mcam-core.c 50.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*
 * The Marvell camera core.  This device appears in a number of settings,
 * so it needs platform-specific support outside of the core.
 *
 * Copyright 2011 Jonathan Corbet corbet@lwn.net
 */
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/spinlock.h>
#include <linux/slab.h>
#include <linux/device.h>
#include <linux/wait.h>
#include <linux/list.h>
#include <linux/dma-mapping.h>
#include <linux/delay.h>
#include <linux/vmalloc.h>
#include <linux/io.h>
22
#include <linux/clk.h>
23 24 25
#include <linux/videodev2.h>
#include <media/v4l2-device.h>
#include <media/v4l2-ioctl.h>
26
#include <media/v4l2-ctrls.h>
27 28
#include <media/ov7670.h>
#include <media/videobuf2-vmalloc.h>
29
#include <media/videobuf2-dma-contig.h>
30
#include <media/videobuf2-dma-sg.h>
31 32 33

#include "mcam-core.h"

34
#ifdef MCAM_MODE_VMALLOC
35 36 37 38 39 40 41 42 43 44 45 46 47
/*
 * Internal DMA buffer management.  Since the controller cannot do S/G I/O,
 * we must have physically contiguous buffers to bring frames into.
 * These parameters control how many buffers we use, whether we
 * allocate them at load time (better chance of success, but nails down
 * memory) or when somebody tries to use the camera (riskier), and,
 * for load-time allocation, how big they should be.
 *
 * The controller can cycle through three buffers.  We could use
 * more by flipping pointers around, but it probably makes little
 * sense.
 */

48
static bool alloc_bufs_at_read;
49 50 51 52 53
module_param(alloc_bufs_at_read, bool, 0444);
MODULE_PARM_DESC(alloc_bufs_at_read,
		"Non-zero value causes DMA buffers to be allocated when the "
		"video capture device is read, rather than at module load "
		"time.  This saves memory, but decreases the chances of "
54 55
		"successfully getting those buffers.  This parameter is "
		"only used in the vmalloc buffer mode");
56 57 58 59 60 61 62 63 64 65 66 67 68

static int n_dma_bufs = 3;
module_param(n_dma_bufs, uint, 0644);
MODULE_PARM_DESC(n_dma_bufs,
		"The number of DMA buffers to allocate.  Can be either two "
		"(saves memory, makes timing tighter) or three.");

static int dma_buf_size = VGA_WIDTH * VGA_HEIGHT * 2;  /* Worst case */
module_param(dma_buf_size, uint, 0444);
MODULE_PARM_DESC(dma_buf_size,
		"The size of the allocated DMA buffers.  If actual operating "
		"parameters require larger buffers, an attempt to reallocate "
		"will be made.");
69
#else /* MCAM_MODE_VMALLOC */
70
static const bool alloc_bufs_at_read = 0;
71 72
static const int n_dma_bufs = 3;  /* Used by S/G_PARM */
#endif /* MCAM_MODE_VMALLOC */
73

74
static bool flip;
75 76 77 78 79
module_param(flip, bool, 0444);
MODULE_PARM_DESC(flip,
		"If set, the sensor will be instructed to flip the image "
		"vertically.");

80 81 82 83 84 85 86
static int buffer_mode = -1;
module_param(buffer_mode, int, 0444);
MODULE_PARM_DESC(buffer_mode,
		"Set the buffer mode to be used; default is to go with what "
		"the platform driver asks for.  Set to 0 for vmalloc, 1 for "
		"DMA contiguous.");

87 88 89 90 91 92 93 94
/*
 * Status flags.  Always manipulated with bit operations.
 */
#define CF_BUF0_VALID	 0	/* Buffers valid - first three */
#define CF_BUF1_VALID	 1
#define CF_BUF2_VALID	 2
#define CF_DMA_ACTIVE	 3	/* A frame is incoming */
#define CF_CONFIG_NEEDED 4	/* Must configure hardware */
95
#define CF_SINGLE_BUFFER 5	/* Running with a single buffer */
96
#define CF_SG_RESTART	 6	/* SG restart needed */
97 98 99
#define CF_FRAME_SOF0	 7	/* Frame 0 started */
#define CF_FRAME_SOF1	 8
#define CF_FRAME_SOF2	 9
100 101 102 103 104 105 106 107

#define sensor_call(cam, o, f, args...) \
	v4l2_subdev_call(cam->sensor, o, f, ##args)

static struct mcam_format_struct {
	__u8 *desc;
	__u32 pixelformat;
	int bpp;   /* Bytes per pixel */
108
	bool planar;
109 110 111 112 113 114 115
	enum v4l2_mbus_pixelcode mbus_code;
} mcam_formats[] = {
	{
		.desc		= "YUYV 4:2:2",
		.pixelformat	= V4L2_PIX_FMT_YUYV,
		.mbus_code	= V4L2_MBUS_FMT_YUYV8_2X8,
		.bpp		= 2,
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
		.planar		= false,
	},
	{
		.desc		= "UYVY 4:2:2",
		.pixelformat	= V4L2_PIX_FMT_UYVY,
		.mbus_code	= V4L2_MBUS_FMT_YUYV8_2X8,
		.bpp		= 2,
		.planar		= false,
	},
	{
		.desc		= "YUV 4:2:2 PLANAR",
		.pixelformat	= V4L2_PIX_FMT_YUV422P,
		.mbus_code	= V4L2_MBUS_FMT_YUYV8_2X8,
		.bpp		= 2,
		.planar		= true,
	},
	{
		.desc		= "YUV 4:2:0 PLANAR",
		.pixelformat	= V4L2_PIX_FMT_YUV420,
		.mbus_code	= V4L2_MBUS_FMT_YUYV8_2X8,
		.bpp		= 2,
		.planar		= true,
	},
	{
		.desc		= "YVU 4:2:0 PLANAR",
		.pixelformat	= V4L2_PIX_FMT_YVU420,
		.mbus_code	= V4L2_MBUS_FMT_YUYV8_2X8,
		.bpp		= 2,
		.planar		= true,
145 146 147 148 149 150
	},
	{
		.desc		= "RGB 444",
		.pixelformat	= V4L2_PIX_FMT_RGB444,
		.mbus_code	= V4L2_MBUS_FMT_RGB444_2X8_PADHI_LE,
		.bpp		= 2,
151
		.planar		= false,
152 153 154 155 156 157
	},
	{
		.desc		= "RGB 565",
		.pixelformat	= V4L2_PIX_FMT_RGB565,
		.mbus_code	= V4L2_MBUS_FMT_RGB565_2X8_LE,
		.bpp		= 2,
158
		.planar		= false,
159 160 161 162 163
	},
	{
		.desc		= "Raw RGB Bayer",
		.pixelformat	= V4L2_PIX_FMT_SBGGR8,
		.mbus_code	= V4L2_MBUS_FMT_SBGGR8_1X8,
164 165
		.bpp		= 1,
		.planar		= false,
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
	},
};
#define N_MCAM_FMTS ARRAY_SIZE(mcam_formats)

static struct mcam_format_struct *mcam_find_format(u32 pixelformat)
{
	unsigned i;

	for (i = 0; i < N_MCAM_FMTS; i++)
		if (mcam_formats[i].pixelformat == pixelformat)
			return mcam_formats + i;
	/* Not found? Then return the first format. */
	return mcam_formats;
}

/*
182
 * The default format we use until somebody says otherwise.
183
 */
184 185 186 187 188 189 190 191
static const struct v4l2_pix_format mcam_def_pix_format = {
	.width		= VGA_WIDTH,
	.height		= VGA_HEIGHT,
	.pixelformat	= V4L2_PIX_FMT_YUYV,
	.field		= V4L2_FIELD_NONE,
	.bytesperline	= VGA_WIDTH*2,
	.sizeimage	= VGA_WIDTH*VGA_HEIGHT*2,
};
192

193 194
static const enum v4l2_mbus_pixelcode mcam_def_mbus_code =
					V4L2_MBUS_FMT_YUYV8_2X8;
195 196


197 198 199 200 201 202 203 204 205 206 207
/*
 * The two-word DMA descriptor format used by the Armada 610 and like.  There
 * Is a three-word format as well (set C1_DESC_3WORD) where the third
 * word is a pointer to the next descriptor, but we don't use it.  Two-word
 * descriptors have to be contiguous in memory.
 */
struct mcam_dma_desc {
	u32 dma_addr;
	u32 segment_len;
};

208 209 210 211 212 213
struct yuv_pointer_t {
	dma_addr_t y;
	dma_addr_t u;
	dma_addr_t v;
};

214 215 216 217 218 219 220 221
/*
 * Our buffer type for working with videobuf2.  Note that the vb2
 * developers have decreed that struct vb2_buffer must be at the
 * beginning of this structure.
 */
struct mcam_vb_buffer {
	struct vb2_buffer vb_buf;
	struct list_head queue;
222 223 224
	struct mcam_dma_desc *dma_desc;	/* Descriptor virtual address */
	dma_addr_t dma_desc_pa;		/* Descriptor physical address */
	int dma_desc_nent;		/* Number of mapped descriptors */
225
	struct yuv_pointer_t yuv_p;
226 227 228 229 230 231 232
};

static inline struct mcam_vb_buffer *vb_to_mvb(struct vb2_buffer *vb)
{
	return container_of(vb, struct mcam_vb_buffer, vb_buf);
}

233 234 235 236 237 238 239 240 241 242 243 244 245
/*
 * Hand a completed buffer back to user space.
 */
static void mcam_buffer_done(struct mcam_camera *cam, int frame,
		struct vb2_buffer *vbuf)
{
	vbuf->v4l2_buf.bytesused = cam->pix_format.sizeimage;
	vbuf->v4l2_buf.sequence = cam->buf_seq[frame];
	vb2_set_plane_payload(vbuf, 0, cam->pix_format.sizeimage);
	vb2_buffer_done(vbuf, VB2_BUF_STATE_DONE);
}


