intel_ddi.c 88.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

#include "i915_drv.h"
#include "intel_drv.h"

31 32 33
struct ddi_buf_trans {
	u32 trans1;	/* balance leg enable, de-emph level */
	u32 trans2;	/* vref sel, vswing */
34
	u8 i_boost;	/* SKL: I_boost; valid: 0x0, 0x1, 0x3, 0x7 */
35 36
};

37 38 39 40
/* HDMI/DVI modes ignore everything but the last 2 items. So we share
 * them for both DP and FDI transports, allowing those ports to
 * automatically adapt to HDMI connections as well
 */
41
static const struct ddi_buf_trans hsw_ddi_translations_dp[] = {
42 43 44 45 46 47 48 49 50
	{ 0x00FFFFFF, 0x0006000E, 0x0 },
	{ 0x00D75FFF, 0x0005000A, 0x0 },
	{ 0x00C30FFF, 0x00040006, 0x0 },
	{ 0x80AAAFFF, 0x000B0000, 0x0 },
	{ 0x00FFFFFF, 0x0005000A, 0x0 },
	{ 0x00D75FFF, 0x000C0004, 0x0 },
	{ 0x80C30FFF, 0x000B0000, 0x0 },
	{ 0x00FFFFFF, 0x00040006, 0x0 },
	{ 0x80D75FFF, 0x000B0000, 0x0 },
51 52
};

53
static const struct ddi_buf_trans hsw_ddi_translations_fdi[] = {
54 55 56 57 58 59 60 61 62
	{ 0x00FFFFFF, 0x0007000E, 0x0 },
	{ 0x00D75FFF, 0x000F000A, 0x0 },
	{ 0x00C30FFF, 0x00060006, 0x0 },
	{ 0x00AAAFFF, 0x001E0000, 0x0 },
	{ 0x00FFFFFF, 0x000F000A, 0x0 },
	{ 0x00D75FFF, 0x00160004, 0x0 },
	{ 0x00C30FFF, 0x001E0000, 0x0 },
	{ 0x00FFFFFF, 0x00060006, 0x0 },
	{ 0x00D75FFF, 0x001E0000, 0x0 },
63 64
};

65 66
static const struct ddi_buf_trans hsw_ddi_translations_hdmi[] = {
					/* Idx	NT mV d	T mV d	db	*/
67 68 69 70 71 72 73 74 75 76 77 78
	{ 0x00FFFFFF, 0x0006000E, 0x0 },/* 0:	400	400	0	*/
	{ 0x00E79FFF, 0x000E000C, 0x0 },/* 1:	400	500	2	*/
	{ 0x00D75FFF, 0x0005000A, 0x0 },/* 2:	400	600	3.5	*/
	{ 0x00FFFFFF, 0x0005000A, 0x0 },/* 3:	600	600	0	*/
	{ 0x00E79FFF, 0x001D0007, 0x0 },/* 4:	600	750	2	*/
	{ 0x00D75FFF, 0x000C0004, 0x0 },/* 5:	600	900	3.5	*/
	{ 0x00FFFFFF, 0x00040006, 0x0 },/* 6:	800	800	0	*/
	{ 0x80E79FFF, 0x00030002, 0x0 },/* 7:	800	1000	2	*/
	{ 0x00FFFFFF, 0x00140005, 0x0 },/* 8:	850	850	0	*/
	{ 0x00FFFFFF, 0x000C0004, 0x0 },/* 9:	900	900	0	*/
	{ 0x00FFFFFF, 0x001C0003, 0x0 },/* 10:	950	950	0	*/
	{ 0x80FFFFFF, 0x00030002, 0x0 },/* 11:	1000	1000	0	*/
79 80
};

81
static const struct ddi_buf_trans bdw_ddi_translations_edp[] = {
82 83 84 85 86 87 88 89 90
	{ 0x00FFFFFF, 0x00000012, 0x0 },
	{ 0x00EBAFFF, 0x00020011, 0x0 },
	{ 0x00C71FFF, 0x0006000F, 0x0 },
	{ 0x00AAAFFF, 0x000E000A, 0x0 },
	{ 0x00FFFFFF, 0x00020011, 0x0 },
	{ 0x00DB6FFF, 0x0005000F, 0x0 },
	{ 0x00BEEFFF, 0x000A000C, 0x0 },
	{ 0x00FFFFFF, 0x0005000F, 0x0 },
	{ 0x00DB6FFF, 0x000A000C, 0x0 },
91 92
};

93
static const struct ddi_buf_trans bdw_ddi_translations_dp[] = {
94 95 96 97 98 99 100 101 102
	{ 0x00FFFFFF, 0x0007000E, 0x0 },
	{ 0x00D75FFF, 0x000E000A, 0x0 },
	{ 0x00BEFFFF, 0x00140006, 0x0 },
	{ 0x80B2CFFF, 0x001B0002, 0x0 },
	{ 0x00FFFFFF, 0x000E000A, 0x0 },
	{ 0x00DB6FFF, 0x00160005, 0x0 },
	{ 0x80C71FFF, 0x001A0002, 0x0 },
	{ 0x00F7DFFF, 0x00180004, 0x0 },
	{ 0x80D75FFF, 0x001B0002, 0x0 },
103 104
};

105
static const struct ddi_buf_trans bdw_ddi_translations_fdi[] = {
106 107 108 109 110 111 112 113 114
	{ 0x00FFFFFF, 0x0001000E, 0x0 },
	{ 0x00D75FFF, 0x0004000A, 0x0 },
	{ 0x00C30FFF, 0x00070006, 0x0 },
	{ 0x00AAAFFF, 0x000C0000, 0x0 },
	{ 0x00FFFFFF, 0x0004000A, 0x0 },
	{ 0x00D75FFF, 0x00090004, 0x0 },
	{ 0x00C30FFF, 0x000C0000, 0x0 },
	{ 0x00FFFFFF, 0x00070006, 0x0 },
	{ 0x00D75FFF, 0x000C0000, 0x0 },
115 116
};

