intel_ddi.c 92.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

#include "i915_drv.h"
#include "intel_drv.h"

31 32 33
struct ddi_buf_trans {
	u32 trans1;	/* balance leg enable, de-emph level */
	u32 trans2;	/* vref sel, vswing */
34
	u8 i_boost;	/* SKL: I_boost; valid: 0x0, 0x1, 0x3, 0x7 */
35 36
};

37 38 39 40
/* HDMI/DVI modes ignore everything but the last 2 items. So we share
 * them for both DP and FDI transports, allowing those ports to
 * automatically adapt to HDMI connections as well
 */
41
static const struct ddi_buf_trans hsw_ddi_translations_dp[] = {
42 43 44 45 46 47 48 49 50
	{ 0x00FFFFFF, 0x0006000E, 0x0 },
	{ 0x00D75FFF, 0x0005000A, 0x0 },
	{ 0x00C30FFF, 0x00040006, 0x0 },
	{ 0x80AAAFFF, 0x000B0000, 0x0 },
	{ 0x00FFFFFF, 0x0005000A, 0x0 },
	{ 0x00D75FFF, 0x000C0004, 0x0 },
	{ 0x80C30FFF, 0x000B0000, 0x0 },
	{ 0x00FFFFFF, 0x00040006, 0x0 },
	{ 0x80D75FFF, 0x000B0000, 0x0 },
51 52
};

53
static const struct ddi_buf_trans hsw_ddi_translations_fdi[] = {
54 55 56 57 58 59 60 61 62
	{ 0x00FFFFFF, 0x0007000E, 0x0 },
	{ 0x00D75FFF, 0x000F000A, 0x0 },
	{ 0x00C30FFF, 0x00060006, 0x0 },
	{ 0x00AAAFFF, 0x001E0000, 0x0 },
	{ 0x00FFFFFF, 0x000F000A, 0x0 },
	{ 0x00D75FFF, 0x00160004, 0x0 },
	{ 0x00C30FFF, 0x001E0000, 0x0 },
	{ 0x00FFFFFF, 0x00060006, 0x0 },
	{ 0x00D75FFF, 0x001E0000, 0x0 },
63 64
};

65 66
static const struct ddi_buf_trans hsw_ddi_translations_hdmi[] = {
					/* Idx	NT mV d	T mV d	db	*/
67 68 69 70 71 72 73 74 75 76 77 78
	{ 0x00FFFFFF, 0x0006000E, 0x0 },/* 0:	400	400	0	*/
	{ 0x00E79FFF, 0x000E000C, 0x0 },/* 1:	400	500	2	*/
	{ 0x00D75FFF, 0x0005000A, 0x0 },/* 2:	400	600	3.5	*/
	{ 0x00FFFFFF, 0x0005000A, 0x0 },/* 3:	600	600	0	*/
	{ 0x00E79FFF, 0x001D0007, 0x0 },/* 4:	600	750	2	*/
	{ 0x00D75FFF, 0x000C0004, 0x0 },/* 5:	600	900	3.5	*/
	{ 0x00FFFFFF, 0x00040006, 0x0 },/* 6:	800	800	0	*/
	{ 0x80E79FFF, 0x00030002, 0x0 },/* 7:	800	1000	2	*/
	{ 0x00FFFFFF, 0x00140005, 0x0 },/* 8:	850	850	0	*/
	{ 0x00FFFFFF, 0x000C0004, 0x0 },/* 9:	900	900	0	*/
	{ 0x00FFFFFF, 0x001C0003, 0x0 },/* 10:	950	950	0	*/
	{ 0x80FFFFFF, 0x00030002, 0x0 },/* 11:	1000	1000	0	*/
79 80
};

81
static const struct ddi_buf_trans bdw_ddi_translations_edp[] = {
82 83 84 85 86 87 88 89 90
	{ 0x00FFFFFF, 0x00000012, 0x0 },
	{ 0x00EBAFFF, 0x00020011, 0x0 },
	{ 0x00C71FFF, 0x0006000F, 0x0 },
	{ 0x00AAAFFF, 0x000E000A, 0x0 },
	{ 0x00FFFFFF, 0x00020011, 0x0 },
	{ 0x00DB6FFF, 0x0005000F, 0x0 },
	{ 0x00BEEFFF, 0x000A000C, 0x0 },
	{ 0x00FFFFFF, 0x0005000F, 0x0 },
	{ 0x00DB6FFF, 0x000A000C, 0x0 },
91 92
};

93
static const struct ddi_buf_trans bdw_ddi_translations_dp[] = {
94 95 96 97 98 99 100 101 102
	{ 0x00FFFFFF, 0x0007000E, 0x0 },
	{ 0x00D75FFF, 0x000E000A, 0x0 },
	{ 0x00BEFFFF, 0x00140006, 0x0 },
	{ 0x80B2CFFF, 0x001B0002, 0x0 },
	{ 0x00FFFFFF, 0x000E000A, 0x0 },
	{ 0x00DB6FFF, 0x00160005, 0x0 },
	{ 0x80C71FFF, 0x001A0002, 0x0 },
	{ 0x00F7DFFF, 0x00180004, 0x0 },
	{ 0x80D75FFF, 0x001B0002, 0x0 },
103 104
};

105
static const struct ddi_buf_trans bdw_ddi_translations_fdi[] = {
106 107 108 109 110 111 112 113 114
	{ 0x00FFFFFF, 0x0001000E, 0x0 },
	{ 0x00D75FFF, 0x0004000A, 0x0 },
	{ 0x00C30FFF, 0x00070006, 0x0 },
	{ 0x00AAAFFF, 0x000C0000, 0x0 },
	{ 0x00FFFFFF, 0x0004000A, 0x0 },
	{ 0x00D75FFF, 0x00090004, 0x0 },
	{ 0x00C30FFF, 0x000C0000, 0x0 },
	{ 0x00FFFFFF, 0x00070006, 0x0 },
	{ 0x00D75FFF, 0x000C0000, 0x0 },
115 116
};

117 118
static const struct ddi_buf_trans bdw_ddi_translations_hdmi[] = {
					/* Idx	NT mV d	T mV df	db	*/
119 120 121 122 123 124 125 126 127 128
	{ 0x00FFFFFF, 0x0007000E, 0x0 },/* 0:	400	400	0	*/
	{ 0x00D75FFF, 0x000E000A, 0x0 },/* 1:	400	600	3.5	*/
	{ 0x00BEFFFF, 0x00140006, 0x0 },/* 2:	400	800	6	*/
	{ 0x00FFFFFF, 0x0009000D, 0x0 },/* 3:	450	450	0	*/
	{ 0x00FFFFFF, 0x000E000A, 0x0 },/* 4:	600	600	0	*/
	{ 0x00D7FFFF, 0x00140006, 0x0 },/* 5:	600	800	2.5	*/
	{ 0x80CB2FFF, 0x001B0002, 0x0 },/* 6:	600	1000	4.5	*/
	{ 0x00FFFFFF, 0x00140006, 0x0 },/* 7:	800	800	0	*/
	{ 0x80E79FFF, 0x001B0002, 0x0 },/* 8:	800	1000	2	*/
	{ 0x80FFFFFF, 0x001B0002, 0x0 },/* 9:	1000	1000	0	*/
129 130
};

131
/* Skylake H and S */
132
static const struct ddi_buf_trans skl_ddi_translations_dp[] = {
133 134 135
	{ 0x00002016, 0x000000A0, 0x0 },
	{ 0x00005012, 0x0000009B, 0x0 },
	{ 0x00007011, 0x00000088, 0x0 },
136
	{ 0x80009010, 0x000000C0, 0x1 },
137 138
	{ 0x00002016, 0x0000009B, 0x0 },
	{ 0x00005012, 0x00000088, 0x0 },
139
	{ 0x80007011, 0x000000C0, 0x1 },
140
	{ 0x00002016, 0x000000DF, 0x0 },
141
	{ 0x80005012, 0x000000C0, 0x1 },
142 143
};

144 145
/* Skylake U */
static const struct ddi_buf_trans skl_u_ddi_translations_dp[] = {
146
	{ 0x0000201B, 0x000000A2, 0x0 },
147
	{ 0x00005012, 0x00000088, 0x0 },
148
	{ 0x80007011, 0x000000CD, 0x0 },
149
	{ 0x80009010, 0x000000C0, 0x1 },
150
	{ 0x0000201B, 0x0000009D, 0x0 },
151 152
	{ 0x80005012, 0x000000C0, 0x1 },
	{ 0x80007011, 0x000000C0, 0x1 },
153
	{ 0x00002016, 0x00000088, 0x0 },
154
	{ 0x80005012, 0x000000C0, 0x1 },
155 156
};

157 158
/* Skylake Y */
static const struct ddi_buf_trans skl_y_ddi_translations_dp[] = {
159 160
	{ 0x00000018, 0x000000A2, 0x0 },
	{ 0x00005012, 0x00000088, 0x0 },
161
	{ 0x80007011, 0x000000CD, 0x0 },
162
	{ 0x80009010, 0x000000C0, 0x3 },
163
	{ 0x00000018, 0x0000009D, 0x0 },
164 165
	{ 0x80005012, 0x000000C0, 0x3 },
	{ 0x80007011, 0x000000C0, 0x3 },
166
	{ 0x00000018, 0x00000088, 0x0 },
167
	{ 0x80005012, 0x000000C0, 0x3 },
168 169 170
};

/*
171
 * Skylake H and S
172 173
 * eDP 1.4 low vswing translation parameters
 */
174
static const struct ddi_buf_trans skl_ddi_translations_edp[] = {
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
	{ 0x00000018, 0x000000A8, 0x0 },
	{ 0x00004013, 0x000000A9, 0x0 },
	{ 0x00007011, 0x000000A2, 0x0 },
	{ 0x00009010, 0x0000009C, 0x0 },
	{ 0x00000018, 0x000000A9, 0x0 },
	{ 0x00006013, 0x000000A2, 0x0 },
	{ 0x00007011, 0x000000A6, 0x0 },
	{ 0x00000018, 0x000000AB, 0x0 },
	{ 0x00007013, 0x0000009F, 0x0 },
	{ 0x00000018, 0x000000DF, 0x0 },
};

/*
 * Skylake U
 * eDP 1.4 low vswing translation parameters
 */
static const struct ddi_buf_trans skl_u_ddi_translations_edp[] = {
	{ 0x00000018, 0x000000A8, 0x0 },
	{ 0x00004013, 0x000000A9, 0x0 },
	{ 0x00007011, 0x000000A2, 0x0 },
	{ 0x00009010, 0x0000009C, 0x0 },
	{ 0x00000018, 0x000000A9, 0x0 },
	{ 0x00006013, 0x000000A2, 0x0 },
	{ 0x00007011, 0x000000A6, 0x0 },
	{ 0x00002016, 0x000000AB, 0x0 },
	{ 0x00005013, 0x0000009F, 0x0 },
	{ 0x00000018, 0x000000DF, 0x0 },
202 203
};

204
/*
205
 * Skylake Y
206 207
 * eDP 1.4 low vswing translation parameters
 */
208
static const struct ddi_buf_trans skl_y_ddi_translations_edp[] = {
209 210 211 212 213 214 215 216 217 218 219
	{ 0x00000018, 0x000000A8, 0x0 },
	{ 0x00004013, 0x000000AB, 0x0 },
	{ 0x00007011, 0x000000A4, 0x0 },
	{ 0x00009010, 0x000000DF, 0x0 },
	{ 0x00000018, 0x000000AA, 0x0 },
	{ 0x00006013, 0x000000A4, 0x0 },
	{ 0x00007011, 0x0000009D, 0x0 },
	{ 0x00000018, 0x000000A0, 0x0 },
	{ 0x00006012, 0x000000DF, 0x0 },
	{ 0x00000018, 0x0000008A, 0x0 },
};
220

221
/* Skylake U, H and S */
222
static const struct ddi_buf_trans skl_ddi_translations_hdmi[] = {
223 224 225 226 227 228
	{ 0x00000018, 0x000000AC, 0x0 },
	{ 0x00005012, 0x0000009D, 0x0 },
	{ 0x00007011, 0x00000088, 0x0 },
	{ 0x00000018, 0x000000A1, 0x0 },
	{ 0x00000018, 0x00000098, 0x0 },
	{ 0x00004013, 0x00000088, 0x0 },
229
	{ 0x80006012, 0x000000CD, 0x1 },
230
	{ 0x00000018, 0x000000DF, 0x0 },
231 232 233
	{ 0x80003015, 0x000000CD, 0x1 },	/* Default */
	{ 0x80003015, 0x000000C0, 0x1 },
	{ 0x80000018, 0x000000C0, 0x1 },
234 235
};

236 237
/* Skylake Y */
static const struct ddi_buf_trans skl_y_ddi_translations_hdmi[] = {
238 239
	{ 0x00000018, 0x000000A1, 0x0 },
	{ 0x00005012, 0x000000DF, 0x0 },
240
	{ 0x80007011, 0x000000CB, 0x3 },
241 242 243
	{ 0x00000018, 0x000000A4, 0x0 },
	{ 0x00000018, 0x0000009D, 0x0 },
	{ 0x00004013, 0x00000080, 0x0 },
244
	{ 0x80006013, 0x000000C0, 0x3 },
245
	{ 0x00000018, 0x0000008A, 0x0 },
246 247 248
	{ 0x80003015, 0x000000C0, 0x3 },	/* Default */
	{ 0x80003015, 0x000000C0, 0x3 },
	{ 0x80000018, 0x000000C0, 0x3 },
249 250
};

251 252 253 254 255 256 257 258 259 260
struct bxt_ddi_buf_trans {
	u32 margin;	/* swing value */
	u32 scale;	/* scale value */
	u32 enable;	/* scale enable */
	u32 deemphasis;
	bool default_index; /* true if the entry represents default value */
};

static const struct bxt_ddi_buf_trans bxt_ddi_translations_dp[] = {
					/* Idx	NT mV diff	db  */
261 262 263 264 265 266 267 268 269
	{ 52,  0x9A, 0, 128, true  },	/* 0:	400		0   */
	{ 78,  0x9A, 0, 85,  false },	/* 1:	400		3.5 */
	{ 104, 0x9A, 0, 64,  false },	/* 2:	400		6   */
	{ 154, 0x9A, 0, 43,  false },	/* 3:	400		9.5 */
	{ 77,  0x9A, 0, 128, false },	/* 4:	600		0   */
	{ 116, 0x9A, 0, 85,  false },	/* 5:	600		3.5 */
	{ 154, 0x9A, 0, 64,  false },	/* 6:	600		6   */
	{ 102, 0x9A, 0, 128, false },	/* 7:	800		0   */
	{ 154, 0x9A, 0, 85,  false },	/* 8:	800		3.5 */
270
	{ 154, 0x9A, 1, 128, false },	/* 9:	1200		0   */
271 272
};

273 274 275 276 277 278 279 280 281 282 283 284 285 286
static const struct bxt_ddi_buf_trans bxt_ddi_translations_edp[] = {
					/* Idx	NT mV diff	db  */
	{ 26, 0, 0, 128, false },	/* 0:	200		0   */
	{ 38, 0, 0, 112, false },	/* 1:	200		1.5 */
	{ 48, 0, 0, 96,  false },	/* 2:	200		4   */
	{ 54, 0, 0, 69,  false },	/* 3:	200		6   */
	{ 32, 0, 0, 128, false },	/* 4:	250		0   */
	{ 48, 0, 0, 104, false },	/* 5:	250		1.5 */
	{ 54, 0, 0, 85,  false },	/* 6:	250		4   */
	{ 43, 0, 0, 128, false },	/* 7:	300		0   */
	{ 54, 0, 0, 101, false },	/* 8:	300		1.5 */
	{ 48, 0, 0, 128, false },	/* 9:	300		0   */
};

287 288 289 290 291
/* BSpec has 2 recommended values - entries 0 and 8.
 * Using the entry with higher vswing.
 */
static const struct bxt_ddi_buf_trans bxt_ddi_translations_hdmi[] = {
					/* Idx	NT mV diff	db  */
292 293 294 295 296 297 298 299 300
	{ 52,  0x9A, 0, 128, false },	/* 0:	400		0   */
	{ 52,  0x9A, 0, 85,  false },	/* 1:	400		3.5 */
	{ 52,  0x9A, 0, 64,  false },	/* 2:	400		6   */
	{ 42,  0x9A, 0, 43,  false },	/* 3:	400		9.5 */
	{ 77,  0x9A, 0, 128, false },	/* 4:	600		0   */
	{ 77,  0x9A, 0, 85,  false },	/* 5:	600		3.5 */
	{ 77,  0x9A, 0, 64,  false },	/* 6:	600		6   */
	{ 102, 0x9A, 0, 128, false },	/* 7:	800		0   */
	{ 102, 0x9A, 0, 85,  false },	/* 8:	800		3.5 */
301 302 303
	{ 154, 0x9A, 1, 128, true },	/* 9:	1200		0   */
};

304 305
static void bxt_ddi_vswing_sequence(struct drm_i915_private *dev_priv,
				    u32 level, enum port port, int type);
306

307 308 309
static void ddi_get_encoder_port(struct intel_encoder *intel_encoder,
				 struct intel_digital_port **dig_port,
				 enum port *port)
310
{
311
	struct drm_encoder *encoder = &intel_encoder->base;
312