246 247

/*
248
 * Debugging and related.
249 250 251 252 253 254 255 256 257
 */
#define cam_err(cam, fmt, arg...) \
	dev_err((cam)->dev, fmt, ##arg);
#define cam_warn(cam, fmt, arg...) \
	dev_warn((cam)->dev, fmt, ##arg);
#define cam_dbg(cam, fmt, arg...) \
	dev_dbg((cam)->dev, fmt, ##arg);


258 259 260 261 262 263 264 265
/*
 * Flag manipulation helpers
 */
static void mcam_reset_buffers(struct mcam_camera *cam)
{
	int i;

	cam->next_buf = -1;
266
	for (i = 0; i < cam->nbufs; i++) {
267
		clear_bit(i, &cam->flags);
268 269
		clear_bit(CF_FRAME_SOF0 + i, &cam->flags);
	}
270 271 272 273 274 275 276 277 278 279 280 281 282 283
}

static inline int mcam_needs_config(struct mcam_camera *cam)
{
	return test_bit(CF_CONFIG_NEEDED, &cam->flags);
}

static void mcam_set_config_needed(struct mcam_camera *cam, int needed)
{
	if (needed)
		set_bit(CF_CONFIG_NEEDED, &cam->flags);
	else
		clear_bit(CF_CONFIG_NEEDED, &cam->flags);
}
284 285 286

/* ------------------------------------------------------------------- */
/*
287 288
 * Make the controller start grabbing images.  Everything must
 * be set up before doing this.
289
 */
290 291 292 293 294 295 296 297 298 299 300 301
static void mcam_ctlr_start(struct mcam_camera *cam)
{
	/* set_bit performs a read, so no other barrier should be
	   needed here */
	mcam_reg_set_bit(cam, REG_CTRL0, C0_ENABLE);
}

static void mcam_ctlr_stop(struct mcam_camera *cam)
{
	mcam_reg_clear_bit(cam, REG_CTRL0, C0_ENABLE);
}

302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
static void mcam_enable_mipi(struct mcam_camera *mcam)
{
	/* Using MIPI mode and enable MIPI */
	cam_dbg(mcam, "camera: DPHY3=0x%x, DPHY5=0x%x, DPHY6=0x%x\n",
			mcam->dphy[0], mcam->dphy[1], mcam->dphy[2]);
	mcam_reg_write(mcam, REG_CSI2_DPHY3, mcam->dphy[0]);
	mcam_reg_write(mcam, REG_CSI2_DPHY5, mcam->dphy[1]);
	mcam_reg_write(mcam, REG_CSI2_DPHY6, mcam->dphy[2]);

	if (!mcam->mipi_enabled) {
		if (mcam->lane > 4 || mcam->lane <= 0) {
			cam_warn(mcam, "lane number error\n");
			mcam->lane = 1;	/* set the default value */
		}
		/*
		 * 0x41 actives 1 lane
		 * 0x43 actives 2 lanes
		 * 0x45 actives 3 lanes (never happen)
		 * 0x47 actives 4 lanes
		 */
		mcam_reg_write(mcam, REG_CSI2_CTRL0,
			CSI2_C0_MIPI_EN | CSI2_C0_ACT_LANE(mcam->lane));
		mcam_reg_write(mcam, REG_CLKCTRL,
			(mcam->mclk_src << 29) | mcam->mclk_div);

		mcam->mipi_enabled = true;
	}
}

static void mcam_disable_mipi(struct mcam_camera *mcam)
{
	/* Using Parallel mode or disable MIPI */
	mcam_reg_write(mcam, REG_CSI2_CTRL0, 0x0);
	mcam_reg_write(mcam, REG_CSI2_DPHY3, 0x0);
	mcam_reg_write(mcam, REG_CSI2_DPHY5, 0x0);
	mcam_reg_write(mcam, REG_CSI2_DPHY6, 0x0);
	mcam->mipi_enabled = false;
}

341
/* ------------------------------------------------------------------- */
342 343

#ifdef MCAM_MODE_VMALLOC
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
/*
 * Code specific to the vmalloc buffer mode.
 */

/*
 * Allocate in-kernel DMA buffers for vmalloc mode.
 */
static int mcam_alloc_dma_bufs(struct mcam_camera *cam, int loadtime)
{
	int i;

	mcam_set_config_needed(cam, 1);
	if (loadtime)
		cam->dma_buf_size = dma_buf_size;
	else
		cam->dma_buf_size = cam->pix_format.sizeimage;
	if (n_dma_bufs > 3)
		n_dma_bufs = 3;

	cam->nbufs = 0;
	for (i = 0; i < n_dma_bufs; i++) {
		cam->dma_bufs[i] = dma_alloc_coherent(cam->dev,
				cam->dma_buf_size, cam->dma_handles + i,
				GFP_KERNEL);
		if (cam->dma_bufs[i] == NULL) {
			cam_warn(cam, "Failed to allocate DMA buffer\n");
			break;
		}
		(cam->nbufs)++;
	}

	switch (cam->nbufs) {
	case 1:
		dma_free_coherent(cam->dev, cam->dma_buf_size,
				cam->dma_bufs[0], cam->dma_handles[0]);
		cam->nbufs = 0;
	case 0:
		cam_err(cam, "Insufficient DMA buffers, cannot operate\n");
		return -ENOMEM;

	case 2:
		if (n_dma_bufs > 2)
			cam_warn(cam, "Will limp along with only 2 buffers\n");
		break;
	}
	return 0;
}

static void mcam_free_dma_bufs(struct mcam_camera *cam)
{
	int i;

	for (i = 0; i < cam->nbufs; i++) {
		dma_free_coherent(cam->dev, cam->dma_buf_size,
				cam->dma_bufs[i], cam->dma_handles[i]);
		cam->dma_bufs[i] = NULL;
	}
	cam->nbufs = 0;
}

404 405

/*
406
 * Set up DMA buffers when operating in vmalloc mode
407
 */
408
static void mcam_ctlr_dma_vmalloc(struct mcam_camera *cam)
409 410 411 412 413 414 415 416 417 418 419 420 421 422
{
	/*
	 * Store the first two Y buffers (we aren't supporting
	 * planar formats for now, so no UV bufs).  Then either
	 * set the third if it exists, or tell the controller
	 * to just use two.
	 */
	mcam_reg_write(cam, REG_Y0BAR, cam->dma_handles[0]);
	mcam_reg_write(cam, REG_Y1BAR, cam->dma_handles[1]);
	if (cam->nbufs > 2) {
		mcam_reg_write(cam, REG_Y2BAR, cam->dma_handles[2]);
		mcam_reg_clear_bit(cam, REG_CTRL1, C1_TWOBUFS);
	} else
		mcam_reg_set_bit(cam, REG_CTRL1, C1_TWOBUFS);
423
	if (cam->chip_id == MCAM_CAFE)
424
		mcam_reg_write(cam, REG_UBAR, 0); /* 32 bits only */
425 426
}

427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
/*
 * Copy data out to user space in the vmalloc case
 */
static void mcam_frame_tasklet(unsigned long data)
{
	struct mcam_camera *cam = (struct mcam_camera *) data;
	int i;
	unsigned long flags;
	struct mcam_vb_buffer *buf;

	spin_lock_irqsave(&cam->dev_lock, flags);
	for (i = 0; i < cam->nbufs; i++) {
		int bufno = cam->next_buf;

		if (cam->state != S_STREAMING || bufno < 0)
			break;  /* I/O got stopped */
		if (++(cam->next_buf) >= cam->nbufs)
			cam->next_buf = 0;
		if (!test_bit(bufno, &cam->flags))
			continue;
		if (list_empty(&cam->buffers)) {
448
			cam->frame_state.singles++;
449 450
			break;  /* Leave it valid, hope for better later */
		}
451
		cam->frame_state.delivered++;
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
		clear_bit(bufno, &cam->flags);
		buf = list_first_entry(&cam->buffers, struct mcam_vb_buffer,
				queue);
		list_del_init(&buf->queue);
		/*
		 * Drop the lock during the big copy.  This *should* be safe...
		 */
		spin_unlock_irqrestore(&cam->dev_lock, flags);
		memcpy(vb2_plane_vaddr(&buf->vb_buf, 0), cam->dma_bufs[bufno],
				cam->pix_format.sizeimage);
		mcam_buffer_done(cam, bufno, &buf->vb_buf);
		spin_lock_irqsave(&cam->dev_lock, flags);
	}
	spin_unlock_irqrestore(&cam->dev_lock, flags);
}


469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
/*
 * Make sure our allocated buffers are up to the task.
 */
static int mcam_check_dma_buffers(struct mcam_camera *cam)
{
	if (cam->nbufs > 0 && cam->dma_buf_size < cam->pix_format.sizeimage)
			mcam_free_dma_bufs(cam);
	if (cam->nbufs == 0)
		return mcam_alloc_dma_bufs(cam, 0);
	return 0;
}

static void mcam_vmalloc_done(struct mcam_camera *cam, int frame)
{
	tasklet_schedule(&cam->s_tasklet);
}

