper media and auto-neg is
1083 1084 1085 1086
	 * enabled.  In this case, we need to check and see if Auto-Neg
	 * has completed, and if so, how the PHY and link partner has
	 * flow control configured.
	 */
1087
	if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
1088 1089
		/*
		 * Read the MII Status Register and check to see if AutoNeg
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
		 * has completed.  We read this twice because this reg has
		 * some "sticky" (latched) bits.
		 */
		ret_val = e1e_rphy(hw, PHY_STATUS, &mii_status_reg);
		if (ret_val)
			return ret_val;
		ret_val = e1e_rphy(hw, PHY_STATUS, &mii_status_reg);
		if (ret_val)
			return ret_val;

		if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
1101
			e_dbg("Copper PHY and Auto Neg has not completed.\n");
1102 1103 1104
			return ret_val;
		}

1105 1106
		/*
		 * The AutoNeg process has completed, so we now need to
1107 1108 1109 1110 1111 1112 1113 1114
		 * read both the Auto Negotiation Advertisement
		 * Register (Address 4) and the Auto_Negotiation Base
		 * Page Ability Register (Address 5) to determine how
		 * flow control was negotiated.
		 */
		ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg);
		if (ret_val)
			return ret_val;
1115 1116
		ret_val =
		    e1e_rphy(hw, PHY_LP_ABILITY, &mii_nway_lp_ability_reg);
1117 1118 1119
		if (ret_val)
			return ret_val;

1120 1121
		/*
		 * Two bits in the Auto Negotiation Advertisement Register
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
		 * (Address 4) and two bits in the Auto Negotiation Base
		 * Page Ability Register (Address 5) determine flow control
		 * for both the PHY and the link partner.  The following
		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
		 * 1999, describes these PAUSE resolution bits and how flow
		 * control is determined based upon these settings.
		 * NOTE:  DC = Don't Care
		 *
		 *   LOCAL DEVICE  |   LINK PARTNER
		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
		 *-------|---------|-------|---------|--------------------
		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
		 *   0   |    1    |   0   |   DC    | e1000_fc_none
		 *   0   |    1    |   1   |    0    | e1000_fc_none
		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
		 *   1   |    0    |   0   |   DC    | e1000_fc_none
		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
		 *   1   |    1    |   0   |    0    | e1000_fc_none
		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
		 *
1142
		 * Are both PAUSE bits set to 1?  If so, this implies
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
		 * Symmetric Flow Control is enabled at both ends.  The
		 * ASM_DIR bits are irrelevant per the spec.
		 *
		 * For Symmetric Flow Control:
		 *
		 *   LOCAL DEVICE  |   LINK PARTNER
		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
		 *-------|---------|-------|---------|--------------------
		 *   1   |   DC    |   1   |   DC    | E1000_fc_full
		 *
		 */
		if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
		    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
1156 1157
			/*
			 * Now we need to check if the user selected Rx ONLY
1158
			 * of pause frames.  In this case, we had to advertise
1159
			 * FULL flow control because we could not advertise Rx
1160
			 * ONLY. Hence, we must now check to see if we need to
B
Bruce Allan 已提交
1161
			 * turn OFF the TRANSMISSION of PAUSE frames.
1162
			 */
1163 1164
			if (hw->fc.requested_mode == e1000_fc_full) {
				hw->fc.current_mode = e1000_fc_full;
1165
				e_dbg("Flow Control = FULL.\n");
1166
			} else {
1167
				hw->fc.current_mode = e1000_fc_rx_pause;
1168
				e_dbg("Flow Control = Rx PAUSE frames only.\n");
1169 1170
			}
		}
1171 1172
		/*
		 * For receiving PAUSE frames ONLY.
1173 1174 1175 1176 1177 1178 1179
		 *
		 *   LOCAL DEVICE  |   LINK PARTNER
		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
		 *-------|---------|-------|---------|--------------------
		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
		 */
		else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1180 1181 1182
			 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
			 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
			 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
1183
			hw->fc.current_mode = e1000_fc_tx_pause;
1184
			e_dbg("Flow Control = Tx PAUSE frames only.\n");
1185
		}
1186 1187
		/*
		 * For transmitting PAUSE frames ONLY.
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
		 *
		 *   LOCAL DEVICE  |   LINK PARTNER
		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
		 *-------|---------|-------|---------|--------------------
		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
		 */
		else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
			 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
			 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
			 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
1198
			hw->fc.current_mode = e1000_fc_rx_pause;
1199
			e_dbg("Flow Control = Rx PAUSE frames only.\n");
1200 1201 1202 1203 1204
		} else {
			/*
			 * Per the IEEE spec, at this point flow control
			 * should be disabled.
			 */
1205
			hw->fc.current_mode = e1000_fc_none;
1206
			e_dbg("Flow Control = NONE.\n");
1207 1208
		}

