mcam-core.c 50.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*
 * The Marvell camera core.  This device appears in a number of settings,
 * so it needs platform-specific support outside of the core.
 *
 * Copyright 2011 Jonathan Corbet corbet@lwn.net
 */
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/spinlock.h>
#include <linux/slab.h>
#include <linux/device.h>
#include <linux/wait.h>
#include <linux/list.h>
#include <linux/dma-mapping.h>
#include <linux/delay.h>
#include <linux/vmalloc.h>
#include <linux/io.h>
22
#include <linux/clk.h>
23 24 25
#include <linux/videodev2.h>
#include <media/v4l2-device.h>
#include <media/v4l2-ioctl.h>
26
#include <media/v4l2-ctrls.h>
27 28
#include <media/ov7670.h>
#include <media/videobuf2-vmalloc.h>
29
#include <media/videobuf2-dma-contig.h>
30
#include <media/videobuf2-dma-sg.h>
31 32 33

#include "mcam-core.h"

34
#ifdef MCAM_MODE_VMALLOC
35 36 37 38 39 40 41 42 43 44 45 46 47
/*
 * Internal DMA buffer management.  Since the controller cannot do S/G I/O,
 * we must have physically contiguous buffers to bring frames into.
 * These parameters control how many buffers we use, whether we
 * allocate them at load time (better chance of success, but nails down
 * memory) or when somebody tries to use the camera (riskier), and,
 * for load-time allocation, how big they should be.
 *
 * The controller can cycle through three buffers.  We could use
 * more by flipping pointers around, but it probably makes little
 * sense.
 */

48
static bool alloc_bufs_at_read;
49 50 51 52 53
module_param(alloc_bufs_at_read, bool, 0444);
MODULE_PARM_DESC(alloc_bufs_at_read,
		"Non-zero value causes DMA buffers to be allocated when the "
		"video capture device is read, rather than at module load "
		"time.  This saves memory, but decreases the chances of "
54 55
		"successfully getting those buffers.  This parameter is "
		"only used in the vmalloc buffer mode");
56 57 58 59 60 61 62 63 64 65 66 67 68

static int n_dma_bufs = 3;
module_param(n_dma_bufs, uint, 0644);
MODULE_PARM_DESC(n_dma_bufs,
		"The number of DMA buffers to allocate.  Can be either two "
		"(saves memory, makes timing tighter) or three.");

static int dma_buf_size = VGA_WIDTH * VGA_HEIGHT * 2;  /* Worst case */
module_param(dma_buf_size, uint, 0444);
MODULE_PARM_DESC(dma_buf_size,
		"The size of the allocated DMA buffers.  If actual operating "
		"parameters require larger buffers, an attempt to reallocate "
		"will be made.");
69
#else /* MCAM_MODE_VMALLOC */
70
static const bool alloc_bufs_at_read;
71 72
static const int n_dma_bufs = 3;  /* Used by S/G_PARM */
#endif /* MCAM_MODE_VMALLOC */
73

74
static bool flip;
75 76 77 78 79
module_param(flip, bool, 0444);
MODULE_PARM_DESC(flip,
		"If set, the sensor will be instructed to flip the image "
		"vertically.");

80 81 82 83 84 85 86
static int buffer_mode = -1;
module_param(buffer_mode, int, 0444);
MODULE_PARM_DESC(buffer_mode,
		"Set the buffer mode to be used; default is to go with what "
		"the platform driver asks for.  Set to 0 for vmalloc, 1 for "
		"DMA contiguous.");

87 88 89 90 91 92 93 94
/*
 * Status flags.  Always manipulated with bit operations.
 */
#define CF_BUF0_VALID	 0	/* Buffers valid - first three */
#define CF_BUF1_VALID	 1
#define CF_BUF2_VALID	 2
#define CF_DMA_ACTIVE	 3	/* A frame is incoming */
#define CF_CONFIG_NEEDED 4	/* Must configure hardware */
95
#define CF_SINGLE_BUFFER 5	/* Running with a single buffer */
96
#define CF_SG_RESTART	 6	/* SG restart needed */
97 98 99
#define CF_FRAME_SOF0	 7	/* Frame 0 started */
#define CF_FRAME_SOF1	 8
#define CF_FRAME_SOF2	 9
100 101 102 103 104 105 106 107

#define sensor_call(cam, o, f, args...) \
	v4l2_subdev_call(cam->sensor, o, f, ##args)

static struct mcam_format_struct {
	__u8 *desc;
	__u32 pixelformat;
	int bpp;   /* Bytes per pixel */
108
	bool planar;
109
	u32 mbus_code;
110 111 112 113
} mcam_formats[] = {
	{
		.desc		= "YUYV 4:2:2",
		.pixelformat	= V4L2_PIX_FMT_YUYV,
114
		.mbus_code	= MEDIA_BUS_FMT_YUYV8_2X8,
115
		.bpp		= 2,
116 117 118 119 120
		.planar		= false,
	},
	{
		.desc		= "UYVY 4:2:2",
		.pixelformat	= V4L2_PIX_FMT_UYVY,
121
		.mbus_code	= MEDIA_BUS_FMT_YUYV8_2X8,
122 123 124 125 126 127
		.bpp		= 2,
		.planar		= false,
	},
	{
		.desc		= "YUV 4:2:2 PLANAR",
		.pixelformat	= V4L2_PIX_FMT_YUV422P,
128
		.mbus_code	= MEDIA_BUS_FMT_YUYV8_2X8,
129 130 131 132 133 134
		.bpp		= 2,
		.planar		= true,
	},
	{
		.desc		= "YUV 4:2:0 PLANAR",
		.pixelformat	= V4L2_PIX_FMT_YUV420,
135
		.mbus_code	= MEDIA_BUS_FMT_YUYV8_2X8,
136 137 138 139 140 141
		.bpp		= 2,
		.planar		= true,
	},
	{
		.desc		= "YVU 4:2:0 PLANAR",
		.pixelformat	= V4L2_PIX_FMT_YVU420,
142
		.mbus_code	= MEDIA_BUS_FMT_YUYV8_2X8,
143 144
		.bpp		= 2,
		.planar		= true,
145 146 147 148
	},
	{
		.desc		= "RGB 444",
		.pixelformat	= V4L2_PIX_FMT_RGB444,
149
		.mbus_code	= MEDIA_BUS_FMT_RGB444_2X8_PADHI_LE,
150
		.bpp		= 2,
151
		.planar		= false,
152 153 154 155
	},
	{
		.desc		= "RGB 565",
		.pixelformat	= V4L2_PIX_FMT_RGB565,
156
		.mbus_code	= MEDIA_BUS_FMT_RGB565_2X8_LE,
157
		.bpp		= 2,
158
		.planar		= false,
159 160 161 162
	},
	{
		.desc		= "Raw RGB Bayer",
		.pixelformat	= V4L2_PIX_FMT_SBGGR8,
163
		.mbus_code	= MEDIA_BUS_FMT_SBGGR8_1X8,
164 165
		.bpp		= 1,
		.planar		= false,
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
	},
};
#define N_MCAM_FMTS ARRAY_SIZE(mcam_formats)

static struct mcam_format_struct *mcam_find_format(u32 pixelformat)
{
	unsigned i;

	for (i = 0; i < N_MCAM_FMTS; i++)
		if (mcam_formats[i].pixelformat == pixelformat)
			return mcam_formats + i;
	/* Not found? Then return the first format. */
	return mcam_formats;
}

/*
182
 * The default format we use until somebody says otherwise.
183
 */
184 185 186 187 188 189 190 191
static const struct v4l2_pix_format mcam_def_pix_format = {
	.width		= VGA_WIDTH,
	.height		= VGA_HEIGHT,
	.pixelformat	= V4L2_PIX_FMT_YUYV,
	.field		= V4L2_FIELD_NONE,
	.bytesperline	= VGA_WIDTH*2,
	.sizeimage	= VGA_WIDTH*VGA_HEIGHT*2,
};
192

193
static const u32 mcam_def_mbus_code = MEDIA_BUS_FMT_YUYV8_2X8;
194 195


196 197 198 199 200 201 202 203 204 205 206
/*
 * The two-word DMA descriptor format used by the Armada 610 and like.  There
 * Is a three-word format as well (set C1_DESC_3WORD) where the third
 * word is a pointer to the next descriptor, but we don't use it.  Two-word
 * descriptors have to be contiguous in memory.
 */
struct mcam_dma_desc {
	u32 dma_addr;
	u32 segment_len;
};

207 208 209 210 211 212
struct yuv_pointer_t {
	dma_addr_t y;
	dma_addr_t u;
	dma_addr_t v;
};

213 214 215 216 217 218 219 220
/*
 * Our buffer type for working with videobuf2.  Note that the vb2
 * developers have decreed that struct vb2_buffer must be at the
 * beginning of this structure.
 */
struct mcam_vb_buffer {
	struct vb2_buffer vb_buf;
	struct list_head queue;
221 222 223
	struct mcam_dma_desc *dma_desc;	/* Descriptor virtual address */
	dma_addr_t dma_desc_pa;		/* Descriptor physical address */
	int dma_desc_nent;		/* Number of mapped descriptors */
224
	struct yuv_pointer_t yuv_p;
225 226 227 228 229 230 231
};

static inline struct mcam_vb_buffer *vb_to_mvb(struct vb2_buffer *vb)
{
	return container_of(vb, struct mcam_vb_buffer, vb_buf);
}

232 233 234 235 236 237 238 239 240 241 242 243 244
/*
 * Hand a completed buffer back to user space.
 */
static void mcam_buffer_done(struct mcam_camera *cam, int frame,
		struct vb2_buffer *vbuf)
{
	vbuf->v4l2_buf.bytesused = cam->pix_format.sizeimage;
	vbuf->v4l2_buf.sequence = cam->buf_seq[frame];
	vb2_set_plane_payload(vbuf, 0, cam->pix_format.sizeimage);
	vb2_buffer_done(vbuf, VB2_BUF_STATE_DONE);
}