#else /* MCAM_MODE_VMALLOC */

static inline int mcam_alloc_dma_bufs(struct mcam_camera *cam, int loadtime)
{
	return 0;
}

static inline void mcam_free_dma_bufs(struct mcam_camera *cam)
{
	return;
}

static inline int mcam_check_dma_buffers(struct mcam_camera *cam)
{
	return 0;
}



#endif /* MCAM_MODE_VMALLOC */


#ifdef MCAM_MODE_DMA_CONTIG
509 510 511 512
/* ---------------------------------------------------------------------- */
/*
 * DMA-contiguous code.
 */
513 514 515 516 517 518 519 520 521

static bool mcam_fmt_is_planar(__u32 pfmt)
{
	struct mcam_format_struct *f;

	f = mcam_find_format(pfmt);
	return f->planar;
}

522 523 524 525 526 527 528 529 530 531 532
/*
 * Set up a contiguous buffer for the given frame.  Here also is where
 * the underrun strategy is set: if there is no buffer available, reuse
 * the buffer from the other BAR and set the CF_SINGLE_BUFFER flag to
 * keep the interrupt handler from giving that buffer back to user
 * space.  In this way, we always have a buffer to DMA to and don't
 * have to try to play games stopping and restarting the controller.
 */
static void mcam_set_contig_buffer(struct mcam_camera *cam, int frame)
{
	struct mcam_vb_buffer *buf;
533 534 535 536 537
	struct v4l2_pix_format *fmt = &cam->pix_format;
	dma_addr_t dma_handle;
	u32 pixel_count = fmt->width * fmt->height;
	struct vb2_buffer *vb;

538 539 540 541 542 543
	/*
	 * If there are no available buffers, go into single mode
	 */
	if (list_empty(&cam->buffers)) {
		buf = cam->vb_bufs[frame ^ 0x1];
		set_bit(CF_SINGLE_BUFFER, &cam->flags);
544
		cam->frame_state.singles++;
545 546 547 548 549 550 551 552
	} else {
		/*
		 * OK, we have a buffer we can use.
		 */
		buf = list_first_entry(&cam->buffers, struct mcam_vb_buffer,
					queue);
		list_del_init(&buf->queue);
		clear_bit(CF_SINGLE_BUFFER, &cam->flags);
553
	}
554 555

	cam->vb_bufs[frame] = buf;
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
	vb = &buf->vb_buf;

	dma_handle = vb2_dma_contig_plane_dma_addr(vb, 0);
	buf->yuv_p.y = dma_handle;

	switch (cam->pix_format.pixelformat) {
	case V4L2_PIX_FMT_YUV422P:
		buf->yuv_p.u = buf->yuv_p.y + pixel_count;
		buf->yuv_p.v = buf->yuv_p.u + pixel_count / 2;
		break;
	case V4L2_PIX_FMT_YUV420:
		buf->yuv_p.u = buf->yuv_p.y + pixel_count;
		buf->yuv_p.v = buf->yuv_p.u + pixel_count / 4;
		break;
	case V4L2_PIX_FMT_YVU420:
		buf->yuv_p.v = buf->yuv_p.y + pixel_count;
		buf->yuv_p.u = buf->yuv_p.v + pixel_count / 4;
		break;
	default:
		break;
	}

	mcam_reg_write(cam, frame == 0 ? REG_Y0BAR : REG_Y1BAR, buf->yuv_p.y);
	if (mcam_fmt_is_planar(fmt->pixelformat)) {
		mcam_reg_write(cam, frame == 0 ?
					REG_U0BAR : REG_U1BAR, buf->yuv_p.u);
		mcam_reg_write(cam, frame == 0 ?
					REG_V0BAR : REG_V1BAR, buf->yuv_p.v);
	}
585 586
}

587 588 589
/*
 * Initial B_DMA_contig setup.
 */
590 591 592 593 594 595 596 597
static void mcam_ctlr_dma_contig(struct mcam_camera *cam)
{
	mcam_reg_set_bit(cam, REG_CTRL1, C1_TWOBUFS);
	cam->nbufs = 2;
	mcam_set_contig_buffer(cam, 0);
	mcam_set_contig_buffer(cam, 1);
}

598 599 600 601 602 603 604 605
/*
 * Frame completion handling.
 */
static void mcam_dma_contig_done(struct mcam_camera *cam, int frame)
{
	struct mcam_vb_buffer *buf = cam->vb_bufs[frame];

	if (!test_bit(CF_SINGLE_BUFFER, &cam->flags)) {
606
		cam->frame_state.delivered++;
607 608 609 610 611
		mcam_buffer_done(cam, frame, &buf->vb_buf);
	}
	mcam_set_contig_buffer(cam, frame);
}

612
#endif /* MCAM_MODE_DMA_CONTIG */
613

614
#ifdef MCAM_MODE_DMA_SG
615 616 617 618
/* ---------------------------------------------------------------------- */
/*
 * Scatter/gather-specific code.
 */
619

620 621 622 623 624
/*
 * Set up the next buffer for S/G I/O; caller should be sure that
 * the controller is stopped and a buffer is available.
 */
static void mcam_sg_next_buffer(struct mcam_camera *cam)
625
{
626 627 628 629
	struct mcam_vb_buffer *buf;

	buf = list_first_entry(&cam->buffers, struct mcam_vb_buffer, queue);
	list_del_init(&buf->queue);
630 631 632 633 634
	/*
	 * Very Bad Not Good Things happen if you don't clear
	 * C1_DESC_ENA before making any descriptor changes.
	 */
	mcam_reg_clear_bit(cam, REG_CTRL1, C1_DESC_ENA);
635 636 637 638 639
	mcam_reg_write(cam, REG_DMA_DESC_Y, buf->dma_desc_pa);
	mcam_reg_write(cam, REG_DESC_LEN_Y,
			buf->dma_desc_nent*sizeof(struct mcam_dma_desc));
	mcam_reg_write(cam, REG_DESC_LEN_U, 0);
	mcam_reg_write(cam, REG_DESC_LEN_V, 0);
640
	mcam_reg_set_bit(cam, REG_CTRL1, C1_DESC_ENA);
641
	cam->vb_bufs[0] = buf;
642 643
}

644 645 646 647 648
/*
 * Initial B_DMA_sg setup
 */
static void mcam_ctlr_dma_sg(struct mcam_camera *cam)
{
649 650 651 652 653 654 655 656 657
	/*
	 * The list-empty condition can hit us at resume time
	 * if the buffer list was empty when the system was suspended.
	 */
	if (list_empty(&cam->buffers)) {
		set_bit(CF_SG_RESTART, &cam->flags);
		return;
	}

658 659 660 661 662
	mcam_reg_clear_bit(cam, REG_CTRL1, C1_DESC_3WORD);
	mcam_sg_next_buffer(cam);
	cam->nbufs = 3;
}

663

664
/*
665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
 * Frame completion with S/G is trickier.  We can't muck with
 * a descriptor chain on the fly, since the controller buffers it
 * internally.  So we have to actually stop and restart; Marvell
 * says this is the way to do it.
 *
 * Of course, stopping is easier said than done; experience shows
 * that the controller can start a frame *after* C0_ENABLE has been
 * cleared.  So when running in S/G mode, the controller is "stopped"
 * on receipt of the start-of-frame interrupt.  That means we can
 * safely change the DMA descriptor array here and restart things
 * (assuming there's another buffer waiting to go).
 */
static void mcam_dma_sg_done(struct mcam_camera *cam, int frame)
{
	struct mcam_vb_buffer *buf = cam->vb_bufs[0];

681 682 683 684 685
	/*
	 * If we're no longer supposed to be streaming, don't do anything.
	 */
	if (cam->state != S_STREAMING)
		return;
686 687 688 689 690 691 692 693 694 695 696 697 698
	/*
	 * If we have another buffer available, put it in and
	 * restart the engine.
	 */
	if (!list_empty(&cam->buffers)) {
		mcam_sg_next_buffer(cam);
		mcam_ctlr_start(cam);
	/*
	 * Otherwise set CF_SG_RESTART and the controller will
	 * be restarted once another buffer shows up.
	 */
	} else {
		set_bit(CF_SG_RESTART, &cam->flags);
699
		cam->frame_state.singles++;
700
		cam->vb_bufs[0] = NULL;
701 702 703 704
	}
	/*
	 * Now we can give the completed frame back to user space.
	 */
705
	cam->frame_state.delivered++;
706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
	mcam_buffer_done(cam, frame, &buf->vb_buf);
}


/*
 * Scatter/gather mode requires stopping the controller between
 * frames so we can put in a new DMA descriptor array.  If no new
 * buffer exists at frame completion, the controller is left stopped;
 * this function is charged with gettig things going again.
 */
static void mcam_sg_restart(struct mcam_camera *cam)
{
	mcam_ctlr_dma_sg(cam);
	mcam_ctlr_start(cam);
	clear_bit(CF_SG_RESTART, &cam->flags);
}

723 724 725 726 727 728 729 730
#else /* MCAM_MODE_DMA_SG */

static inline void mcam_sg_restart(struct mcam_camera *cam)
{
	return;
}

#endif /* MCAM_MODE_DMA_SG */
731 732 733 734 735 736 737 738

/* ---------------------------------------------------------------------- */
/*
 * Buffer-mode-independent controller code.
 */

/*
 * Image format setup
739
 */
740 741 742
static void mcam_ctlr_image(struct mcam_camera *cam)
{
	struct v4l2_pix_format *fmt = &cam->pix_format;
743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
	u32 widthy = 0, widthuv = 0, imgsz_h, imgsz_w;

	cam_dbg(cam, "camera: bytesperline = %d; height = %d\n",
		fmt->bytesperline, fmt->sizeimage / fmt->bytesperline);
	imgsz_h = (fmt->height << IMGSZ_V_SHIFT) & IMGSZ_V_MASK;
	imgsz_w = (fmt->width * 2) & IMGSZ_H_MASK;

	switch (fmt->pixelformat) {
	case V4L2_PIX_FMT_YUYV:
	case V4L2_PIX_FMT_UYVY:
		widthy = fmt->width * 2;
		widthuv = 0;
		break;
	case V4L2_PIX_FMT_JPEG:
		imgsz_h = (fmt->sizeimage / fmt->bytesperline) << IMGSZ_V_SHIFT;
		widthy = fmt->bytesperline;
		widthuv = 0;
		break;
	case V4L2_PIX_FMT_YUV422P:
	case V4L2_PIX_FMT_YUV420:
	case V4L2_PIX_FMT_YVU420:
		widthy = fmt->width;
		widthuv = fmt->width / 2;
		break;
	default:
		widthy = fmt->bytesperline;
		widthuv = 0;
	}

	mcam_reg_write_mask(cam, REG_IMGPITCH, widthuv << 16 | widthy,
			IMGP_YP_MASK | IMGP_UVP_MASK);
	mcam_reg_write(cam, REG_IMGSIZE, imgsz_h | imgsz_w);
	mcam_reg_write(cam, REG_IMGOFFSET, 0x0);
776 777 778 779