313 314
	switch (intel_encoder->type) {
	case INTEL_OUTPUT_DP_MST:
315 316
		*dig_port = enc_to_mst(encoder)->primary;
		*port = (*dig_port)->port;
317 318 319 320 321
		break;
	case INTEL_OUTPUT_DISPLAYPORT:
	case INTEL_OUTPUT_EDP:
	case INTEL_OUTPUT_HDMI:
	case INTEL_OUTPUT_UNKNOWN:
322 323
		*dig_port = enc_to_dig_port(encoder);
		*port = (*dig_port)->port;
324 325
		break;
	case INTEL_OUTPUT_ANALOG:
326 327
		*dig_port = NULL;
		*port = PORT_E;
328 329 330 331
		break;
	default:
		WARN(1, "Invalid DDI encoder type %d\n", intel_encoder->type);
		break;
332 333 334
	}
}

335 336 337 338 339 340 341 342 343 344
enum port intel_ddi_get_encoder_port(struct intel_encoder *intel_encoder)
{
	struct intel_digital_port *dig_port;
	enum port port;

	ddi_get_encoder_port(intel_encoder, &dig_port, &port);

	return port;
}

345 346 347
static bool
intel_dig_port_supports_hdmi(const struct intel_digital_port *intel_dig_port)
{
348
	return i915_mmio_reg_valid(intel_dig_port->hdmi.hdmi_reg);
349 350
}

351
static const struct ddi_buf_trans *
352
skl_get_buf_trans_dp(struct drm_i915_private *dev_priv, int *n_entries)
353
{
354
	if (IS_SKL_ULX(dev_priv) || IS_KBL_ULX(dev_priv)) {
355
		*n_entries = ARRAY_SIZE(skl_y_ddi_translations_dp);
356
		return skl_y_ddi_translations_dp;
357
	} else if (IS_SKL_ULT(dev_priv) || IS_KBL_ULT(dev_priv)) {
358
		*n_entries = ARRAY_SIZE(skl_u_ddi_translations_dp);
359
		return skl_u_ddi_translations_dp;
360 361
	} else {
		*n_entries = ARRAY_SIZE(skl_ddi_translations_dp);
362
		return skl_ddi_translations_dp;
363 364 365
	}
}

366
static const struct ddi_buf_trans *
367
skl_get_buf_trans_edp(struct drm_i915_private *dev_priv, int *n_entries)
368
{
369
	if (dev_priv->edp_low_vswing) {
370
		if (IS_SKL_ULX(dev_priv) || IS_KBL_ULX(dev_priv)) {
371
			*n_entries = ARRAY_SIZE(skl_y_ddi_translations_edp);
372
			return skl_y_ddi_translations_edp;
373
		} else if (IS_SKL_ULT(dev_priv) || IS_KBL_ULT(dev_priv)) {
374
			*n_entries = ARRAY_SIZE(skl_u_ddi_translations_edp);
375
			return skl_u_ddi_translations_edp;
376 377
		} else {
			*n_entries = ARRAY_SIZE(skl_ddi_translations_edp);
378
			return skl_ddi_translations_edp;
379 380
		}
	}
381

382
	return skl_get_buf_trans_dp(dev_priv, n_entries);
383 384 385
}

static const struct ddi_buf_trans *
386
skl_get_buf_trans_hdmi(struct drm_i915_private *dev_priv, int *n_entries)
387
{
388
	if (IS_SKL_ULX(dev_priv) || IS_KBL_ULX(dev_priv)) {
389
		*n_entries = ARRAY_SIZE(skl_y_ddi_translations_hdmi);
390
		return skl_y_ddi_translations_hdmi;
391 392
	} else {
		*n_entries = ARRAY_SIZE(skl_ddi_translations_hdmi);
393
		return skl_ddi_translations_hdmi;
394 395 396
	}
}

397 398 399
/*
 * Starting with Haswell, DDI port buffers must be programmed with correct
 * values in advance. The buffer values are different for FDI and DP modes,
400 401 402 403
 * but the HDMI/DVI fields are shared among those. So we program the DDI
 * in either FDI or DP modes only, as HDMI connections will work with both
 * of those
 */
404 405
static void intel_prepare_ddi_buffers(struct drm_i915_private *dev_priv,
				      enum port port, bool supports_hdmi)
406
{
407
	u32 iboost_bit = 0;
408
	int i, n_hdmi_entries, n_dp_entries, n_edp_entries, hdmi_default_entry,
409
	    size;
410
	int hdmi_level = dev_priv->vbt.ddi_port_info[port].hdmi_level_shift;
411 412 413 414 415
	const struct ddi_buf_trans *ddi_translations_fdi;
	const struct ddi_buf_trans *ddi_translations_dp;
	const struct ddi_buf_trans *ddi_translations_edp;
	const struct ddi_buf_trans *ddi_translations_hdmi;
	const struct ddi_buf_trans *ddi_translations;
416

417
	if (IS_BROXTON(dev_priv)) {
I
Imre Deak 已提交
418
		if (!supports_hdmi)
419 420 421
			return;

		/* Vswing programming for HDMI */
422
		bxt_ddi_vswing_sequence(dev_priv, hdmi_level, port,
423 424
					INTEL_OUTPUT_HDMI);
		return;
425
	} else if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
426
		ddi_translations_fdi = NULL;
427
		ddi_translations_dp =
428
				skl_get_buf_trans_dp(dev_priv, &n_dp_entries);
429
		ddi_translations_edp =
430
				skl_get_buf_trans_edp(dev_priv, &n_edp_entries);
431
		ddi_translations_hdmi =
432
				skl_get_buf_trans_hdmi(dev_priv, &n_hdmi_entries);
433
		hdmi_default_entry = 8;
434 435 436 437
		/* If we're boosting the current, set bit 31 of trans1 */
		if (dev_priv->vbt.ddi_port_info[port].hdmi_boost_level ||
		    dev_priv->vbt.ddi_port_info[port].dp_boost_level)
			iboost_bit = 1<<31;
438
	} else if (IS_BROADWELL(dev_priv)) {
439 440
		ddi_translations_fdi = bdw_ddi_translations_fdi;
		ddi_translations_dp = bdw_ddi_translations_dp;
441
		ddi_translations_edp = bdw_ddi_translations_edp;
442
		ddi_translations_hdmi = bdw_ddi_translations_hdmi;
443 444
		n_edp_entries = ARRAY_SIZE(bdw_ddi_translations_edp);
		n_dp_entries = ARRAY_SIZE(bdw_ddi_translations_dp);
445
		n_hdmi_entries = ARRAY_SIZE(bdw_ddi_translations_hdmi);
446
		hdmi_default_entry = 7;
447
	} else if (IS_HASWELL(dev_priv)) {
448 449
		ddi_translations_fdi = hsw_ddi_translations_fdi;
		ddi_translations_dp = hsw_ddi_translations_dp;
450
		ddi_translations_edp = hsw_ddi_translations_dp;
451
		ddi_translations_hdmi = hsw_ddi_translations_hdmi;
452
		n_dp_entries = n_edp_entries = ARRAY_SIZE(hsw_ddi_translations_dp);
453
		n_hdmi_entries = ARRAY_SIZE(hsw_ddi_translations_hdmi);
454
		hdmi_default_entry = 6;
455 456
	} else {
		WARN(1, "ddi translation table missing\n");
457
		ddi_translations_edp = bdw_ddi_translations_dp;
458 459
		ddi_translations_fdi = bdw_ddi_translations_fdi;
		ddi_translations_dp = bdw_ddi_translations_dp;
460
		ddi_translations_hdmi = bdw_ddi_translations_hdmi;
461 462
		n_edp_entries = ARRAY_SIZE(bdw_ddi_translations_edp);
		n_dp_entries = ARRAY_SIZE(bdw_ddi_translations_dp);
463
		n_hdmi_entries = ARRAY_SIZE(bdw_ddi_translations_hdmi);
464
		hdmi_default_entry = 7;
465 466
	}

467 468 469
	switch (port) {
	case PORT_A:
		ddi_translations = ddi_translations_edp;
470
		size = n_edp_entries;
471 472 473 474
		break;
	case PORT_B:
	case PORT_C:
		ddi_translations = ddi_translations_dp;
475
		size = n_dp_entries;
476
		break;
477
	case PORT_D:
478
		if (intel_dp_is_edp(dev_priv->dev, PORT_D)) {
479
			ddi_translations = ddi_translations_edp;
480 481
			size = n_edp_entries;
		} else {
482
			ddi_translations = ddi_translations_dp;
483 484
			size = n_dp_entries;
		}
485
		break;
486
	case PORT_E:
487 488 489 490
		if (ddi_translations_fdi)
			ddi_translations = ddi_translations_fdi;
		else
			ddi_translations = ddi_translations_dp;
491
		size = n_dp_entries;
492 493 494 495
		break;
	default:
		BUG();
	}
496

497 498 499 500 501
	for (i = 0; i < size; i++) {
		I915_WRITE(DDI_BUF_TRANS_LO(port, i),
			   ddi_translations[i].trans1 | iboost_bit);
		I915_WRITE(DDI_BUF_TRANS_HI(port, i),
			   ddi_translations[i].trans2);
502
	}
503

I
Imre Deak 已提交
504
	if (!supports_hdmi)
505 506
		return;

507 508 509
	/* Choose a good default if VBT is badly populated */
	if (hdmi_level == HDMI_LEVEL_SHIFT_UNKNOWN ||
	    hdmi_level >= n_hdmi_entries)
510
		hdmi_level = hdmi_default_entry;
511

512
	/* Entry 9 is for HDMI: */
513 514 515 516
	I915_WRITE(DDI_BUF_TRANS_LO(port, i),
		   ddi_translations_hdmi[hdmi_level].trans1 | iboost_bit);
	I915_WRITE(DDI_BUF_TRANS_HI(port, i),
		   ddi_translations_hdmi[hdmi_level].trans2);
517 518 519 520 521 522 523
}

/* Program DDI buffers translations for DP. By default, program ports A-D in DP
 * mode and port E for FDI.
 */
void intel_prepare_ddi(struct drm_device *dev)
{
I
Imre Deak 已提交
524
	struct intel_encoder *intel_encoder;
525
	bool visited[I915_MAX_PORTS] = { 0, };
526

527 528
	if (!HAS_DDI(dev))
		return;
529

I
Imre Deak 已提交
530 531 532 533 534
	for_each_intel_encoder(dev, intel_encoder) {
		struct intel_digital_port *intel_dig_port;
		enum port port;
		bool supports_hdmi;

535 536
		if (intel_encoder->type == INTEL_OUTPUT_DSI)
			continue;
I
Imre Deak 已提交
537

538
		ddi_get_encoder_port(intel_encoder, &intel_dig_port, &port);
I
Imre Deak 已提交
539
		if (visited[port])
540 541
			continue;

I
Imre Deak 已提交
542 543 544
		supports_hdmi = intel_dig_port &&
				intel_dig_port_supports_hdmi(intel_dig_port);

545
		intel_prepare_ddi_buffers(to_i915(dev), port, supports_hdmi);
I
Imre Deak 已提交
546
		visited[port] = true;
547
	}
548
}
549

550 551 552
static void intel_wait_ddi_buf_idle(struct drm_i915_private *dev_priv,
				    enum port port)
{
553
	i915_reg_t reg = DDI_BUF_CTL(port);
554 555
	int i;

556
	for (i = 0; i < 16; i++) {
557 558 559 560 561 562
		udelay(1);
		if (I915_READ(reg) & DDI_BUF_IS_IDLE)
			return;
	}
	DRM_ERROR("Timeout waiting for DDI BUF %c idle bit\n", port_name(port));
}
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577

/* Starting with Haswell, different DDI ports can work in FDI mode for
 * connection to the PCH-located connectors. For this, it is necessary to train
 * both the DDI port and PCH receiver for the desired DDI buffer settings.
 *
 * The recommended port to work in FDI mode is DDI E, which we use here. Also,
 * please note that when FDI mode is active on DDI E, it shares 2 lines with
 * DDI A (which is used for eDP)
 */

void hsw_fdi_link_train(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
578
	u32 temp, i, rx_ctl_val;
579

580 581 582 583
	/* Set the FDI_RX_MISC pwrdn lanes and the 2 workarounds listed at the
	 * mode set "sequence for CRT port" document:
	 * - TP1 to TP2 time with the default value
	 * - FDI delay to 90h
584 585
	 *
	 * WaFDIAutoLinkSetTimingOverrride:hsw
586
	 */
587
	I915_WRITE(FDI_RX_MISC(PIPE_A), FDI_RX_PWRDN_LANE1_VAL(2) |
588 589 590 591
				  FDI_RX_PWRDN_LANE0_VAL(2) |
				  FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);

	/* Enable the PCH Receiver FDI PLL */
592
	rx_ctl_val = dev_priv->fdi_rx_config | FDI_RX_ENHANCE_FRAME_ENABLE |
593
		     FDI_RX_PLL_ENABLE |
594
		     FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
595 596
	I915_WRITE(FDI_RX_CTL(PIPE_A), rx_ctl_val);
	POSTING_READ(FDI_RX_CTL(PIPE_A));
597 598 599 600
	udelay(220);

	/* Switch from Rawclk to PCDclk */
	rx_ctl_val |= FDI_PCDCLK;
601
	I915_WRITE(FDI_RX_CTL(PIPE_A), rx_ctl_val);
602 603

	/* Configure Port Clock Select */
604 605
	I915_WRITE(PORT_CLK_SEL(PORT_E), intel_crtc->config->ddi_pll_sel);
	WARN_ON(intel_crtc->config->ddi_pll_sel != PORT_CLK_SEL_SPLL);
606 607 608

	/* Start the training iterating through available voltages and emphasis,
	 * testing each value twice. */
609
	for (i = 0; i < ARRAY_SIZE(hsw_ddi_translations_fdi) * 2; i++) {
610 611 612 613 614 615 616
		/* Configure DP_TP_CTL with auto-training */
		I915_WRITE(DP_TP_CTL(PORT_E),
					DP_TP_CTL_FDI_AUTOTRAIN |
					DP_TP_CTL_ENHANCED_FRAME_ENABLE |
					DP_TP_CTL_LINK_TRAIN_PAT1 |
					DP_TP_CTL_ENABLE);

617 618 619 620
		/* Configure and enable DDI_BUF_CTL for DDI E with next voltage.
		 * DDI E does not support port reversal, the functionality is
		 * achieved on the PCH side in FDI_RX_CTL, so no need to set the
		 * port reversal bit */
621
		I915_WRITE(DDI_BUF_CTL(PORT_E),
622
			   DDI_BUF_CTL_ENABLE |
623
			   ((intel_crtc->config->fdi_lanes - 1) << 1) |
624
			   DDI_BUF_TRANS_SELECT(i / 2));
625
		POSTING_READ(DDI_BUF_CTL(PORT_E));
626 627 628

		udelay(600);

629
		/* Program PCH FDI Receiver TU */
630
		I915_WRITE(FDI_RX_TUSIZE1(PIPE_A), TU_SIZE(64));
631 632 633

		/* Enable PCH FDI Receiver with auto-training */
		rx_ctl_val |= FDI_RX_ENABLE | FDI_LINK_TRAIN_AUTO;
634 635
		I915_WRITE(FDI_RX_CTL(PIPE_A), rx_ctl_val);
		POSTING_READ(FDI_RX_CTL(PIPE_A));
636 637 638 639 640

		/* Wait for FDI receiver lane calibration */
		udelay(30);

		/* Unset FDI_RX_MISC pwrdn lanes */
641
		temp = I915_READ(FDI_RX_MISC(PIPE_A));
642
		temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
643 644
		I915_WRITE(FDI_RX_MISC(PIPE_A), temp);
		POSTING_READ(FDI_RX_MISC(PIPE_A));
645 646 647

		/* Wait for FDI auto training time */
		udelay(5);
648 649 650

		temp = I915_READ(DP_TP_STATUS(PORT_E));
		if (temp & DP_TP_STATUS_AUTOTRAIN_DONE) {
651
			DRM_DEBUG_KMS("FDI link training done on step %d\n", i);
652 653
			break;
		}
654

655 656 657 658 659 660 661
		/*
		 * Leave things enabled even if we failed to train FDI.
		 * Results in less fireworks from the state checker.
		 */
		if (i == ARRAY_SIZE(hsw_ddi_translations_fdi) * 2 - 1) {
			DRM_ERROR("FDI link training failed!\n");
			break;
662
		}
663

664 665 666 667 668
		temp = I915_READ(DDI_BUF_CTL(PORT_E));
		temp &= ~DDI_BUF_CTL_ENABLE;
		I915_WRITE(DDI_BUF_CTL(PORT_E), temp);
		POSTING_READ(DDI_BUF_CTL(PORT_E));

669
		/* Disable DP_TP_CTL and FDI_RX_CTL and retry */
670 671 672 673 674 675 676
		temp = I915_READ(DP_TP_CTL(PORT_E));
		temp &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
		temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
		I915_WRITE(DP_TP_CTL(PORT_E), temp);
		POSTING_READ(DP_TP_CTL(PORT_E));

		intel_wait_ddi_buf_idle(dev_priv, PORT_E);
677 678

		rx_ctl_val &= ~FDI_RX_ENABLE;
679 680
		I915_WRITE(FDI_RX_CTL(PIPE_A), rx_ctl_val);
		POSTING_READ(FDI_RX_CTL(PIPE_A));
681 682