1209 1210
		/*
		 * Now we need to do one last check...  If we auto-
1211 1212 1213 1214 1215
		 * negotiated to HALF DUPLEX, flow control should not be
		 * enabled per IEEE 802.3 spec.
		 */
		ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
		if (ret_val) {
1216
			e_dbg("Error getting link speed and duplex\n");
1217 1218 1219 1220
			return ret_val;
		}

		if (duplex == HALF_DUPLEX)
1221
			hw->fc.current_mode = e1000_fc_none;
1222

1223 1224
		/*
		 * Now we call a subroutine to actually force the MAC
1225 1226 1227 1228
		 * controller to use the correct flow control settings.
		 */
		ret_val = e1000e_force_mac_fc(hw);
		if (ret_val) {
1229
			e_dbg("Error forcing flow control settings\n");
1230 1231 1232 1233 1234 1235 1236 1237
			return ret_val;
		}
	}

	return 0;
}

/**
1238
 *  e1000e_get_speed_and_duplex_copper - Retrieve current speed/duplex
1239 1240 1241 1242 1243 1244 1245
 *  @hw: pointer to the HW structure
 *  @speed: stores the current speed
 *  @duplex: stores the current duplex
 *
 *  Read the status register for the current speed/duplex and store the current
 *  speed and duplex for copper connections.
 **/
1246 1247
s32 e1000e_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed,
				       u16 *duplex)
1248 1249 1250 1251
{
	u32 status;

	status = er32(STATUS);
J
Joe Perches 已提交
1252
	if (status & E1000_STATUS_SPEED_1000)
1253
		*speed = SPEED_1000;
J
Joe Perches 已提交
1254
	else if (status & E1000_STATUS_SPEED_100)
1255
		*speed = SPEED_100;
J
Joe Perches 已提交
1256
	else
1257 1258
		*speed = SPEED_10;

J
Joe Perches 已提交
1259
	if (status & E1000_STATUS_FD)
1260
		*duplex = FULL_DUPLEX;
J
Joe Perches 已提交
1261
	else
1262
		*duplex = HALF_DUPLEX;
J
Joe Perches 已提交
1263 1264 1265 1266

	e_dbg("%u Mbps, %s Duplex\n",
	      *speed == SPEED_1000 ? 1000 : *speed == SPEED_100 ? 100 : 10,
	      *duplex == FULL_DUPLEX ? "Full" : "Half");
1267 1268 1269 1270 1271

	return 0;
}

/**
1272
 *  e1000e_get_speed_and_duplex_fiber_serdes - Retrieve current speed/duplex
1273 1274 1275 1276 1277 1278 1279
 *  @hw: pointer to the HW structure
 *  @speed: stores the current speed
 *  @duplex: stores the current duplex
 *
 *  Sets the speed and duplex to gigabit full duplex (the only possible option)
 *  for fiber/serdes links.
 **/
1280 1281
s32 e1000e_get_speed_and_duplex_fiber_serdes(struct e1000_hw *hw, u16 *speed,
					     u16 *duplex)
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
{
	*speed = SPEED_1000;
	*duplex = FULL_DUPLEX;

	return 0;
}

/**
 *  e1000e_get_hw_semaphore - Acquire hardware semaphore
 *  @hw: pointer to the HW structure
 *
 *  Acquire the HW semaphore to access the PHY or NVM
 **/
s32 e1000e_get_hw_semaphore(struct e1000_hw *hw)
{
	u32 swsm;
	s32 timeout = hw->nvm.word_size + 1;
	s32 i = 0;