	/*
	 * Tell the controller about the image format we are using.
	 */
780 781 782 783 784 785 786 787 788 789
	switch (fmt->pixelformat) {
	case V4L2_PIX_FMT_YUV422P:
		mcam_reg_write_mask(cam, REG_CTRL0,
			C0_DF_YUV | C0_YUV_PLANAR | C0_YUVE_YVYU, C0_DF_MASK);
		break;
	case V4L2_PIX_FMT_YUV420:
	case V4L2_PIX_FMT_YVU420:
		mcam_reg_write_mask(cam, REG_CTRL0,
			C0_DF_YUV | C0_YUV_420PL | C0_YUVE_YVYU, C0_DF_MASK);
		break;
790
	case V4L2_PIX_FMT_YUYV:
791 792 793 794 795 796 797 798 799 800 801
		mcam_reg_write_mask(cam, REG_CTRL0,
			C0_DF_YUV | C0_YUV_PACKED | C0_YUVE_UYVY, C0_DF_MASK);
		break;
	case V4L2_PIX_FMT_UYVY:
		mcam_reg_write_mask(cam, REG_CTRL0,
			C0_DF_YUV | C0_YUV_PACKED | C0_YUVE_YUYV, C0_DF_MASK);
		break;
	case V4L2_PIX_FMT_JPEG:
		mcam_reg_write_mask(cam, REG_CTRL0,
			C0_DF_YUV | C0_YUV_PACKED | C0_YUVE_YUYV, C0_DF_MASK);
		break;
802
	case V4L2_PIX_FMT_RGB444:
803 804
		mcam_reg_write_mask(cam, REG_CTRL0,
			C0_DF_RGB | C0_RGBF_444 | C0_RGB4_XRGB, C0_DF_MASK);
805
		/* Alpha value? */
806
		break;
807
	case V4L2_PIX_FMT_RGB565:
808 809 810
		mcam_reg_write_mask(cam, REG_CTRL0,
			C0_DF_RGB | C0_RGBF_565 | C0_RGB5_BGGR, C0_DF_MASK);
		break;
811
	default:
812 813
		cam_err(cam, "camera: unknown format: %#x\n", fmt->pixelformat);
		break;
814
	}
815

816 817 818
	/*
	 * Make sure it knows we want to use hsync/vsync.
	 */
819
	mcam_reg_write_mask(cam, REG_CTRL0, C0_SIF_HVSYNC, C0_SIFM_MASK);
820 821 822 823 824 825
	/*
	 * This field controls the generation of EOF(DVP only)
	 */
	if (cam->bus_type != V4L2_MBUS_CSI2)
		mcam_reg_set_bit(cam, REG_CTRL0,
				C0_EOF_VSYNC | C0_VEDGE_CTRL);
826 827 828 829 830 831 832 833 834 835 836 837
}


/*
 * Configure the controller for operation; caller holds the
 * device mutex.
 */
static int mcam_ctlr_configure(struct mcam_camera *cam)
{
	unsigned long flags;

	spin_lock_irqsave(&cam->dev_lock, flags);
838
	clear_bit(CF_SG_RESTART, &cam->flags);
839
	cam->dma_setup(cam);
840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
	mcam_ctlr_image(cam);
	mcam_set_config_needed(cam, 0);
	spin_unlock_irqrestore(&cam->dev_lock, flags);
	return 0;
}

static void mcam_ctlr_irq_enable(struct mcam_camera *cam)
{
	/*
	 * Clear any pending interrupts, since we do not
	 * expect to have I/O active prior to enabling.
	 */
	mcam_reg_write(cam, REG_IRQSTAT, FRAMEIRQS);
	mcam_reg_set_bit(cam, REG_IRQMASK, FRAMEIRQS);
}

static void mcam_ctlr_irq_disable(struct mcam_camera *cam)
{
	mcam_reg_clear_bit(cam, REG_IRQMASK, FRAMEIRQS);
}


862

863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899
static void mcam_ctlr_init(struct mcam_camera *cam)
{
	unsigned long flags;

	spin_lock_irqsave(&cam->dev_lock, flags);
	/*
	 * Make sure it's not powered down.
	 */
	mcam_reg_clear_bit(cam, REG_CTRL1, C1_PWRDWN);
	/*
	 * Turn off the enable bit.  It sure should be off anyway,
	 * but it's good to be sure.
	 */
	mcam_reg_clear_bit(cam, REG_CTRL0, C0_ENABLE);
	/*
	 * Clock the sensor appropriately.  Controller clock should
	 * be 48MHz, sensor "typical" value is half that.
	 */
	mcam_reg_write_mask(cam, REG_CLKCTRL, 2, CLK_DIV_MASK);
	spin_unlock_irqrestore(&cam->dev_lock, flags);
}


/*
 * Stop the controller, and don't return until we're really sure that no
 * further DMA is going on.
 */
static void mcam_ctlr_stop_dma(struct mcam_camera *cam)
{
	unsigned long flags;

	/*
	 * Theory: stop the camera controller (whether it is operating
	 * or not).  Delay briefly just in case we race with the SOF
	 * interrupt, then wait until no DMA is active.
	 */
	spin_lock_irqsave(&cam->dev_lock, flags);
900
	clear_bit(CF_SG_RESTART, &cam->flags);
901
	mcam_ctlr_stop(cam);
902
	cam->state = S_IDLE;
903
	spin_unlock_irqrestore(&cam->dev_lock, flags);
904 905 906 907 908 909 910 911
	/*
	 * This is a brutally long sleep, but experience shows that
	 * it can take the controller a while to get the message that
	 * it needs to stop grabbing frames.  In particular, we can
	 * sometimes (on mmp) get a frame at the end WITHOUT the
	 * start-of-frame indication.
	 */
	msleep(150);
912 913 914 915 916 917 918 919 920 921 922
	if (test_bit(CF_DMA_ACTIVE, &cam->flags))
		cam_err(cam, "Timeout waiting for DMA to end\n");
		/* This would be bad news - what now? */
	spin_lock_irqsave(&cam->dev_lock, flags);
	mcam_ctlr_irq_disable(cam);
	spin_unlock_irqrestore(&cam->dev_lock, flags);
}

/*
 * Power up and down.
 */
923
static int mcam_ctlr_power_up(struct mcam_camera *cam)
924 925
{
	unsigned long flags;
926
	int ret;
927 928

	spin_lock_irqsave(&cam->dev_lock, flags);
929 930 931 932 933
	ret = cam->plat_power_up(cam);
	if (ret) {
		spin_unlock_irqrestore(&cam->dev_lock, flags);
		return ret;
	}
934
	mcam_reg_clear_bit(cam, REG_CTRL1, C1_PWRDWN);
935 936
	spin_unlock_irqrestore(&cam->dev_lock, flags);
	msleep(5); /* Just to be sure */
937
	return 0;
938 939 940 941 942 943 944
}

static void mcam_ctlr_power_down(struct mcam_camera *cam)
{
	unsigned long flags;

	spin_lock_irqsave(&cam->dev_lock, flags);
945 946 947 948 949
	/*
	 * School of hard knocks department: be sure we do any register
	 * twiddling on the controller *before* calling the platform
	 * power down routine.
	 */
950
	mcam_reg_set_bit(cam, REG_CTRL1, C1_PWRDWN);
951
	cam->plat_power_down(cam);
952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977
	spin_unlock_irqrestore(&cam->dev_lock, flags);
}

/* -------------------------------------------------------------------- */
/*
 * Communications with the sensor.
 */

static int __mcam_cam_reset(struct mcam_camera *cam)
{
	return sensor_call(cam, core, reset, 0);
}

/*
 * We have found the sensor on the i2c.  Let's try to have a
 * conversation.
 */
static int mcam_cam_init(struct mcam_camera *cam)
{
	int ret;

	mutex_lock(&cam->s_mutex);
	if (cam->state != S_NOTREADY)
		cam_warn(cam, "Cam init with device in funky state %d",
				cam->state);
	ret = __mcam_cam_reset(cam);
978
	/* Get/set parameters? */
979 980 981 982
	cam->state = S_IDLE;
	mcam_ctlr_power_down(cam);
	mutex_unlock(&cam->s_mutex);
	return ret;
983 984
}

985 986 987 988 989
/*
 * Configure the sensor to match the parameters we have.  Caller should
 * hold s_mutex
 */
static int mcam_cam_set_flip(struct mcam_camera *cam)
990
{
991
	struct v4l2_control ctrl;
992

993 994 995 996
	memset(&ctrl, 0, sizeof(ctrl));
	ctrl.id = V4L2_CID_VFLIP;
	ctrl.value = flip;
	return sensor_call(cam, core, s_ctrl, &ctrl);
997 998 999
}


1000 1001 1002 1003
static int mcam_cam_configure(struct mcam_camera *cam)
{
	struct v4l2_mbus_framefmt mbus_fmt;
	int ret;
1004

1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
	v4l2_fill_mbus_format(&mbus_fmt, &cam->pix_format, cam->mbus_code);
	ret = sensor_call(cam, core, init, 0);
	if (ret == 0)
		ret = sensor_call(cam, video, s_mbus_fmt, &mbus_fmt);
	/*
	 * OV7670 does weird things if flip is set *before* format...
	 */
	ret += mcam_cam_set_flip(cam);
	return ret;
}
1015 1016 1017 1018

/*
 * Get everything ready, and start grabbing frames.
 */
1019
static int mcam_read_setup(struct mcam_camera *cam)
1020 1021 1022 1023 1024 1025 1026 1027
{
	int ret;
	unsigned long flags;