		/* Reset FDI_RX_MISC pwrdn lanes */
683
		temp = I915_READ(FDI_RX_MISC(PIPE_A));
684 685
		temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
		temp |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
686 687
		I915_WRITE(FDI_RX_MISC(PIPE_A), temp);
		POSTING_READ(FDI_RX_MISC(PIPE_A));
688 689
	}

690 691 692 693 694 695
	/* Enable normal pixel sending for FDI */
	I915_WRITE(DP_TP_CTL(PORT_E),
		   DP_TP_CTL_FDI_AUTOTRAIN |
		   DP_TP_CTL_LINK_TRAIN_NORMAL |
		   DP_TP_CTL_ENHANCED_FRAME_ENABLE |
		   DP_TP_CTL_ENABLE);
696
}
697

698 699 700 701 702 703 704
void intel_ddi_init_dp_buf_reg(struct intel_encoder *encoder)
{
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
	struct intel_digital_port *intel_dig_port =
		enc_to_dig_port(&encoder->base);

	intel_dp->DP = intel_dig_port->saved_port_bits |
705
		DDI_BUF_CTL_ENABLE | DDI_BUF_TRANS_SELECT(0);
706
	intel_dp->DP |= DDI_PORT_WIDTH(intel_dp->lane_count);
707 708
}

709 710 711 712 713 714 715 716 717 718 719 720 721 722
static struct intel_encoder *
intel_ddi_get_crtc_encoder(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct intel_encoder *intel_encoder, *ret = NULL;
	int num_encoders = 0;

	for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
		ret = intel_encoder;
		num_encoders++;
	}

	if (num_encoders != 1)
723 724
		WARN(1, "%d encoders on crtc for pipe %c\n", num_encoders,
		     pipe_name(intel_crtc->pipe));
725 726 727 728 729

	BUG_ON(ret == NULL);
	return ret;
}

730
struct intel_encoder *
731
intel_ddi_get_crtc_new_encoder(struct intel_crtc_state *crtc_state)
732
{
733 734 735
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
	struct intel_encoder *ret = NULL;
	struct drm_atomic_state *state;
736 737
	struct drm_connector *connector;
	struct drm_connector_state *connector_state;
738
	int num_encoders = 0;
739
	int i;
740

741 742
	state = crtc_state->base.state;

743 744
	for_each_connector_in_state(state, connector, connector_state, i) {
		if (connector_state->crtc != crtc_state->base.crtc)
745 746
			continue;

747
		ret = to_intel_encoder(connector_state->best_encoder);
748
		num_encoders++;
749 750 751 752 753 754 755 756 757
	}

	WARN(num_encoders != 1, "%d encoders on crtc for pipe %c\n", num_encoders,
	     pipe_name(crtc->pipe));

	BUG_ON(ret == NULL);
	return ret;
}

758
#define LC_FREQ 2700
759
#define LC_FREQ_2K U64_C(LC_FREQ * 2000)
760 761 762 763 764 765 766 767 768 769 770

#define P_MIN 2
#define P_MAX 64
#define P_INC 2

/* Constraints for PLL good behavior */
#define REF_MIN 48
#define REF_MAX 400
#define VCO_MIN 2400
#define VCO_MAX 4800

771 772 773 774 775
#define abs_diff(a, b) ({			\
	typeof(a) __a = (a);			\
	typeof(b) __b = (b);			\
	(void) (&__a == &__b);			\
	__a > __b ? (__a - __b) : (__b - __a); })
776

777
struct hsw_wrpll_rnp {
778 779 780
	unsigned p, n2, r2;
};

781
static unsigned hsw_wrpll_get_budget_for_freq(int clock)
782
{
783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
	unsigned budget;

	switch (clock) {
	case 25175000:
	case 25200000:
	case 27000000:
	case 27027000:
	case 37762500:
	case 37800000:
	case 40500000:
	case 40541000:
	case 54000000:
	case 54054000:
	case 59341000:
	case 59400000:
	case 72000000:
	case 74176000:
	case 74250000:
	case 81000000:
	case 81081000:
	case 89012000:
	case 89100000:
	case 108000000:
	case 108108000:
	case 111264000:
	case 111375000:
	case 148352000:
	case 148500000:
	case 162000000:
	case 162162000:
	case 222525000:
	case 222750000:
	case 296703000:
	case 297000000:
		budget = 0;
		break;
	case 233500000:
	case 245250000:
	case 247750000:
	case 253250000:
	case 298000000:
		budget = 1500;
		break;
	case 169128000:
	case 169500000:
	case 179500000:
	case 202000000:
		budget = 2000;
		break;
	case 256250000:
	case 262500000:
	case 270000000:
	case 272500000:
	case 273750000:
	case 280750000:
	case 281250000:
	case 286000000:
	case 291750000:
		budget = 4000;
		break;
	case 267250000:
	case 268500000:
		budget = 5000;
		break;
	default:
		budget = 1000;
		break;
	}
851

852 853 854
	return budget;
}

855 856 857
static void hsw_wrpll_update_rnp(uint64_t freq2k, unsigned budget,
				 unsigned r2, unsigned n2, unsigned p,
				 struct hsw_wrpll_rnp *best)
858 859
{
	uint64_t a, b, c, d, diff, diff_best;
860

861 862 863 864 865 866 867
	/* No best (r,n,p) yet */
	if (best->p == 0) {
		best->p = p;
		best->n2 = n2;
		best->r2 = r2;
		return;
	}
868

869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
	/*
	 * Output clock is (LC_FREQ_2K / 2000) * N / (P * R), which compares to
	 * freq2k.
	 *
	 * delta = 1e6 *
	 *	   abs(freq2k - (LC_FREQ_2K * n2/(p * r2))) /
	 *	   freq2k;
	 *
	 * and we would like delta <= budget.
	 *
	 * If the discrepancy is above the PPM-based budget, always prefer to
	 * improve upon the previous solution.  However, if you're within the
	 * budget, try to maximize Ref * VCO, that is N / (P * R^2).
	 */
	a = freq2k * budget * p * r2;
	b = freq2k * budget * best->p * best->r2;
885 886 887
	diff = abs_diff(freq2k * p * r2, LC_FREQ_2K * n2);
	diff_best = abs_diff(freq2k * best->p * best->r2,
			     LC_FREQ_2K * best->n2);
888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
	c = 1000000 * diff;
	d = 1000000 * diff_best;

	if (a < c && b < d) {
		/* If both are above the budget, pick the closer */
		if (best->p * best->r2 * diff < p * r2 * diff_best) {
			best->p = p;
			best->n2 = n2;
			best->r2 = r2;
		}
	} else if (a >= c && b < d) {
		/* If A is below the threshold but B is above it?  Update. */
		best->p = p;
		best->n2 = n2;
		best->r2 = r2;
	} else if (a >= c && b >= d) {
		/* Both are below the limit, so pick the higher n2/(r2*r2) */
		if (n2 * best->r2 * best->r2 > best->n2 * r2 * r2) {
			best->p = p;
			best->n2 = n2;
			best->r2 = r2;
		}
	}
	/* Otherwise a < c && b >= d, do nothing */
}

914 915
static int hsw_ddi_calc_wrpll_link(struct drm_i915_private *dev_priv,
				   i915_reg_t reg)
916 917 918 919 920 921
{
	int refclk = LC_FREQ;
	int n, p, r;
	u32 wrpll;

	wrpll = I915_READ(reg);
922 923 924
	switch (wrpll & WRPLL_PLL_REF_MASK) {
	case WRPLL_PLL_SSC:
	case WRPLL_PLL_NON_SSC:
925 926 927 928 929 930 931
		/*
		 * We could calculate spread here, but our checking
		 * code only cares about 5% accuracy, and spread is a max of
		 * 0.5% downspread.
		 */
		refclk = 135;
		break;
932
	case WRPLL_PLL_LCPLL:
933 934 935 936 937 938 939 940 941 942 943
		refclk = LC_FREQ;
		break;
	default:
		WARN(1, "bad wrpll refclk\n");
		return 0;
	}

	r = wrpll & WRPLL_DIVIDER_REF_MASK;
	p = (wrpll & WRPLL_DIVIDER_POST_MASK) >> WRPLL_DIVIDER_POST_SHIFT;
	n = (wrpll & WRPLL_DIVIDER_FB_MASK) >> WRPLL_DIVIDER_FB_SHIFT;

944 945
	/* Convert to KHz, p & r have a fixed point portion */
	return (refclk * n * 100) / (p * r);
946 947
}

948 949 950
static int skl_calc_wrpll_link(struct drm_i915_private *dev_priv,
			       uint32_t dpll)
{
951
	i915_reg_t cfgcr1_reg, cfgcr2_reg;
952 953 954
	uint32_t cfgcr1_val, cfgcr2_val;
	uint32_t p0, p1, p2, dco_freq;

955 956
	cfgcr1_reg = DPLL_CFGCR1(dpll);
	cfgcr2_reg = DPLL_CFGCR2(dpll);
957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007

	cfgcr1_val = I915_READ(cfgcr1_reg);
	cfgcr2_val = I915_READ(cfgcr2_reg);

	p0 = cfgcr2_val & DPLL_CFGCR2_PDIV_MASK;
	p2 = cfgcr2_val & DPLL_CFGCR2_KDIV_MASK;

	if (cfgcr2_val &  DPLL_CFGCR2_QDIV_MODE(1))
		p1 = (cfgcr2_val & DPLL_CFGCR2_QDIV_RATIO_MASK) >> 8;
	else
		p1 = 1;


	switch (p0) {
	case DPLL_CFGCR2_PDIV_1:
		p0 = 1;
		break;
	case DPLL_CFGCR2_PDIV_2:
		p0 = 2;
		break;
	case DPLL_CFGCR2_PDIV_3:
		p0 = 3;
		break;
	case DPLL_CFGCR2_PDIV_7:
		p0 = 7;
		break;
	}

	switch (p2) {
	case DPLL_CFGCR2_KDIV_5:
		p2 = 5;
		break;
	case DPLL_CFGCR2_KDIV_2:
		p2 = 2;
		break;
	case DPLL_CFGCR2_KDIV_3:
		p2 = 3;
		break;
	case DPLL_CFGCR2_KDIV_1:
		p2 = 1;
		break;
	}

	dco_freq = (cfgcr1_val & DPLL_CFGCR1_DCO_INTEGER_MASK) * 24 * 1000;

	dco_freq += (((cfgcr1_val & DPLL_CFGCR1_DCO_FRACTION_MASK) >> 9) * 24 *
		1000) / 0x8000;

	return dco_freq / (p0 * p1 * p2 * 5);
}

1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
static void ddi_dotclock_get(struct intel_crtc_state *pipe_config)
{
	int dotclock;

	if (pipe_config->has_pch_encoder)
		dotclock = intel_dotclock_calculate(pipe_config->port_clock,
						    &pipe_config->fdi_m_n);
	else if (pipe_config->has_dp_encoder)
		dotclock = intel_dotclock_calculate(pipe_config->port_clock,
						    &pipe_config->dp_m_n);
	else if (pipe_config->has_hdmi_sink && pipe_config->pipe_bpp == 36)
		dotclock = pipe_config->port_clock * 2 / 3;
	else
		dotclock = pipe_config->port_clock;

	if (pipe_config->pixel_multiplier)
		dotclock /= pipe_config->pixel_multiplier;

	pipe_config->base.adjusted_mode.crtc_clock = dotclock;
}
1028 1029

static void skl_ddi_clock_get(struct intel_encoder *encoder,
1030
				struct intel_crtc_state *pipe_config)
1031 1032 1033 1034 1035
{
	struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
	int link_clock = 0;
	uint32_t dpll_ctl1, dpll;

1036
	dpll = pipe_config->ddi_pll_sel;
1037 1038 1039 1040 1041 1042

	dpll_ctl1 = I915_READ(DPLL_CTRL1);

	if (dpll_ctl1 & DPLL_CTRL1_HDMI_MODE(dpll)) {
		link_clock = skl_calc_wrpll_link(dev_priv, dpll);
	} else {
1043 1044
		link_clock = dpll_ctl1 & DPLL_CTRL1_LINK_RATE_MASK(dpll);
		link_clock >>= DPLL_CTRL1_LINK_RATE_SHIFT(dpll);
1045 1046

		switch (link_clock) {
1047
		case DPLL_CTRL1_LINK_RATE_810:
1048 1049
			link_clock = 81000;
			break;
1050
		case DPLL_CTRL1_LINK_RATE_1080:
1051 1052
			link_clock = 108000;
			break;
1053
		case DPLL_CTRL1_LINK_RATE_1350:
1054 1055
			link_clock = 135000;
			break;
1056
		case DPLL_CTRL1_LINK_RATE_1620:
1057 1058
			link_clock = 162000;
			break;
1059
		case DPLL_CTRL1_LINK_RATE_2160:
1060 1061
			link_clock = 216000;
			break;
1062
		case DPLL_CTRL1_LINK_RATE_2700:
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
			link_clock = 270000;
			break;
		default:
			WARN(1, "Unsupported link rate\n");
			break;
		}
		link_clock *= 2;
	}

	pipe_config->port_clock = link_clock;

1074
	ddi_dotclock_get(pipe_config);
1075 1076
}

1077
static void hsw_ddi_clock_get(struct intel_encoder *encoder,
1078
			      struct intel_crtc_state *pipe_config)
1079 1080 1081 1082 1083
{
	struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
	int link_clock = 0;
	u32 val, pll;

1084
	val = pipe_config->ddi_pll_sel;
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
	switch (val & PORT_CLK_SEL_MASK) {
	case PORT_CLK_SEL_LCPLL_810:
		link_clock = 81000;
		break;
	case PORT_CLK_SEL_LCPLL_1350:
		link_clock = 135000;
		break;
	case PORT_CLK_SEL_LCPLL_2700:
		link_clock = 270000;
		break;
	case PORT_CLK_SEL_WRPLL1:
1096
		link_clock = hsw_ddi_calc_wrpll_link(dev_priv, WRPLL_CTL(0));
1097 1098
		break;
	case PORT_CLK_SEL_WRPLL2:
1099
		link_clock = hsw_ddi_calc_wrpll_link(dev_priv, WRPLL_CTL(1));
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
		break;
	case PORT_CLK_SEL_SPLL:
		pll = I915_READ(SPLL_CTL) & SPLL_PLL_FREQ_MASK;
		if (pll == SPLL_PLL_FREQ_810MHz)
			link_clock = 81000;
		else if (pll == SPLL_PLL_FREQ_1350MHz)
			link_clock = 135000;
		else if (pll == SPLL_PLL_FREQ_2700MHz)
			link_clock = 270000;
		else {
			WARN(1, "bad spll freq\n");
			return;
		}
		break;
	default:
		WARN(1, "bad port clock sel\n");
		return;
	}

	pipe_config->port_clock = link_clock * 2;

1121
	ddi_dotclock_get(pipe_config);
1122 1123
}

1124 1125 1126
static int bxt_calc_pll_link(struct drm_i915_private *dev_priv,
				enum intel_dpll_id dpll)
{
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
	struct intel_shared_dpll *pll;
	struct intel_dpll_hw_state *state;
	intel_clock_t clock;

	/* For DDI ports we always use a shared PLL. */
	if (WARN_ON(dpll == DPLL_ID_PRIVATE))
		return 0;

	pll = &dev_priv->shared_dplls[dpll];
	state = &pll->config.hw_state;

	clock.m1 = 2;
	clock.m2 = (state->pll0 & PORT_PLL_M2_MASK) << 22;
	if (state->pll3 & PORT_PLL_M2_FRAC_ENABLE)
		clock.m2 |= state->pll2 & PORT_PLL_M2_FRAC_MASK;
	clock.n = (state->pll1 & PORT_PLL_N_MASK) >> PORT_PLL_N_SHIFT;
	clock.p1 = (state->ebb0 & PORT_PLL_P1_MASK) >> PORT_PLL_P1_SHIFT;
	clock.p2 = (state->ebb0 & PORT_PLL_P2_MASK) >> PORT_PLL_P2_SHIFT;

	return chv_calc_dpll_params(100000, &clock);
1147 1148 1149 1150 1151 1152 1153 1154 1155
}

static void bxt_ddi_clock_get(struct intel_encoder *encoder,
				struct intel_crtc_state *pipe_config)
{
	struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
	enum port port = intel_ddi_get_encoder_port(encoder);
	uint32_t dpll = port;

1156
	pipe_config->port_clock = bxt_calc_pll_link(dev_priv, dpll);
1157

1158
	ddi_dotclock_get(pipe_config);
1159 1160
}

1161
void intel_ddi_clock_get(struct intel_encoder *encoder,
1162
			 struct intel_crtc_state *pipe_config)
1163
{
1164 1165 1166 1167
	struct drm_device *dev = encoder->base.dev;

	if (INTEL_INFO(dev)->gen <= 8)
		hsw_ddi_clock_get(encoder, pipe_config);
1168
	else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
1169
		skl_ddi_clock_get(encoder, pipe_config);
1170 1171
	else if (IS_BROXTON(dev))
		bxt_ddi_clock_get(encoder, pipe_config);
1172 1173
}

1174
static void
1175 1176
hsw_ddi_calculate_wrpll(int clock /* in Hz */,
			unsigned *r2_out, unsigned *n2_out, unsigned *p_out)
1177 1178 1179
{
	uint64_t freq2k;
	unsigned p, n2, r2;
1180
	struct hsw_wrpll_rnp best = { 0, 0, 0 };
1181 1182 1183 1184
	unsigned budget;

	freq2k = clock / 100;