245 246

/*
247
 * Debugging and related.
248 249 250 251 252 253 254 255 256
 */
#define cam_err(cam, fmt, arg...) \
	dev_err((cam)->dev, fmt, ##arg);
#define cam_warn(cam, fmt, arg...) \
	dev_warn((cam)->dev, fmt, ##arg);
#define cam_dbg(cam, fmt, arg...) \
	dev_dbg((cam)->dev, fmt, ##arg);


257 258 259 260 261 262 263 264
/*
 * Flag manipulation helpers
 */
static void mcam_reset_buffers(struct mcam_camera *cam)
{
	int i;

	cam->next_buf = -1;
265
	for (i = 0; i < cam->nbufs; i++) {
266
		clear_bit(i, &cam->flags);
267 268
		clear_bit(CF_FRAME_SOF0 + i, &cam->flags);
	}
269 270 271 272 273 274 275 276 277 278 279 280 281 282
}

static inline int mcam_needs_config(struct mcam_camera *cam)
{
	return test_bit(CF_CONFIG_NEEDED, &cam->flags);
}

static void mcam_set_config_needed(struct mcam_camera *cam, int needed)
{
	if (needed)
		set_bit(CF_CONFIG_NEEDED, &cam->flags);
	else
		clear_bit(CF_CONFIG_NEEDED, &cam->flags);
}
283 284 285

/* ------------------------------------------------------------------- */
/*
286 287
 * Make the controller start grabbing images.  Everything must
 * be set up before doing this.
288
 */
289 290 291 292 293 294 295 296 297 298 299 300
static void mcam_ctlr_start(struct mcam_camera *cam)
{
	/* set_bit performs a read, so no other barrier should be
	   needed here */
	mcam_reg_set_bit(cam, REG_CTRL0, C0_ENABLE);
}

static void mcam_ctlr_stop(struct mcam_camera *cam)
{
	mcam_reg_clear_bit(cam, REG_CTRL0, C0_ENABLE);
}

301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
static void mcam_enable_mipi(struct mcam_camera *mcam)
{
	/* Using MIPI mode and enable MIPI */
	cam_dbg(mcam, "camera: DPHY3=0x%x, DPHY5=0x%x, DPHY6=0x%x\n",
			mcam->dphy[0], mcam->dphy[1], mcam->dphy[2]);
	mcam_reg_write(mcam, REG_CSI2_DPHY3, mcam->dphy[0]);
	mcam_reg_write(mcam, REG_CSI2_DPHY5, mcam->dphy[1]);
	mcam_reg_write(mcam, REG_CSI2_DPHY6, mcam->dphy[2]);

	if (!mcam->mipi_enabled) {
		if (mcam->lane > 4 || mcam->lane <= 0) {
			cam_warn(mcam, "lane number error\n");
			mcam->lane = 1;	/* set the default value */
		}
		/*
		 * 0x41 actives 1 lane
		 * 0x43 actives 2 lanes
		 * 0x45 actives 3 lanes (never happen)
		 * 0x47 actives 4 lanes
		 */
		mcam_reg_write(mcam, REG_CSI2_CTRL0,
			CSI2_C0_MIPI_EN | CSI2_C0_ACT_LANE(mcam->lane));
		mcam_reg_write(mcam, REG_CLKCTRL,
			(mcam->mclk_src << 29) | mcam->mclk_div);

		mcam->mipi_enabled = true;
	}
}

static void mcam_disable_mipi(struct mcam_camera *mcam)
{
	/* Using Parallel mode or disable MIPI */
	mcam_reg_write(mcam, REG_CSI2_CTRL0, 0x0);
	mcam_reg_write(mcam, REG_CSI2_DPHY3, 0x0);
	mcam_reg_write(mcam, REG_CSI2_DPHY5, 0x0);
	mcam_reg_write(mcam, REG_CSI2_DPHY6, 0x0);
	mcam->mipi_enabled = false;
}

340
/* ------------------------------------------------------------------- */
341 342

#ifdef MCAM_MODE_VMALLOC
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
/*
 * Code specific to the vmalloc buffer mode.
 */

/*
 * Allocate in-kernel DMA buffers for vmalloc mode.
 */
static int mcam_alloc_dma_bufs(struct mcam_camera *cam, int loadtime)
{
	int i;

	mcam_set_config_needed(cam, 1);
	if (loadtime)
		cam->dma_buf_size = dma_buf_size;
	else
		cam->dma_buf_size = cam->pix_format.sizeimage;
	if (n_dma_bufs > 3)
		n_dma_bufs = 3;

	cam->nbufs = 0;
	for (i = 0; i < n_dma_bufs; i++) {
		cam->dma_bufs[i] = dma_alloc_coherent(cam->dev,
				cam->dma_buf_size, cam->dma_handles + i,
				GFP_KERNEL);
		if (cam->dma_bufs[i] == NULL) {
			cam_warn(cam, "Failed to allocate DMA buffer\n");
			break;
		}
		(cam->nbufs)++;
	}

	switch (cam->nbufs) {
	case 1:
		dma_free_coherent(cam->dev, cam->dma_buf_size,
				cam->dma_bufs[0], cam->dma_handles[0]);
		cam->nbufs = 0;
	case 0:
		cam_err(cam, "Insufficient DMA buffers, cannot operate\n");
		return -ENOMEM;

	case 2:
		if (n_dma_bufs > 2)
			cam_warn(cam, "Will limp along with only 2 buffers\n");
		break;
	}
	return 0;
}

static void mcam_free_dma_bufs(struct mcam_camera *cam)
{
	int i;

	for (i = 0; i < cam->nbufs; i++) {
		dma_free_coherent(cam->dev, cam->dma_buf_size,
				cam->dma_bufs[i], cam->dma_handles[i]);
		cam->dma_bufs[i] = NULL;
	}
	cam->nbufs = 0;
}

403 404

/*
405
 * Set up DMA buffers when operating in vmalloc mode
406
 */
407
static void mcam_ctlr_dma_vmalloc(struct mcam_camera *cam)
408 409 410 411 412 413 414 415 416 417 418 419 420 421
{
	/*
	 * Store the first two Y buffers (we aren't supporting
	 * planar formats for now, so no UV bufs).  Then either
	 * set the third if it exists, or tell the controller
	 * to just use two.
	 */
	mcam_reg_write(cam, REG_Y0BAR, cam->dma_handles[0]);
	mcam_reg_write(cam, REG_Y1BAR, cam->dma_handles[1]);
	if (cam->nbufs > 2) {
		mcam_reg_write(cam, REG_Y2BAR, cam->dma_handles[2]);
		mcam_reg_clear_bit(cam, REG_CTRL1, C1_TWOBUFS);
	} else
		mcam_reg_set_bit(cam, REG_CTRL1, C1_TWOBUFS);
422
	if (cam->chip_id == MCAM_CAFE)
423
		mcam_reg_write(cam, REG_UBAR, 0); /* 32 bits only */
424 425
}

426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
/*
 * Copy data out to user space in the vmalloc case
 */
static void mcam_frame_tasklet(unsigned long data)
{
	struct mcam_camera *cam = (struct mcam_camera *) data;
	int i;
	unsigned long flags;
	struct mcam_vb_buffer *buf;

	spin_lock_irqsave(&cam->dev_lock, flags);
	for (i = 0; i < cam->nbufs; i++) {
		int bufno = cam->next_buf;

		if (cam->state != S_STREAMING || bufno < 0)
			break;  /* I/O got stopped */
		if (++(cam->next_buf) >= cam->nbufs)
			cam->next_buf = 0;
		if (!test_bit(bufno, &cam->flags))
			continue;
		if (list_empty(&cam->buffers)) {
447
			cam->frame_state.singles++;
448 449
			break;  /* Leave it valid, hope for better later */
		}
450
		cam->frame_state.delivered++;
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
		clear_bit(bufno, &cam->flags);
		buf = list_first_entry(&cam->buffers, struct mcam_vb_buffer,
				queue);
		list_del_init(&buf->queue);
		/*
		 * Drop the lock during the big copy.  This *should* be safe...
		 */
		spin_unlock_irqrestore(&cam->dev_lock, flags);
		memcpy(vb2_plane_vaddr(&buf->vb_buf, 0), cam->dma_bufs[bufno],
				cam->pix_format.sizeimage);
		mcam_buffer_done(cam, bufno, &buf->vb_buf);
		spin_lock_irqsave(&cam->dev_lock, flags);
	}
	spin_unlock_irqrestore(&cam->dev_lock, flags);
}


468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
/*
 * Make sure our allocated buffers are up to the task.
 */
static int mcam_check_dma_buffers(struct mcam_camera *cam)
{
	if (cam->nbufs > 0 && cam->dma_buf_size < cam->pix_format.sizeimage)
			mcam_free_dma_bufs(cam);
	if (cam->nbufs == 0)
		return mcam_alloc_dma_bufs(cam, 0);
	return 0;
}

static void mcam_vmalloc_done(struct mcam_camera *cam, int frame)
{
	tasklet_schedule(&cam->s_tasklet);
}