	/*
	 * Configuration.  If we still don't have DMA buffers,
	 * make one last, desperate attempt.
	 */
1028 1029 1030
	if (cam->buffer_mode == B_vmalloc && cam->nbufs == 0 &&
			mcam_alloc_dma_bufs(cam, 0))
		return -ENOMEM;
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042

	if (mcam_needs_config(cam)) {
		mcam_cam_configure(cam);
		ret = mcam_ctlr_configure(cam);
		if (ret)
			return ret;
	}

	/*
	 * Turn it loose.
	 */
	spin_lock_irqsave(&cam->dev_lock, flags);
1043
	clear_bit(CF_DMA_ACTIVE, &cam->flags);
1044
	mcam_reset_buffers(cam);
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
	/*
	 * Update CSI2_DPHY value
	 */
	if (cam->calc_dphy)
		cam->calc_dphy(cam);
	cam_dbg(cam, "camera: DPHY sets: dphy3=0x%x, dphy5=0x%x, dphy6=0x%x\n",
			cam->dphy[0], cam->dphy[1], cam->dphy[2]);
	if (cam->bus_type == V4L2_MBUS_CSI2)
		mcam_enable_mipi(cam);
	else
		mcam_disable_mipi(cam);
1056
	mcam_ctlr_irq_enable(cam);
1057
	cam->state = S_STREAMING;
1058 1059
	if (!test_bit(CF_SG_RESTART, &cam->flags))
		mcam_ctlr_start(cam);
1060 1061 1062 1063
	spin_unlock_irqrestore(&cam->dev_lock, flags);
	return 0;
}

1064 1065 1066 1067
/* ----------------------------------------------------------------------- */
/*
 * Videobuf2 interface code.
 */
1068

1069 1070
static int mcam_vb_queue_setup(struct vb2_queue *vq,
		const struct v4l2_format *fmt, unsigned int *nbufs,
1071
		unsigned int *num_planes, unsigned int sizes[],
1072
		void *alloc_ctxs[])
1073
{
1074
	struct mcam_camera *cam = vb2_get_drv_priv(vq);
1075
	int minbufs = (cam->buffer_mode == B_DMA_contig) ? 3 : 2;
1076 1077 1078

	sizes[0] = cam->pix_format.sizeimage;
	*num_planes = 1; /* Someday we have to support planar formats... */
1079 1080
	if (*nbufs < minbufs)
		*nbufs = minbufs;
1081 1082
	if (cam->buffer_mode == B_DMA_contig)
		alloc_ctxs[0] = cam->vb_alloc_ctx;
1083 1084 1085
	return 0;
}

1086

1087 1088 1089 1090 1091
static void mcam_vb_buf_queue(struct vb2_buffer *vb)
{
	struct mcam_vb_buffer *mvb = vb_to_mvb(vb);
	struct mcam_camera *cam = vb2_get_drv_priv(vb->vb2_queue);
	unsigned long flags;
1092
	int start;
1093 1094

	spin_lock_irqsave(&cam->dev_lock, flags);
1095 1096
	start = (cam->state == S_BUFWAIT) && !list_empty(&cam->buffers);
	list_add(&mvb->queue, &cam->buffers);
1097
	if (cam->state == S_STREAMING && test_bit(CF_SG_RESTART, &cam->flags))
1098
		mcam_sg_restart(cam);
1099
	spin_unlock_irqrestore(&cam->dev_lock, flags);
1100 1101
	if (start)
		mcam_read_setup(cam);
1102 1103
}

1104

1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
/*
 * vb2 uses these to release the mutex when waiting in dqbuf.  I'm
 * not actually sure we need to do this (I'm not sure that vb2_dqbuf() needs
 * to be called with the mutex held), but better safe than sorry.
 */
static void mcam_vb_wait_prepare(struct vb2_queue *vq)
{
	struct mcam_camera *cam = vb2_get_drv_priv(vq);

	mutex_unlock(&cam->s_mutex);
}

static void mcam_vb_wait_finish(struct vb2_queue *vq)
{
	struct mcam_camera *cam = vb2_get_drv_priv(vq);
1120 1121

	mutex_lock(&cam->s_mutex);
1122
}
1123

1124 1125 1126
/*
 * These need to be called with the mutex held from vb2
 */
1127
static int mcam_vb_start_streaming(struct vb2_queue *vq, unsigned int count)
1128 1129
{
	struct mcam_camera *cam = vb2_get_drv_priv(vq);
1130
	unsigned int frame;
1131

1132 1133
	if (cam->state != S_IDLE) {
		INIT_LIST_HEAD(&cam->buffers);
1134
		return -EINVAL;
1135
	}
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
	cam->sequence = 0;
	/*
	 * Videobuf2 sneakily hoards all the buffers and won't
	 * give them to us until *after* streaming starts.  But
	 * we can't actually start streaming until we have a
	 * destination.  So go into a wait state and hope they
	 * give us buffers soon.
	 */
	if (cam->buffer_mode != B_vmalloc && list_empty(&cam->buffers)) {
		cam->state = S_BUFWAIT;
		return 0;
1147
	}
1148 1149 1150 1151 1152 1153 1154 1155

	/*
	 * Ensure clear the left over frame flags
	 * before every really start streaming
	 */
	for (frame = 0; frame < cam->nbufs; frame++)
		clear_bit(CF_FRAME_SOF0 + frame, &cam->flags);

1156
	return mcam_read_setup(cam);
1157 1158 1159 1160 1161 1162 1163
}

static int mcam_vb_stop_streaming(struct vb2_queue *vq)
{
	struct mcam_camera *cam = vb2_get_drv_priv(vq);
	unsigned long flags;

1164 1165 1166 1167 1168
	if (cam->state == S_BUFWAIT) {
		/* They never gave us buffers */
		cam->state = S_IDLE;
		return 0;
	}
1169 1170 1171
	if (cam->state != S_STREAMING)
		return -EINVAL;
	mcam_ctlr_stop_dma(cam);
1172 1173 1174 1175 1176 1177
	/*
	 * Reset the CCIC PHY after stopping streaming,
	 * otherwise, the CCIC may be unstable.
	 */
	if (cam->ctlr_reset)
		cam->ctlr_reset(cam);
1178
	/*
1179 1180
	 * VB2 reclaims the buffers, so we need to forget
	 * about them.
1181
	 */
1182 1183 1184 1185
	spin_lock_irqsave(&cam->dev_lock, flags);
	INIT_LIST_HEAD(&cam->buffers);
	spin_unlock_irqrestore(&cam->dev_lock, flags);
	return 0;
1186 1187 1188
}


1189 1190 1191 1192 1193 1194 1195 1196
static const struct vb2_ops mcam_vb2_ops = {
	.queue_setup		= mcam_vb_queue_setup,
	.buf_queue		= mcam_vb_buf_queue,
	.start_streaming	= mcam_vb_start_streaming,
	.stop_streaming		= mcam_vb_stop_streaming,
	.wait_prepare		= mcam_vb_wait_prepare,
	.wait_finish		= mcam_vb_wait_finish,
};
1197

1198 1199

#ifdef MCAM_MODE_DMA_SG
1200
/*
1201 1202
 * Scatter/gather mode uses all of the above functions plus a
 * few extras to deal with DMA mapping.
1203
 */
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
static int mcam_vb_sg_buf_init(struct vb2_buffer *vb)
{
	struct mcam_vb_buffer *mvb = vb_to_mvb(vb);
	struct mcam_camera *cam = vb2_get_drv_priv(vb->vb2_queue);
	int ndesc = cam->pix_format.sizeimage/PAGE_SIZE + 1;

	mvb->dma_desc = dma_alloc_coherent(cam->dev,
			ndesc * sizeof(struct mcam_dma_desc),
			&mvb->dma_desc_pa, GFP_KERNEL);
	if (mvb->dma_desc == NULL) {
		cam_err(cam, "Unable to get DMA descriptor array\n");
		return -ENOMEM;
	}
	return 0;
}

static int mcam_vb_sg_buf_prepare(struct vb2_buffer *vb)
{
	struct mcam_vb_buffer *mvb = vb_to_mvb(vb);
	struct mcam_camera *cam = vb2_get_drv_priv(vb->vb2_queue);
1224
	struct sg_table *sg_table = vb2_dma_sg_plane_desc(vb, 0);
1225 1226 1227 1228
	struct mcam_dma_desc *desc = mvb->dma_desc;
	struct scatterlist *sg;
	int i;

1229 1230
	mvb->dma_desc_nent = dma_map_sg(cam->dev, sg_table->sgl,
			sg_table->nents, DMA_FROM_DEVICE);
1231 1232
	if (mvb->dma_desc_nent <= 0)
		return -EIO;  /* Not sure what's right here */
1233
	for_each_sg(sg_table->sgl, sg, mvb->dma_desc_nent, i) {
1234 1235 1236 1237 1238 1239 1240
		desc->dma_addr = sg_dma_address(sg);
		desc->segment_len = sg_dma_len(sg);
		desc++;
	}
	return 0;
}

1241
static void mcam_vb_sg_buf_finish(struct vb2_buffer *vb)
1242 1243
{
	struct mcam_camera *cam = vb2_get_drv_priv(vb->vb2_queue);
1244
	struct sg_table *sg_table = vb2_dma_sg_plane_desc(vb, 0);
1245

1246 1247 1248
	if (sg_table)
		dma_unmap_sg(cam->dev, sg_table->sgl,
				sg_table->nents, DMA_FROM_DEVICE);
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
}

static void mcam_vb_sg_buf_cleanup(struct vb2_buffer *vb)
{
	struct mcam_camera *cam = vb2_get_drv_priv(vb->vb2_queue);
	struct mcam_vb_buffer *mvb = vb_to_mvb(vb);
	int ndesc = cam->pix_format.sizeimage/PAGE_SIZE + 1;

	dma_free_coherent(cam->dev, ndesc * sizeof(struct mcam_dma_desc),
			mvb->dma_desc, mvb->dma_desc_pa);
}