117 118
static const struct ddi_buf_trans bdw_ddi_translations_hdmi[] = {
					/* Idx	NT mV d	T mV df	db	*/
119 120 121 122 123 124 125 126 127 128
	{ 0x00FFFFFF, 0x0007000E, 0x0 },/* 0:	400	400	0	*/
	{ 0x00D75FFF, 0x000E000A, 0x0 },/* 1:	400	600	3.5	*/
	{ 0x00BEFFFF, 0x00140006, 0x0 },/* 2:	400	800	6	*/
	{ 0x00FFFFFF, 0x0009000D, 0x0 },/* 3:	450	450	0	*/
	{ 0x00FFFFFF, 0x000E000A, 0x0 },/* 4:	600	600	0	*/
	{ 0x00D7FFFF, 0x00140006, 0x0 },/* 5:	600	800	2.5	*/
	{ 0x80CB2FFF, 0x001B0002, 0x0 },/* 6:	600	1000	4.5	*/
	{ 0x00FFFFFF, 0x00140006, 0x0 },/* 7:	800	800	0	*/
	{ 0x80E79FFF, 0x001B0002, 0x0 },/* 8:	800	1000	2	*/
	{ 0x80FFFFFF, 0x001B0002, 0x0 },/* 9:	1000	1000	0	*/
129 130
};

131
/* Skylake H, S, and Skylake Y with 0.95V VccIO */
132
static const struct ddi_buf_trans skl_ddi_translations_dp[] = {
133 134 135 136 137 138 139 140 141
	{ 0x00002016, 0x000000A0, 0x0 },
	{ 0x00005012, 0x0000009B, 0x0 },
	{ 0x00007011, 0x00000088, 0x0 },
	{ 0x00009010, 0x000000C7, 0x0 },
	{ 0x00002016, 0x0000009B, 0x0 },
	{ 0x00005012, 0x00000088, 0x0 },
	{ 0x00007011, 0x000000C7, 0x0 },
	{ 0x00002016, 0x000000DF, 0x0 },
	{ 0x00005012, 0x000000C7, 0x0 },
142 143
};

144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
/* Skylake U */
static const struct ddi_buf_trans skl_u_ddi_translations_dp[] = {
	{ 0x00002016, 0x000000A2, 0x0 },
	{ 0x00005012, 0x00000088, 0x0 },
	{ 0x00007011, 0x00000087, 0x0 },
	{ 0x80009010, 0x000000C7, 0x1 },	/* Uses I_boost */
	{ 0x00002016, 0x0000009D, 0x0 },
	{ 0x00005012, 0x000000C7, 0x0 },
	{ 0x00007011, 0x000000C7, 0x0 },
	{ 0x00002016, 0x00000088, 0x0 },
	{ 0x00005012, 0x000000C7, 0x0 },
};

/* Skylake Y with 0.85V VccIO */
static const struct ddi_buf_trans skl_y_085v_ddi_translations_dp[] = {
	{ 0x00000018, 0x000000A2, 0x0 },
	{ 0x00005012, 0x00000088, 0x0 },
	{ 0x00007011, 0x00000087, 0x0 },
	{ 0x80009010, 0x000000C7, 0x1 },	/* Uses I_boost */
	{ 0x00000018, 0x0000009D, 0x0 },
	{ 0x00005012, 0x000000C7, 0x0 },
	{ 0x00007011, 0x000000C7, 0x0 },
	{ 0x00000018, 0x00000088, 0x0 },
	{ 0x00005012, 0x000000C7, 0x0 },
};

/*
 * Skylake H and S, and Skylake Y with 0.95V VccIO
 * eDP 1.4 low vswing translation parameters
 */
174
static const struct ddi_buf_trans skl_ddi_translations_edp[] = {
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
	{ 0x00000018, 0x000000A8, 0x0 },
	{ 0x00004013, 0x000000A9, 0x0 },
	{ 0x00007011, 0x000000A2, 0x0 },
	{ 0x00009010, 0x0000009C, 0x0 },
	{ 0x00000018, 0x000000A9, 0x0 },
	{ 0x00006013, 0x000000A2, 0x0 },
	{ 0x00007011, 0x000000A6, 0x0 },
	{ 0x00000018, 0x000000AB, 0x0 },
	{ 0x00007013, 0x0000009F, 0x0 },
	{ 0x00000018, 0x000000DF, 0x0 },
};

/*
 * Skylake U
 * eDP 1.4 low vswing translation parameters
 */
static const struct ddi_buf_trans skl_u_ddi_translations_edp[] = {
	{ 0x00000018, 0x000000A8, 0x0 },
	{ 0x00004013, 0x000000A9, 0x0 },
	{ 0x00007011, 0x000000A2, 0x0 },
	{ 0x00009010, 0x0000009C, 0x0 },
	{ 0x00000018, 0x000000A9, 0x0 },
	{ 0x00006013, 0x000000A2, 0x0 },
	{ 0x00007011, 0x000000A6, 0x0 },
	{ 0x00002016, 0x000000AB, 0x0 },
	{ 0x00005013, 0x0000009F, 0x0 },
	{ 0x00000018, 0x000000DF, 0x0 },
202 203
};

204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
/*
 * Skylake Y with 0.95V VccIO
 * eDP 1.4 low vswing translation parameters
 */
static const struct ddi_buf_trans skl_y_085v_ddi_translations_edp[] = {
	{ 0x00000018, 0x000000A8, 0x0 },
	{ 0x00004013, 0x000000AB, 0x0 },
	{ 0x00007011, 0x000000A4, 0x0 },
	{ 0x00009010, 0x000000DF, 0x0 },
	{ 0x00000018, 0x000000AA, 0x0 },
	{ 0x00006013, 0x000000A4, 0x0 },
	{ 0x00007011, 0x0000009D, 0x0 },
	{ 0x00000018, 0x000000A0, 0x0 },
	{ 0x00006012, 0x000000DF, 0x0 },
	{ 0x00000018, 0x0000008A, 0x0 },
};
220