1185
	budget = hsw_wrpll_get_budget_for_freq(clock);
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228

	/* Special case handling for 540 pixel clock: bypass WR PLL entirely
	 * and directly pass the LC PLL to it. */
	if (freq2k == 5400000) {
		*n2_out = 2;
		*p_out = 1;
		*r2_out = 2;
		return;
	}

	/*
	 * Ref = LC_FREQ / R, where Ref is the actual reference input seen by
	 * the WR PLL.
	 *
	 * We want R so that REF_MIN <= Ref <= REF_MAX.
	 * Injecting R2 = 2 * R gives:
	 *   REF_MAX * r2 > LC_FREQ * 2 and
	 *   REF_MIN * r2 < LC_FREQ * 2
	 *
	 * Which means the desired boundaries for r2 are:
	 *  LC_FREQ * 2 / REF_MAX < r2 < LC_FREQ * 2 / REF_MIN
	 *
	 */
	for (r2 = LC_FREQ * 2 / REF_MAX + 1;
	     r2 <= LC_FREQ * 2 / REF_MIN;
	     r2++) {

		/*
		 * VCO = N * Ref, that is: VCO = N * LC_FREQ / R
		 *
		 * Once again we want VCO_MIN <= VCO <= VCO_MAX.
		 * Injecting R2 = 2 * R and N2 = 2 * N, we get:
		 *   VCO_MAX * r2 > n2 * LC_FREQ and
		 *   VCO_MIN * r2 < n2 * LC_FREQ)
		 *
		 * Which means the desired boundaries for n2 are:
		 * VCO_MIN * r2 / LC_FREQ < n2 < VCO_MAX * r2 / LC_FREQ
		 */
		for (n2 = VCO_MIN * r2 / LC_FREQ + 1;
		     n2 <= VCO_MAX * r2 / LC_FREQ;
		     n2++) {

			for (p = P_MIN; p <= P_MAX; p += P_INC)
1229 1230
				hsw_wrpll_update_rnp(freq2k, budget,
						     r2, n2, p, &best);
1231 1232
		}
	}
1233

1234 1235 1236
	*n2_out = best.n2;
	*p_out = best.p;
	*r2_out = best.r2;
1237 1238
}

1239
static bool
1240
hsw_ddi_pll_select(struct intel_crtc *intel_crtc,
1241
		   struct intel_crtc_state *crtc_state,
1242
		   struct intel_encoder *intel_encoder)
1243
{
1244 1245
	int clock = crtc_state->port_clock;

1246
	if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
1247
		struct intel_shared_dpll *pll;
1248
		uint32_t val;
1249
		unsigned p, n2, r2;
1250

1251
		hsw_ddi_calculate_wrpll(clock * 1000, &r2, &n2, &p);
P
Paulo Zanoni 已提交
1252

1253
		val = WRPLL_PLL_ENABLE | WRPLL_PLL_LCPLL |
P
Paulo Zanoni 已提交
1254 1255 1256
		      WRPLL_DIVIDER_REFERENCE(r2) | WRPLL_DIVIDER_FEEDBACK(n2) |
		      WRPLL_DIVIDER_POST(p);

1257 1258 1259
		memset(&crtc_state->dpll_hw_state, 0,
		       sizeof(crtc_state->dpll_hw_state));

1260
		crtc_state->dpll_hw_state.wrpll = val;
1261

1262
		pll = intel_get_shared_dpll(intel_crtc, crtc_state);
1263 1264 1265 1266
		if (pll == NULL) {
			DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
					 pipe_name(intel_crtc->pipe));
			return false;
P
Paulo Zanoni 已提交
1267
		}
1268

1269
		crtc_state->ddi_pll_sel = PORT_CLK_SEL_WRPLL(pll->id);
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
	} else if (crtc_state->ddi_pll_sel == PORT_CLK_SEL_SPLL) {
		struct drm_atomic_state *state = crtc_state->base.state;
		struct intel_shared_dpll_config *spll =
			&intel_atomic_get_shared_dpll_state(state)[DPLL_ID_SPLL];

		if (spll->crtc_mask &&
		    WARN_ON(spll->hw_state.spll != crtc_state->dpll_hw_state.spll))
			return false;

		crtc_state->shared_dpll = DPLL_ID_SPLL;
		spll->hw_state.spll = crtc_state->dpll_hw_state.spll;
		spll->crtc_mask |= 1 << intel_crtc->pipe;
1282 1283 1284 1285 1286
	}

	return true;
}

1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
struct skl_wrpll_context {
	uint64_t min_deviation;		/* current minimal deviation */
	uint64_t central_freq;		/* chosen central freq */
	uint64_t dco_freq;		/* chosen dco freq */
	unsigned int p;			/* chosen divider */
};

static void skl_wrpll_context_init(struct skl_wrpll_context *ctx)
{
	memset(ctx, 0, sizeof(*ctx));

	ctx->min_deviation = U64_MAX;
}

/* DCO freq must be within +1%/-6%  of the DCO central freq */
#define SKL_DCO_MAX_PDEVIATION	100
#define SKL_DCO_MAX_NDEVIATION	600

static void skl_wrpll_try_divider(struct skl_wrpll_context *ctx,
				  uint64_t central_freq,
				  uint64_t dco_freq,
				  unsigned int divider)
{
	uint64_t deviation;

	deviation = div64_u64(10000 * abs_diff(dco_freq, central_freq),
			      central_freq);

	/* positive deviation */
	if (dco_freq >= central_freq) {
		if (deviation < SKL_DCO_MAX_PDEVIATION &&
		    deviation < ctx->min_deviation) {
			ctx->min_deviation = deviation;
			ctx->central_freq = central_freq;
			ctx->dco_freq = dco_freq;
			ctx->p = divider;
		}
	/* negative deviation */
	} else if (deviation < SKL_DCO_MAX_NDEVIATION &&
		   deviation < ctx->min_deviation) {
		ctx->min_deviation = deviation;
		ctx->central_freq = central_freq;
		ctx->dco_freq = dco_freq;
		ctx->p = divider;
	}
}

static void skl_wrpll_get_multipliers(unsigned int p,
				      unsigned int *p0 /* out */,
				      unsigned int *p1 /* out */,
				      unsigned int *p2 /* out */)
{
	/* even dividers */
	if (p % 2 == 0) {
		unsigned int half = p / 2;

		if (half == 1 || half == 2 || half == 3 || half == 5) {
			*p0 = 2;
			*p1 = 1;
			*p2 = half;
		} else if (half % 2 == 0) {
			*p0 = 2;
			*p1 = half / 2;
			*p2 = 2;
		} else if (half % 3 == 0) {
			*p0 = 3;
			*p1 = half / 3;
			*p2 = 2;
		} else if (half % 7 == 0) {
			*p0 = 7;
			*p1 = half / 7;
			*p2 = 2;
		}
	} else if (p == 3 || p == 9) {  /* 3, 5, 7, 9, 15, 21, 35 */
		*p0 = 3;
		*p1 = 1;
		*p2 = p / 3;
	} else if (p == 5 || p == 7) {
		*p0 = p;
		*p1 = 1;
		*p2 = 1;
	} else if (p == 15) {
		*p0 = 3;
		*p1 = 1;
		*p2 = 5;
	} else if (p == 21) {
		*p0 = 7;
		*p1 = 1;
		*p2 = 3;
	} else if (p == 35) {
		*p0 = 7;
		*p1 = 1;
		*p2 = 5;
	}
}

1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
struct skl_wrpll_params {
	uint32_t        dco_fraction;
	uint32_t        dco_integer;
	uint32_t        qdiv_ratio;
	uint32_t        qdiv_mode;
	uint32_t        kdiv;
	uint32_t        pdiv;
	uint32_t        central_freq;
};

1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
static void skl_wrpll_params_populate(struct skl_wrpll_params *params,
				      uint64_t afe_clock,
				      uint64_t central_freq,
				      uint32_t p0, uint32_t p1, uint32_t p2)
{
	uint64_t dco_freq;

	switch (central_freq) {
	case 9600000000ULL:
		params->central_freq = 0;
		break;
	case 9000000000ULL:
		params->central_freq = 1;
		break;
	case 8400000000ULL:
		params->central_freq = 3;
	}

	switch (p0) {
	case 1:
		params->pdiv = 0;
		break;
	case 2:
		params->pdiv = 1;
		break;
	case 3:
		params->pdiv = 2;
		break;
	case 7:
		params->pdiv = 4;
		break;
	default:
		WARN(1, "Incorrect PDiv\n");
	}

	switch (p2) {
	case 5:
		params->kdiv = 0;
		break;
	case 2:
		params->kdiv = 1;
		break;
	case 3:
		params->kdiv = 2;
		break;
	case 1:
		params->kdiv = 3;
		break;
	default:
		WARN(1, "Incorrect KDiv\n");
	}

	params->qdiv_ratio = p1;
	params->qdiv_mode = (params->qdiv_ratio == 1) ? 0 : 1;

	dco_freq = p0 * p1 * p2 * afe_clock;

	/*
	 * Intermediate values are in Hz.
	 * Divide by MHz to match bsepc
	 */
1454
	params->dco_integer = div_u64(dco_freq, 24 * MHz(1));
1455
	params->dco_fraction =
1456 1457
		div_u64((div_u64(dco_freq, 24) -
			 params->dco_integer * MHz(1)) * 0x8000, MHz(1));
1458 1459
}

1460
static bool
1461 1462 1463 1464
skl_ddi_calculate_wrpll(int clock /* in Hz */,
			struct skl_wrpll_params *wrpll_params)
{
	uint64_t afe_clock = clock * 5; /* AFE Clock is 5x Pixel clock */
1465 1466 1467
	uint64_t dco_central_freq[3] = {8400000000ULL,
					9000000000ULL,
					9600000000ULL};
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
	static const int even_dividers[] = {  4,  6,  8, 10, 12, 14, 16, 18, 20,
					     24, 28, 30, 32, 36, 40, 42, 44,
					     48, 52, 54, 56, 60, 64, 66, 68,
					     70, 72, 76, 78, 80, 84, 88, 90,
					     92, 96, 98 };
	static const int odd_dividers[] = { 3, 5, 7, 9, 15, 21, 35 };
	static const struct {
		const int *list;
		int n_dividers;
	} dividers[] = {
		{ even_dividers, ARRAY_SIZE(even_dividers) },
		{ odd_dividers, ARRAY_SIZE(odd_dividers) },
	};
	struct skl_wrpll_context ctx;
	unsigned int dco, d, i;
	unsigned int p0, p1, p2;

	skl_wrpll_context_init(&ctx);

	for (d = 0; d < ARRAY_SIZE(dividers); d++) {
		for (dco = 0; dco < ARRAY_SIZE(dco_central_freq); dco++) {
			for (i = 0; i < dividers[d].n_dividers; i++) {
				unsigned int p = dividers[d].list[i];
				uint64_t dco_freq = p * afe_clock;

				skl_wrpll_try_divider(&ctx,
						      dco_central_freq[dco],
						      dco_freq,
						      p);
1497 1498 1499 1500 1501 1502 1503
				/*
				 * Skip the remaining dividers if we're sure to
				 * have found the definitive divider, we can't
				 * improve a 0 deviation.
				 */
				if (ctx.min_deviation == 0)
					goto skip_remaining_dividers;
1504 1505
			}
		}
1506

1507
skip_remaining_dividers:
1508 1509 1510 1511 1512 1513
		/*
		 * If a solution is found with an even divider, prefer
		 * this one.
		 */
		if (d == 0 && ctx.p)
			break;
1514 1515
	}

1516 1517
	if (!ctx.p) {
		DRM_DEBUG_DRIVER("No valid divider found for %dHz\n", clock);
1518
		return false;
1519
	}
1520

1521 1522 1523 1524 1525 1526 1527 1528
	/*
	 * gcc incorrectly analyses that these can be used without being
	 * initialized. To be fair, it's hard to guess.
	 */
	p0 = p1 = p2 = 0;
	skl_wrpll_get_multipliers(ctx.p, &p0, &p1, &p2);
	skl_wrpll_params_populate(wrpll_params, afe_clock, ctx.central_freq,
				  p0, p1, p2);
1529 1530

	return true;
1531 1532 1533 1534
}

static bool
skl_ddi_pll_select(struct intel_crtc *intel_crtc,
1535
		   struct intel_crtc_state *crtc_state,
1536
		   struct intel_encoder *intel_encoder)
1537 1538 1539
{
	struct intel_shared_dpll *pll;
	uint32_t ctrl1, cfgcr1, cfgcr2;
1540
	int clock = crtc_state->port_clock;
1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553

	/*
	 * See comment in intel_dpll_hw_state to understand why we always use 0
	 * as the DPLL id in this function.
	 */

	ctrl1 = DPLL_CTRL1_OVERRIDE(0);

	if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
		struct skl_wrpll_params wrpll_params = { 0, };

		ctrl1 |= DPLL_CTRL1_HDMI_MODE(0);

1554 1555
		if (!skl_ddi_calculate_wrpll(clock * 1000, &wrpll_params))
			return false;
1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566

		cfgcr1 = DPLL_CFGCR1_FREQ_ENABLE |
			 DPLL_CFGCR1_DCO_FRACTION(wrpll_params.dco_fraction) |
			 wrpll_params.dco_integer;

		cfgcr2 = DPLL_CFGCR2_QDIV_RATIO(wrpll_params.qdiv_ratio) |
			 DPLL_CFGCR2_QDIV_MODE(wrpll_params.qdiv_mode) |
			 DPLL_CFGCR2_KDIV(wrpll_params.kdiv) |
			 DPLL_CFGCR2_PDIV(wrpll_params.pdiv) |
			 wrpll_params.central_freq;
	} else if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT) {
1567 1568
		switch (crtc_state->port_clock / 2) {
		case 81000:
1569
			ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, 0);
1570
			break;
1571
		case 135000:
1572
			ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350, 0);
1573
			break;
1574
		case 270000:
1575
			ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700, 0);
1576 1577 1578 1579 1580 1581 1582
			break;
		}

		cfgcr1 = cfgcr2 = 0;
	} else /* eDP */
		return true;

1583 1584 1585
	memset(&crtc_state->dpll_hw_state, 0,
	       sizeof(crtc_state->dpll_hw_state));

1586 1587 1588
	crtc_state->dpll_hw_state.ctrl1 = ctrl1;
	crtc_state->dpll_hw_state.cfgcr1 = cfgcr1;
	crtc_state->dpll_hw_state.cfgcr2 = cfgcr2;
1589

1590
	pll = intel_get_shared_dpll(intel_crtc, crtc_state);
1591 1592 1593 1594 1595 1596 1597
	if (pll == NULL) {
		DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
				 pipe_name(intel_crtc->pipe));
		return false;
	}

	/* shared DPLL id 0 is DPLL 1 */
1598
	crtc_state->ddi_pll_sel = pll->id + 1;
1599 1600 1601

	return true;
}
1602

1603 1604
/* bxt clock parameters */
struct bxt_clk_div {
1605
	int clock;
1606 1607 1608 1609 1610 1611 1612 1613 1614
	uint32_t p1;
	uint32_t p2;
	uint32_t m2_int;
	uint32_t m2_frac;
	bool m2_frac_en;
	uint32_t n;
};

/* pre-calculated values for DP linkrates */
1615 1616 1617 1618 1619 1620 1621 1622
static const struct bxt_clk_div bxt_dp_clk_val[] = {
	{162000, 4, 2, 32, 1677722, 1, 1},
	{270000, 4, 1, 27,       0, 0, 1},
	{540000, 2, 1, 27,       0, 0, 1},
	{216000, 3, 2, 32, 1677722, 1, 1},
	{243000, 4, 1, 24, 1258291, 1, 1},
	{324000, 4, 1, 32, 1677722, 1, 1},
	{432000, 3, 1, 32, 1677722, 1, 1}
1623 1624 1625 1626 1627
};

static bool
bxt_ddi_pll_select(struct intel_crtc *intel_crtc,
		   struct intel_crtc_state *crtc_state,
1628
		   struct intel_encoder *intel_encoder)
1629 1630 1631
{
	struct intel_shared_dpll *pll;
	struct bxt_clk_div clk_div = {0};
1632 1633
	int vco = 0;
	uint32_t prop_coef, int_coef, gain_ctl, targ_cnt;
1634
	uint32_t lanestagger;
1635
	int clock = crtc_state->port_clock;
1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658

	if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
		intel_clock_t best_clock;

		/* Calculate HDMI div */
		/*
		 * FIXME: tie the following calculation into
		 * i9xx_crtc_compute_clock
		 */
		if (!bxt_find_best_dpll(crtc_state, clock, &best_clock)) {
			DRM_DEBUG_DRIVER("no PLL dividers found for clock %d pipe %c\n",
					 clock, pipe_name(intel_crtc->pipe));
			return false;
		}

		clk_div.p1 = best_clock.p1;
		clk_div.p2 = best_clock.p2;
		WARN_ON(best_clock.m1 != 2);
		clk_div.n = best_clock.n;
		clk_div.m2_int = best_clock.m2 >> 22;
		clk_div.m2_frac = best_clock.m2 & ((1 << 22) - 1);
		clk_div.m2_frac_en = clk_div.m2_frac != 0;

1659
		vco = best_clock.vco;
1660 1661
	} else if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
			intel_encoder->type == INTEL_OUTPUT_EDP) {
1662
		int i;
1663