1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
static const struct vb2_ops mcam_vb2_sg_ops = {
	.queue_setup		= mcam_vb_queue_setup,
	.buf_init		= mcam_vb_sg_buf_init,
	.buf_prepare		= mcam_vb_sg_buf_prepare,
	.buf_queue		= mcam_vb_buf_queue,
	.buf_finish		= mcam_vb_sg_buf_finish,
	.buf_cleanup		= mcam_vb_sg_buf_cleanup,
	.start_streaming	= mcam_vb_start_streaming,
	.stop_streaming		= mcam_vb_stop_streaming,
	.wait_prepare		= mcam_vb_wait_prepare,
	.wait_finish		= mcam_vb_wait_finish,
};

1275 1276
#endif /* MCAM_MODE_DMA_SG */

1277 1278 1279
static int mcam_setup_vb2(struct mcam_camera *cam)
{
	struct vb2_queue *vq = &cam->vb_queue;
1280

1281 1282 1283
	memset(vq, 0, sizeof(*vq));
	vq->type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
	vq->drv_priv = cam;
1284 1285 1286
	INIT_LIST_HEAD(&cam->buffers);
	switch (cam->buffer_mode) {
	case B_DMA_contig:
1287
#ifdef MCAM_MODE_DMA_CONTIG
1288
		vq->ops = &mcam_vb2_ops;
1289
		vq->mem_ops = &vb2_dma_contig_memops;
1290
		vq->buf_struct_size = sizeof(struct mcam_vb_buffer);
1291
		cam->vb_alloc_ctx = vb2_dma_contig_init_ctx(cam->dev);
1292
		vq->io_modes = VB2_MMAP | VB2_USERPTR;
1293 1294 1295
		cam->dma_setup = mcam_ctlr_dma_contig;
		cam->frame_complete = mcam_dma_contig_done;
#endif
1296 1297
		break;
	case B_DMA_sg:
1298
#ifdef MCAM_MODE_DMA_SG
1299 1300
		vq->ops = &mcam_vb2_sg_ops;
		vq->mem_ops = &vb2_dma_sg_memops;
1301
		vq->buf_struct_size = sizeof(struct mcam_vb_buffer);
1302
		vq->io_modes = VB2_MMAP | VB2_USERPTR;
1303 1304 1305
		cam->dma_setup = mcam_ctlr_dma_sg;
		cam->frame_complete = mcam_dma_sg_done;
#endif
1306 1307
		break;
	case B_vmalloc:
1308 1309 1310
#ifdef MCAM_MODE_VMALLOC
		tasklet_init(&cam->s_tasklet, mcam_frame_tasklet,
				(unsigned long) cam);
1311
		vq->ops = &mcam_vb2_ops;
1312
		vq->mem_ops = &vb2_vmalloc_memops;
1313 1314
		vq->buf_struct_size = sizeof(struct mcam_vb_buffer);
		vq->io_modes = VB2_MMAP;
1315 1316 1317
		cam->dma_setup = mcam_ctlr_dma_vmalloc;
		cam->frame_complete = mcam_vmalloc_done;
#endif
1318 1319
		break;
	}
1320 1321 1322 1323 1324 1325
	return vb2_queue_init(vq);
}

static void mcam_cleanup_vb2(struct mcam_camera *cam)
{
	vb2_queue_release(&cam->vb_queue);
1326
#ifdef MCAM_MODE_DMA_CONTIG
1327 1328
	if (cam->buffer_mode == B_DMA_contig)
		vb2_dma_contig_cleanup_ctx(cam->vb_alloc_ctx);
1329
#endif
1330 1331
}

1332

1333
/* ---------------------------------------------------------------------- */
1334
/*
1335
 * The long list of V4L2 ioctl() operations.
1336 1337 1338 1339 1340 1341
 */

static int mcam_vidioc_streamon(struct file *filp, void *priv,
		enum v4l2_buf_type type)
{
	struct mcam_camera *cam = filp->private_data;
1342
	int ret;
1343 1344

	mutex_lock(&cam->s_mutex);
1345
	ret = vb2_streamon(&cam->vb_queue, type);
1346 1347 1348 1349 1350 1351 1352 1353 1354
	mutex_unlock(&cam->s_mutex);
	return ret;
}


static int mcam_vidioc_streamoff(struct file *filp, void *priv,
		enum v4l2_buf_type type)
{
	struct mcam_camera *cam = filp->private_data;
1355
	int ret;
1356 1357

	mutex_lock(&cam->s_mutex);
1358
	ret = vb2_streamoff(&cam->vb_queue, type);
1359 1360 1361 1362 1363 1364 1365 1366 1367
	mutex_unlock(&cam->s_mutex);
	return ret;
}


static int mcam_vidioc_reqbufs(struct file *filp, void *priv,
		struct v4l2_requestbuffers *req)
{
	struct mcam_camera *cam = filp->private_data;
1368
	int ret;
1369 1370

	mutex_lock(&cam->s_mutex);
1371
	ret = vb2_reqbufs(&cam->vb_queue, req);
1372 1373 1374 1375 1376 1377 1378 1379 1380
	mutex_unlock(&cam->s_mutex);
	return ret;
}


static int mcam_vidioc_querybuf(struct file *filp, void *priv,
		struct v4l2_buffer *buf)
{
	struct mcam_camera *cam = filp->private_data;
1381
	int ret;
1382 1383

	mutex_lock(&cam->s_mutex);
1384
	ret = vb2_querybuf(&cam->vb_queue, buf);
1385
	mutex_unlock(&cam->s_mutex);
1386
	return ret;
1387 1388
}

1389 1390 1391 1392 1393
static int mcam_vidioc_qbuf(struct file *filp, void *priv,
		struct v4l2_buffer *buf)
{
	struct mcam_camera *cam = filp->private_data;
	int ret;
1394

1395 1396 1397 1398 1399
	mutex_lock(&cam->s_mutex);
	ret = vb2_qbuf(&cam->vb_queue, buf);
	mutex_unlock(&cam->s_mutex);
	return ret;
}
1400

1401 1402
static int mcam_vidioc_dqbuf(struct file *filp, void *priv,
		struct v4l2_buffer *buf)
1403 1404
{
	struct mcam_camera *cam = filp->private_data;
1405
	int ret;
1406

1407
	mutex_lock(&cam->s_mutex);
1408
	ret = vb2_dqbuf(&cam->vb_queue, buf, filp->f_flags & O_NONBLOCK);
1409 1410
	mutex_unlock(&cam->s_mutex);
	return ret;
1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
}

static int mcam_vidioc_querycap(struct file *file, void *priv,
		struct v4l2_capability *cap)
{
	strcpy(cap->driver, "marvell_ccic");
	strcpy(cap->card, "marvell_ccic");
	cap->version = 1;
	cap->capabilities = V4L2_CAP_VIDEO_CAPTURE |
		V4L2_CAP_READWRITE | V4L2_CAP_STREAMING;
	return 0;
}


static int mcam_vidioc_enum_fmt_vid_cap(struct file *filp,
		void *priv, struct v4l2_fmtdesc *fmt)
{
	if (fmt->index >= N_MCAM_FMTS)
		return -EINVAL;
	strlcpy(fmt->description, mcam_formats[fmt->index].desc,
			sizeof(fmt->description));
	fmt->pixelformat = mcam_formats[fmt->index].pixelformat;
	return 0;
}

static int mcam_vidioc_try_fmt_vid_cap(struct file *filp, void *priv,
		struct v4l2_format *fmt)
{
	struct mcam_camera *cam = priv;
	struct mcam_format_struct *f;
	struct v4l2_pix_format *pix = &fmt->fmt.pix;
	struct v4l2_mbus_framefmt mbus_fmt;
	int ret;

	f = mcam_find_format(pix->pixelformat);
	pix->pixelformat = f->pixelformat;
	v4l2_fill_mbus_format(&mbus_fmt, pix, f->mbus_code);
	mutex_lock(&cam->s_mutex);
	ret = sensor_call(cam, video, try_mbus_fmt, &mbus_fmt);
	mutex_unlock(&cam->s_mutex);
	v4l2_fill_pix_format(pix, &mbus_fmt);
1452 1453 1454 1455 1456 1457 1458 1459 1460
	switch (f->pixelformat) {
	case V4L2_PIX_FMT_YUV420:
	case V4L2_PIX_FMT_YVU420:
		pix->bytesperline = pix->width * 3 / 2;
		break;
	default:
		pix->bytesperline = pix->width * f->bpp;
		break;
	}
1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
	pix->sizeimage = pix->height * pix->bytesperline;
	return ret;
}

static int mcam_vidioc_s_fmt_vid_cap(struct file *filp, void *priv,
		struct v4l2_format *fmt)
{
	struct mcam_camera *cam = priv;
	struct mcam_format_struct *f;
	int ret;

	/*
	 * Can't do anything if the device is not idle
	 * Also can't if there are streaming buffers in place.
	 */
1476
	if (cam->state != S_IDLE || cam->vb_queue.num_buffers > 0)
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
		return -EBUSY;

	f = mcam_find_format(fmt->fmt.pix.pixelformat);

	/*
	 * See if the formatting works in principle.
	 */
	ret = mcam_vidioc_try_fmt_vid_cap(filp, priv, fmt);
	if (ret)
		return ret;
	/*
	 * Now we start to change things for real, so let's do it
	 * under lock.
	 */
	mutex_lock(&cam->s_mutex);
	cam->pix_format = fmt->fmt.pix;
	cam->mbus_code = f->mbus_code;