#else /* MCAM_MODE_VMALLOC */

static inline int mcam_alloc_dma_bufs(struct mcam_camera *cam, int loadtime)
{
	return 0;
}

static inline void mcam_free_dma_bufs(struct mcam_camera *cam)
{
	return;
}

static inline int mcam_check_dma_buffers(struct mcam_camera *cam)
{
	return 0;
}



#endif /* MCAM_MODE_VMALLOC */


#ifdef MCAM_MODE_DMA_CONTIG
508 509 510 511
/* ---------------------------------------------------------------------- */
/*
 * DMA-contiguous code.
 */
512 513 514 515 516 517 518 519 520

static bool mcam_fmt_is_planar(__u32 pfmt)
{
	struct mcam_format_struct *f;

	f = mcam_find_format(pfmt);
	return f->planar;
}

521 522 523 524 525 526 527 528 529 530 531
/*
 * Set up a contiguous buffer for the given frame.  Here also is where
 * the underrun strategy is set: if there is no buffer available, reuse
 * the buffer from the other BAR and set the CF_SINGLE_BUFFER flag to
 * keep the interrupt handler from giving that buffer back to user
 * space.  In this way, we always have a buffer to DMA to and don't
 * have to try to play games stopping and restarting the controller.
 */
static void mcam_set_contig_buffer(struct mcam_camera *cam, int frame)
{
	struct mcam_vb_buffer *buf;
532 533 534 535 536
	struct v4l2_pix_format *fmt = &cam->pix_format;
	dma_addr_t dma_handle;
	u32 pixel_count = fmt->width * fmt->height;
	struct vb2_buffer *vb;

537 538 539 540 541 542
	/*
	 * If there are no available buffers, go into single mode
	 */
	if (list_empty(&cam->buffers)) {
		buf = cam->vb_bufs[frame ^ 0x1];
		set_bit(CF_SINGLE_BUFFER, &cam->flags);
543
		cam->frame_state.singles++;
544 545 546 547 548 549 550 551
	} else {
		/*
		 * OK, we have a buffer we can use.
		 */
		buf = list_first_entry(&cam->buffers, struct mcam_vb_buffer,
					queue);
		list_del_init(&buf->queue);
		clear_bit(CF_SINGLE_BUFFER, &cam->flags);
552
	}
553 554

	cam->vb_bufs[frame] = buf;
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
	vb = &buf->vb_buf;

	dma_handle = vb2_dma_contig_plane_dma_addr(vb, 0);
	buf->yuv_p.y = dma_handle;

	switch (cam->pix_format.pixelformat) {
	case V4L2_PIX_FMT_YUV422P:
		buf->yuv_p.u = buf->yuv_p.y + pixel_count;
		buf->yuv_p.v = buf->yuv_p.u + pixel_count / 2;
		break;
	case V4L2_PIX_FMT_YUV420:
		buf->yuv_p.u = buf->yuv_p.y + pixel_count;
		buf->yuv_p.v = buf->yuv_p.u + pixel_count / 4;
		break;
	case V4L2_PIX_FMT_YVU420:
		buf->yuv_p.v = buf->yuv_p.y + pixel_count;
		buf->yuv_p.u = buf->yuv_p.v + pixel_count / 4;
		break;
	default:
		break;
	}

	mcam_reg_write(cam, frame == 0 ? REG_Y0BAR : REG_Y1BAR, buf->yuv_p.y);
	if (mcam_fmt_is_planar(fmt->pixelformat)) {
		mcam_reg_write(cam, frame == 0 ?
					REG_U0BAR : REG_U1BAR, buf->yuv_p.u);
		mcam_reg_write(cam, frame == 0 ?
					REG_V0BAR : REG_V1BAR, buf->yuv_p.v);
	}
584 585
}

586 587 588
/*
 * Initial B_DMA_contig setup.
 */
589 590 591 592 593 594 595 596
static void mcam_ctlr_dma_contig(struct mcam_camera *cam)
{
	mcam_reg_set_bit(cam, REG_CTRL1, C1_TWOBUFS);
	cam->nbufs = 2;
	mcam_set_contig_buffer(cam, 0);
	mcam_set_contig_buffer(cam, 1);
}

597 598 599 600 601 602 603 604
/*
 * Frame completion handling.
 */
static void mcam_dma_contig_done(struct mcam_camera *cam, int frame)
{
	struct mcam_vb_buffer *buf = cam->vb_bufs[frame];

	if (!test_bit(CF_SINGLE_BUFFER, &cam->flags)) {
605
		cam->frame_state.delivered++;
606 607 608 609 610
		mcam_buffer_done(cam, frame, &buf->vb_buf);
	}
	mcam_set_contig_buffer(cam, frame);
}

611
#endif /* MCAM_MODE_DMA_CONTIG */
612

613
#ifdef MCAM_MODE_DMA_SG
614 615 616 617
/* ---------------------------------------------------------------------- */
/*
 * Scatter/gather-specific code.
 */
618

619 620 621 622 623
/*
 * Set up the next buffer for S/G I/O; caller should be sure that
 * the controller is stopped and a buffer is available.
 */
static void mcam_sg_next_buffer(struct mcam_camera *cam)
624
{
625 626 627 628
	struct mcam_vb_buffer *buf;

	buf = list_first_entry(&cam->buffers, struct mcam_vb_buffer, queue);
	list_del_init(&buf->queue);
629 630 631 632 633
	/*
	 * Very Bad Not Good Things happen if you don't clear
	 * C1_DESC_ENA before making any descriptor changes.
	 */
	mcam_reg_clear_bit(cam, REG_CTRL1, C1_DESC_ENA);
634 635 636 637 638
	mcam_reg_write(cam, REG_DMA_DESC_Y, buf->dma_desc_pa);
	mcam_reg_write(cam, REG_DESC_LEN_Y,
			buf->dma_desc_nent*sizeof(struct mcam_dma_desc));
	mcam_reg_write(cam, REG_DESC_LEN_U, 0);
	mcam_reg_write(cam, REG_DESC_LEN_V, 0);
639
	mcam_reg_set_bit(cam, REG_CTRL1, C1_DESC_ENA);
640
	cam->vb_bufs[0] = buf;
641 642
}

643 644 645 646 647
/*
 * Initial B_DMA_sg setup
 */
static void mcam_ctlr_dma_sg(struct mcam_camera *cam)
{
648 649 650 651 652 653 654 655 656
	/*
	 * The list-empty condition can hit us at resume time
	 * if the buffer list was empty when the system was suspended.
	 */
	if (list_empty(&cam->buffers)) {
		set_bit(CF_SG_RESTART, &cam->flags);
		return;
	}

657 658 659 660 661
	mcam_reg_clear_bit(cam, REG_CTRL1, C1_DESC_3WORD);
	mcam_sg_next_buffer(cam);
	cam->nbufs = 3;
}

662

663
/*
664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
 * Frame completion with S/G is trickier.  We can't muck with
 * a descriptor chain on the fly, since the controller buffers it
 * internally.  So we have to actually stop and restart; Marvell
 * says this is the way to do it.
 *
 * Of course, stopping is easier said than done; experience shows
 * that the controller can start a frame *after* C0_ENABLE has been
 * cleared.  So when running in S/G mode, the controller is "stopped"
 * on receipt of the start-of-frame interrupt.  That means we can
 * safely change the DMA descriptor array here and restart things
 * (assuming there's another buffer waiting to go).
 */
static void mcam_dma_sg_done(struct mcam_camera *cam, int frame)
{
	struct mcam_vb_buffer *buf = cam->vb_bufs[0];

680 681 682 683 684
	/*
	 * If we're no longer supposed to be streaming, don't do anything.
	 */
	if (cam->state != S_STREAMING)
		return;
685 686 687 688 689 690 691 692 693 694 695 696 697
	/*
	 * If we have another buffer available, put it in and
	 * restart the engine.
	 */
	if (!list_empty(&cam->buffers)) {
		mcam_sg_next_buffer(cam);
		mcam_ctlr_start(cam);
	/*
	 * Otherwise set CF_SG_RESTART and the controller will
	 * be restarted once another buffer shows up.
	 */
	} else {
		set_bit(CF_SG_RESTART, &cam->flags);
698
		cam->frame_state.singles++;
699
		cam->vb_bufs[0] = NULL;
700 701 702 703
	}
	/*
	 * Now we can give the completed frame back to user space.
	 */
704
	cam->frame_state.delivered++;
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
	mcam_buffer_done(cam, frame, &buf->vb_buf);
}


/*
 * Scatter/gather mode requires stopping the controller between
 * frames so we can put in a new DMA descriptor array.  If no new
 * buffer exists at frame completion, the controller is left stopped;
 * this function is charged with gettig things going again.
 */
static void mcam_sg_restart(struct mcam_camera *cam)
{
	mcam_ctlr_dma_sg(cam);
	mcam_ctlr_start(cam);
	clear_bit(CF_SG_RESTART, &cam->flags);
}

722 723 724 725 726 727 728 729
#else /* MCAM_MODE_DMA_SG */

static inline void mcam_sg_restart(struct mcam_camera *cam)
{
	return;
}

#endif /* MCAM_MODE_DMA_SG */
730 731 732 733 734 735 736 737

/* ---------------------------------------------------------------------- */
/*
 * Buffer-mode-independent controller code.
 */

/*
 * Image format setup
738
 */
739 740 741
static void mcam_ctlr_image(struct mcam_camera *cam)
{
	struct v4l2_pix_format *fmt = &cam->pix_format;
742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
	u32 widthy = 0, widthuv = 0, imgsz_h, imgsz_w;

	cam_dbg(cam, "camera: bytesperline = %d; height = %d\n",
		fmt->bytesperline, fmt->sizeimage / fmt->bytesperline);
	imgsz_h = (fmt->height << IMGSZ_V_SHIFT) & IMGSZ_V_MASK;
	imgsz_w = (fmt->width * 2) & IMGSZ_H_MASK;

	switch (fmt->pixelformat) {
	case V4L2_PIX_FMT_YUYV:
	case V4L2_PIX_FMT_UYVY:
		widthy = fmt->width * 2;
		widthuv = 0;
		break;
	case V4L2_PIX_FMT_JPEG:
		imgsz_h = (fmt->sizeimage / fmt->bytesperline) << IMGSZ_V_SHIFT;
		widthy = fmt->bytesperline;
		widthuv = 0;
		break;
	case V4L2_PIX_FMT_YUV422P:
	case V4L2_PIX_FMT_YUV420:
	case V4L2_PIX_FMT_YVU420:
		widthy = fmt->width;
		widthuv = fmt->width / 2;
		break;
	default:
		widthy = fmt->bytesperline;
		widthuv = 0;
	}

	mcam_reg_write_mask(cam, REG_IMGPITCH, widthuv << 16 | widthy,
			IMGP_YP_MASK | IMGP_UVP_MASK);
	mcam_reg_write(cam, REG_IMGSIZE, imgsz_h | imgsz_w);
	mcam_reg_write(cam, REG_IMGOFFSET, 0x0);
775 776 777 778