221
/* Skylake H, S and U, and Skylake Y with 0.95V VccIO */
222
static const struct ddi_buf_trans skl_ddi_translations_hdmi[] = {
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
	{ 0x00000018, 0x000000AC, 0x0 },
	{ 0x00005012, 0x0000009D, 0x0 },
	{ 0x00007011, 0x00000088, 0x0 },
	{ 0x00000018, 0x000000A1, 0x0 },
	{ 0x00000018, 0x00000098, 0x0 },
	{ 0x00004013, 0x00000088, 0x0 },
	{ 0x00006012, 0x00000087, 0x0 },
	{ 0x00000018, 0x000000DF, 0x0 },
	{ 0x00003015, 0x00000087, 0x0 },	/* Default */
	{ 0x00003015, 0x000000C7, 0x0 },
	{ 0x00000018, 0x000000C7, 0x0 },
};

/* Skylake Y with 0.85V VccIO */
static const struct ddi_buf_trans skl_y_085v_ddi_translations_hdmi[] = {
	{ 0x00000018, 0x000000A1, 0x0 },
	{ 0x00005012, 0x000000DF, 0x0 },
	{ 0x00007011, 0x00000084, 0x0 },
	{ 0x00000018, 0x000000A4, 0x0 },
	{ 0x00000018, 0x0000009D, 0x0 },
	{ 0x00004013, 0x00000080, 0x0 },
	{ 0x00006013, 0x000000C7, 0x0 },
	{ 0x00000018, 0x0000008A, 0x0 },
	{ 0x00003015, 0x000000C7, 0x0 },	/* Default */
	{ 0x80003015, 0x000000C7, 0x7 },	/* Uses I_boost */
	{ 0x00000018, 0x000000C7, 0x0 },
249 250
};

251 252 253 254 255 256 257 258 259 260 261 262 263
struct bxt_ddi_buf_trans {
	u32 margin;	/* swing value */
	u32 scale;	/* scale value */
	u32 enable;	/* scale enable */
	u32 deemphasis;
	bool default_index; /* true if the entry represents default value */
};

/* BSpec does not define separate vswing/pre-emphasis values for eDP.
 * Using DP values for eDP as well.
 */
static const struct bxt_ddi_buf_trans bxt_ddi_translations_dp[] = {
					/* Idx	NT mV diff	db  */
264 265 266 267 268 269 270 271 272
	{ 52,  0x9A, 0, 128, true  },	/* 0:	400		0   */
	{ 78,  0x9A, 0, 85,  false },	/* 1:	400		3.5 */
	{ 104, 0x9A, 0, 64,  false },	/* 2:	400		6   */
	{ 154, 0x9A, 0, 43,  false },	/* 3:	400		9.5 */
	{ 77,  0x9A, 0, 128, false },	/* 4:	600		0   */
	{ 116, 0x9A, 0, 85,  false },	/* 5:	600		3.5 */
	{ 154, 0x9A, 0, 64,  false },	/* 6:	600		6   */
	{ 102, 0x9A, 0, 128, false },	/* 7:	800		0   */
	{ 154, 0x9A, 0, 85,  false },	/* 8:	800		3.5 */
273
	{ 154, 0x9A, 1, 128, false },	/* 9:	1200		0   */
274 275 276 277 278 279 280
};

/* BSpec has 2 recommended values - entries 0 and 8.
 * Using the entry with higher vswing.
 */
static const struct bxt_ddi_buf_trans bxt_ddi_translations_hdmi[] = {
					/* Idx	NT mV diff	db  */
281 282 283 284 285 286 287 288 289
	{ 52,  0x9A, 0, 128, false },	/* 0:	400		0   */
	{ 52,  0x9A, 0, 85,  false },	/* 1:	400		3.5 */
	{ 52,  0x9A, 0, 64,  false },	/* 2:	400		6   */
	{ 42,  0x9A, 0, 43,  false },	/* 3:	400		9.5 */
	{ 77,  0x9A, 0, 128, false },	/* 4:	600		0   */
	{ 77,  0x9A, 0, 85,  false },	/* 5:	600		3.5 */
	{ 77,  0x9A, 0, 64,  false },	/* 6:	600		6   */
	{ 102, 0x9A, 0, 128, false },	/* 7:	800		0   */
	{ 102, 0x9A, 0, 85,  false },	/* 8:	800		3.5 */
290 291 292
	{ 154, 0x9A, 1, 128, true },	/* 9:	1200		0   */
};

293 294 295
static void bxt_ddi_vswing_sequence(struct drm_device *dev, u32 level,
				    enum port port, int type);

296 297 298
static void ddi_get_encoder_port(struct intel_encoder *intel_encoder,
				 struct intel_digital_port **dig_port,
				 enum port *port)
299
{
300
	struct drm_encoder *encoder = &intel_encoder->base;
301 302
	int type = intel_encoder->type;

303
	if (type == INTEL_OUTPUT_DP_MST) {
304 305
		*dig_port = enc_to_mst(encoder)->primary;
		*port = (*dig_port)->port;
306
	} else if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP ||
P
Paulo Zanoni 已提交
307
	    type == INTEL_OUTPUT_HDMI || type == INTEL_OUTPUT_UNKNOWN) {
308 309
		*dig_port = enc_to_dig_port(encoder);
		*port = (*dig_port)->port;
310
	} else if (type == INTEL_OUTPUT_ANALOG) {
311 312
		*dig_port = NULL;
		*port = PORT_E;
313 314 315 316 317 318
	} else {
		DRM_ERROR("Invalid DDI encoder type %d\n", type);
		BUG();
	}
}

319 320 321 322 323 324 325 326 327 328
enum port intel_ddi_get_encoder_port(struct intel_encoder *intel_encoder)
{
	struct intel_digital_port *dig_port;
	enum port port;

	ddi_get_encoder_port(intel_encoder, &dig_port, &port);

	return port;
}

329 330 331 332 333 334
static bool
intel_dig_port_supports_hdmi(const struct intel_digital_port *intel_dig_port)
{
	return intel_dig_port->hdmi.hdmi_reg;
}