	/*
	 * Make sure we have appropriate DMA buffers.
	 */
1498
	if (cam->buffer_mode == B_vmalloc) {
1499 1500 1501
		ret = mcam_check_dma_buffers(cam);
		if (ret)
			goto out;
1502
	}
1503
	mcam_set_config_needed(cam, 1);
1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
out:
	mutex_unlock(&cam->s_mutex);
	return ret;
}

/*
 * Return our stored notion of how the camera is/should be configured.
 * The V4l2 spec wants us to be smarter, and actually get this from
 * the camera (and not mess with it at open time).  Someday.
 */
static int mcam_vidioc_g_fmt_vid_cap(struct file *filp, void *priv,
		struct v4l2_format *f)
{
	struct mcam_camera *cam = priv;

	f->fmt.pix = cam->pix_format;
	return 0;
}

/*
 * We only have one input - the sensor - so minimize the nonsense here.
 */
static int mcam_vidioc_enum_input(struct file *filp, void *priv,
		struct v4l2_input *input)
{
	if (input->index != 0)
		return -EINVAL;

	input->type = V4L2_INPUT_TYPE_CAMERA;
	input->std = V4L2_STD_ALL; /* Not sure what should go here */
	strcpy(input->name, "Camera");
	return 0;
}

static int mcam_vidioc_g_input(struct file *filp, void *priv, unsigned int *i)
{
	*i = 0;
	return 0;
}

static int mcam_vidioc_s_input(struct file *filp, void *priv, unsigned int i)
{
	if (i != 0)
		return -EINVAL;
	return 0;
}

/* from vivi.c */
1552
static int mcam_vidioc_s_std(struct file *filp, void *priv, v4l2_std_id a)
1553 1554 1555 1556
{
	return 0;
}

1557 1558 1559 1560 1561 1562
static int mcam_vidioc_g_std(struct file *filp, void *priv, v4l2_std_id *a)
{
	*a = V4L2_STD_NTSC_M;
	return 0;
}

1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
/*
 * G/S_PARM.  Most of this is done by the sensor, but we are
 * the level which controls the number of read buffers.
 */
static int mcam_vidioc_g_parm(struct file *filp, void *priv,
		struct v4l2_streamparm *parms)
{
	struct mcam_camera *cam = priv;
	int ret;

	mutex_lock(&cam->s_mutex);
	ret = sensor_call(cam, video, g_parm, parms);
	mutex_unlock(&cam->s_mutex);
	parms->parm.capture.readbuffers = n_dma_bufs;
	return ret;
}

static int mcam_vidioc_s_parm(struct file *filp, void *priv,
		struct v4l2_streamparm *parms)
{
	struct mcam_camera *cam = priv;
	int ret;

	mutex_lock(&cam->s_mutex);
	ret = sensor_call(cam, video, s_parm, parms);
	mutex_unlock(&cam->s_mutex);
	parms->parm.capture.readbuffers = n_dma_bufs;
	return ret;
}

static int mcam_vidioc_enum_framesizes(struct file *filp, void *priv,
		struct v4l2_frmsizeenum *sizes)
{
	struct mcam_camera *cam = priv;
	int ret;

	mutex_lock(&cam->s_mutex);
	ret = sensor_call(cam, video, enum_framesizes, sizes);
	mutex_unlock(&cam->s_mutex);
	return ret;
}

static int mcam_vidioc_enum_frameintervals(struct file *filp, void *priv,
		struct v4l2_frmivalenum *interval)
{
	struct mcam_camera *cam = priv;
	int ret;

	mutex_lock(&cam->s_mutex);
	ret = sensor_call(cam, video, enum_frameintervals, interval);
	mutex_unlock(&cam->s_mutex);
	return ret;
}

#ifdef CONFIG_VIDEO_ADV_DEBUG
static int mcam_vidioc_g_register(struct file *file, void *priv,
		struct v4l2_dbg_register *reg)
{
	struct mcam_camera *cam = priv;

1623 1624
	if (reg->reg > cam->regs_size - 4)
		return -EINVAL;
1625 1626 1627
	reg->val = mcam_reg_read(cam, reg->reg);
	reg->size = 4;
	return 0;
1628 1629 1630
}

static int mcam_vidioc_s_register(struct file *file, void *priv,
1631
		const struct v4l2_dbg_register *reg)
1632 1633 1634
{
	struct mcam_camera *cam = priv;

1635 1636
	if (reg->reg > cam->regs_size - 4)
		return -EINVAL;
1637 1638
	mcam_reg_write(cam, reg->reg, reg->val);
	return 0;
1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651
}
#endif

static const struct v4l2_ioctl_ops mcam_v4l_ioctl_ops = {
	.vidioc_querycap	= mcam_vidioc_querycap,
	.vidioc_enum_fmt_vid_cap = mcam_vidioc_enum_fmt_vid_cap,
	.vidioc_try_fmt_vid_cap	= mcam_vidioc_try_fmt_vid_cap,
	.vidioc_s_fmt_vid_cap	= mcam_vidioc_s_fmt_vid_cap,
	.vidioc_g_fmt_vid_cap	= mcam_vidioc_g_fmt_vid_cap,
	.vidioc_enum_input	= mcam_vidioc_enum_input,
	.vidioc_g_input		= mcam_vidioc_g_input,
	.vidioc_s_input		= mcam_vidioc_s_input,
	.vidioc_s_std		= mcam_vidioc_s_std,
1652
	.vidioc_g_std		= mcam_vidioc_g_std,
1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
	.vidioc_reqbufs		= mcam_vidioc_reqbufs,
	.vidioc_querybuf	= mcam_vidioc_querybuf,
	.vidioc_qbuf		= mcam_vidioc_qbuf,
	.vidioc_dqbuf		= mcam_vidioc_dqbuf,
	.vidioc_streamon	= mcam_vidioc_streamon,
	.vidioc_streamoff	= mcam_vidioc_streamoff,
	.vidioc_g_parm		= mcam_vidioc_g_parm,
	.vidioc_s_parm		= mcam_vidioc_s_parm,
	.vidioc_enum_framesizes = mcam_vidioc_enum_framesizes,
	.vidioc_enum_frameintervals = mcam_vidioc_enum_frameintervals,
#ifdef CONFIG_VIDEO_ADV_DEBUG
	.vidioc_g_register	= mcam_vidioc_g_register,
	.vidioc_s_register	= mcam_vidioc_s_register,
#endif
};

/* ---------------------------------------------------------------------- */
/*
1671
 * Our various file operations.
1672
 */
1673 1674 1675 1676
static int mcam_v4l_open(struct file *filp)
{
	struct mcam_camera *cam = video_drvdata(filp);
	int ret = 0;
1677

1678
	filp->private_data = cam;
1679

1680 1681 1682
	cam->frame_state.frames = 0;
	cam->frame_state.singles = 0;
	cam->frame_state.delivered = 0;
1683 1684 1685 1686 1687
	mutex_lock(&cam->s_mutex);
	if (cam->users == 0) {
		ret = mcam_setup_vb2(cam);
		if (ret)
			goto out;
1688 1689 1690
		ret = mcam_ctlr_power_up(cam);
		if (ret)
			goto out;
1691 1692 1693 1694 1695 1696 1697
		__mcam_cam_reset(cam);
		mcam_set_config_needed(cam, 1);
	}
	(cam->users)++;
out:
	mutex_unlock(&cam->s_mutex);
	return ret;
1698
}
1699 1700


1701 1702 1703
static int mcam_v4l_release(struct file *filp)
{
	struct mcam_camera *cam = filp->private_data;
1704

1705 1706 1707
	cam_dbg(cam, "Release, %d frames, %d singles, %d delivered\n",
			cam->frame_state.frames, cam->frame_state.singles,
			cam->frame_state.delivered);
1708 1709 1710
	mutex_lock(&cam->s_mutex);
	(cam->users)--;
	if (cam->users == 0) {
1711
		mcam_ctlr_stop_dma(cam);
1712
		mcam_cleanup_vb2(cam);
1713
		mcam_disable_mipi(cam);
1714 1715 1716 1717
		mcam_ctlr_power_down(cam);
		if (cam->buffer_mode == B_vmalloc && alloc_bufs_at_read)
			mcam_free_dma_bufs(cam);
	}
1718

1719 1720
	mutex_unlock(&cam->s_mutex);
	return 0;
1721 1722
}

1723 1724
static ssize_t mcam_v4l_read(struct file *filp,
		char __user *buffer, size_t len, loff_t *pos)
1725
{
1726 1727
	struct mcam_camera *cam = filp->private_data;
	int ret;
1728

1729 1730 1731 1732 1733
	mutex_lock(&cam->s_mutex);
	ret = vb2_read(&cam->vb_queue, buffer, len, pos,
			filp->f_flags & O_NONBLOCK);
	mutex_unlock(&cam->s_mutex);
	return ret;
1734
}
1735

1736 1737 1738 1739


static unsigned int mcam_v4l_poll(struct file *filp,
		struct poll_table_struct *pt)
1740
{
1741 1742
	struct mcam_camera *cam = filp->private_data;
	int ret;
1743

1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
	mutex_lock(&cam->s_mutex);
	ret = vb2_poll(&cam->vb_queue, filp, pt);
	mutex_unlock(&cam->s_mutex);
	return ret;
}


static int mcam_v4l_mmap(struct file *filp, struct vm_area_struct *vma)
{
	struct mcam_camera *cam = filp->private_data;
	int ret;

	mutex_lock(&cam->s_mutex);
	ret = vb2_mmap(&cam->vb_queue, vma);
	mutex_unlock(&cam->s_mutex);
	return ret;
1760 1761 1762
}


1763

1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791
static const struct v4l2_file_operations mcam_v4l_fops = {
	.owner = THIS_MODULE,
	.open = mcam_v4l_open,
	.release = mcam_v4l_release,
	.read = mcam_v4l_read,
	.poll = mcam_v4l_poll,
	.mmap = mcam_v4l_mmap,
	.unlocked_ioctl = video_ioctl2,
};