	/*
	 * Tell the controller about the image format we are using.
	 */
779 780 781 782 783 784 785 786 787 788
	switch (fmt->pixelformat) {
	case V4L2_PIX_FMT_YUV422P:
		mcam_reg_write_mask(cam, REG_CTRL0,
			C0_DF_YUV | C0_YUV_PLANAR | C0_YUVE_YVYU, C0_DF_MASK);
		break;
	case V4L2_PIX_FMT_YUV420:
	case V4L2_PIX_FMT_YVU420:
		mcam_reg_write_mask(cam, REG_CTRL0,
			C0_DF_YUV | C0_YUV_420PL | C0_YUVE_YVYU, C0_DF_MASK);
		break;
789
	case V4L2_PIX_FMT_YUYV:
790 791 792 793 794 795 796 797 798 799 800
		mcam_reg_write_mask(cam, REG_CTRL0,
			C0_DF_YUV | C0_YUV_PACKED | C0_YUVE_UYVY, C0_DF_MASK);
		break;
	case V4L2_PIX_FMT_UYVY:
		mcam_reg_write_mask(cam, REG_CTRL0,
			C0_DF_YUV | C0_YUV_PACKED | C0_YUVE_YUYV, C0_DF_MASK);
		break;
	case V4L2_PIX_FMT_JPEG:
		mcam_reg_write_mask(cam, REG_CTRL0,
			C0_DF_YUV | C0_YUV_PACKED | C0_YUVE_YUYV, C0_DF_MASK);
		break;
801
	case V4L2_PIX_FMT_RGB444:
802 803
		mcam_reg_write_mask(cam, REG_CTRL0,
			C0_DF_RGB | C0_RGBF_444 | C0_RGB4_XRGB, C0_DF_MASK);
804
		/* Alpha value? */
805
		break;
806
	case V4L2_PIX_FMT_RGB565:
807 808 809
		mcam_reg_write_mask(cam, REG_CTRL0,
			C0_DF_RGB | C0_RGBF_565 | C0_RGB5_BGGR, C0_DF_MASK);
		break;
810
	default:
811 812
		cam_err(cam, "camera: unknown format: %#x\n", fmt->pixelformat);
		break;
813
	}
814

815 816 817
	/*
	 * Make sure it knows we want to use hsync/vsync.
	 */
818
	mcam_reg_write_mask(cam, REG_CTRL0, C0_SIF_HVSYNC, C0_SIFM_MASK);
819 820 821 822 823 824
	/*
	 * This field controls the generation of EOF(DVP only)
	 */
	if (cam->bus_type != V4L2_MBUS_CSI2)
		mcam_reg_set_bit(cam, REG_CTRL0,
				C0_EOF_VSYNC | C0_VEDGE_CTRL);
825 826 827 828 829 830 831 832 833 834 835 836
}


/*
 * Configure the controller for operation; caller holds the
 * device mutex.
 */
static int mcam_ctlr_configure(struct mcam_camera *cam)
{
	unsigned long flags;

	spin_lock_irqsave(&cam->dev_lock, flags);
837
	clear_bit(CF_SG_RESTART, &cam->flags);
838
	cam->dma_setup(cam);
839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860
	mcam_ctlr_image(cam);
	mcam_set_config_needed(cam, 0);
	spin_unlock_irqrestore(&cam->dev_lock, flags);
	return 0;
}

static void mcam_ctlr_irq_enable(struct mcam_camera *cam)
{
	/*
	 * Clear any pending interrupts, since we do not
	 * expect to have I/O active prior to enabling.
	 */
	mcam_reg_write(cam, REG_IRQSTAT, FRAMEIRQS);
	mcam_reg_set_bit(cam, REG_IRQMASK, FRAMEIRQS);
}

static void mcam_ctlr_irq_disable(struct mcam_camera *cam)
{
	mcam_reg_clear_bit(cam, REG_IRQMASK, FRAMEIRQS);
}


861

862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898
static void mcam_ctlr_init(struct mcam_camera *cam)
{
	unsigned long flags;

	spin_lock_irqsave(&cam->dev_lock, flags);
	/*
	 * Make sure it's not powered down.
	 */
	mcam_reg_clear_bit(cam, REG_CTRL1, C1_PWRDWN);
	/*
	 * Turn off the enable bit.  It sure should be off anyway,
	 * but it's good to be sure.
	 */
	mcam_reg_clear_bit(cam, REG_CTRL0, C0_ENABLE);
	/*
	 * Clock the sensor appropriately.  Controller clock should
	 * be 48MHz, sensor "typical" value is half that.
	 */
	mcam_reg_write_mask(cam, REG_CLKCTRL, 2, CLK_DIV_MASK);
	spin_unlock_irqrestore(&cam->dev_lock, flags);
}


/*
 * Stop the controller, and don't return until we're really sure that no
 * further DMA is going on.
 */
static void mcam_ctlr_stop_dma(struct mcam_camera *cam)
{
	unsigned long flags;

	/*
	 * Theory: stop the camera controller (whether it is operating
	 * or not).  Delay briefly just in case we race with the SOF
	 * interrupt, then wait until no DMA is active.
	 */
	spin_lock_irqsave(&cam->dev_lock, flags);
899
	clear_bit(CF_SG_RESTART, &cam->flags);
900
	mcam_ctlr_stop(cam);
901
	cam->state = S_IDLE;
902
	spin_unlock_irqrestore(&cam->dev_lock, flags);
903 904 905 906 907 908 909 910
	/*
	 * This is a brutally long sleep, but experience shows that
	 * it can take the controller a while to get the message that
	 * it needs to stop grabbing frames.  In particular, we can
	 * sometimes (on mmp) get a frame at the end WITHOUT the
	 * start-of-frame indication.
	 */
	msleep(150);
911 912 913 914 915 916 917 918 919 920 921
	if (test_bit(CF_DMA_ACTIVE, &cam->flags))
		cam_err(cam, "Timeout waiting for DMA to end\n");
		/* This would be bad news - what now? */
	spin_lock_irqsave(&cam->dev_lock, flags);
	mcam_ctlr_irq_disable(cam);
	spin_unlock_irqrestore(&cam->dev_lock, flags);
}

/*
 * Power up and down.
 */
922
static int mcam_ctlr_power_up(struct mcam_camera *cam)
923 924
{
	unsigned long flags;
925
	int ret;
926 927

	spin_lock_irqsave(&cam->dev_lock, flags);
928 929 930 931 932
	ret = cam->plat_power_up(cam);
	if (ret) {
		spin_unlock_irqrestore(&cam->dev_lock, flags);
		return ret;
	}
933
	mcam_reg_clear_bit(cam, REG_CTRL1, C1_PWRDWN);
934 935
	spin_unlock_irqrestore(&cam->dev_lock, flags);
	msleep(5); /* Just to be sure */
936
	return 0;
937 938 939 940 941 942 943
}

static void mcam_ctlr_power_down(struct mcam_camera *cam)
{
	unsigned long flags;

	spin_lock_irqsave(&cam->dev_lock, flags);
944 945 946 947 948
	/*
	 * School of hard knocks department: be sure we do any register
	 * twiddling on the controller *before* calling the platform
	 * power down routine.
	 */
949
	mcam_reg_set_bit(cam, REG_CTRL1, C1_PWRDWN);
950
	cam->plat_power_down(cam);
951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
	spin_unlock_irqrestore(&cam->dev_lock, flags);
}

/* -------------------------------------------------------------------- */
/*
 * Communications with the sensor.
 */

static int __mcam_cam_reset(struct mcam_camera *cam)
{
	return sensor_call(cam, core, reset, 0);
}

/*
 * We have found the sensor on the i2c.  Let's try to have a
 * conversation.
 */
static int mcam_cam_init(struct mcam_camera *cam)
{
	int ret;

	mutex_lock(&cam->s_mutex);
	if (cam->state != S_NOTREADY)
		cam_warn(cam, "Cam init with device in funky state %d",
				cam->state);
	ret = __mcam_cam_reset(cam);
977
	/* Get/set parameters? */
978 979 980 981
	cam->state = S_IDLE;
	mcam_ctlr_power_down(cam);
	mutex_unlock(&cam->s_mutex);
	return ret;
982 983
}

984 985 986 987 988
/*
 * Configure the sensor to match the parameters we have.  Caller should
 * hold s_mutex
 */
static int mcam_cam_set_flip(struct mcam_camera *cam)
989
{
990
	struct v4l2_control ctrl;
991

992 993 994 995
	memset(&ctrl, 0, sizeof(ctrl));
	ctrl.id = V4L2_CID_VFLIP;
	ctrl.value = flip;
	return sensor_call(cam, core, s_ctrl, &ctrl);
996 997 998
}


999 1000 1001 1002
static int mcam_cam_configure(struct mcam_camera *cam)
{
	struct v4l2_mbus_framefmt mbus_fmt;
	int ret;
1003

1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
	v4l2_fill_mbus_format(&mbus_fmt, &cam->pix_format, cam->mbus_code);
	ret = sensor_call(cam, core, init, 0);
	if (ret == 0)
		ret = sensor_call(cam, video, s_mbus_fmt, &mbus_fmt);
	/*
	 * OV7670 does weird things if flip is set *before* format...
	 */
	ret += mcam_cam_set_flip(cam);
	return ret;
}
1014 1015 1016 1017