335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
static const struct ddi_buf_trans *skl_get_buf_trans_dp(struct drm_device *dev,
							int *n_entries)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	const struct ddi_buf_trans *ddi_translations;
	static int is_095v = -1;

	if (is_095v == -1) {
		u32 spr1 = I915_READ(UAIMI_SPR1);

		is_095v = spr1 & SKL_VCCIO_MASK;
	}

	if (IS_SKL_ULX(dev) && !is_095v) {
		ddi_translations = skl_y_085v_ddi_translations_dp;
		*n_entries = ARRAY_SIZE(skl_y_085v_ddi_translations_dp);
	} else if (IS_SKL_ULT(dev)) {
		ddi_translations = skl_u_ddi_translations_dp;
		*n_entries = ARRAY_SIZE(skl_u_ddi_translations_dp);
	} else {
		ddi_translations = skl_ddi_translations_dp;
		*n_entries = ARRAY_SIZE(skl_ddi_translations_dp);
	}

	return ddi_translations;
}

static const struct ddi_buf_trans *skl_get_buf_trans_edp(struct drm_device *dev,
							 int *n_entries)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	const struct ddi_buf_trans *ddi_translations;
	static int is_095v = -1;

	if (is_095v == -1) {
		u32 spr1 = I915_READ(UAIMI_SPR1);

		is_095v = spr1 & SKL_VCCIO_MASK;
	}

	if (IS_SKL_ULX(dev) && !is_095v) {
		if (dev_priv->edp_low_vswing) {
			ddi_translations = skl_y_085v_ddi_translations_edp;
			*n_entries =
				ARRAY_SIZE(skl_y_085v_ddi_translations_edp);
		} else {
			ddi_translations = skl_y_085v_ddi_translations_dp;
			*n_entries =
				ARRAY_SIZE(skl_y_085v_ddi_translations_dp);
		}
	} else if (IS_SKL_ULT(dev)) {
		if (dev_priv->edp_low_vswing) {
			ddi_translations = skl_u_ddi_translations_edp;
			*n_entries = ARRAY_SIZE(skl_u_ddi_translations_edp);
		} else {
			ddi_translations = skl_u_ddi_translations_dp;
			*n_entries = ARRAY_SIZE(skl_u_ddi_translations_dp);
		}
	} else {
		if (dev_priv->edp_low_vswing) {
			ddi_translations = skl_ddi_translations_edp;
			*n_entries = ARRAY_SIZE(skl_ddi_translations_edp);
		} else {
			ddi_translations = skl_ddi_translations_dp;
			*n_entries = ARRAY_SIZE(skl_ddi_translations_dp);
		}
	}

	return ddi_translations;
}

static const struct ddi_buf_trans *
skl_get_buf_trans_hdmi(struct drm_device *dev,
		       int *n_entries)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	const struct ddi_buf_trans *ddi_translations;
	static int is_095v = -1;

	if (is_095v == -1) {
		u32 spr1 = I915_READ(UAIMI_SPR1);

		is_095v = spr1 & SKL_VCCIO_MASK;
	}

	if (IS_SKL_ULX(dev) && !is_095v) {
		ddi_translations = skl_y_085v_ddi_translations_hdmi;
		*n_entries = ARRAY_SIZE(skl_y_085v_ddi_translations_hdmi);
	} else {
		ddi_translations = skl_ddi_translations_hdmi;
		*n_entries = ARRAY_SIZE(skl_ddi_translations_hdmi);
	}

	return ddi_translations;
}

431 432 433
/*
 * Starting with Haswell, DDI port buffers must be programmed with correct
 * values in advance. The buffer values are different for FDI and DP modes,
434 435 436 437
 * but the HDMI/DVI fields are shared among those. So we program the DDI
 * in either FDI or DP modes only, as HDMI connections will work with both
 * of those
 */
I
Imre Deak 已提交
438 439
static void intel_prepare_ddi_buffers(struct drm_device *dev, enum port port,
				      bool supports_hdmi)
440 441 442
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 reg;
443
	int i, n_hdmi_entries, n_dp_entries, n_edp_entries, hdmi_default_entry,
444
	    size;
445
	int hdmi_level = dev_priv->vbt.ddi_port_info[port].hdmi_level_shift;
446 447 448 449 450
	const struct ddi_buf_trans *ddi_translations_fdi;
	const struct ddi_buf_trans *ddi_translations_dp;
	const struct ddi_buf_trans *ddi_translations_edp;
	const struct ddi_buf_trans *ddi_translations_hdmi;
	const struct ddi_buf_trans *ddi_translations;
451

452
	if (IS_BROXTON(dev)) {
I
Imre Deak 已提交
453
		if (!supports_hdmi)
454 455 456 457 458 459 460
			return;

		/* Vswing programming for HDMI */
		bxt_ddi_vswing_sequence(dev, hdmi_level, port,
					INTEL_OUTPUT_HDMI);
		return;
	} else if (IS_SKYLAKE(dev)) {
461 462 463 464 465 466 467
		ddi_translations_dp =
				skl_get_buf_trans_dp(dev, &n_dp_entries);
		ddi_translations_edp =
				skl_get_buf_trans_edp(dev, &n_edp_entries);
		ddi_translations_hdmi =
				skl_get_buf_trans_hdmi(dev, &n_hdmi_entries);
		hdmi_default_entry = 8;
468
	} else if (IS_BROADWELL(dev)) {
469 470
		ddi_translations_fdi = bdw_ddi_translations_fdi;
		ddi_translations_dp = bdw_ddi_translations_dp;
471
		ddi_translations_edp = bdw_ddi_translations_edp;
472
		ddi_translations_hdmi = bdw_ddi_translations_hdmi;
473 474
		n_edp_entries = ARRAY_SIZE(bdw_ddi_translations_edp);
		n_dp_entries = ARRAY_SIZE(bdw_ddi_translations_dp);
475
		n_hdmi_entries = ARRAY_SIZE(bdw_ddi_translations_hdmi);
476
		hdmi_default_entry = 7;
477 478 479
	} else if (IS_HASWELL(dev)) {
		ddi_translations_fdi = hsw_ddi_translations_fdi;
		ddi_translations_dp = hsw_ddi_translations_dp;
480
		ddi_translations_edp = hsw_ddi_translations_dp;
481
		ddi_translations_hdmi = hsw_ddi_translations_hdmi;
482
		n_dp_entries = n_edp_entries = ARRAY_SIZE(hsw_ddi_translations_dp);
483
		n_hdmi_entries = ARRAY_SIZE(hsw_ddi_translations_hdmi);
484
		hdmi_default_entry = 6;
485 486
	} else {
		WARN(1, "ddi translation table missing\n");
487
		ddi_translations_edp = bdw_ddi_translations_dp;
488 489
		ddi_translations_fdi = bdw_ddi_translations_fdi;
		ddi_translations_dp = bdw_ddi_translations_dp;
490
		ddi_translations_hdmi = bdw_ddi_translations_hdmi;
491 492
		n_edp_entries = ARRAY_SIZE(bdw_ddi_translations_edp);
		n_dp_entries = ARRAY_SIZE(bdw_ddi_translations_dp);
493
		n_hdmi_entries = ARRAY_SIZE(bdw_ddi_translations_hdmi);
494
		hdmi_default_entry = 7;
495 496
	}