	/* Get the SW semaphore */
	while (i < timeout) {
		swsm = er32(SWSM);
		if (!(swsm & E1000_SWSM_SMBI))
			break;

		udelay(50);
		i++;
	}

	if (i == timeout) {
1312
		e_dbg("Driver can't access device - SMBI bit is set.\n");
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
		return -E1000_ERR_NVM;
	}

	/* Get the FW semaphore. */
	for (i = 0; i < timeout; i++) {
		swsm = er32(SWSM);
		ew32(SWSM, swsm | E1000_SWSM_SWESMBI);

		/* Semaphore acquired if bit latched */
		if (er32(SWSM) & E1000_SWSM_SWESMBI)
			break;

		udelay(50);
	}

	if (i == timeout) {
		/* Release semaphores */
		e1000e_put_hw_semaphore(hw);
1331
		e_dbg("Driver can't access the NVM\n");
1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
		return -E1000_ERR_NVM;
	}

	return 0;
}

/**
 *  e1000e_put_hw_semaphore - Release hardware semaphore
 *  @hw: pointer to the HW structure
 *
 *  Release hardware semaphore used to access the PHY or NVM
 **/
void e1000e_put_hw_semaphore(struct e1000_hw *hw)
{
	u32 swsm;

	swsm = er32(SWSM);
	swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
	ew32(SWSM, swsm);
}

/**
 *  e1000e_get_auto_rd_done - Check for auto read completion
 *  @hw: pointer to the HW structure
 *
 *  Check EEPROM for Auto Read done bit.
 **/
s32 e1000e_get_auto_rd_done(struct e1000_hw *hw)
{
	s32 i = 0;

	while (i < AUTO_READ_DONE_TIMEOUT) {
		if (er32(EECD) & E1000_EECD_AUTO_RD)
			break;
1366
		usleep_range(1000, 2000);
1367 1368 1369 1370
		i++;
	}

	if (i == AUTO_READ_DONE_TIMEOUT) {
1371
		e_dbg("Auto read by HW from NVM has not completed.\n");
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
		return -E1000_ERR_RESET;
	}

	return 0;
}

/**
 *  e1000e_valid_led_default - Verify a valid default LED config
 *  @hw: pointer to the HW structure
 *  @data: pointer to the NVM (EEPROM)
 *
 *  Read the EEPROM for the current default LED configuration.  If the
 *  LED configuration is not valid, set to a valid LED configuration.
 **/
s32 e1000e_valid_led_default(struct e1000_hw *hw, u16 *data)
{
	s32 ret_val;

	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
	if (ret_val) {
1392
		e_dbg("NVM Read Error\n");
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
		return ret_val;
	}

	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
		*data = ID_LED_DEFAULT;

	return 0;
}

/**
 *  e1000e_id_led_init -
 *  @hw: pointer to the HW structure
 *
 **/
s32 e1000e_id_led_init(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;
	s32 ret_val;
	const u32 ledctl_mask = 0x000000FF;
	const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
	const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
	u16 data, i, temp;
	const u16 led_mask = 0x0F;

	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
	if (ret_val)
		return ret_val;

	mac->ledctl_default = er32(LEDCTL);
	mac->ledctl_mode1 = mac->ledctl_default;
	mac->ledctl_mode2 = mac->ledctl_default;

	for (i = 0; i < 4; i++) {
		temp = (data >> (i << 2)) & led_mask;
		switch (temp) {
		case ID_LED_ON1_DEF2:
		case ID_LED_ON1_ON2:
		case ID_LED_ON1_OFF2:
			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
			mac->ledctl_mode1 |= ledctl_on << (i << 3);
			break;
		case ID_LED_OFF1_DEF2:
		case ID_LED_OFF1_ON2:
		case ID_LED_OFF1_OFF2:
			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
			mac->ledctl_mode1 |= ledctl_off << (i << 3);
			break;
		default:
			/* Do nothing */
			break;
		}
		switch (temp) {
		case ID_LED_DEF1_ON2:
		case ID_LED_ON1_ON2:
		case ID_LED_OFF1_ON2:
			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
			mac->ledctl_mode2 |= ledctl_on << (i << 3);
			break;
		case ID_LED_DEF1_OFF2:
		case ID_LED_ON1_OFF2:
		case ID_LED_OFF1_OFF2:
			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
			mac->ledctl_mode2 |= ledctl_off << (i << 3);
			break;
		default:
			/* Do nothing */
			break;
		}
	}

	return 0;
}

1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
/**
 *  e1000e_setup_led_generic - Configures SW controllable LED
 *  @hw: pointer to the HW structure
 *
 *  This prepares the SW controllable LED for use and saves the current state
 *  of the LED so it can be later restored.
 **/
s32 e1000e_setup_led_generic(struct e1000_hw *hw)
{
	u32 ledctl;