/*
 * Get everything ready, and start grabbing frames.
 */
1018
static int mcam_read_setup(struct mcam_camera *cam)
1019 1020 1021 1022 1023 1024 1025 1026
{
	int ret;
	unsigned long flags;

	/*
	 * Configuration.  If we still don't have DMA buffers,
	 * make one last, desperate attempt.
	 */
1027 1028 1029
	if (cam->buffer_mode == B_vmalloc && cam->nbufs == 0 &&
			mcam_alloc_dma_bufs(cam, 0))
		return -ENOMEM;
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041

	if (mcam_needs_config(cam)) {
		mcam_cam_configure(cam);
		ret = mcam_ctlr_configure(cam);
		if (ret)
			return ret;
	}

	/*
	 * Turn it loose.
	 */
	spin_lock_irqsave(&cam->dev_lock, flags);
1042
	clear_bit(CF_DMA_ACTIVE, &cam->flags);
1043
	mcam_reset_buffers(cam);
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
	/*
	 * Update CSI2_DPHY value
	 */
	if (cam->calc_dphy)
		cam->calc_dphy(cam);
	cam_dbg(cam, "camera: DPHY sets: dphy3=0x%x, dphy5=0x%x, dphy6=0x%x\n",
			cam->dphy[0], cam->dphy[1], cam->dphy[2]);
	if (cam->bus_type == V4L2_MBUS_CSI2)
		mcam_enable_mipi(cam);
	else
		mcam_disable_mipi(cam);
1055
	mcam_ctlr_irq_enable(cam);
1056
	cam->state = S_STREAMING;
1057 1058
	if (!test_bit(CF_SG_RESTART, &cam->flags))
		mcam_ctlr_start(cam);
1059 1060 1061 1062
	spin_unlock_irqrestore(&cam->dev_lock, flags);
	return 0;
}

1063 1064 1065 1066
/* ----------------------------------------------------------------------- */
/*
 * Videobuf2 interface code.
 */
1067

1068 1069
static int mcam_vb_queue_setup(struct vb2_queue *vq,
		const struct v4l2_format *fmt, unsigned int *nbufs,
1070
		unsigned int *num_planes, unsigned int sizes[],
1071
		void *alloc_ctxs[])
1072
{
1073
	struct mcam_camera *cam = vb2_get_drv_priv(vq);
1074
	int minbufs = (cam->buffer_mode == B_DMA_contig) ? 3 : 2;
1075 1076 1077

	sizes[0] = cam->pix_format.sizeimage;
	*num_planes = 1; /* Someday we have to support planar formats... */
1078 1079
	if (*nbufs < minbufs)
		*nbufs = minbufs;
1080 1081
	if (cam->buffer_mode == B_DMA_contig)
		alloc_ctxs[0] = cam->vb_alloc_ctx;
1082 1083
	else if (cam->buffer_mode == B_DMA_sg)
		alloc_ctxs[0] = cam->vb_alloc_ctx_sg;
1084 1085 1086
	return 0;
}

1087

1088 1089 1090 1091 1092
static void mcam_vb_buf_queue(struct vb2_buffer *vb)
{
	struct mcam_vb_buffer *mvb = vb_to_mvb(vb);
	struct mcam_camera *cam = vb2_get_drv_priv(vb->vb2_queue);
	unsigned long flags;
1093
	int start;
1094 1095

	spin_lock_irqsave(&cam->dev_lock, flags);
1096 1097
	start = (cam->state == S_BUFWAIT) && !list_empty(&cam->buffers);
	list_add(&mvb->queue, &cam->buffers);
1098
	if (cam->state == S_STREAMING && test_bit(CF_SG_RESTART, &cam->flags))
1099
		mcam_sg_restart(cam);
1100
	spin_unlock_irqrestore(&cam->dev_lock, flags);
1101 1102
	if (start)
		mcam_read_setup(cam);
1103 1104
}

1105

1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
/*
 * vb2 uses these to release the mutex when waiting in dqbuf.  I'm
 * not actually sure we need to do this (I'm not sure that vb2_dqbuf() needs
 * to be called with the mutex held), but better safe than sorry.
 */
static void mcam_vb_wait_prepare(struct vb2_queue *vq)
{
	struct mcam_camera *cam = vb2_get_drv_priv(vq);

	mutex_unlock(&cam->s_mutex);
}

static void mcam_vb_wait_finish(struct vb2_queue *vq)
{
	struct mcam_camera *cam = vb2_get_drv_priv(vq);
1121 1122

	mutex_lock(&cam->s_mutex);
1123
}
1124

1125 1126 1127
/*
 * These need to be called with the mutex held from vb2
 */
1128
static int mcam_vb_start_streaming(struct vb2_queue *vq, unsigned int count)
1129 1130
{
	struct mcam_camera *cam = vb2_get_drv_priv(vq);
1131
	unsigned int frame;
1132

1133 1134
	if (cam->state != S_IDLE) {
		INIT_LIST_HEAD(&cam->buffers);
1135
		return -EINVAL;
1136
	}
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
	cam->sequence = 0;
	/*
	 * Videobuf2 sneakily hoards all the buffers and won't
	 * give them to us until *after* streaming starts.  But
	 * we can't actually start streaming until we have a
	 * destination.  So go into a wait state and hope they
	 * give us buffers soon.
	 */
	if (cam->buffer_mode != B_vmalloc && list_empty(&cam->buffers)) {
		cam->state = S_BUFWAIT;
		return 0;
1148
	}
1149 1150 1151 1152 1153 1154 1155 1156

	/*
	 * Ensure clear the left over frame flags
	 * before every really start streaming
	 */
	for (frame = 0; frame < cam->nbufs; frame++)
		clear_bit(CF_FRAME_SOF0 + frame, &cam->flags);

1157
	return mcam_read_setup(cam);
1158 1159
}

1160
static void mcam_vb_stop_streaming(struct vb2_queue *vq)
1161 1162 1163 1164
{
	struct mcam_camera *cam = vb2_get_drv_priv(vq);
	unsigned long flags;

1165 1166 1167
	if (cam->state == S_BUFWAIT) {
		/* They never gave us buffers */
		cam->state = S_IDLE;
1168
		return;
1169
	}
1170
	if (cam->state != S_STREAMING)
1171
		return;
1172
	mcam_ctlr_stop_dma(cam);
1173 1174 1175 1176 1177 1178
	/*
	 * Reset the CCIC PHY after stopping streaming,
	 * otherwise, the CCIC may be unstable.
	 */
	if (cam->ctlr_reset)
		cam->ctlr_reset(cam);
1179
	/*
1180 1181
	 * VB2 reclaims the buffers, so we need to forget
	 * about them.
1182
	 */
1183 1184 1185
	spin_lock_irqsave(&cam->dev_lock, flags);
	INIT_LIST_HEAD(&cam->buffers);
	spin_unlock_irqrestore(&cam->dev_lock, flags);
1186 1187 1188
}


1189 1190 1191 1192 1193 1194 1195 1196
static const struct vb2_ops mcam_vb2_ops = {
	.queue_setup		= mcam_vb_queue_setup,
	.buf_queue		= mcam_vb_buf_queue,
	.start_streaming	= mcam_vb_start_streaming,
	.stop_streaming		= mcam_vb_stop_streaming,
	.wait_prepare		= mcam_vb_wait_prepare,
	.wait_finish		= mcam_vb_wait_finish,
};
1197

1198 1199

#ifdef MCAM_MODE_DMA_SG
1200
/*
1201 1202
 * Scatter/gather mode uses all of the above functions plus a
 * few extras to deal with DMA mapping.
1203
 */
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
static int mcam_vb_sg_buf_init(struct vb2_buffer *vb)
{
	struct mcam_vb_buffer *mvb = vb_to_mvb(vb);
	struct mcam_camera *cam = vb2_get_drv_priv(vb->vb2_queue);
	int ndesc = cam->pix_format.sizeimage/PAGE_SIZE + 1;

	mvb->dma_desc = dma_alloc_coherent(cam->dev,
			ndesc * sizeof(struct mcam_dma_desc),
			&mvb->dma_desc_pa, GFP_KERNEL);
	if (mvb->dma_desc == NULL) {
		cam_err(cam, "Unable to get DMA descriptor array\n");
		return -ENOMEM;
	}
	return 0;
}

static int mcam_vb_sg_buf_prepare(struct vb2_buffer *vb)
{
	struct mcam_vb_buffer *mvb = vb_to_mvb(vb);
1223
	struct sg_table *sg_table = vb2_dma_sg_plane_desc(vb, 0);
1224 1225 1226 1227
	struct mcam_dma_desc *desc = mvb->dma_desc;
	struct scatterlist *sg;
	int i;

1228
	for_each_sg(sg_table->sgl, sg, sg_table->nents, i) {
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
		desc->dma_addr = sg_dma_address(sg);
		desc->segment_len = sg_dma_len(sg);
		desc++;
	}
	return 0;
}

static void mcam_vb_sg_buf_cleanup(struct vb2_buffer *vb)
{
	struct mcam_camera *cam = vb2_get_drv_priv(vb->vb2_queue);
	struct mcam_vb_buffer *mvb = vb_to_mvb(vb);
	int ndesc = cam->pix_format.sizeimage/PAGE_SIZE + 1;

	dma_free_coherent(cam->dev, ndesc * sizeof(struct mcam_dma_desc),
			mvb->dma_desc, mvb->dma_desc_pa);
}


1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
static const struct vb2_ops mcam_vb2_sg_ops = {
	.queue_setup		= mcam_vb_queue_setup,
	.buf_init		= mcam_vb_sg_buf_init,
	.buf_prepare		= mcam_vb_sg_buf_prepare,
	.buf_queue		= mcam_vb_buf_queue,
	.buf_cleanup		= mcam_vb_sg_buf_cleanup,
	.start_streaming	= mcam_vb_start_streaming,
	.stop_streaming		= mcam_vb_stop_streaming,
	.wait_prepare		= mcam_vb_wait_prepare,
	.wait_finish		= mcam_vb_wait_finish,
};