497 498 499
	switch (port) {
	case PORT_A:
		ddi_translations = ddi_translations_edp;
500
		size = n_edp_entries;
501 502 503 504
		break;
	case PORT_B:
	case PORT_C:
		ddi_translations = ddi_translations_dp;
505
		size = n_dp_entries;
506
		break;
507
	case PORT_D:
508
		if (intel_dp_is_edp(dev, PORT_D)) {
509
			ddi_translations = ddi_translations_edp;
510 511
			size = n_edp_entries;
		} else {
512
			ddi_translations = ddi_translations_dp;
513 514
			size = n_dp_entries;
		}
515
		break;
516
	case PORT_E:
517 518 519 520
		if (ddi_translations_fdi)
			ddi_translations = ddi_translations_fdi;
		else
			ddi_translations = ddi_translations_dp;
521
		size = n_dp_entries;
522 523 524 525
		break;
	default:
		BUG();
	}
526

527
	for (i = 0, reg = DDI_BUF_TRANS(port); i < size; i++) {
528 529 530
		I915_WRITE(reg, ddi_translations[i].trans1);
		reg += 4;
		I915_WRITE(reg, ddi_translations[i].trans2);
531 532
		reg += 4;
	}
533

I
Imre Deak 已提交
534
	if (!supports_hdmi)
535 536
		return;

537 538 539
	/* Choose a good default if VBT is badly populated */
	if (hdmi_level == HDMI_LEVEL_SHIFT_UNKNOWN ||
	    hdmi_level >= n_hdmi_entries)
540
		hdmi_level = hdmi_default_entry;
541

542
	/* Entry 9 is for HDMI: */
543 544 545 546
	I915_WRITE(reg, ddi_translations_hdmi[hdmi_level].trans1);
	reg += 4;
	I915_WRITE(reg, ddi_translations_hdmi[hdmi_level].trans2);
	reg += 4;
547 548 549 550 551 552 553
}

/* Program DDI buffers translations for DP. By default, program ports A-D in DP
 * mode and port E for FDI.
 */
void intel_prepare_ddi(struct drm_device *dev)
{
I
Imre Deak 已提交
554
	struct intel_encoder *intel_encoder;
555
	bool visited[I915_MAX_PORTS] = { 0, };
556

557 558
	if (!HAS_DDI(dev))
		return;
559

I
Imre Deak 已提交
560 561 562 563 564 565 566 567
	for_each_intel_encoder(dev, intel_encoder) {
		struct intel_digital_port *intel_dig_port;
		enum port port;
		bool supports_hdmi;

		ddi_get_encoder_port(intel_encoder, &intel_dig_port, &port);

		if (visited[port])
568 569
			continue;

I
Imre Deak 已提交
570 571 572 573 574
		supports_hdmi = intel_dig_port &&
				intel_dig_port_supports_hdmi(intel_dig_port);

		intel_prepare_ddi_buffers(dev, port, supports_hdmi);
		visited[port] = true;
575
	}
576
}
577

578 579 580 581 582 583
static void intel_wait_ddi_buf_idle(struct drm_i915_private *dev_priv,
				    enum port port)
{
	uint32_t reg = DDI_BUF_CTL(port);
	int i;

584
	for (i = 0; i < 16; i++) {
585 586 587 588 589 590
		udelay(1);
		if (I915_READ(reg) & DDI_BUF_IS_IDLE)
			return;
	}
	DRM_ERROR("Timeout waiting for DDI BUF %c idle bit\n", port_name(port));
}
591 592 593 594 595 596 597 598 599 600 601 602 603 604 605

/* Starting with Haswell, different DDI ports can work in FDI mode for
 * connection to the PCH-located connectors. For this, it is necessary to train
 * both the DDI port and PCH receiver for the desired DDI buffer settings.
 *
 * The recommended port to work in FDI mode is DDI E, which we use here. Also,
 * please note that when FDI mode is active on DDI E, it shares 2 lines with
 * DDI A (which is used for eDP)
 */

void hsw_fdi_link_train(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
606
	u32 temp, i, rx_ctl_val;
607

608 609 610 611
	/* Set the FDI_RX_MISC pwrdn lanes and the 2 workarounds listed at the
	 * mode set "sequence for CRT port" document:
	 * - TP1 to TP2 time with the default value
	 * - FDI delay to 90h
612 613
	 *
	 * WaFDIAutoLinkSetTimingOverrride:hsw
614 615 616 617 618 619
	 */
	I915_WRITE(_FDI_RXA_MISC, FDI_RX_PWRDN_LANE1_VAL(2) |
				  FDI_RX_PWRDN_LANE0_VAL(2) |
				  FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);

	/* Enable the PCH Receiver FDI PLL */
620
	rx_ctl_val = dev_priv->fdi_rx_config | FDI_RX_ENHANCE_FRAME_ENABLE |
621
		     FDI_RX_PLL_ENABLE |
622
		     FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
623 624 625 626 627 628 629 630 631
	I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
	POSTING_READ(_FDI_RXA_CTL);
	udelay(220);

	/* Switch from Rawclk to PCDclk */
	rx_ctl_val |= FDI_PCDCLK;
	I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);

	/* Configure Port Clock Select */
632 633
	I915_WRITE(PORT_CLK_SEL(PORT_E), intel_crtc->config->ddi_pll_sel);
	WARN_ON(intel_crtc->config->ddi_pll_sel != PORT_CLK_SEL_SPLL);
634 635 636