B
Bruce Allan 已提交
1477
	if (hw->mac.ops.setup_led != e1000e_setup_led_generic)
1478 1479 1480 1481 1482 1483
		return -E1000_ERR_CONFIG;

	if (hw->phy.media_type == e1000_media_type_fiber) {
		ledctl = er32(LEDCTL);
		hw->mac.ledctl_default = ledctl;
		/* Turn off LED0 */
1484 1485
		ledctl &= ~(E1000_LEDCTL_LED0_IVRT | E1000_LEDCTL_LED0_BLINK |
			    E1000_LEDCTL_LED0_MODE_MASK);
1486
		ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
1487
			   E1000_LEDCTL_LED0_MODE_SHIFT);
1488 1489 1490 1491 1492 1493 1494 1495
		ew32(LEDCTL, ledctl);
	} else if (hw->phy.media_type == e1000_media_type_copper) {
		ew32(LEDCTL, hw->mac.ledctl_mode1);
	}

	return 0;
}

1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
/**
 *  e1000e_cleanup_led_generic - Set LED config to default operation
 *  @hw: pointer to the HW structure
 *
 *  Remove the current LED configuration and set the LED configuration
 *  to the default value, saved from the EEPROM.
 **/
s32 e1000e_cleanup_led_generic(struct e1000_hw *hw)
{
	ew32(LEDCTL, hw->mac.ledctl_default);
	return 0;
}

/**
1510
 *  e1000e_blink_led_generic - Blink LED
1511 1512
 *  @hw: pointer to the HW structure
 *
1513
 *  Blink the LEDs which are set to be on.
1514
 **/
1515
s32 e1000e_blink_led_generic(struct e1000_hw *hw)
1516 1517 1518 1519
{
	u32 ledctl_blink = 0;
	u32 i;

1520
	if (hw->phy.media_type == e1000_media_type_fiber) {
1521 1522
		/* always blink LED0 for PCI-E fiber */
		ledctl_blink = E1000_LEDCTL_LED0_BLINK |
1523
		    (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
1524
	} else {
1525 1526 1527 1528
		/*
		 * set the blink bit for each LED that's "on" (0x0E)
		 * in ledctl_mode2
		 */
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
		ledctl_blink = hw->mac.ledctl_mode2;
		for (i = 0; i < 4; i++)
			if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
			    E1000_LEDCTL_MODE_LED_ON)
				ledctl_blink |= (E1000_LEDCTL_LED0_BLINK <<
						 (i * 8));
	}

	ew32(LEDCTL, ledctl_blink);

	return 0;
}

/**
 *  e1000e_led_on_generic - Turn LED on
 *  @hw: pointer to the HW structure
 *
 *  Turn LED on.
 **/
s32 e1000e_led_on_generic(struct e1000_hw *hw)
{
	u32 ctrl;

1552
	switch (hw->phy.media_type) {
1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
	case e1000_media_type_fiber:
		ctrl = er32(CTRL);
		ctrl &= ~E1000_CTRL_SWDPIN0;
		ctrl |= E1000_CTRL_SWDPIO0;
		ew32(CTRL, ctrl);
		break;
	case e1000_media_type_copper:
		ew32(LEDCTL, hw->mac.ledctl_mode2);
		break;
	default:
		break;
	}

	return 0;
}

/**
 *  e1000e_led_off_generic - Turn LED off
 *  @hw: pointer to the HW structure
 *
 *  Turn LED off.
 **/
s32 e1000e_led_off_generic(struct e1000_hw *hw)
{
	u32 ctrl;