1259 1260
#endif /* MCAM_MODE_DMA_SG */

1261 1262 1263
static int mcam_setup_vb2(struct mcam_camera *cam)
{
	struct vb2_queue *vq = &cam->vb_queue;
1264

1265 1266 1267
	memset(vq, 0, sizeof(*vq));
	vq->type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
	vq->drv_priv = cam;
1268 1269 1270
	INIT_LIST_HEAD(&cam->buffers);
	switch (cam->buffer_mode) {
	case B_DMA_contig:
1271
#ifdef MCAM_MODE_DMA_CONTIG
1272
		vq->ops = &mcam_vb2_ops;
1273
		vq->mem_ops = &vb2_dma_contig_memops;
1274
		vq->buf_struct_size = sizeof(struct mcam_vb_buffer);
1275
		vq->io_modes = VB2_MMAP | VB2_USERPTR;
1276 1277
		cam->dma_setup = mcam_ctlr_dma_contig;
		cam->frame_complete = mcam_dma_contig_done;
1278 1279 1280
		cam->vb_alloc_ctx = vb2_dma_contig_init_ctx(cam->dev);
		if (IS_ERR(cam->vb_alloc_ctx))
			return PTR_ERR(cam->vb_alloc_ctx);
1281
#endif
1282 1283
		break;
	case B_DMA_sg:
1284
#ifdef MCAM_MODE_DMA_SG
1285 1286
		vq->ops = &mcam_vb2_sg_ops;
		vq->mem_ops = &vb2_dma_sg_memops;
1287
		vq->buf_struct_size = sizeof(struct mcam_vb_buffer);
1288
		vq->io_modes = VB2_MMAP | VB2_USERPTR;
1289 1290
		cam->dma_setup = mcam_ctlr_dma_sg;
		cam->frame_complete = mcam_dma_sg_done;
1291 1292 1293
		cam->vb_alloc_ctx_sg = vb2_dma_sg_init_ctx(cam->dev);
		if (IS_ERR(cam->vb_alloc_ctx_sg))
			return PTR_ERR(cam->vb_alloc_ctx_sg);
1294
#endif
1295 1296
		break;
	case B_vmalloc:
1297 1298 1299
#ifdef MCAM_MODE_VMALLOC
		tasklet_init(&cam->s_tasklet, mcam_frame_tasklet,
				(unsigned long) cam);
1300
		vq->ops = &mcam_vb2_ops;
1301
		vq->mem_ops = &vb2_vmalloc_memops;
1302 1303
		vq->buf_struct_size = sizeof(struct mcam_vb_buffer);
		vq->io_modes = VB2_MMAP;
1304 1305 1306
		cam->dma_setup = mcam_ctlr_dma_vmalloc;
		cam->frame_complete = mcam_vmalloc_done;
#endif
1307 1308
		break;
	}
1309 1310 1311 1312 1313 1314
	return vb2_queue_init(vq);
}

static void mcam_cleanup_vb2(struct mcam_camera *cam)
{
	vb2_queue_release(&cam->vb_queue);
1315
#ifdef MCAM_MODE_DMA_CONTIG
1316 1317
	if (cam->buffer_mode == B_DMA_contig)
		vb2_dma_contig_cleanup_ctx(cam->vb_alloc_ctx);
1318
#endif
1319 1320 1321 1322
#ifdef MCAM_MODE_DMA_SG
	if (cam->buffer_mode == B_DMA_sg)
		vb2_dma_sg_cleanup_ctx(cam->vb_alloc_ctx_sg);
#endif
1323 1324
}

1325

1326
/* ---------------------------------------------------------------------- */
1327
/*
1328
 * The long list of V4L2 ioctl() operations.
1329 1330 1331 1332 1333 1334
 */

static int mcam_vidioc_streamon(struct file *filp, void *priv,
		enum v4l2_buf_type type)
{
	struct mcam_camera *cam = filp->private_data;
1335
	int ret;
1336 1337

	mutex_lock(&cam->s_mutex);
1338
	ret = vb2_streamon(&cam->vb_queue, type);
1339 1340 1341 1342 1343 1344 1345 1346 1347
	mutex_unlock(&cam->s_mutex);
	return ret;
}


static int mcam_vidioc_streamoff(struct file *filp, void *priv,
		enum v4l2_buf_type type)
{
	struct mcam_camera *cam = filp->private_data;
1348
	int ret;
1349 1350

	mutex_lock(&cam->s_mutex);
1351
	ret = vb2_streamoff(&cam->vb_queue, type);
1352 1353 1354 1355 1356 1357 1358 1359 1360
	mutex_unlock(&cam->s_mutex);
	return ret;
}


static int mcam_vidioc_reqbufs(struct file *filp, void *priv,
		struct v4l2_requestbuffers *req)
{
	struct mcam_camera *cam = filp->private_data;
1361
	int ret;
1362 1363

	mutex_lock(&cam->s_mutex);
1364
	ret = vb2_reqbufs(&cam->vb_queue, req);
1365 1366 1367 1368 1369 1370 1371 1372 1373
	mutex_unlock(&cam->s_mutex);
	return ret;
}


static int mcam_vidioc_querybuf(struct file *filp, void *priv,
		struct v4l2_buffer *buf)
{
	struct mcam_camera *cam = filp->private_data;
1374
	int ret;
1375 1376

	mutex_lock(&cam->s_mutex);
1377
	ret = vb2_querybuf(&cam->vb_queue, buf);
1378
	mutex_unlock(&cam->s_mutex);
1379
	return ret;
1380 1381
}

1382 1383 1384 1385 1386
static int mcam_vidioc_qbuf(struct file *filp, void *priv,
		struct v4l2_buffer *buf)
{
	struct mcam_camera *cam = filp->private_data;
	int ret;
1387

1388 1389 1390 1391 1392
	mutex_lock(&cam->s_mutex);
	ret = vb2_qbuf(&cam->vb_queue, buf);
	mutex_unlock(&cam->s_mutex);
	return ret;
}
1393

1394 1395
static int mcam_vidioc_dqbuf(struct file *filp, void *priv,
		struct v4l2_buffer *buf)
1396 1397
{
	struct mcam_camera *cam = filp->private_data;
1398
	int ret;
1399

1400
	mutex_lock(&cam->s_mutex);
1401
	ret = vb2_dqbuf(&cam->vb_queue, buf, filp->f_flags & O_NONBLOCK);
1402 1403
	mutex_unlock(&cam->s_mutex);
	return ret;
1404 1405 1406 1407 1408 1409 1410
}

static int mcam_vidioc_querycap(struct file *file, void *priv,
		struct v4l2_capability *cap)
{
	strcpy(cap->driver, "marvell_ccic");
	strcpy(cap->card, "marvell_ccic");
1411
	cap->device_caps = V4L2_CAP_VIDEO_CAPTURE |
1412
		V4L2_CAP_READWRITE | V4L2_CAP_STREAMING;
1413
	cap->capabilities = cap->device_caps | V4L2_CAP_DEVICE_CAPS;
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
	return 0;
}


static int mcam_vidioc_enum_fmt_vid_cap(struct file *filp,
		void *priv, struct v4l2_fmtdesc *fmt)
{
	if (fmt->index >= N_MCAM_FMTS)
		return -EINVAL;
	strlcpy(fmt->description, mcam_formats[fmt->index].desc,
			sizeof(fmt->description));
	fmt->pixelformat = mcam_formats[fmt->index].pixelformat;
	return 0;
}

static int mcam_vidioc_try_fmt_vid_cap(struct file *filp, void *priv,
		struct v4l2_format *fmt)
{
	struct mcam_camera *cam = priv;
	struct mcam_format_struct *f;
	struct v4l2_pix_format *pix = &fmt->fmt.pix;
	struct v4l2_mbus_framefmt mbus_fmt;
	int ret;

	f = mcam_find_format(pix->pixelformat);
	pix->pixelformat = f->pixelformat;
	v4l2_fill_mbus_format(&mbus_fmt, pix, f->mbus_code);
	mutex_lock(&cam->s_mutex);
	ret = sensor_call(cam, video, try_mbus_fmt, &mbus_fmt);
	mutex_unlock(&cam->s_mutex);
	v4l2_fill_pix_format(pix, &mbus_fmt);
1445 1446 1447 1448 1449 1450 1451 1452 1453
	switch (f->pixelformat) {
	case V4L2_PIX_FMT_YUV420:
	case V4L2_PIX_FMT_YVU420:
		pix->bytesperline = pix->width * 3 / 2;
		break;
	default:
		pix->bytesperline = pix->width * f->bpp;
		break;
	}
1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
	pix->sizeimage = pix->height * pix->bytesperline;
	return ret;
}

static int mcam_vidioc_s_fmt_vid_cap(struct file *filp, void *priv,
		struct v4l2_format *fmt)
{
	struct mcam_camera *cam = priv;
	struct mcam_format_struct *f;
	int ret;

	/*
	 * Can't do anything if the device is not idle
	 * Also can't if there are streaming buffers in place.
	 */
1469
	if (cam->state != S_IDLE || cam->vb_queue.num_buffers > 0)
1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
		return -EBUSY;

	f = mcam_find_format(fmt->fmt.pix.pixelformat);

	/*
	 * See if the formatting works in principle.
	 */
	ret = mcam_vidioc_try_fmt_vid_cap(filp, priv, fmt);
	if (ret)
		return ret;
	/*
	 * Now we start to change things for real, so let's do it
	 * under lock.
	 */
	mutex_lock(&cam->s_mutex);
	cam->pix_format = fmt->fmt.pix;
	cam->mbus_code = f->mbus_code;