	/* Start the training iterating through available voltages and emphasis,
	 * testing each value twice. */
637
	for (i = 0; i < ARRAY_SIZE(hsw_ddi_translations_fdi) * 2; i++) {
638 639 640 641 642 643 644
		/* Configure DP_TP_CTL with auto-training */
		I915_WRITE(DP_TP_CTL(PORT_E),
					DP_TP_CTL_FDI_AUTOTRAIN |
					DP_TP_CTL_ENHANCED_FRAME_ENABLE |
					DP_TP_CTL_LINK_TRAIN_PAT1 |
					DP_TP_CTL_ENABLE);

645 646 647 648
		/* Configure and enable DDI_BUF_CTL for DDI E with next voltage.
		 * DDI E does not support port reversal, the functionality is
		 * achieved on the PCH side in FDI_RX_CTL, so no need to set the
		 * port reversal bit */
649
		I915_WRITE(DDI_BUF_CTL(PORT_E),
650
			   DDI_BUF_CTL_ENABLE |
651
			   ((intel_crtc->config->fdi_lanes - 1) << 1) |
652
			   DDI_BUF_TRANS_SELECT(i / 2));
653
		POSTING_READ(DDI_BUF_CTL(PORT_E));
654 655 656

		udelay(600);

657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
		/* Program PCH FDI Receiver TU */
		I915_WRITE(_FDI_RXA_TUSIZE1, TU_SIZE(64));

		/* Enable PCH FDI Receiver with auto-training */
		rx_ctl_val |= FDI_RX_ENABLE | FDI_LINK_TRAIN_AUTO;
		I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
		POSTING_READ(_FDI_RXA_CTL);

		/* Wait for FDI receiver lane calibration */
		udelay(30);

		/* Unset FDI_RX_MISC pwrdn lanes */
		temp = I915_READ(_FDI_RXA_MISC);
		temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
		I915_WRITE(_FDI_RXA_MISC, temp);
		POSTING_READ(_FDI_RXA_MISC);

		/* Wait for FDI auto training time */
		udelay(5);
676 677 678

		temp = I915_READ(DP_TP_STATUS(PORT_E));
		if (temp & DP_TP_STATUS_AUTOTRAIN_DONE) {
679
			DRM_DEBUG_KMS("FDI link training done on step %d\n", i);
680 681 682

			/* Enable normal pixel sending for FDI */
			I915_WRITE(DP_TP_CTL(PORT_E),
683 684 685 686
				   DP_TP_CTL_FDI_AUTOTRAIN |
				   DP_TP_CTL_LINK_TRAIN_NORMAL |
				   DP_TP_CTL_ENHANCED_FRAME_ENABLE |
				   DP_TP_CTL_ENABLE);
687

688
			return;
689
		}
690

691 692 693 694 695
		temp = I915_READ(DDI_BUF_CTL(PORT_E));
		temp &= ~DDI_BUF_CTL_ENABLE;
		I915_WRITE(DDI_BUF_CTL(PORT_E), temp);
		POSTING_READ(DDI_BUF_CTL(PORT_E));

696
		/* Disable DP_TP_CTL and FDI_RX_CTL and retry */
697 698 699 700 701 702 703
		temp = I915_READ(DP_TP_CTL(PORT_E));
		temp &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
		temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
		I915_WRITE(DP_TP_CTL(PORT_E), temp);
		POSTING_READ(DP_TP_CTL(PORT_E));

		intel_wait_ddi_buf_idle(dev_priv, PORT_E);
704 705 706

		rx_ctl_val &= ~FDI_RX_ENABLE;
		I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
707
		POSTING_READ(_FDI_RXA_CTL);
708 709 710 711 712 713

		/* Reset FDI_RX_MISC pwrdn lanes */
		temp = I915_READ(_FDI_RXA_MISC);
		temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
		temp |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
		I915_WRITE(_FDI_RXA_MISC, temp);
714
		POSTING_READ(_FDI_RXA_MISC);
715 716
	}

717
	DRM_ERROR("FDI link training failed!\n");
718
}
719

720 721 722 723 724 725 726
void intel_ddi_init_dp_buf_reg(struct intel_encoder *encoder)
{
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
	struct intel_digital_port *intel_dig_port =
		enc_to_dig_port(&encoder->base);

	intel_dp->DP = intel_dig_port->saved_port_bits |
727
		DDI_BUF_CTL_ENABLE | DDI_BUF_TRANS_SELECT(0);
728 729 730 731
	intel_dp->DP |= DDI_PORT_WIDTH(intel_dp->lane_count);

}

732 733 734 735 736 737 738 739 740 741 742 743 744 745
static struct intel_encoder *
intel_ddi_get_crtc_encoder(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct intel_encoder *intel_encoder, *ret = NULL;
	int num_encoders = 0;

	for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
		ret = intel_encoder;
		num_encoders++;
	}

	if (num_encoders != 1)
746 747
		WARN(1, "%d encoders on crtc for pipe %c\n", num_encoders,
		     pipe_name(intel_crtc->pipe));
748 749 750 751 752

	BUG_ON(ret == NULL);
	return ret;
}

753
struct intel_encoder *
754
intel_ddi_get_crtc_new_encoder(struct intel_crtc_state *crtc_state)
755
{
756 757 758
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
	struct intel_encoder *ret = NULL;
	struct drm_atomic_state *state;
759 760
	struct drm_connector *connector;
	struct drm_connector_state *connector_state;
761
	int num_encoders = 0;
762
	int i;
763

764 765
	state = crtc_state->base.state;

766 767
	for_each_connector_in_state(state, connector, connector_state, i) {
		if (connector_state->crtc != crtc_state->base.crtc)
768 769
			continue;

770
		ret = to_intel_encoder(connector_state->best_encoder);
771
		num_encoders++;
772 773 774 775 776 777 778 779 780
	}

	WARN(num_encoders != 1, "%d encoders on crtc for pipe %c\n", num_encoders,
	     pipe_name(crtc->pipe));

	BUG_ON(ret == NULL);
	return ret;
}

781
#define LC_FREQ 2700
782
#define LC_FREQ_2K U64_C(LC_FREQ * 2000)
783 784 785 786 787 788 789 790 791 792 793