1579
	switch (hw->phy.media_type) {
1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
	case e1000_media_type_fiber:
		ctrl = er32(CTRL);
		ctrl |= E1000_CTRL_SWDPIN0;
		ctrl |= E1000_CTRL_SWDPIO0;
		ew32(CTRL, ctrl);
		break;
	case e1000_media_type_copper:
		ew32(LEDCTL, hw->mac.ledctl_mode1);
		break;
	default:
		break;
	}

	return 0;
}

/**
 *  e1000e_set_pcie_no_snoop - Set PCI-express capabilities
 *  @hw: pointer to the HW structure
 *  @no_snoop: bitmap of snoop events
 *
 *  Set the PCI-express register to snoop for events enabled in 'no_snoop'.
 **/
void e1000e_set_pcie_no_snoop(struct e1000_hw *hw, u32 no_snoop)
{
	u32 gcr;

	if (no_snoop) {
		gcr = er32(GCR);
		gcr &= ~(PCIE_NO_SNOOP_ALL);
		gcr |= no_snoop;
		ew32(GCR, gcr);
	}
}

/**
 *  e1000e_disable_pcie_master - Disables PCI-express master access
 *  @hw: pointer to the HW structure
 *
 *  Returns 0 if successful, else returns -10
1620
 *  (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
 *  the master requests to be disabled.
 *
 *  Disables PCI-Express master access and verifies there are no pending
 *  requests.
 **/
s32 e1000e_disable_pcie_master(struct e1000_hw *hw)
{
	u32 ctrl;
	s32 timeout = MASTER_DISABLE_TIMEOUT;

	ctrl = er32(CTRL);
	ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
	ew32(CTRL, ctrl);

	while (timeout) {
1636
		if (!(er32(STATUS) & E1000_STATUS_GIO_MASTER_ENABLE))
1637 1638 1639 1640 1641 1642
			break;
		udelay(100);
		timeout--;
	}

	if (!timeout) {
1643
		e_dbg("Master requests are pending.\n");
1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659
		return -E1000_ERR_MASTER_REQUESTS_PENDING;
	}

	return 0;
}

/**
 *  e1000e_reset_adaptive - Reset Adaptive Interframe Spacing
 *  @hw: pointer to the HW structure
 *
 *  Reset the Adaptive Interframe Spacing throttle to default values.
 **/
void e1000e_reset_adaptive(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;

1660 1661
	if (!mac->adaptive_ifs) {
		e_dbg("Not in Adaptive IFS mode!\n");
1662
		return;
1663 1664
	}

1665 1666 1667 1668 1669 1670
	mac->current_ifs_val = 0;
	mac->ifs_min_val = IFS_MIN;
	mac->ifs_max_val = IFS_MAX;
	mac->ifs_step_size = IFS_STEP;
	mac->ifs_ratio = IFS_RATIO;

1671
	mac->in_ifs_mode = false;
1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
	ew32(AIT, 0);
}

/**
 *  e1000e_update_adaptive - Update Adaptive Interframe Spacing
 *  @hw: pointer to the HW structure
 *
 *  Update the Adaptive Interframe Spacing Throttle value based on the
 *  time between transmitted packets and time between collisions.
 **/
void e1000e_update_adaptive(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;

1686 1687
	if (!mac->adaptive_ifs) {
		e_dbg("Not in Adaptive IFS mode!\n");
1688
		return;
1689 1690
	}

1691 1692
	if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) {
		if (mac->tx_packet_delta > MIN_NUM_XMITS) {
1693
			mac->in_ifs_mode = true;
1694 1695 1696 1697 1698
			if (mac->current_ifs_val < mac->ifs_max_val) {
				if (!mac->current_ifs_val)
					mac->current_ifs_val = mac->ifs_min_val;
				else
					mac->current_ifs_val +=
1699
					    mac->ifs_step_size;
1700
				ew32(AIT, mac->current_ifs_val);
1701 1702 1703 1704 1705 1706
			}
		}
	} else {
		if (mac->in_ifs_mode &&
		    (mac->tx_packet_delta <= MIN_NUM_XMITS)) {
			mac->current_ifs_val = 0;
1707
			mac->in_ifs_mode = false;
1708 1709 1710 1711
			ew32(AIT, 0);
		}
	}
}