1664 1665 1666 1667 1668 1669
		clk_div = bxt_dp_clk_val[0];
		for (i = 0; i < ARRAY_SIZE(bxt_dp_clk_val); ++i) {
			if (bxt_dp_clk_val[i].clock == clock) {
				clk_div = bxt_dp_clk_val[i];
				break;
			}
1670
		}
1671 1672 1673
		vco = clock * 10 / 2 * clk_div.p1 * clk_div.p2;
	}

1674
	if (vco >= 6200000 && vco <= 6700000) {
1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
		prop_coef = 4;
		int_coef = 9;
		gain_ctl = 3;
		targ_cnt = 8;
	} else if ((vco > 5400000 && vco < 6200000) ||
			(vco >= 4800000 && vco < 5400000)) {
		prop_coef = 5;
		int_coef = 11;
		gain_ctl = 3;
		targ_cnt = 9;
	} else if (vco == 5400000) {
		prop_coef = 3;
		int_coef = 8;
		gain_ctl = 1;
		targ_cnt = 9;
	} else {
		DRM_ERROR("Invalid VCO\n");
		return false;
1693 1694
	}

1695 1696 1697
	memset(&crtc_state->dpll_hw_state, 0,
	       sizeof(crtc_state->dpll_hw_state));

1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
	if (clock > 270000)
		lanestagger = 0x18;
	else if (clock > 135000)
		lanestagger = 0x0d;
	else if (clock > 67000)
		lanestagger = 0x07;
	else if (clock > 33000)
		lanestagger = 0x04;
	else
		lanestagger = 0x02;

1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719
	crtc_state->dpll_hw_state.ebb0 =
		PORT_PLL_P1(clk_div.p1) | PORT_PLL_P2(clk_div.p2);
	crtc_state->dpll_hw_state.pll0 = clk_div.m2_int;
	crtc_state->dpll_hw_state.pll1 = PORT_PLL_N(clk_div.n);
	crtc_state->dpll_hw_state.pll2 = clk_div.m2_frac;

	if (clk_div.m2_frac_en)
		crtc_state->dpll_hw_state.pll3 =
			PORT_PLL_M2_FRAC_ENABLE;

	crtc_state->dpll_hw_state.pll6 =
1720
		prop_coef | PORT_PLL_INT_COEFF(int_coef);
1721
	crtc_state->dpll_hw_state.pll6 |=
1722 1723 1724
		PORT_PLL_GAIN_CTL(gain_ctl);

	crtc_state->dpll_hw_state.pll8 = targ_cnt;
1725

1726 1727
	crtc_state->dpll_hw_state.pll9 = 5 << PORT_PLL_LOCK_THRESHOLD_SHIFT;

1728 1729 1730
	crtc_state->dpll_hw_state.pll10 =
		PORT_PLL_DCO_AMP(PORT_PLL_DCO_AMP_DEFAULT)
		| PORT_PLL_DCO_AMP_OVR_EN_H;
1731

1732 1733
	crtc_state->dpll_hw_state.ebb4 = PORT_PLL_10BIT_CLK_ENABLE;

1734
	crtc_state->dpll_hw_state.pcsdw12 =
1735
		LANESTAGGER_STRAP_OVRD | lanestagger;
1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749

	pll = intel_get_shared_dpll(intel_crtc, crtc_state);
	if (pll == NULL) {
		DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
			pipe_name(intel_crtc->pipe));
		return false;
	}

	/* shared DPLL id 0 is DPLL A */
	crtc_state->ddi_pll_sel = pll->id;

	return true;
}

1750 1751 1752 1753 1754 1755 1756
/*
 * Tries to find a *shared* PLL for the CRTC and store it in
 * intel_crtc->ddi_pll_sel.
 *
 * For private DPLLs, compute_config() should do the selection for us. This
 * function should be folded into compute_config() eventually.
 */
1757 1758
bool intel_ddi_pll_select(struct intel_crtc *intel_crtc,
			  struct intel_crtc_state *crtc_state)
1759
{
1760
	struct drm_device *dev = intel_crtc->base.dev;
1761
	struct intel_encoder *intel_encoder =
1762
		intel_ddi_get_crtc_new_encoder(crtc_state);
1763

1764
	if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
1765
		return skl_ddi_pll_select(intel_crtc, crtc_state,
1766
					  intel_encoder);
1767 1768
	else if (IS_BROXTON(dev))
		return bxt_ddi_pll_select(intel_crtc, crtc_state,
1769
					  intel_encoder);
1770
	else
1771
		return hsw_ddi_pll_select(intel_crtc, crtc_state,
1772
					  intel_encoder);
1773 1774
}

1775 1776 1777 1778 1779
void intel_ddi_set_pipe_settings(struct drm_crtc *crtc)
{
	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
1780
	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1781 1782 1783
	int type = intel_encoder->type;
	uint32_t temp;

1784
	if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP || type == INTEL_OUTPUT_DP_MST) {
1785
		temp = TRANS_MSA_SYNC_CLK;
1786
		switch (intel_crtc->config->pipe_bpp) {
1787
		case 18:
1788
			temp |= TRANS_MSA_6_BPC;
1789 1790
			break;
		case 24:
1791
			temp |= TRANS_MSA_8_BPC;
1792 1793
			break;
		case 30:
1794
			temp |= TRANS_MSA_10_BPC;
1795 1796
			break;
		case 36:
1797
			temp |= TRANS_MSA_12_BPC;
1798 1799
			break;
		default:
1800
			BUG();
1801
		}
1802
		I915_WRITE(TRANS_MSA_MISC(cpu_transcoder), temp);
1803 1804 1805
	}
}

1806 1807 1808 1809 1810
void intel_ddi_set_vc_payload_alloc(struct drm_crtc *crtc, bool state)
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1811
	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1812 1813 1814 1815 1816 1817 1818 1819 1820
	uint32_t temp;
	temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
	if (state == true)
		temp |= TRANS_DDI_DP_VC_PAYLOAD_ALLOC;
	else
		temp &= ~TRANS_DDI_DP_VC_PAYLOAD_ALLOC;
	I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp);
}

1821
void intel_ddi_enable_transcoder_func(struct drm_crtc *crtc)
1822 1823 1824
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
1825
	struct drm_encoder *encoder = &intel_encoder->base;
1826 1827
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1828
	enum pipe pipe = intel_crtc->pipe;
1829
	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1830
	enum port port = intel_ddi_get_encoder_port(intel_encoder);
1831
	int type = intel_encoder->type;
1832 1833
	uint32_t temp;

1834 1835
	/* Enable TRANS_DDI_FUNC_CTL for the pipe to work in HDMI mode */
	temp = TRANS_DDI_FUNC_ENABLE;
1836
	temp |= TRANS_DDI_SELECT_PORT(port);
1837

1838
	switch (intel_crtc->config->pipe_bpp) {
1839
	case 18:
1840
		temp |= TRANS_DDI_BPC_6;
1841 1842
		break;
	case 24:
1843
		temp |= TRANS_DDI_BPC_8;
1844 1845
		break;
	case 30:
1846
		temp |= TRANS_DDI_BPC_10;
1847 1848
		break;
	case 36:
1849
		temp |= TRANS_DDI_BPC_12;
1850 1851
		break;
	default:
1852
		BUG();
1853
	}
1854

1855
	if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_PVSYNC)
1856
		temp |= TRANS_DDI_PVSYNC;
1857
	if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_PHSYNC)
1858
		temp |= TRANS_DDI_PHSYNC;
1859

1860 1861 1862
	if (cpu_transcoder == TRANSCODER_EDP) {
		switch (pipe) {
		case PIPE_A:
1863 1864 1865 1866
			/* On Haswell, can only use the always-on power well for
			 * eDP when not using the panel fitter, and when not
			 * using motion blur mitigation (which we don't
			 * support). */
1867
			if (IS_HASWELL(dev) &&
1868 1869
			    (intel_crtc->config->pch_pfit.enabled ||
			     intel_crtc->config->pch_pfit.force_thru))
1870 1871 1872
				temp |= TRANS_DDI_EDP_INPUT_A_ONOFF;
			else
				temp |= TRANS_DDI_EDP_INPUT_A_ON;
1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885
			break;
		case PIPE_B:
			temp |= TRANS_DDI_EDP_INPUT_B_ONOFF;
			break;
		case PIPE_C:
			temp |= TRANS_DDI_EDP_INPUT_C_ONOFF;
			break;
		default:
			BUG();
			break;
		}
	}

1886
	if (type == INTEL_OUTPUT_HDMI) {
1887
		if (intel_crtc->config->has_hdmi_sink)
1888
			temp |= TRANS_DDI_MODE_SELECT_HDMI;
1889
		else
1890
			temp |= TRANS_DDI_MODE_SELECT_DVI;
1891

1892
	} else if (type == INTEL_OUTPUT_ANALOG) {
1893
		temp |= TRANS_DDI_MODE_SELECT_FDI;
1894
		temp |= (intel_crtc->config->fdi_lanes - 1) << 1;
1895 1896 1897 1898 1899

	} else if (type == INTEL_OUTPUT_DISPLAYPORT ||
		   type == INTEL_OUTPUT_EDP) {
		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);

1900 1901 1902 1903 1904
		if (intel_dp->is_mst) {
			temp |= TRANS_DDI_MODE_SELECT_DP_MST;
		} else
			temp |= TRANS_DDI_MODE_SELECT_DP_SST;

1905
		temp |= DDI_PORT_WIDTH(intel_crtc->config->lane_count);
1906 1907 1908 1909 1910 1911 1912
	} else if (type == INTEL_OUTPUT_DP_MST) {
		struct intel_dp *intel_dp = &enc_to_mst(encoder)->primary->dp;

		if (intel_dp->is_mst) {
			temp |= TRANS_DDI_MODE_SELECT_DP_MST;
		} else
			temp |= TRANS_DDI_MODE_SELECT_DP_SST;
1913

1914
		temp |= DDI_PORT_WIDTH(intel_crtc->config->lane_count);
1915
	} else {
1916 1917
		WARN(1, "Invalid encoder type %d for pipe %c\n",
		     intel_encoder->type, pipe_name(pipe));
1918 1919
	}

1920
	I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp);
1921
}
1922

1923 1924
void intel_ddi_disable_transcoder_func(struct drm_i915_private *dev_priv,
				       enum transcoder cpu_transcoder)
1925
{
1926
	i915_reg_t reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1927 1928
	uint32_t val = I915_READ(reg);

1929
	val &= ~(TRANS_DDI_FUNC_ENABLE | TRANS_DDI_PORT_MASK | TRANS_DDI_DP_VC_PAYLOAD_ALLOC);
1930
	val |= TRANS_DDI_PORT_NONE;
1931
	I915_WRITE(reg, val);
1932 1933
}

1934 1935 1936 1937 1938 1939 1940 1941 1942
bool intel_ddi_connector_get_hw_state(struct intel_connector *intel_connector)
{
	struct drm_device *dev = intel_connector->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_encoder *intel_encoder = intel_connector->encoder;
	int type = intel_connector->base.connector_type;
	enum port port = intel_ddi_get_encoder_port(intel_encoder);
	enum pipe pipe = 0;
	enum transcoder cpu_transcoder;
1943
	enum intel_display_power_domain power_domain;
1944 1945
	uint32_t tmp;

1946
	power_domain = intel_display_port_power_domain(intel_encoder);
1947
	if (!intel_display_power_is_enabled(dev_priv, power_domain))
1948 1949
		return false;

1950 1951 1952 1953 1954 1955
	if (!intel_encoder->get_hw_state(intel_encoder, &pipe))
		return false;

	if (port == PORT_A)
		cpu_transcoder = TRANSCODER_EDP;
	else
D
Daniel Vetter 已提交
1956
		cpu_transcoder = (enum transcoder) pipe;
1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968

	tmp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));

	switch (tmp & TRANS_DDI_MODE_SELECT_MASK) {
	case TRANS_DDI_MODE_SELECT_HDMI:
	case TRANS_DDI_MODE_SELECT_DVI:
		return (type == DRM_MODE_CONNECTOR_HDMIA);

	case TRANS_DDI_MODE_SELECT_DP_SST:
		if (type == DRM_MODE_CONNECTOR_eDP)
			return true;
		return (type == DRM_MODE_CONNECTOR_DisplayPort);
1969 1970 1971 1972
	case TRANS_DDI_MODE_SELECT_DP_MST:
		/* if the transcoder is in MST state then
		 * connector isn't connected */
		return false;
1973 1974 1975 1976 1977 1978 1979 1980 1981

	case TRANS_DDI_MODE_SELECT_FDI:
		return (type == DRM_MODE_CONNECTOR_VGA);

	default:
		return false;
	}
}

1982 1983 1984 1985 1986
bool intel_ddi_get_hw_state(struct intel_encoder *encoder,
			    enum pipe *pipe)
{
	struct drm_device *dev = encoder->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1987
	enum port port = intel_ddi_get_encoder_port(encoder);
1988
	enum intel_display_power_domain power_domain;
1989 1990 1991
	u32 tmp;
	int i;

1992
	power_domain = intel_display_port_power_domain(encoder);
1993
	if (!intel_display_power_is_enabled(dev_priv, power_domain))
1994 1995
		return false;

1996
	tmp = I915_READ(DDI_BUF_CTL(port));
1997 1998 1999 2000

	if (!(tmp & DDI_BUF_CTL_ENABLE))
		return false;

2001 2002
	if (port == PORT_A) {
		tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
2003

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
		switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
		case TRANS_DDI_EDP_INPUT_A_ON:
		case TRANS_DDI_EDP_INPUT_A_ONOFF:
			*pipe = PIPE_A;
			break;
		case TRANS_DDI_EDP_INPUT_B_ONOFF:
			*pipe = PIPE_B;
			break;
		case TRANS_DDI_EDP_INPUT_C_ONOFF:
			*pipe = PIPE_C;
			break;
		}

		return true;
	} else {
		for (i = TRANSCODER_A; i <= TRANSCODER_C; i++) {
			tmp = I915_READ(TRANS_DDI_FUNC_CTL(i));

			if ((tmp & TRANS_DDI_PORT_MASK)
			    == TRANS_DDI_SELECT_PORT(port)) {
2024 2025 2026
				if ((tmp & TRANS_DDI_MODE_SELECT_MASK) == TRANS_DDI_MODE_SELECT_DP_MST)
					return false;

2027 2028 2029
				*pipe = i;
				return true;
			}
2030 2031 2032
		}
	}

2033
	DRM_DEBUG_KMS("No pipe for ddi port %c found\n", port_name(port));
2034

2035
	return false;
2036 2037
}

2038 2039 2040
void intel_ddi_enable_pipe_clock(struct intel_crtc *intel_crtc)
{
	struct drm_crtc *crtc = &intel_crtc->base;
2041 2042
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
2043 2044
	struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
	enum port port = intel_ddi_get_encoder_port(intel_encoder);
2045
	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
2046

2047 2048 2049
	if (cpu_transcoder != TRANSCODER_EDP)
		I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
			   TRANS_CLK_SEL_PORT(port));
2050 2051 2052 2053 2054
}

void intel_ddi_disable_pipe_clock(struct intel_crtc *intel_crtc)
{
	struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
2055
	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
2056

2057 2058 2059
	if (cpu_transcoder != TRANSCODER_EDP)
		I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
			   TRANS_CLK_SEL_DISABLED);
2060 2061
}

2062 2063
static void skl_ddi_set_iboost(struct drm_i915_private *dev_priv,
			       u32 level, enum port port, int type)
2064 2065 2066
{
	const struct ddi_buf_trans *ddi_translations;
	uint8_t iboost;
2067
	uint8_t dp_iboost, hdmi_iboost;
2068 2069 2070
	int n_entries;
	u32 reg;

2071 2072 2073 2074
	/* VBT may override standard boost values */
	dp_iboost = dev_priv->vbt.ddi_port_info[port].dp_boost_level;
	hdmi_iboost = dev_priv->vbt.ddi_port_info[port].hdmi_boost_level;

2075
	if (type == INTEL_OUTPUT_DISPLAYPORT) {
2076 2077 2078
		if (dp_iboost) {
			iboost = dp_iboost;
		} else {
2079
			ddi_translations = skl_get_buf_trans_dp(dev_priv, &n_entries);
2080
			iboost = ddi_translations[level].i_boost;
2081
		}
2082
	} else if (type == INTEL_OUTPUT_EDP) {
2083 2084 2085
		if (dp_iboost) {
			iboost = dp_iboost;
		} else {
2086
			ddi_translations = skl_get_buf_trans_edp(dev_priv, &n_entries);
2087
			iboost = ddi_translations[level].i_boost;
2088
		}
2089
	} else if (type == INTEL_OUTPUT_HDMI) {
2090 2091 2092
		if (hdmi_iboost) {
			iboost = hdmi_iboost;
		} else {
2093
			ddi_translations = skl_get_buf_trans_hdmi(dev_priv, &n_entries);
2094
			iboost = ddi_translations[level].i_boost;
2095
		}
2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
	} else {
		return;
	}

	/* Make sure that the requested I_boost is valid */
	if (iboost && iboost != 0x1 && iboost != 0x3 && iboost != 0x7) {
		DRM_ERROR("Invalid I_boost value %u\n", iboost);
		return;
	}

	reg = I915_READ(DISPIO_CR_TX_BMU_CR0);
	reg &= ~BALANCE_LEG_MASK(port);
	reg &= ~(1 << (BALANCE_LEG_DISABLE_SHIFT + port));

	if (iboost)
		reg |= iboost << BALANCE_LEG_SHIFT(port);
	else
		reg |= 1 << (BALANCE_LEG_DISABLE_SHIFT + port);