#define P_MIN 2
#define P_MAX 64
#define P_INC 2

/* Constraints for PLL good behavior */
#define REF_MIN 48
#define REF_MAX 400
#define VCO_MIN 2400
#define VCO_MAX 4800

794 795 796 797 798
#define abs_diff(a, b) ({			\
	typeof(a) __a = (a);			\
	typeof(b) __b = (b);			\
	(void) (&__a == &__b);			\
	__a > __b ? (__a - __b) : (__b - __a); })
799

800
struct hsw_wrpll_rnp {
801 802 803
	unsigned p, n2, r2;
};

804
static unsigned hsw_wrpll_get_budget_for_freq(int clock)
805
{
806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873
	unsigned budget;

	switch (clock) {
	case 25175000:
	case 25200000:
	case 27000000:
	case 27027000:
	case 37762500:
	case 37800000:
	case 40500000:
	case 40541000:
	case 54000000:
	case 54054000:
	case 59341000:
	case 59400000:
	case 72000000:
	case 74176000:
	case 74250000:
	case 81000000:
	case 81081000:
	case 89012000:
	case 89100000:
	case 108000000:
	case 108108000:
	case 111264000:
	case 111375000:
	case 148352000:
	case 148500000:
	case 162000000:
	case 162162000:
	case 222525000:
	case 222750000:
	case 296703000:
	case 297000000:
		budget = 0;
		break;
	case 233500000:
	case 245250000:
	case 247750000:
	case 253250000:
	case 298000000:
		budget = 1500;
		break;
	case 169128000:
	case 169500000:
	case 179500000:
	case 202000000:
		budget = 2000;
		break;
	case 256250000:
	case 262500000:
	case 270000000:
	case 272500000:
	case 273750000:
	case 280750000:
	case 281250000:
	case 286000000:
	case 291750000:
		budget = 4000;
		break;
	case 267250000:
	case 268500000:
		budget = 5000;
		break;
	default:
		budget = 1000;
		break;
	}
874

875 876 877
	return budget;
}

878 879 880
static void hsw_wrpll_update_rnp(uint64_t freq2k, unsigned budget,
				 unsigned r2, unsigned n2, unsigned p,
				 struct hsw_wrpll_rnp *best)
881 882
{
	uint64_t a, b, c, d, diff, diff_best;
883

884 885 886 887 888 889 890
	/* No best (r,n,p) yet */
	if (best->p == 0) {
		best->p = p;
		best->n2 = n2;
		best->r2 = r2;
		return;
	}
891

892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907
	/*
	 * Output clock is (LC_FREQ_2K / 2000) * N / (P * R), which compares to
	 * freq2k.
	 *
	 * delta = 1e6 *
	 *	   abs(freq2k - (LC_FREQ_2K * n2/(p * r2))) /
	 *	   freq2k;
	 *
	 * and we would like delta <= budget.
	 *
	 * If the discrepancy is above the PPM-based budget, always prefer to
	 * improve upon the previous solution.  However, if you're within the
	 * budget, try to maximize Ref * VCO, that is N / (P * R^2).
	 */
	a = freq2k * budget * p * r2;
	b = freq2k * budget * best->p * best->r2;
908 909 910
	diff = abs_diff(freq2k * p * r2, LC_FREQ_2K * n2);
	diff_best = abs_diff(freq2k * best->p * best->r2,
			     LC_FREQ_2K * best->n2);
911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936
	c = 1000000 * diff;
	d = 1000000 * diff_best;

	if (a < c && b < d) {
		/* If both are above the budget, pick the closer */
		if (best->p * best->r2 * diff < p * r2 * diff_best) {
			best->p = p;
			best->n2 = n2;
			best->r2 = r2;
		}
	} else if (a >= c && b < d) {
		/* If A is below the threshold but B is above it?  Update. */
		best->p = p;
		best->n2 = n2;
		best->r2 = r2;
	} else if (a >= c && b >= d) {
		/* Both are below the limit, so pick the higher n2/(r2*r2) */
		if (n2 * best->r2 * best->r2 > best->n2 * r2 * r2) {
			best->p = p;
			best->n2 = n2;
			best->r2 = r2;
		}
	}
	/* Otherwise a < c && b >= d, do nothing */
}

937
static int hsw_ddi_calc_wrpll_link(struct drm_i915_private *dev_priv, int reg)
938 939 940 941 942 943
{
	int refclk = LC_FREQ;
	int n, p, r;
	u32 wrpll;

	wrpll = I915_READ(reg);
944 945 946
	switch (wrpll & WRPLL_PLL_REF_MASK) {
	case WRPLL_PLL_SSC:
	case WRPLL_PLL_NON_SSC:
947 948 949 950 951 952 953
		/*
		 * We could calculate spread here, but our checking
		 * code only cares about 5% accuracy, and spread is a max of
		 * 0.5% downspread.
		 */
		refclk = 135;
		break;
954
	case WRPLL_PLL_LCPLL:
955 956 957 958 959 960 961 962 963 964 965
		refclk = LC_FREQ;
		break;
	default:
		WARN(1, "bad wrpll refclk\n");
		return 0;
	}

	r = wrpll & WRPLL_DIVIDER_REF_MASK;
	p = (wrpll & WRPLL_DIVIDER_POST_MASK) >> WRPLL_DIVIDER_POST_SHIFT;
	n = (wrpll & WRPLL_DIVIDER_FB_MASK) >> WRPLL_DIVIDER_FB_SHIFT;

966 967
	/* Convert to KHz, p & r have a fixed point portion */
	return (refclk * n * 100) / (p * r);
968 969
}