	/*
	 * Make sure we have appropriate DMA buffers.
	 */
1491
	if (cam->buffer_mode == B_vmalloc) {
1492 1493 1494
		ret = mcam_check_dma_buffers(cam);
		if (ret)
			goto out;
1495
	}
1496
	mcam_set_config_needed(cam, 1);
1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
out:
	mutex_unlock(&cam->s_mutex);
	return ret;
}

/*
 * Return our stored notion of how the camera is/should be configured.
 * The V4l2 spec wants us to be smarter, and actually get this from
 * the camera (and not mess with it at open time).  Someday.
 */
static int mcam_vidioc_g_fmt_vid_cap(struct file *filp, void *priv,
		struct v4l2_format *f)
{
	struct mcam_camera *cam = priv;

	f->fmt.pix = cam->pix_format;
	return 0;
}

/*
 * We only have one input - the sensor - so minimize the nonsense here.
 */
static int mcam_vidioc_enum_input(struct file *filp, void *priv,
		struct v4l2_input *input)
{
	if (input->index != 0)
		return -EINVAL;

	input->type = V4L2_INPUT_TYPE_CAMERA;
	input->std = V4L2_STD_ALL; /* Not sure what should go here */
	strcpy(input->name, "Camera");
	return 0;
}

static int mcam_vidioc_g_input(struct file *filp, void *priv, unsigned int *i)
{
	*i = 0;
	return 0;
}

static int mcam_vidioc_s_input(struct file *filp, void *priv, unsigned int i)
{
	if (i != 0)
		return -EINVAL;
	return 0;
}

/* from vivi.c */
1545
static int mcam_vidioc_s_std(struct file *filp, void *priv, v4l2_std_id a)
1546 1547 1548 1549
{
	return 0;
}

1550 1551 1552 1553 1554 1555
static int mcam_vidioc_g_std(struct file *filp, void *priv, v4l2_std_id *a)
{
	*a = V4L2_STD_NTSC_M;
	return 0;
}

1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
/*
 * G/S_PARM.  Most of this is done by the sensor, but we are
 * the level which controls the number of read buffers.
 */
static int mcam_vidioc_g_parm(struct file *filp, void *priv,
		struct v4l2_streamparm *parms)
{
	struct mcam_camera *cam = priv;
	int ret;

	mutex_lock(&cam->s_mutex);
	ret = sensor_call(cam, video, g_parm, parms);
	mutex_unlock(&cam->s_mutex);
	parms->parm.capture.readbuffers = n_dma_bufs;
	return ret;
}

static int mcam_vidioc_s_parm(struct file *filp, void *priv,
		struct v4l2_streamparm *parms)
{
	struct mcam_camera *cam = priv;
	int ret;

	mutex_lock(&cam->s_mutex);
	ret = sensor_call(cam, video, s_parm, parms);
	mutex_unlock(&cam->s_mutex);
	parms->parm.capture.readbuffers = n_dma_bufs;
	return ret;
}

static int mcam_vidioc_enum_framesizes(struct file *filp, void *priv,
		struct v4l2_frmsizeenum *sizes)
{
	struct mcam_camera *cam = priv;
	int ret;

	mutex_lock(&cam->s_mutex);
	ret = sensor_call(cam, video, enum_framesizes, sizes);
	mutex_unlock(&cam->s_mutex);
	return ret;
}

static int mcam_vidioc_enum_frameintervals(struct file *filp, void *priv,
		struct v4l2_frmivalenum *interval)
{
	struct mcam_camera *cam = priv;
	int ret;

	mutex_lock(&cam->s_mutex);
	ret = sensor_call(cam, video, enum_frameintervals, interval);
	mutex_unlock(&cam->s_mutex);
	return ret;
}

#ifdef CONFIG_VIDEO_ADV_DEBUG
static int mcam_vidioc_g_register(struct file *file, void *priv,
		struct v4l2_dbg_register *reg)
{
	struct mcam_camera *cam = priv;

1616 1617
	if (reg->reg > cam->regs_size - 4)
		return -EINVAL;
1618 1619 1620
	reg->val = mcam_reg_read(cam, reg->reg);
	reg->size = 4;
	return 0;
1621 1622 1623
}

static int mcam_vidioc_s_register(struct file *file, void *priv,
1624
		const struct v4l2_dbg_register *reg)
1625 1626 1627
{
	struct mcam_camera *cam = priv;

1628 1629
	if (reg->reg > cam->regs_size - 4)
		return -EINVAL;
1630 1631
	mcam_reg_write(cam, reg->reg, reg->val);
	return 0;
1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
}
#endif

static const struct v4l2_ioctl_ops mcam_v4l_ioctl_ops = {
	.vidioc_querycap	= mcam_vidioc_querycap,
	.vidioc_enum_fmt_vid_cap = mcam_vidioc_enum_fmt_vid_cap,
	.vidioc_try_fmt_vid_cap	= mcam_vidioc_try_fmt_vid_cap,
	.vidioc_s_fmt_vid_cap	= mcam_vidioc_s_fmt_vid_cap,
	.vidioc_g_fmt_vid_cap	= mcam_vidioc_g_fmt_vid_cap,
	.vidioc_enum_input	= mcam_vidioc_enum_input,
	.vidioc_g_input		= mcam_vidioc_g_input,
	.vidioc_s_input		= mcam_vidioc_s_input,
	.vidioc_s_std		= mcam_vidioc_s_std,
1645
	.vidioc_g_std		= mcam_vidioc_g_std,
1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
	.vidioc_reqbufs		= mcam_vidioc_reqbufs,
	.vidioc_querybuf	= mcam_vidioc_querybuf,
	.vidioc_qbuf		= mcam_vidioc_qbuf,
	.vidioc_dqbuf		= mcam_vidioc_dqbuf,
	.vidioc_streamon	= mcam_vidioc_streamon,
	.vidioc_streamoff	= mcam_vidioc_streamoff,
	.vidioc_g_parm		= mcam_vidioc_g_parm,
	.vidioc_s_parm		= mcam_vidioc_s_parm,
	.vidioc_enum_framesizes = mcam_vidioc_enum_framesizes,
	.vidioc_enum_frameintervals = mcam_vidioc_enum_frameintervals,
#ifdef CONFIG_VIDEO_ADV_DEBUG
	.vidioc_g_register	= mcam_vidioc_g_register,
	.vidioc_s_register	= mcam_vidioc_s_register,
#endif
};

/* ---------------------------------------------------------------------- */
/*
1664
 * Our various file operations.
1665
 */
1666 1667 1668 1669
static int mcam_v4l_open(struct file *filp)
{
	struct mcam_camera *cam = video_drvdata(filp);
	int ret = 0;
1670

1671
	filp->private_data = cam;
1672

1673 1674 1675
	cam->frame_state.frames = 0;
	cam->frame_state.singles = 0;
	cam->frame_state.delivered = 0;
1676 1677 1678 1679 1680
	mutex_lock(&cam->s_mutex);
	if (cam->users == 0) {
		ret = mcam_setup_vb2(cam);
		if (ret)
			goto out;
1681 1682 1683
		ret = mcam_ctlr_power_up(cam);
		if (ret)
			goto out;
1684 1685 1686 1687 1688 1689 1690
		__mcam_cam_reset(cam);
		mcam_set_config_needed(cam, 1);
	}
	(cam->users)++;
out:
	mutex_unlock(&cam->s_mutex);
	return ret;
1691
}
1692 1693


1694 1695 1696
static int mcam_v4l_release(struct file *filp)
{
	struct mcam_camera *cam = filp->private_data;
1697

1698 1699 1700
	cam_dbg(cam, "Release, %d frames, %d singles, %d delivered\n",
			cam->frame_state.frames, cam->frame_state.singles,
			cam->frame_state.delivered);
1701 1702 1703
	mutex_lock(&cam->s_mutex);
	(cam->users)--;
	if (cam->users == 0) {
1704
		mcam_ctlr_stop_dma(cam);
1705
		mcam_cleanup_vb2(cam);
1706
		mcam_disable_mipi(cam);
1707 1708 1709 1710
		mcam_ctlr_power_down(cam);
		if (cam->buffer_mode == B_vmalloc && alloc_bufs_at_read)
			mcam_free_dma_bufs(cam);
	}
1711

1712 1713
	mutex_unlock(&cam->s_mutex);
	return 0;
1714 1715
}

1716 1717
static ssize_t mcam_v4l_read(struct file *filp,
		char __user *buffer, size_t len, loff_t *pos)
1718
{
1719 1720
	struct mcam_camera *cam = filp->private_data;
	int ret;
1721

1722 1723 1724 1725 1726
	mutex_lock(&cam->s_mutex);
	ret = vb2_read(&cam->vb_queue, buffer, len, pos,
			filp->f_flags & O_NONBLOCK);
	mutex_unlock(&cam->s_mutex);
	return ret;
1727
}
1728

1729 1730 1731 1732


static unsigned int mcam_v4l_poll(struct file *filp,
		struct poll_table_struct *pt)
1733
{
1734 1735
	struct mcam_camera *cam = filp->private_data;
	int ret;
1736

1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752
	mutex_lock(&cam->s_mutex);
	ret = vb2_poll(&cam->vb_queue, filp, pt);
	mutex_unlock(&cam->s_mutex);
	return ret;
}


static int mcam_v4l_mmap(struct file *filp, struct vm_area_struct *vma)
{
	struct mcam_camera *cam = filp->private_data;
	int ret;

	mutex_lock(&cam->s_mutex);
	ret = vb2_mmap(&cam->vb_queue, vma);
	mutex_unlock(&cam->s_mutex);
	return ret;
1753 1754 1755
}


1756

1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784
static const struct v4l2_file_operations mcam_v4l_fops = {
	.owner = THIS_MODULE,
	.open = mcam_v4l_open,
	.release = mcam_v4l_release,
	.read = mcam_v4l_read,
	.poll = mcam_v4l_poll,
	.mmap = mcam_v4l_mmap,
	.unlocked_ioctl = video_ioctl2,
};