	I915_WRITE(DISPIO_CR_TX_BMU_CR0, reg);
}

2118 2119
static void bxt_ddi_vswing_sequence(struct drm_i915_private *dev_priv,
				    u32 level, enum port port, int type)
2120 2121 2122 2123 2124
{
	const struct bxt_ddi_buf_trans *ddi_translations;
	u32 n_entries, i;
	uint32_t val;

2125 2126 2127 2128 2129
	if (type == INTEL_OUTPUT_EDP && dev_priv->edp_low_vswing) {
		n_entries = ARRAY_SIZE(bxt_ddi_translations_edp);
		ddi_translations = bxt_ddi_translations_edp;
	} else if (type == INTEL_OUTPUT_DISPLAYPORT
			|| type == INTEL_OUTPUT_EDP) {
2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166
		n_entries = ARRAY_SIZE(bxt_ddi_translations_dp);
		ddi_translations = bxt_ddi_translations_dp;
	} else if (type == INTEL_OUTPUT_HDMI) {
		n_entries = ARRAY_SIZE(bxt_ddi_translations_hdmi);
		ddi_translations = bxt_ddi_translations_hdmi;
	} else {
		DRM_DEBUG_KMS("Vswing programming not done for encoder %d\n",
				type);
		return;
	}

	/* Check if default value has to be used */
	if (level >= n_entries ||
	    (type == INTEL_OUTPUT_HDMI && level == HDMI_LEVEL_SHIFT_UNKNOWN)) {
		for (i = 0; i < n_entries; i++) {
			if (ddi_translations[i].default_index) {
				level = i;
				break;
			}
		}
	}

	/*
	 * While we write to the group register to program all lanes at once we
	 * can read only lane registers and we pick lanes 0/1 for that.
	 */
	val = I915_READ(BXT_PORT_PCS_DW10_LN01(port));
	val &= ~(TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT);
	I915_WRITE(BXT_PORT_PCS_DW10_GRP(port), val);

	val = I915_READ(BXT_PORT_TX_DW2_LN0(port));
	val &= ~(MARGIN_000 | UNIQ_TRANS_SCALE);
	val |= ddi_translations[level].margin << MARGIN_000_SHIFT |
	       ddi_translations[level].scale << UNIQ_TRANS_SCALE_SHIFT;
	I915_WRITE(BXT_PORT_TX_DW2_GRP(port), val);

	val = I915_READ(BXT_PORT_TX_DW3_LN0(port));
2167
	val &= ~SCALE_DCOMP_METHOD;
2168
	if (ddi_translations[level].enable)
2169 2170 2171 2172 2173
		val |= SCALE_DCOMP_METHOD;

	if ((val & UNIQUE_TRANGE_EN_METHOD) && !(val & SCALE_DCOMP_METHOD))
		DRM_ERROR("Disabled scaling while ouniqetrangenmethod was set");

2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185
	I915_WRITE(BXT_PORT_TX_DW3_GRP(port), val);

	val = I915_READ(BXT_PORT_TX_DW4_LN0(port));
	val &= ~DE_EMPHASIS;
	val |= ddi_translations[level].deemphasis << DEEMPH_SHIFT;
	I915_WRITE(BXT_PORT_TX_DW4_GRP(port), val);

	val = I915_READ(BXT_PORT_PCS_DW10_LN01(port));
	val |= TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT;
	I915_WRITE(BXT_PORT_PCS_DW10_GRP(port), val);
}

2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234
static uint32_t translate_signal_level(int signal_levels)
{
	uint32_t level;

	switch (signal_levels) {
	default:
		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level: 0x%x\n",
			      signal_levels);
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
		level = 0;
		break;
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
		level = 1;
		break;
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
		level = 2;
		break;
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_3:
		level = 3;
		break;

	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
		level = 4;
		break;
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
		level = 5;
		break;
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
		level = 6;
		break;

	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
		level = 7;
		break;
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
		level = 8;
		break;

	case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
		level = 9;
		break;
	}

	return level;
}

uint32_t ddi_signal_levels(struct intel_dp *intel_dp)
{
	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2235
	struct drm_i915_private *dev_priv = to_i915(dport->base.base.dev);
2236 2237 2238 2239 2240 2241 2242 2243 2244
	struct intel_encoder *encoder = &dport->base;
	uint8_t train_set = intel_dp->train_set[0];
	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
					 DP_TRAIN_PRE_EMPHASIS_MASK);
	enum port port = dport->port;
	uint32_t level;

	level = translate_signal_level(signal_levels);

2245 2246 2247 2248
	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
		skl_ddi_set_iboost(dev_priv, level, port, encoder->type);
	else if (IS_BROXTON(dev_priv))
		bxt_ddi_vswing_sequence(dev_priv, level, port, encoder->type);
2249 2250 2251 2252

	return DDI_BUF_TRANS_SELECT(level);
}

2253 2254
void intel_ddi_clk_select(struct intel_encoder *encoder,
			  const struct intel_crtc_state *pipe_config)
2255
{
2256 2257
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	enum port port = intel_ddi_get_encoder_port(encoder);
2258

2259 2260
	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
		uint32_t dpll = pipe_config->ddi_pll_sel;
2261 2262
		uint32_t val;

2263 2264 2265 2266
		/*
		 * DPLL0 is used for eDP and is the only "private" DPLL (as
		 * opposed to shared) on SKL
		 */
2267
		if (encoder->type == INTEL_OUTPUT_EDP) {
2268 2269 2270 2271 2272 2273
			WARN_ON(dpll != SKL_DPLL0);

			val = I915_READ(DPLL_CTRL1);

			val &= ~(DPLL_CTRL1_HDMI_MODE(dpll) |
				 DPLL_CTRL1_SSC(dpll) |
2274
				 DPLL_CTRL1_LINK_RATE_MASK(dpll));
2275
			val |= pipe_config->dpll_hw_state.ctrl1 << (dpll * 6);
2276 2277 2278 2279 2280 2281

			I915_WRITE(DPLL_CTRL1, val);
			POSTING_READ(DPLL_CTRL1);
		}

		/* DDI -> PLL mapping  */
2282 2283 2284 2285 2286 2287 2288 2289
		val = I915_READ(DPLL_CTRL2);

		val &= ~(DPLL_CTRL2_DDI_CLK_OFF(port) |
			DPLL_CTRL2_DDI_CLK_SEL_MASK(port));
		val |= (DPLL_CTRL2_DDI_CLK_SEL(dpll, port) |
			DPLL_CTRL2_DDI_SEL_OVERRIDE(port));

		I915_WRITE(DPLL_CTRL2, val);
2290

2291 2292 2293
	} else if (INTEL_INFO(dev_priv)->gen < 9) {
		WARN_ON(pipe_config->ddi_pll_sel == PORT_CLK_SEL_NONE);
		I915_WRITE(PORT_CLK_SEL(port), pipe_config->ddi_pll_sel);
2294
	}
2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312
}

static void intel_ddi_pre_enable(struct intel_encoder *intel_encoder)
{
	struct drm_encoder *encoder = &intel_encoder->base;
	struct drm_device *dev = encoder->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *crtc = to_intel_crtc(encoder->crtc);
	enum port port = intel_ddi_get_encoder_port(intel_encoder);
	int type = intel_encoder->type;
	int hdmi_level;

	if (type == INTEL_OUTPUT_EDP) {
		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
		intel_edp_panel_on(intel_dp);
	}

	intel_ddi_clk_select(intel_encoder, crtc->config);
2313

2314
	if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
2315
		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2316

2317 2318
		intel_dp_set_link_params(intel_dp, crtc->config);

2319
		intel_ddi_init_dp_buf_reg(intel_encoder);
2320 2321 2322

		intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
		intel_dp_start_link_train(intel_dp);
2323
		if (port != PORT_A || INTEL_INFO(dev)->gen >= 9)
2324
			intel_dp_stop_link_train(intel_dp);
2325 2326 2327
	} else if (type == INTEL_OUTPUT_HDMI) {
		struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);

2328 2329 2330
		if (IS_BROXTON(dev)) {
			hdmi_level = dev_priv->vbt.
				ddi_port_info[port].hdmi_level_shift;
2331 2332
			bxt_ddi_vswing_sequence(dev_priv, hdmi_level, port,
						INTEL_OUTPUT_HDMI);
2333
		}
2334
		intel_hdmi->set_infoframes(encoder,
2335 2336
					   crtc->config->has_hdmi_sink,
					   &crtc->config->base.adjusted_mode);
2337
	}
2338 2339
}

P
Paulo Zanoni 已提交
2340
static void intel_ddi_post_disable(struct intel_encoder *intel_encoder)
2341 2342
{
	struct drm_encoder *encoder = &intel_encoder->base;
2343 2344
	struct drm_device *dev = encoder->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
2345
	enum port port = intel_ddi_get_encoder_port(intel_encoder);
2346
	int type = intel_encoder->type;
2347
	uint32_t val;
2348
	bool wait = false;
2349 2350 2351 2352 2353

	val = I915_READ(DDI_BUF_CTL(port));
	if (val & DDI_BUF_CTL_ENABLE) {
		val &= ~DDI_BUF_CTL_ENABLE;
		I915_WRITE(DDI_BUF_CTL(port), val);
2354
		wait = true;
2355
	}
2356

2357 2358 2359 2360 2361 2362 2363 2364
	val = I915_READ(DP_TP_CTL(port));
	val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
	val |= DP_TP_CTL_LINK_TRAIN_PAT1;
	I915_WRITE(DP_TP_CTL(port), val);

	if (wait)
		intel_wait_ddi_buf_idle(dev_priv, port);

2365
	if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
2366
		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2367
		intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
2368
		intel_edp_panel_vdd_on(intel_dp);
2369
		intel_edp_panel_off(intel_dp);
2370 2371
	}

2372
	if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
2373 2374
		I915_WRITE(DPLL_CTRL2, (I915_READ(DPLL_CTRL2) |
					DPLL_CTRL2_DDI_CLK_OFF(port)));
2375
	else if (INTEL_INFO(dev)->gen < 9)
2376
		I915_WRITE(PORT_CLK_SEL(port), PORT_CLK_SEL_NONE);
2377 2378
}

P
Paulo Zanoni 已提交
2379
static void intel_enable_ddi(struct intel_encoder *intel_encoder)
2380
{
2381
	struct drm_encoder *encoder = &intel_encoder->base;
2382 2383
	struct drm_crtc *crtc = encoder->crtc;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2384
	struct drm_device *dev = encoder->dev;
2385
	struct drm_i915_private *dev_priv = dev->dev_private;
2386 2387
	enum port port = intel_ddi_get_encoder_port(intel_encoder);
	int type = intel_encoder->type;
2388

2389
	if (type == INTEL_OUTPUT_HDMI) {
2390 2391 2392
		struct intel_digital_port *intel_dig_port =
			enc_to_dig_port(encoder);

2393 2394 2395 2396
		/* In HDMI/DVI mode, the port width, and swing/emphasis values
		 * are ignored so nothing special needs to be done besides
		 * enabling the port.
		 */
2397
		I915_WRITE(DDI_BUF_CTL(port),
2398 2399
			   intel_dig_port->saved_port_bits |
			   DDI_BUF_CTL_ENABLE);
2400 2401 2402
	} else if (type == INTEL_OUTPUT_EDP) {
		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);

2403
		if (port == PORT_A && INTEL_INFO(dev)->gen < 9)
2404 2405
			intel_dp_stop_link_train(intel_dp);

2406
		intel_edp_backlight_on(intel_dp);
R
Rodrigo Vivi 已提交
2407
		intel_psr_enable(intel_dp);
V
Vandana Kannan 已提交
2408
		intel_edp_drrs_enable(intel_dp);
2409
	}
2410

2411
	if (intel_crtc->config->has_audio) {
2412
		intel_display_power_get(dev_priv, POWER_DOMAIN_AUDIO);
2413
		intel_audio_codec_enable(intel_encoder);
2414
	}
2415 2416
}

P
Paulo Zanoni 已提交
2417
static void intel_disable_ddi(struct intel_encoder *intel_encoder)
2418
{
2419
	struct drm_encoder *encoder = &intel_encoder->base;
2420 2421
	struct drm_crtc *crtc = encoder->crtc;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2422
	int type = intel_encoder->type;
2423 2424
	struct drm_device *dev = encoder->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
2425

2426
	if (intel_crtc->config->has_audio) {
2427
		intel_audio_codec_disable(intel_encoder);
2428 2429
		intel_display_power_put(dev_priv, POWER_DOMAIN_AUDIO);
	}
2430

2431 2432 2433
	if (type == INTEL_OUTPUT_EDP) {
		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);

V
Vandana Kannan 已提交
2434
		intel_edp_drrs_disable(intel_dp);
R
Rodrigo Vivi 已提交
2435
		intel_psr_disable(intel_dp);
2436
		intel_edp_backlight_off(intel_dp);
2437
	}
2438
}
P
Paulo Zanoni 已提交
2439

2440
static void hsw_ddi_wrpll_enable(struct drm_i915_private *dev_priv,
2441 2442
			       struct intel_shared_dpll *pll)
{
2443
	I915_WRITE(WRPLL_CTL(pll->id), pll->config.hw_state.wrpll);
2444 2445 2446 2447
	POSTING_READ(WRPLL_CTL(pll->id));
	udelay(20);
}

2448
static void hsw_ddi_spll_enable(struct drm_i915_private *dev_priv,
2449
				struct intel_shared_dpll *pll)
2450 2451 2452 2453 2454 2455 2456 2457
{
	I915_WRITE(SPLL_CTL, pll->config.hw_state.spll);
	POSTING_READ(SPLL_CTL);
	udelay(20);
}

static void hsw_ddi_wrpll_disable(struct drm_i915_private *dev_priv,
				  struct intel_shared_dpll *pll)
2458 2459 2460 2461 2462 2463 2464 2465
{
	uint32_t val;

	val = I915_READ(WRPLL_CTL(pll->id));
	I915_WRITE(WRPLL_CTL(pll->id), val & ~WRPLL_PLL_ENABLE);
	POSTING_READ(WRPLL_CTL(pll->id));
}

2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478
static void hsw_ddi_spll_disable(struct drm_i915_private *dev_priv,
				 struct intel_shared_dpll *pll)
{
	uint32_t val;

	val = I915_READ(SPLL_CTL);
	I915_WRITE(SPLL_CTL, val & ~SPLL_PLL_ENABLE);
	POSTING_READ(SPLL_CTL);
}

static bool hsw_ddi_wrpll_get_hw_state(struct drm_i915_private *dev_priv,
				       struct intel_shared_dpll *pll,
				       struct intel_dpll_hw_state *hw_state)
2479 2480 2481
{
	uint32_t val;

2482
	if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
2483 2484 2485 2486 2487 2488 2489 2490
		return false;

	val = I915_READ(WRPLL_CTL(pll->id));
	hw_state->wrpll = val;

	return val & WRPLL_PLL_ENABLE;
}

2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506
static bool hsw_ddi_spll_get_hw_state(struct drm_i915_private *dev_priv,
				      struct intel_shared_dpll *pll,
				      struct intel_dpll_hw_state *hw_state)
{
	uint32_t val;

	if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
		return false;

	val = I915_READ(SPLL_CTL);
	hw_state->spll = val;

	return val & SPLL_PLL_ENABLE;
}


2507
static const char * const hsw_ddi_pll_names[] = {
2508 2509
	"WRPLL 1",
	"WRPLL 2",
2510
	"SPLL"
2511 2512
};

2513
static void hsw_shared_dplls_init(struct drm_i915_private *dev_priv)
P
Paulo Zanoni 已提交
2514
{
2515 2516
	int i;

2517
	dev_priv->num_shared_dpll = 3;
2518

2519
	for (i = 0; i < 2; i++) {
2520 2521
		dev_priv->shared_dplls[i].id = i;
		dev_priv->shared_dplls[i].name = hsw_ddi_pll_names[i];
2522 2523
		dev_priv->shared_dplls[i].disable = hsw_ddi_wrpll_disable;
		dev_priv->shared_dplls[i].enable = hsw_ddi_wrpll_enable;
2524
		dev_priv->shared_dplls[i].get_hw_state =
2525
			hsw_ddi_wrpll_get_hw_state;
2526
	}
2527 2528 2529 2530 2531 2532 2533 2534

	/* SPLL is special, but needs to be initialized anyway.. */
	dev_priv->shared_dplls[i].id = i;
	dev_priv->shared_dplls[i].name = hsw_ddi_pll_names[i];
	dev_priv->shared_dplls[i].disable = hsw_ddi_spll_disable;
	dev_priv->shared_dplls[i].enable = hsw_ddi_spll_enable;
	dev_priv->shared_dplls[i].get_hw_state = hsw_ddi_spll_get_hw_state;

2535 2536
}

2537 2538 2539 2540 2541 2542 2543
static const char * const skl_ddi_pll_names[] = {
	"DPLL 1",
	"DPLL 2",
	"DPLL 3",
};

struct skl_dpll_regs {
2544
	i915_reg_t ctl, cfgcr1, cfgcr2;
2545 2546 2547 2548 2549 2550 2551
};