/*
 * This template device holds all of those v4l2 methods; we
 * clone it for specific real devices.
 */
static struct video_device mcam_v4l_template = {
	.name = "mcam",
	.tvnorms = V4L2_STD_NTSC_M,

	.fops = &mcam_v4l_fops,
	.ioctl_ops = &mcam_v4l_ioctl_ops,
	.release = video_device_release_empty,
};

/* ---------------------------------------------------------------------- */
/*
 * Interrupt handler stuff
 */
1792 1793 1794 1795 1796 1797 1798
static void mcam_frame_complete(struct mcam_camera *cam, int frame)
{
	/*
	 * Basic frame housekeeping.
	 */
	set_bit(frame, &cam->flags);
	clear_bit(CF_DMA_ACTIVE, &cam->flags);
1799
	cam->next_buf = frame;
1800
	cam->buf_seq[frame] = ++(cam->sequence);
1801
	cam->frame_state.frames++;
1802
	/*
1803
	 * "This should never happen"
1804
	 */
1805 1806 1807 1808 1809
	if (cam->state != S_STREAMING)
		return;
	/*
	 * Process the frame and set up the next one.
	 */
1810
	cam->frame_complete(cam, frame);
1811 1812 1813
}


1814 1815 1816 1817
/*
 * The interrupt handler; this needs to be called from the
 * platform irq handler with the lock held.
 */
1818 1819 1820 1821 1822 1823 1824 1825 1826
int mccic_irq(struct mcam_camera *cam, unsigned int irqs)
{
	unsigned int frame, handled = 0;

	mcam_reg_write(cam, REG_IRQSTAT, FRAMEIRQS); /* Clear'em all */
	/*
	 * Handle any frame completions.  There really should
	 * not be more than one of these, or we have fallen
	 * far behind.
1827 1828 1829 1830 1831
	 *
	 * When running in S/G mode, the frame number lacks any
	 * real meaning - there's only one descriptor array - but
	 * the controller still picks a different one to signal
	 * each time.
1832 1833
	 */
	for (frame = 0; frame < cam->nbufs; frame++)
1834 1835
		if (irqs & (IRQ_EOF0 << frame) &&
			test_bit(CF_FRAME_SOF0 + frame, &cam->flags)) {
1836 1837
			mcam_frame_complete(cam, frame);
			handled = 1;
1838
			clear_bit(CF_FRAME_SOF0 + frame, &cam->flags);
1839 1840
			if (cam->buffer_mode == B_DMA_sg)
				break;
1841 1842 1843 1844 1845 1846
		}
	/*
	 * If a frame starts, note that we have DMA active.  This
	 * code assumes that we won't get multiple frame interrupts
	 * at once; may want to rethink that.
	 */
1847 1848 1849 1850 1851 1852 1853 1854
	for (frame = 0; frame < cam->nbufs; frame++) {
		if (irqs & (IRQ_SOF0 << frame)) {
			set_bit(CF_FRAME_SOF0 + frame, &cam->flags);
			handled = IRQ_HANDLED;
		}
	}

	if (handled == IRQ_HANDLED) {
1855
		set_bit(CF_DMA_ACTIVE, &cam->flags);
1856 1857
		if (cam->buffer_mode == B_DMA_sg)
			mcam_ctlr_stop(cam);
1858 1859 1860 1861
	}
	return handled;
}

1862
/* ---------------------------------------------------------------------- */
1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879
/*
 * Registration and such.
 */
static struct ov7670_config sensor_cfg = {
	/*
	 * Exclude QCIF mode, because it only captures a tiny portion
	 * of the sensor FOV
	 */
	.min_width = 320,
	.min_height = 240,
};


int mccic_register(struct mcam_camera *cam)
{
	struct i2c_board_info ov7670_info = {
		.type = "ov7670",
1880
		.addr = 0x42 >> 1,
1881 1882 1883 1884
		.platform_data = &sensor_cfg,
	};
	int ret;

1885 1886 1887 1888 1889 1890
	/*
	 * Validate the requested buffer mode.
	 */
	if (buffer_mode >= 0)
		cam->buffer_mode = buffer_mode;
	if (cam->buffer_mode == B_DMA_sg &&
1891
			cam->chip_id == MCAM_CAFE) {
1892 1893 1894 1895 1896 1897 1898 1899 1900
		printk(KERN_ERR "marvell-cam: Cafe can't do S/G I/O, "
			"attempting vmalloc mode instead\n");
		cam->buffer_mode = B_vmalloc;
	}
	if (!mcam_buffer_mode_supported(cam->buffer_mode)) {
		printk(KERN_ERR "marvell-cam: buffer mode %d unsupported\n",
				cam->buffer_mode);
		return -EINVAL;
	}
1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912
	/*
	 * Register with V4L
	 */
	ret = v4l2_device_register(cam->dev, &cam->v4l2_dev);
	if (ret)
		return ret;

	mutex_init(&cam->s_mutex);
	cam->state = S_NOTREADY;
	mcam_set_config_needed(cam, 1);
	cam->pix_format = mcam_def_pix_format;
	cam->mbus_code = mcam_def_mbus_code;
1913
	INIT_LIST_HEAD(&cam->buffers);
1914 1915 1916 1917 1918
	mcam_ctlr_init(cam);

	/*
	 * Try to find the sensor.
	 */
1919 1920
	sensor_cfg.clock_speed = cam->clock_speed;
	sensor_cfg.use_smbus = cam->use_smbus;
1921 1922
	cam->sensor_addr = ov7670_info.addr;
	cam->sensor = v4l2_i2c_new_subdev_board(&cam->v4l2_dev,
1923
			cam->i2c_adapter, &ov7670_info, NULL);
1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934
	if (cam->sensor == NULL) {
		ret = -ENODEV;
		goto out_unregister;
	}

	ret = mcam_cam_init(cam);
	if (ret)
		goto out_unregister;
	/*
	 * Get the v4l2 setup done.
	 */
1935 1936 1937 1938 1939
	ret = v4l2_ctrl_handler_init(&cam->ctrl_handler, 10);
	if (ret)
		goto out_unregister;
	cam->v4l2_dev.ctrl_handler = &cam->ctrl_handler;

1940 1941 1942 1943
	mutex_lock(&cam->s_mutex);
	cam->vdev = mcam_v4l_template;
	cam->vdev.debug = 0;
	cam->vdev.v4l2_dev = &cam->v4l2_dev;
1944
	video_set_drvdata(&cam->vdev, cam);
1945 1946 1947 1948 1949 1950 1951
	ret = video_register_device(&cam->vdev, VFL_TYPE_GRABBER, -1);
	if (ret)
		goto out;

	/*
	 * If so requested, try to get our DMA buffers now.
	 */
1952
	if (cam->buffer_mode == B_vmalloc && !alloc_bufs_at_read) {
1953 1954 1955 1956 1957 1958
		if (mcam_alloc_dma_bufs(cam, 1))
			cam_warn(cam, "Unable to alloc DMA buffers at load"
					" will try again later.");
	}

out:
1959
	v4l2_ctrl_handler_free(&cam->ctrl_handler);
1960 1961 1962 1963 1964 1965 1966 1967 1968 1969
	mutex_unlock(&cam->s_mutex);
	return ret;
out_unregister:
	v4l2_device_unregister(&cam->v4l2_dev);
	return ret;
}


void mccic_shutdown(struct mcam_camera *cam)
{
1970 1971 1972 1973 1974 1975 1976
	/*
	 * If we have no users (and we really, really should have no
	 * users) the device will already be powered down.  Trying to
	 * take it down again will wedge the machine, which is frowned
	 * upon.
	 */
	if (cam->users > 0) {
1977
		cam_warn(cam, "Removing a device with users!\n");
1978 1979
		mcam_ctlr_power_down(cam);
	}
1980
	vb2_queue_release(&cam->vb_queue);
1981 1982
	if (cam->buffer_mode == B_vmalloc)
		mcam_free_dma_bufs(cam);
1983
	video_unregister_device(&cam->vdev);
1984
	v4l2_ctrl_handler_free(&cam->ctrl_handler);
1985 1986 1987 1988 1989 1990 1991 1992 1993 1994
	v4l2_device_unregister(&cam->v4l2_dev);
}

/*
 * Power management
 */
#ifdef CONFIG_PM

void mccic_suspend(struct mcam_camera *cam)
{
1995 1996 1997
	mutex_lock(&cam->s_mutex);
	if (cam->users > 0) {
		enum mcam_state cstate = cam->state;
1998

1999 2000 2001 2002 2003
		mcam_ctlr_stop_dma(cam);
		mcam_ctlr_power_down(cam);
		cam->state = cstate;
	}
	mutex_unlock(&cam->s_mutex);
2004 2005 2006 2007 2008 2009 2010 2011
}

int mccic_resume(struct mcam_camera *cam)
{
	int ret = 0;

	mutex_lock(&cam->s_mutex);
	if (cam->users > 0) {
2012 2013 2014 2015 2016
		ret = mcam_ctlr_power_up(cam);
		if (ret) {
			mutex_unlock(&cam->s_mutex);
			return ret;
		}
2017 2018 2019 2020 2021 2022 2023
		__mcam_cam_reset(cam);
	} else {
		mcam_ctlr_power_down(cam);
	}
	mutex_unlock(&cam->s_mutex);

	set_bit(CF_CONFIG_NEEDED, &cam->flags);
2024 2025 2026 2027 2028 2029 2030
	if (cam->state == S_STREAMING) {
		/*
		 * If there was a buffer in the DMA engine at suspend
		 * time, put it back on the queue or we'll forget about it.
		 */
		if (cam->buffer_mode == B_DMA_sg && cam->vb_bufs[0])
			list_add(&cam->vb_bufs[0]->queue, &cam->buffers);
2031
		ret = mcam_read_setup(cam);
2032
	}
2033 2034 2035
	return ret;
}
#endif /* CONFIG_PM */