/*
 * This template device holds all of those v4l2 methods; we
 * clone it for specific real devices.
 */
static struct video_device mcam_v4l_template = {
	.name = "mcam",
	.tvnorms = V4L2_STD_NTSC_M,

	.fops = &mcam_v4l_fops,
	.ioctl_ops = &mcam_v4l_ioctl_ops,
	.release = video_device_release_empty,
};

/* ---------------------------------------------------------------------- */
/*
 * Interrupt handler stuff
 */
1785 1786 1787 1788 1789 1790 1791
static void mcam_frame_complete(struct mcam_camera *cam, int frame)
{
	/*
	 * Basic frame housekeeping.
	 */
	set_bit(frame, &cam->flags);
	clear_bit(CF_DMA_ACTIVE, &cam->flags);
1792
	cam->next_buf = frame;
1793
	cam->buf_seq[frame] = ++(cam->sequence);
1794
	cam->frame_state.frames++;
1795
	/*
1796
	 * "This should never happen"
1797
	 */
1798 1799 1800 1801 1802
	if (cam->state != S_STREAMING)
		return;
	/*
	 * Process the frame and set up the next one.
	 */
1803
	cam->frame_complete(cam, frame);
1804 1805 1806
}


1807 1808 1809 1810
/*
 * The interrupt handler; this needs to be called from the
 * platform irq handler with the lock held.
 */
1811 1812 1813 1814 1815 1816 1817 1818 1819
int mccic_irq(struct mcam_camera *cam, unsigned int irqs)
{
	unsigned int frame, handled = 0;

	mcam_reg_write(cam, REG_IRQSTAT, FRAMEIRQS); /* Clear'em all */
	/*
	 * Handle any frame completions.  There really should
	 * not be more than one of these, or we have fallen
	 * far behind.
1820 1821 1822 1823 1824
	 *
	 * When running in S/G mode, the frame number lacks any
	 * real meaning - there's only one descriptor array - but
	 * the controller still picks a different one to signal
	 * each time.
1825 1826
	 */
	for (frame = 0; frame < cam->nbufs; frame++)
1827 1828
		if (irqs & (IRQ_EOF0 << frame) &&
			test_bit(CF_FRAME_SOF0 + frame, &cam->flags)) {
1829 1830
			mcam_frame_complete(cam, frame);
			handled = 1;
1831
			clear_bit(CF_FRAME_SOF0 + frame, &cam->flags);
1832 1833
			if (cam->buffer_mode == B_DMA_sg)
				break;
1834 1835 1836 1837 1838 1839
		}
	/*
	 * If a frame starts, note that we have DMA active.  This
	 * code assumes that we won't get multiple frame interrupts
	 * at once; may want to rethink that.
	 */
1840 1841 1842 1843 1844 1845 1846 1847
	for (frame = 0; frame < cam->nbufs; frame++) {
		if (irqs & (IRQ_SOF0 << frame)) {
			set_bit(CF_FRAME_SOF0 + frame, &cam->flags);
			handled = IRQ_HANDLED;
		}
	}

	if (handled == IRQ_HANDLED) {
1848
		set_bit(CF_DMA_ACTIVE, &cam->flags);
1849 1850
		if (cam->buffer_mode == B_DMA_sg)
			mcam_ctlr_stop(cam);
1851 1852 1853 1854
	}
	return handled;
}

1855
/* ---------------------------------------------------------------------- */
1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
/*
 * Registration and such.
 */
static struct ov7670_config sensor_cfg = {
	/*
	 * Exclude QCIF mode, because it only captures a tiny portion
	 * of the sensor FOV
	 */
	.min_width = 320,
	.min_height = 240,
};


int mccic_register(struct mcam_camera *cam)
{
	struct i2c_board_info ov7670_info = {
		.type = "ov7670",
1873
		.addr = 0x42 >> 1,
1874 1875 1876 1877
		.platform_data = &sensor_cfg,
	};
	int ret;

1878 1879 1880 1881 1882 1883
	/*
	 * Validate the requested buffer mode.
	 */
	if (buffer_mode >= 0)
		cam->buffer_mode = buffer_mode;
	if (cam->buffer_mode == B_DMA_sg &&
1884
			cam->chip_id == MCAM_CAFE) {
1885 1886 1887 1888 1889 1890 1891 1892 1893
		printk(KERN_ERR "marvell-cam: Cafe can't do S/G I/O, "
			"attempting vmalloc mode instead\n");
		cam->buffer_mode = B_vmalloc;
	}
	if (!mcam_buffer_mode_supported(cam->buffer_mode)) {
		printk(KERN_ERR "marvell-cam: buffer mode %d unsupported\n",
				cam->buffer_mode);
		return -EINVAL;
	}
1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905
	/*
	 * Register with V4L
	 */
	ret = v4l2_device_register(cam->dev, &cam->v4l2_dev);
	if (ret)
		return ret;

	mutex_init(&cam->s_mutex);
	cam->state = S_NOTREADY;
	mcam_set_config_needed(cam, 1);
	cam->pix_format = mcam_def_pix_format;
	cam->mbus_code = mcam_def_mbus_code;
1906
	INIT_LIST_HEAD(&cam->buffers);
1907 1908 1909 1910 1911
	mcam_ctlr_init(cam);

	/*
	 * Try to find the sensor.
	 */
1912 1913
	sensor_cfg.clock_speed = cam->clock_speed;
	sensor_cfg.use_smbus = cam->use_smbus;
1914 1915
	cam->sensor_addr = ov7670_info.addr;
	cam->sensor = v4l2_i2c_new_subdev_board(&cam->v4l2_dev,
1916
			cam->i2c_adapter, &ov7670_info, NULL);
1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927
	if (cam->sensor == NULL) {
		ret = -ENODEV;
		goto out_unregister;
	}

	ret = mcam_cam_init(cam);
	if (ret)
		goto out_unregister;
	/*
	 * Get the v4l2 setup done.
	 */
1928 1929 1930 1931 1932
	ret = v4l2_ctrl_handler_init(&cam->ctrl_handler, 10);
	if (ret)
		goto out_unregister;
	cam->v4l2_dev.ctrl_handler = &cam->ctrl_handler;

1933 1934 1935 1936
	mutex_lock(&cam->s_mutex);
	cam->vdev = mcam_v4l_template;
	cam->vdev.debug = 0;
	cam->vdev.v4l2_dev = &cam->v4l2_dev;
1937
	video_set_drvdata(&cam->vdev, cam);
1938 1939 1940 1941 1942 1943 1944
	ret = video_register_device(&cam->vdev, VFL_TYPE_GRABBER, -1);
	if (ret)
		goto out;

	/*
	 * If so requested, try to get our DMA buffers now.
	 */
1945
	if (cam->buffer_mode == B_vmalloc && !alloc_bufs_at_read) {
1946 1947 1948 1949 1950 1951
		if (mcam_alloc_dma_bufs(cam, 1))
			cam_warn(cam, "Unable to alloc DMA buffers at load"
					" will try again later.");
	}

out:
1952
	v4l2_ctrl_handler_free(&cam->ctrl_handler);
1953 1954 1955 1956 1957 1958 1959 1960 1961 1962
	mutex_unlock(&cam->s_mutex);
	return ret;
out_unregister:
	v4l2_device_unregister(&cam->v4l2_dev);
	return ret;
}


void mccic_shutdown(struct mcam_camera *cam)
{
1963 1964 1965 1966 1967 1968 1969
	/*
	 * If we have no users (and we really, really should have no
	 * users) the device will already be powered down.  Trying to
	 * take it down again will wedge the machine, which is frowned
	 * upon.
	 */
	if (cam->users > 0) {
1970
		cam_warn(cam, "Removing a device with users!\n");
1971 1972
		mcam_ctlr_power_down(cam);
	}
1973
	vb2_queue_release(&cam->vb_queue);
1974 1975
	if (cam->buffer_mode == B_vmalloc)
		mcam_free_dma_bufs(cam);
1976
	video_unregister_device(&cam->vdev);
1977
	v4l2_ctrl_handler_free(&cam->ctrl_handler);
1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
	v4l2_device_unregister(&cam->v4l2_dev);
}

/*
 * Power management
 */
#ifdef CONFIG_PM

void mccic_suspend(struct mcam_camera *cam)
{
1988 1989 1990
	mutex_lock(&cam->s_mutex);
	if (cam->users > 0) {
		enum mcam_state cstate = cam->state;
1991

1992 1993 1994 1995 1996
		mcam_ctlr_stop_dma(cam);
		mcam_ctlr_power_down(cam);
		cam->state = cstate;
	}
	mutex_unlock(&cam->s_mutex);
1997 1998 1999 2000 2001 2002 2003 2004
}

int mccic_resume(struct mcam_camera *cam)
{
	int ret = 0;

	mutex_lock(&cam->s_mutex);
	if (cam->users > 0) {
2005 2006 2007 2008 2009
		ret = mcam_ctlr_power_up(cam);
		if (ret) {
			mutex_unlock(&cam->s_mutex);
			return ret;
		}
2010 2011 2012 2013 2014 2015 2016
		__mcam_cam_reset(cam);
	} else {
		mcam_ctlr_power_down(cam);
	}
	mutex_unlock(&cam->s_mutex);

	set_bit(CF_CONFIG_NEEDED, &cam->flags);
2017 2018 2019 2020 2021 2022 2023
	if (cam->state == S_STREAMING) {
		/*
		 * If there was a buffer in the DMA engine at suspend
		 * time, put it back on the queue or we'll forget about it.
		 */
		if (cam->buffer_mode == B_DMA_sg && cam->vb_bufs[0])
			list_add(&cam->vb_bufs[0]->queue, &cam->buffers);
2024
		ret = mcam_read_setup(cam);
2025
	}
2026 2027 2028
	return ret;
}
#endif /* CONFIG_PM */