/* this array is indexed by the *shared* pll id */
static const struct skl_dpll_regs skl_dpll_regs[3] = {
	{
		/* DPLL 1 */
		.ctl = LCPLL2_CTL,
2552 2553
		.cfgcr1 = DPLL_CFGCR1(SKL_DPLL1),
		.cfgcr2 = DPLL_CFGCR2(SKL_DPLL1),
2554 2555 2556
	},
	{
		/* DPLL 2 */
2557
		.ctl = WRPLL_CTL(0),
2558 2559
		.cfgcr1 = DPLL_CFGCR1(SKL_DPLL2),
		.cfgcr2 = DPLL_CFGCR2(SKL_DPLL2),
2560 2561 2562
	},
	{
		/* DPLL 3 */
2563
		.ctl = WRPLL_CTL(1),
2564 2565
		.cfgcr1 = DPLL_CFGCR1(SKL_DPLL3),
		.cfgcr2 = DPLL_CFGCR2(SKL_DPLL3),
2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581
	},
};

static void skl_ddi_pll_enable(struct drm_i915_private *dev_priv,
			       struct intel_shared_dpll *pll)
{
	uint32_t val;
	unsigned int dpll;
	const struct skl_dpll_regs *regs = skl_dpll_regs;

	/* DPLL0 is not part of the shared DPLLs, so pll->id is 0 for DPLL1 */
	dpll = pll->id + 1;

	val = I915_READ(DPLL_CTRL1);

	val &= ~(DPLL_CTRL1_HDMI_MODE(dpll) | DPLL_CTRL1_SSC(dpll) |
2582
		 DPLL_CTRL1_LINK_RATE_MASK(dpll));
2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657
	val |= pll->config.hw_state.ctrl1 << (dpll * 6);

	I915_WRITE(DPLL_CTRL1, val);
	POSTING_READ(DPLL_CTRL1);

	I915_WRITE(regs[pll->id].cfgcr1, pll->config.hw_state.cfgcr1);
	I915_WRITE(regs[pll->id].cfgcr2, pll->config.hw_state.cfgcr2);
	POSTING_READ(regs[pll->id].cfgcr1);
	POSTING_READ(regs[pll->id].cfgcr2);

	/* the enable bit is always bit 31 */
	I915_WRITE(regs[pll->id].ctl,
		   I915_READ(regs[pll->id].ctl) | LCPLL_PLL_ENABLE);

	if (wait_for(I915_READ(DPLL_STATUS) & DPLL_LOCK(dpll), 5))
		DRM_ERROR("DPLL %d not locked\n", dpll);
}

static void skl_ddi_pll_disable(struct drm_i915_private *dev_priv,
				struct intel_shared_dpll *pll)
{
	const struct skl_dpll_regs *regs = skl_dpll_regs;

	/* the enable bit is always bit 31 */
	I915_WRITE(regs[pll->id].ctl,
		   I915_READ(regs[pll->id].ctl) & ~LCPLL_PLL_ENABLE);
	POSTING_READ(regs[pll->id].ctl);
}

static bool skl_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
				     struct intel_shared_dpll *pll,
				     struct intel_dpll_hw_state *hw_state)
{
	uint32_t val;
	unsigned int dpll;
	const struct skl_dpll_regs *regs = skl_dpll_regs;

	if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
		return false;

	/* DPLL0 is not part of the shared DPLLs, so pll->id is 0 for DPLL1 */
	dpll = pll->id + 1;

	val = I915_READ(regs[pll->id].ctl);
	if (!(val & LCPLL_PLL_ENABLE))
		return false;

	val = I915_READ(DPLL_CTRL1);
	hw_state->ctrl1 = (val >> (dpll * 6)) & 0x3f;

	/* avoid reading back stale values if HDMI mode is not enabled */
	if (val & DPLL_CTRL1_HDMI_MODE(dpll)) {
		hw_state->cfgcr1 = I915_READ(regs[pll->id].cfgcr1);
		hw_state->cfgcr2 = I915_READ(regs[pll->id].cfgcr2);
	}

	return true;
}

static void skl_shared_dplls_init(struct drm_i915_private *dev_priv)
{
	int i;

	dev_priv->num_shared_dpll = 3;

	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
		dev_priv->shared_dplls[i].id = i;
		dev_priv->shared_dplls[i].name = skl_ddi_pll_names[i];
		dev_priv->shared_dplls[i].disable = skl_ddi_pll_disable;
		dev_priv->shared_dplls[i].enable = skl_ddi_pll_enable;
		dev_priv->shared_dplls[i].get_hw_state =
			skl_ddi_pll_get_hw_state;
	}
}

2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781
static void broxton_phy_init(struct drm_i915_private *dev_priv,
			     enum dpio_phy phy)
{
	enum port port;
	uint32_t val;

	val = I915_READ(BXT_P_CR_GT_DISP_PWRON);
	val |= GT_DISPLAY_POWER_ON(phy);
	I915_WRITE(BXT_P_CR_GT_DISP_PWRON, val);

	/* Considering 10ms timeout until BSpec is updated */
	if (wait_for(I915_READ(BXT_PORT_CL1CM_DW0(phy)) & PHY_POWER_GOOD, 10))
		DRM_ERROR("timeout during PHY%d power on\n", phy);

	for (port =  (phy == DPIO_PHY0 ? PORT_B : PORT_A);
	     port <= (phy == DPIO_PHY0 ? PORT_C : PORT_A); port++) {
		int lane;

		for (lane = 0; lane < 4; lane++) {
			val = I915_READ(BXT_PORT_TX_DW14_LN(port, lane));
			/*
			 * Note that on CHV this flag is called UPAR, but has
			 * the same function.
			 */
			val &= ~LATENCY_OPTIM;
			if (lane != 1)
				val |= LATENCY_OPTIM;

			I915_WRITE(BXT_PORT_TX_DW14_LN(port, lane), val);
		}
	}

	/* Program PLL Rcomp code offset */
	val = I915_READ(BXT_PORT_CL1CM_DW9(phy));
	val &= ~IREF0RC_OFFSET_MASK;
	val |= 0xE4 << IREF0RC_OFFSET_SHIFT;
	I915_WRITE(BXT_PORT_CL1CM_DW9(phy), val);

	val = I915_READ(BXT_PORT_CL1CM_DW10(phy));
	val &= ~IREF1RC_OFFSET_MASK;
	val |= 0xE4 << IREF1RC_OFFSET_SHIFT;
	I915_WRITE(BXT_PORT_CL1CM_DW10(phy), val);

	/* Program power gating */
	val = I915_READ(BXT_PORT_CL1CM_DW28(phy));
	val |= OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN |
		SUS_CLK_CONFIG;
	I915_WRITE(BXT_PORT_CL1CM_DW28(phy), val);

	if (phy == DPIO_PHY0) {
		val = I915_READ(BXT_PORT_CL2CM_DW6_BC);
		val |= DW6_OLDO_DYN_PWR_DOWN_EN;
		I915_WRITE(BXT_PORT_CL2CM_DW6_BC, val);
	}

	val = I915_READ(BXT_PORT_CL1CM_DW30(phy));
	val &= ~OCL2_LDOFUSE_PWR_DIS;
	/*
	 * On PHY1 disable power on the second channel, since no port is
	 * connected there. On PHY0 both channels have a port, so leave it
	 * enabled.
	 * TODO: port C is only connected on BXT-P, so on BXT0/1 we should
	 * power down the second channel on PHY0 as well.
	 */
	if (phy == DPIO_PHY1)
		val |= OCL2_LDOFUSE_PWR_DIS;
	I915_WRITE(BXT_PORT_CL1CM_DW30(phy), val);

	if (phy == DPIO_PHY0) {
		uint32_t grc_code;
		/*
		 * PHY0 isn't connected to an RCOMP resistor so copy over
		 * the corresponding calibrated value from PHY1, and disable
		 * the automatic calibration on PHY0.
		 */
		if (wait_for(I915_READ(BXT_PORT_REF_DW3(DPIO_PHY1)) & GRC_DONE,
			     10))
			DRM_ERROR("timeout waiting for PHY1 GRC\n");

		val = I915_READ(BXT_PORT_REF_DW6(DPIO_PHY1));
		val = (val & GRC_CODE_MASK) >> GRC_CODE_SHIFT;
		grc_code = val << GRC_CODE_FAST_SHIFT |
			   val << GRC_CODE_SLOW_SHIFT |
			   val;
		I915_WRITE(BXT_PORT_REF_DW6(DPIO_PHY0), grc_code);

		val = I915_READ(BXT_PORT_REF_DW8(DPIO_PHY0));
		val |= GRC_DIS | GRC_RDY_OVRD;
		I915_WRITE(BXT_PORT_REF_DW8(DPIO_PHY0), val);
	}

	val = I915_READ(BXT_PHY_CTL_FAMILY(phy));
	val |= COMMON_RESET_DIS;
	I915_WRITE(BXT_PHY_CTL_FAMILY(phy), val);
}

void broxton_ddi_phy_init(struct drm_device *dev)
{
	/* Enable PHY1 first since it provides Rcomp for PHY0 */
	broxton_phy_init(dev->dev_private, DPIO_PHY1);
	broxton_phy_init(dev->dev_private, DPIO_PHY0);
}

static void broxton_phy_uninit(struct drm_i915_private *dev_priv,
			       enum dpio_phy phy)
{
	uint32_t val;

	val = I915_READ(BXT_PHY_CTL_FAMILY(phy));
	val &= ~COMMON_RESET_DIS;
	I915_WRITE(BXT_PHY_CTL_FAMILY(phy), val);
}

void broxton_ddi_phy_uninit(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	broxton_phy_uninit(dev_priv, DPIO_PHY1);
	broxton_phy_uninit(dev_priv, DPIO_PHY0);

	/* FIXME: do this in broxton_phy_uninit per phy */
	I915_WRITE(BXT_P_CR_GT_DISP_PWRON, 0);
}

2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
static const char * const bxt_ddi_pll_names[] = {
	"PORT PLL A",
	"PORT PLL B",
	"PORT PLL C",
};

static void bxt_ddi_pll_enable(struct drm_i915_private *dev_priv,
				struct intel_shared_dpll *pll)
{
	uint32_t temp;
	enum port port = (enum port)pll->id;	/* 1:1 port->PLL mapping */

	temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
	temp &= ~PORT_PLL_REF_SEL;
	/* Non-SSC reference */
	I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);

	/* Disable 10 bit clock */
	temp = I915_READ(BXT_PORT_PLL_EBB_4(port));
	temp &= ~PORT_PLL_10BIT_CLK_ENABLE;
	I915_WRITE(BXT_PORT_PLL_EBB_4(port), temp);

	/* Write P1 & P2 */
	temp = I915_READ(BXT_PORT_PLL_EBB_0(port));
	temp &= ~(PORT_PLL_P1_MASK | PORT_PLL_P2_MASK);
	temp |= pll->config.hw_state.ebb0;
	I915_WRITE(BXT_PORT_PLL_EBB_0(port), temp);

	/* Write M2 integer */
	temp = I915_READ(BXT_PORT_PLL(port, 0));
	temp &= ~PORT_PLL_M2_MASK;
	temp |= pll->config.hw_state.pll0;
	I915_WRITE(BXT_PORT_PLL(port, 0), temp);

	/* Write N */
	temp = I915_READ(BXT_PORT_PLL(port, 1));
	temp &= ~PORT_PLL_N_MASK;
	temp |= pll->config.hw_state.pll1;
	I915_WRITE(BXT_PORT_PLL(port, 1), temp);

	/* Write M2 fraction */
	temp = I915_READ(BXT_PORT_PLL(port, 2));
	temp &= ~PORT_PLL_M2_FRAC_MASK;
	temp |= pll->config.hw_state.pll2;
	I915_WRITE(BXT_PORT_PLL(port, 2), temp);

	/* Write M2 fraction enable */
	temp = I915_READ(BXT_PORT_PLL(port, 3));
	temp &= ~PORT_PLL_M2_FRAC_ENABLE;
	temp |= pll->config.hw_state.pll3;
	I915_WRITE(BXT_PORT_PLL(port, 3), temp);

	/* Write coeff */
	temp = I915_READ(BXT_PORT_PLL(port, 6));
	temp &= ~PORT_PLL_PROP_COEFF_MASK;
	temp &= ~PORT_PLL_INT_COEFF_MASK;
	temp &= ~PORT_PLL_GAIN_CTL_MASK;
	temp |= pll->config.hw_state.pll6;
	I915_WRITE(BXT_PORT_PLL(port, 6), temp);

	/* Write calibration val */
	temp = I915_READ(BXT_PORT_PLL(port, 8));
	temp &= ~PORT_PLL_TARGET_CNT_MASK;
	temp |= pll->config.hw_state.pll8;
	I915_WRITE(BXT_PORT_PLL(port, 8), temp);

2848 2849
	temp = I915_READ(BXT_PORT_PLL(port, 9));
	temp &= ~PORT_PLL_LOCK_THRESHOLD_MASK;
2850
	temp |= pll->config.hw_state.pll9;
2851 2852 2853 2854 2855 2856 2857
	I915_WRITE(BXT_PORT_PLL(port, 9), temp);

	temp = I915_READ(BXT_PORT_PLL(port, 10));
	temp &= ~PORT_PLL_DCO_AMP_OVR_EN_H;
	temp &= ~PORT_PLL_DCO_AMP_MASK;
	temp |= pll->config.hw_state.pll10;
	I915_WRITE(BXT_PORT_PLL(port, 10), temp);
2858 2859 2860 2861 2862

	/* Recalibrate with new settings */
	temp = I915_READ(BXT_PORT_PLL_EBB_4(port));
	temp |= PORT_PLL_RECALIBRATE;
	I915_WRITE(BXT_PORT_PLL_EBB_4(port), temp);
2863 2864
	temp &= ~PORT_PLL_10BIT_CLK_ENABLE;
	temp |= pll->config.hw_state.ebb4;
2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914
	I915_WRITE(BXT_PORT_PLL_EBB_4(port), temp);

	/* Enable PLL */
	temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
	temp |= PORT_PLL_ENABLE;
	I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
	POSTING_READ(BXT_PORT_PLL_ENABLE(port));

	if (wait_for_atomic_us((I915_READ(BXT_PORT_PLL_ENABLE(port)) &
			PORT_PLL_LOCK), 200))
		DRM_ERROR("PLL %d not locked\n", port);

	/*
	 * While we write to the group register to program all lanes at once we
	 * can read only lane registers and we pick lanes 0/1 for that.
	 */
	temp = I915_READ(BXT_PORT_PCS_DW12_LN01(port));
	temp &= ~LANE_STAGGER_MASK;
	temp &= ~LANESTAGGER_STRAP_OVRD;
	temp |= pll->config.hw_state.pcsdw12;
	I915_WRITE(BXT_PORT_PCS_DW12_GRP(port), temp);
}

static void bxt_ddi_pll_disable(struct drm_i915_private *dev_priv,
					struct intel_shared_dpll *pll)
{
	enum port port = (enum port)pll->id;	/* 1:1 port->PLL mapping */
	uint32_t temp;

	temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
	temp &= ~PORT_PLL_ENABLE;
	I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
	POSTING_READ(BXT_PORT_PLL_ENABLE(port));
}

static bool bxt_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
					struct intel_shared_dpll *pll,
					struct intel_dpll_hw_state *hw_state)
{
	enum port port = (enum port)pll->id;	/* 1:1 port->PLL mapping */
	uint32_t val;

	if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
		return false;

	val = I915_READ(BXT_PORT_PLL_ENABLE(port));
	if (!(val & PORT_PLL_ENABLE))
		return false;

	hw_state->ebb0 = I915_READ(BXT_PORT_PLL_EBB_0(port));
2915 2916
	hw_state->ebb0 &= PORT_PLL_P1_MASK | PORT_PLL_P2_MASK;

2917 2918 2919
	hw_state->ebb4 = I915_READ(BXT_PORT_PLL_EBB_4(port));
	hw_state->ebb4 &= PORT_PLL_10BIT_CLK_ENABLE;

2920
	hw_state->pll0 = I915_READ(BXT_PORT_PLL(port, 0));
2921 2922
	hw_state->pll0 &= PORT_PLL_M2_MASK;

2923
	hw_state->pll1 = I915_READ(BXT_PORT_PLL(port, 1));
2924 2925
	hw_state->pll1 &= PORT_PLL_N_MASK;

2926
	hw_state->pll2 = I915_READ(BXT_PORT_PLL(port, 2));
2927 2928
	hw_state->pll2 &= PORT_PLL_M2_FRAC_MASK;

2929
	hw_state->pll3 = I915_READ(BXT_PORT_PLL(port, 3));
2930 2931
	hw_state->pll3 &= PORT_PLL_M2_FRAC_ENABLE;

2932
	hw_state->pll6 = I915_READ(BXT_PORT_PLL(port, 6));
2933 2934 2935 2936
	hw_state->pll6 &= PORT_PLL_PROP_COEFF_MASK |
			  PORT_PLL_INT_COEFF_MASK |
			  PORT_PLL_GAIN_CTL_MASK;

2937
	hw_state->pll8 = I915_READ(BXT_PORT_PLL(port, 8));
2938 2939
	hw_state->pll8 &= PORT_PLL_TARGET_CNT_MASK;

2940 2941 2942
	hw_state->pll9 = I915_READ(BXT_PORT_PLL(port, 9));
	hw_state->pll9 &= PORT_PLL_LOCK_THRESHOLD_MASK;

2943
	hw_state->pll10 = I915_READ(BXT_PORT_PLL(port, 10));
2944 2945 2946
	hw_state->pll10 &= PORT_PLL_DCO_AMP_OVR_EN_H |
			   PORT_PLL_DCO_AMP_MASK;

2947 2948 2949 2950 2951 2952
	/*
	 * While we write to the group register to program all lanes at once we
	 * can read only lane registers. We configure all lanes the same way, so
	 * here just read out lanes 0/1 and output a note if lanes 2/3 differ.
	 */
	hw_state->pcsdw12 = I915_READ(BXT_PORT_PCS_DW12_LN01(port));
2953
	if (I915_READ(BXT_PORT_PCS_DW12_LN23(port)) != hw_state->pcsdw12)
2954 2955 2956
		DRM_DEBUG_DRIVER("lane stagger config different for lane 01 (%08x) and 23 (%08x)\n",
				 hw_state->pcsdw12,
				 I915_READ(BXT_PORT_PCS_DW12_LN23(port)));
2957
	hw_state->pcsdw12 &= LANE_STAGGER_MASK | LANESTAGGER_STRAP_OVRD;
2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977

	return true;
}

static void bxt_shared_dplls_init(struct drm_i915_private *dev_priv)
{
	int i;

	dev_priv->num_shared_dpll = 3;

	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
		dev_priv->shared_dplls[i].id = i;
		dev_priv->shared_dplls[i].name = bxt_ddi_pll_names[i];
		dev_priv->shared_dplls[i].disable = bxt_ddi_pll_disable;
		dev_priv->shared_dplls[i].enable = bxt_ddi_pll_enable;
		dev_priv->shared_dplls[i].get_hw_state =
			bxt_ddi_pll_get_hw_state;
	}
}

2978 2979 2980 2981 2982
void intel_ddi_pll_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t val = I915_READ(LCPLL_CTL);

2983
	if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
2984
		skl_shared_dplls_init(dev_priv);
2985 2986
	else if (IS_BROXTON(dev))
		bxt_shared_dplls_init(dev_priv);
2987 2988
	else
		hsw_shared_dplls_init(dev_priv);
P
Paulo Zanoni 已提交
2989

2990
	if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
2991 2992 2993
		int cdclk_freq;

		cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
2994
		dev_priv->skl_boot_cdclk = cdclk_freq;
2995 2996
		if (skl_sanitize_cdclk(dev_priv))
			DRM_DEBUG_KMS("Sanitized cdclk programmed by pre-os\n");
2997 2998
		if (!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_ENABLE))
			DRM_ERROR("LCPLL1 is disabled\n");
2999 3000
	} else if (IS_BROXTON(dev)) {
		broxton_init_cdclk(dev);
3001
		broxton_ddi_phy_init(dev);
3002 3003 3004 3005 3006 3007 3008 3009 3010
	} else {
		/*
		 * The LCPLL register should be turned on by the BIOS. For now
		 * let's just check its state and print errors in case
		 * something is wrong.  Don't even try to turn it on.
		 */

		if (val & LCPLL_CD_SOURCE_FCLK)
			DRM_ERROR("CDCLK source is not LCPLL\n");
P
Paulo Zanoni 已提交
3011

3012 3013 3014
		if (val & LCPLL_PLL_DISABLE)
			DRM_ERROR("LCPLL is disabled\n");
	}
P
Paulo Zanoni 已提交
3015
}
3016

3017
void intel_ddi_prepare_link_retrain(struct intel_dp *intel_dp)
3018
{
3019 3020 3021
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct drm_i915_private *dev_priv =
		to_i915(intel_dig_port->base.base.dev);
3022
	enum port port = intel_dig_port->port;
3023
	uint32_t val;
3024
	bool wait = false;
3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043

	if (I915_READ(DP_TP_CTL(port)) & DP_TP_CTL_ENABLE) {
		val = I915_READ(DDI_BUF_CTL(port));
		if (val & DDI_BUF_CTL_ENABLE) {
			val &= ~DDI_BUF_CTL_ENABLE;
			I915_WRITE(DDI_BUF_CTL(port), val);
			wait = true;
		}

		val = I915_READ(DP_TP_CTL(port));
		val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
		val |= DP_TP_CTL_LINK_TRAIN_PAT1;
		I915_WRITE(DP_TP_CTL(port), val);
		POSTING_READ(DP_TP_CTL(port));

		if (wait)
			intel_wait_ddi_buf_idle(dev_priv, port);
	}

3044
	val = DP_TP_CTL_ENABLE |
3045
	      DP_TP_CTL_LINK_TRAIN_PAT1 | DP_TP_CTL_SCRAMBLE_DISABLE;
3046 3047 3048 3049 3050 3051 3052
	if (intel_dp->is_mst)
		val |= DP_TP_CTL_MODE_MST;
	else {
		val |= DP_TP_CTL_MODE_SST;
		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
			val |= DP_TP_CTL_ENHANCED_FRAME_ENABLE;
	}
3053 3054 3055 3056 3057 3058 3059 3060 3061
	I915_WRITE(DP_TP_CTL(port), val);
	POSTING_READ(DP_TP_CTL(port));

	intel_dp->DP |= DDI_BUF_CTL_ENABLE;
	I915_WRITE(DDI_BUF_CTL(port), intel_dp->DP);
	POSTING_READ(DDI_BUF_CTL(port));

	udelay(600);
}
P
Paulo Zanoni 已提交
3062

3063 3064 3065 3066 3067 3068 3069 3070
void intel_ddi_fdi_disable(struct drm_crtc *crtc)
{
	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
	struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
	uint32_t val;

	intel_ddi_post_disable(intel_encoder);

3071
	val = I915_READ(FDI_RX_CTL(PIPE_A));
3072
	val &= ~FDI_RX_ENABLE;
3073
	I915_WRITE(FDI_RX_CTL(PIPE_A), val);
3074

3075
	val = I915_READ(FDI_RX_MISC(PIPE_A));
3076 3077
	val &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
	val |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
3078
	I915_WRITE(FDI_RX_MISC(PIPE_A), val);
3079

3080
	val = I915_READ(FDI_RX_CTL(PIPE_A));
3081
	val &= ~FDI_PCDCLK;
3082
	I915_WRITE(FDI_RX_CTL(PIPE_A), val);
3083

3084
	val = I915_READ(FDI_RX_CTL(PIPE_A));
3085
	val &= ~FDI_RX_PLL_ENABLE;
3086
	I915_WRITE(FDI_RX_CTL(PIPE_A), val);
3087 3088
}

L
Libin Yang 已提交
3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101
bool intel_ddi_is_audio_enabled(struct drm_i915_private *dev_priv,
				 struct intel_crtc *intel_crtc)
{
	u32 temp;

	if (intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_AUDIO)) {
		temp = I915_READ(HSW_AUD_PIN_ELD_CP_VLD);
		if (temp & AUDIO_OUTPUT_ENABLE(intel_crtc->pipe))
			return true;
	}
	return false;
}

3102
void intel_ddi_get_config(struct intel_encoder *encoder,
3103
			  struct intel_crtc_state *pipe_config)
3104 3105 3106
{
	struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
3107
	enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
3108
	struct intel_hdmi *intel_hdmi;
3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120
	u32 temp, flags = 0;

	temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
	if (temp & TRANS_DDI_PHSYNC)
		flags |= DRM_MODE_FLAG_PHSYNC;
	else
		flags |= DRM_MODE_FLAG_NHSYNC;
	if (temp & TRANS_DDI_PVSYNC)
		flags |= DRM_MODE_FLAG_PVSYNC;
	else
		flags |= DRM_MODE_FLAG_NVSYNC;

3121
	pipe_config->base.adjusted_mode.flags |= flags;
3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138

	switch (temp & TRANS_DDI_BPC_MASK) {
	case TRANS_DDI_BPC_6:
		pipe_config->pipe_bpp = 18;
		break;
	case TRANS_DDI_BPC_8:
		pipe_config->pipe_bpp = 24;
		break;
	case TRANS_DDI_BPC_10:
		pipe_config->pipe_bpp = 30;
		break;
	case TRANS_DDI_BPC_12:
		pipe_config->pipe_bpp = 36;
		break;
	default:
		break;
	}
3139 3140 3141

	switch (temp & TRANS_DDI_MODE_SELECT_MASK) {
	case TRANS_DDI_MODE_SELECT_HDMI:
3142
		pipe_config->has_hdmi_sink = true;
3143 3144
		intel_hdmi = enc_to_intel_hdmi(&encoder->base);

3145
		if (intel_hdmi->infoframe_enabled(&encoder->base, pipe_config))
3146
			pipe_config->has_infoframe = true;
3147
		break;
3148 3149 3150 3151 3152 3153
	case TRANS_DDI_MODE_SELECT_DVI:
	case TRANS_DDI_MODE_SELECT_FDI:
		break;
	case TRANS_DDI_MODE_SELECT_DP_SST:
	case TRANS_DDI_MODE_SELECT_DP_MST:
		pipe_config->has_dp_encoder = true;
3154 3155
		pipe_config->lane_count =
			((temp & DDI_PORT_WIDTH_MASK) >> DDI_PORT_WIDTH_SHIFT) + 1;
3156 3157 3158 3159 3160
		intel_dp_get_m_n(intel_crtc, pipe_config);
		break;
	default:
		break;
	}
3161

L
Libin Yang 已提交
3162 3163
	pipe_config->has_audio =
		intel_ddi_is_audio_enabled(dev_priv, intel_crtc);
3164

3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
	if (encoder->type == INTEL_OUTPUT_EDP && dev_priv->vbt.edp_bpp &&
	    pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
		/*
		 * This is a big fat ugly hack.
		 *
		 * Some machines in UEFI boot mode provide us a VBT that has 18
		 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
		 * unknown we fail to light up. Yet the same BIOS boots up with
		 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
		 * max, not what it tells us to use.
		 *
		 * Note: This will still be broken if the eDP panel is not lit
		 * up by the BIOS, and thus we can't get the mode at module
		 * load.
		 */
		DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
			      pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
		dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
	}
3184

3185
	intel_ddi_clock_get(encoder, pipe_config);
3186 3187
}

P
Paulo Zanoni 已提交
3188 3189 3190 3191 3192 3193
static void intel_ddi_destroy(struct drm_encoder *encoder)
{
	/* HDMI has nothing special to destroy, so we can go with this. */
	intel_dp_encoder_destroy(encoder);
}

3194
static bool intel_ddi_compute_config(struct intel_encoder *encoder,
3195
				     struct intel_crtc_state *pipe_config)
P
Paulo Zanoni 已提交
3196
{
3197
	int type = encoder->type;
3198
	int port = intel_ddi_get_encoder_port(encoder);
P
Paulo Zanoni 已提交
3199

3200
	WARN(type == INTEL_OUTPUT_UNKNOWN, "compute_config() on unknown output!\n");
P
Paulo Zanoni 已提交
3201

3202 3203 3204
	if (port == PORT_A)
		pipe_config->cpu_transcoder = TRANSCODER_EDP;

P
Paulo Zanoni 已提交
3205
	if (type == INTEL_OUTPUT_HDMI)
3206
		return intel_hdmi_compute_config(encoder, pipe_config);
P
Paulo Zanoni 已提交
3207
	else
3208
		return intel_dp_compute_config(encoder, pipe_config);
P
Paulo Zanoni 已提交
3209 3210 3211 3212 3213 3214
}

static const struct drm_encoder_funcs intel_ddi_funcs = {
	.destroy = intel_ddi_destroy,
};

3215 3216 3217 3218 3219 3220
static struct intel_connector *
intel_ddi_init_dp_connector(struct intel_digital_port *intel_dig_port)
{
	struct intel_connector *connector;
	enum port port = intel_dig_port->port;

3221
	connector = intel_connector_alloc();
3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239
	if (!connector)
		return NULL;

	intel_dig_port->dp.output_reg = DDI_BUF_CTL(port);
	if (!intel_dp_init_connector(intel_dig_port, connector)) {
		kfree(connector);
		return NULL;
	}

	return connector;
}

static struct intel_connector *
intel_ddi_init_hdmi_connector(struct intel_digital_port *intel_dig_port)
{
	struct intel_connector *connector;
	enum port port = intel_dig_port->port;

3240
	connector = intel_connector_alloc();
3241 3242 3243 3244 3245 3246 3247 3248 3249
	if (!connector)
		return NULL;

	intel_dig_port->hdmi.hdmi_reg = DDI_BUF_CTL(port);
	intel_hdmi_init_connector(intel_dig_port, connector);

	return connector;
}

P
Paulo Zanoni 已提交
3250 3251
void intel_ddi_init(struct drm_device *dev, enum port port)
{
3252
	struct drm_i915_private *dev_priv = dev->dev_private;
P
Paulo Zanoni 已提交
3253 3254 3255
	struct intel_digital_port *intel_dig_port;
	struct intel_encoder *intel_encoder;
	struct drm_encoder *encoder;
3256
	bool init_hdmi, init_dp;
3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283
	int max_lanes;

	if (I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES) {
		switch (port) {
		case PORT_A:
			max_lanes = 4;
			break;
		case PORT_E:
			max_lanes = 0;
			break;
		default:
			max_lanes = 4;
			break;
		}
	} else {
		switch (port) {
		case PORT_A:
			max_lanes = 2;
			break;
		case PORT_E:
			max_lanes = 2;
			break;
		default:
			max_lanes = 4;
			break;
		}
	}
3284 3285 3286 3287 3288

	init_hdmi = (dev_priv->vbt.ddi_port_info[port].supports_dvi ||
		     dev_priv->vbt.ddi_port_info[port].supports_hdmi);
	init_dp = dev_priv->vbt.ddi_port_info[port].supports_dp;
	if (!init_dp && !init_hdmi) {
3289
		DRM_DEBUG_KMS("VBT says port %c is not DVI/HDMI/DP compatible, respect it\n",
3290
			      port_name(port));
3291
		return;
3292
	}
P
Paulo Zanoni 已提交
3293

3294
	intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
P
Paulo Zanoni 已提交
3295 3296 3297 3298 3299 3300 3301 3302 3303
	if (!intel_dig_port)
		return;

	intel_encoder = &intel_dig_port->base;
	encoder = &intel_encoder->base;

	drm_encoder_init(dev, encoder, &intel_ddi_funcs,
			 DRM_MODE_ENCODER_TMDS);

3304
	intel_encoder->compute_config = intel_ddi_compute_config;
P
Paulo Zanoni 已提交
3305 3306 3307 3308 3309
	intel_encoder->enable = intel_enable_ddi;
	intel_encoder->pre_enable = intel_ddi_pre_enable;
	intel_encoder->disable = intel_disable_ddi;
	intel_encoder->post_disable = intel_ddi_post_disable;
	intel_encoder->get_hw_state = intel_ddi_get_hw_state;
3310
	intel_encoder->get_config = intel_ddi_get_config;
P
Paulo Zanoni 已提交
3311 3312

	intel_dig_port->port = port;
3313
	dev_priv->dig_port_map[port] = intel_encoder;
3314 3315 3316
	intel_dig_port->saved_port_bits = I915_READ(DDI_BUF_CTL(port)) &
					  (DDI_BUF_PORT_REVERSAL |
					   DDI_A_4_LANES);
3317
	intel_dig_port->max_lanes = max_lanes;
P
Paulo Zanoni 已提交
3318

3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332
	/*
	 * Bspec says that DDI_A_4_LANES is the only supported configuration
	 * for Broxton.  Yet some BIOS fail to set this bit on port A if eDP
	 * wasn't lit up at boot.  Force this bit on in our internal
	 * configuration so that we use the proper lane count for our
	 * calculations.
	 */
	if (IS_BROXTON(dev) && port == PORT_A) {
		if (!(intel_dig_port->saved_port_bits & DDI_A_4_LANES)) {
			DRM_DEBUG_KMS("BXT BIOS forgot to set DDI_A_4_LANES for port A; fixing\n");
			intel_dig_port->saved_port_bits |= DDI_A_4_LANES;
		}
	}

P
Paulo Zanoni 已提交
3333
	intel_encoder->type = INTEL_OUTPUT_UNKNOWN;
3334
	intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
3335
	intel_encoder->cloneable = 0;
P
Paulo Zanoni 已提交
3336

3337 3338 3339
	if (init_dp) {
		if (!intel_ddi_init_dp_connector(intel_dig_port))
			goto err;
3340

3341
		intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
3342 3343 3344 3345
		/*
		 * On BXT A0/A1, sw needs to activate DDIA HPD logic and
		 * interrupts to check the external panel connection.
		 */
3346
		if (IS_BXT_REVID(dev, 0, BXT_REVID_A1) && port == PORT_B)
3347 3348 3349
			dev_priv->hotplug.irq_port[PORT_A] = intel_dig_port;
		else
			dev_priv->hotplug.irq_port[port] = intel_dig_port;
3350
	}
3351

3352 3353
	/* In theory we don't need the encoder->type check, but leave it just in
	 * case we have some really bad VBTs... */
3354 3355 3356
	if (intel_encoder->type != INTEL_OUTPUT_EDP && init_hdmi) {
		if (!intel_ddi_init_hdmi_connector(intel_dig_port))
			goto err;
3357
	}
3358 3359 3360 3361 3362 3363

	return;

err:
	drm_encoder_cleanup(encoder);
	kfree(intel_dig_port);
P
Paulo Zanoni 已提交
3364
}