970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
static int skl_calc_wrpll_link(struct drm_i915_private *dev_priv,
			       uint32_t dpll)
{
	uint32_t cfgcr1_reg, cfgcr2_reg;
	uint32_t cfgcr1_val, cfgcr2_val;
	uint32_t p0, p1, p2, dco_freq;

	cfgcr1_reg = GET_CFG_CR1_REG(dpll);
	cfgcr2_reg = GET_CFG_CR2_REG(dpll);

	cfgcr1_val = I915_READ(cfgcr1_reg);
	cfgcr2_val = I915_READ(cfgcr2_reg);

	p0 = cfgcr2_val & DPLL_CFGCR2_PDIV_MASK;
	p2 = cfgcr2_val & DPLL_CFGCR2_KDIV_MASK;

	if (cfgcr2_val &  DPLL_CFGCR2_QDIV_MODE(1))
		p1 = (cfgcr2_val & DPLL_CFGCR2_QDIV_RATIO_MASK) >> 8;
	else
		p1 = 1;


	switch (p0) {
	case DPLL_CFGCR2_PDIV_1:
		p0 = 1;
		break;
	case DPLL_CFGCR2_PDIV_2:
		p0 = 2;
		break;
	case DPLL_CFGCR2_PDIV_3:
		p0 = 3;
		break;
	case DPLL_CFGCR2_PDIV_7:
		p0 = 7;
		break;
	}

	switch (p2) {
	case DPLL_CFGCR2_KDIV_5:
		p2 = 5;
		break;
	case DPLL_CFGCR2_KDIV_2:
		p2 = 2;
		break;
	case DPLL_CFGCR2_KDIV_3:
		p2 = 3;
		break;
	case DPLL_CFGCR2_KDIV_1:
		p2 = 1;
		break;
	}

	dco_freq = (cfgcr1_val & DPLL_CFGCR1_DCO_INTEGER_MASK) * 24 * 1000;

	dco_freq += (((cfgcr1_val & DPLL_CFGCR1_DCO_FRACTION_MASK) >> 9) * 24 *
		1000) / 0x8000;

	return dco_freq / (p0 * p1 * p2 * 5);
}

1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
static void ddi_dotclock_get(struct intel_crtc_state *pipe_config)
{
	int dotclock;

	if (pipe_config->has_pch_encoder)
		dotclock = intel_dotclock_calculate(pipe_config->port_clock,
						    &pipe_config->fdi_m_n);
	else if (pipe_config->has_dp_encoder)
		dotclock = intel_dotclock_calculate(pipe_config->port_clock,
						    &pipe_config->dp_m_n);
	else if (pipe_config->has_hdmi_sink && pipe_config->pipe_bpp == 36)
		dotclock = pipe_config->port_clock * 2 / 3;
	else
		dotclock = pipe_config->port_clock;

	if (pipe_config->pixel_multiplier)
		dotclock /= pipe_config->pixel_multiplier;

	pipe_config->base.adjusted_mode.crtc_clock = dotclock;
}
1050 1051

static void skl_ddi_clock_get(struct intel_encoder *encoder,
1052
				struct intel_crtc_state *pipe_config)
1053 1054 1055 1056 1057
{
	struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
	int link_clock = 0;
	uint32_t dpll_ctl1, dpll;

1058
	dpll = pipe_config->ddi_pll_sel;
1059 1060 1061 1062 1063 1064

	dpll_ctl1 = I915_READ(DPLL_CTRL1);

	if (dpll_ctl1 & DPLL_CTRL1_HDMI_MODE(dpll)) {
		link_clock = skl_calc_wrpll_link(dev_priv, dpll);
	} else {
1065 1066
		link_clock = dpll_ctl1 & DPLL_CTRL1_LINK_RATE_MASK(dpll);
		link_clock >>= DPLL_CTRL1_LINK_RATE_SHIFT(dpll);
1067 1068

		switch (link_clock) {
1069
		case DPLL_CTRL1_LINK_RATE_810:
1070 1071
			link_clock = 81000;
			break;
1072
		case DPLL_CTRL1_LINK_RATE_1080:
1073 1074
			link_clock = 108000;
			break;
1075
		case DPLL_CTRL1_LINK_RATE_1350:
1076 1077
			link_clock = 135000;
			break;
1078
		case DPLL_CTRL1_LINK_RATE_1620:
1079 1080
			link_clock = 162000;
			break;
1081
		case DPLL_CTRL1_LINK_RATE_2160:
1082 1083
			link_clock = 216000;
			break;
1084
		case DPLL_CTRL1_LINK_RATE_2700:
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
			link_clock = 270000;
			break;
		default:
			WARN(1, "Unsupported link rate\n");
			break;
		}
		link_clock *= 2;
	}

	pipe_config->port_clock = link_clock;

1096
	ddi_dotclock_get(pipe_config);
1097 1098
}

1099
static void hsw_ddi_clock_get(struct intel_encoder *encoder,
1100
			      struct intel_crtc_state *pipe_config)
1101 1102 1103 1104 1105
{
	struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
	int link_clock = 0;
	u32 val, pll;

1106
	val = pipe_config->ddi_pll_sel;
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
	switch (val & PORT_CLK_SEL_MASK) {
	case PORT_CLK_SEL_LCPLL_810:
		link_clock = 81000;
		break;
	case PORT_CLK_SEL_LCPLL_1350:
		link_clock = 135000;
		break;
	case PORT_CLK_SEL_LCPLL_2700:
		link_clock = 270000;
		break;
	case PORT_CLK_SEL_WRPLL1:
1118
		link_clock = hsw_ddi_calc_wrpll_link(dev_priv, WRPLL_CTL1);
1119 1120
		break;
	case PORT_CLK_SEL_WRPLL2:
1121
		link_clock = hsw_ddi_calc_wrpll_link(dev_priv, WRPLL_CTL2);
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
		break;
	case PORT_CLK_SEL_SPLL:
		pll = I915_READ(SPLL_CTL) & SPLL_PLL_FREQ_MASK;
		if (pll == SPLL_PLL_FREQ_810MHz)
			link_clock = 81000;
		else if (pll == SPLL_PLL_FREQ_1350MHz)
			link_clock = 135000;
		else if (pll == SPLL_PLL_FREQ_2700MHz)
			link_clock = 270000;
		else {
			WARN(1, "bad spll freq\n");
			return;
		}
		break;
	default:
		WARN(1, "bad port clock sel\n");
		return;
	}

	pipe_config->port_clock = link_clock * 2;

1143
	ddi_dotclock_get(pipe_config);
1144 1145
}

1146 1147 1148
static int bxt_calc_pll_link(struct drm_i915_private *dev_priv,
				enum intel_dpll_id dpll)
{
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
	struct intel_shared_dpll *pll;
	struct intel_dpll_hw_state *state;
	intel_clock_t clock;

	/* For DDI ports we always use a shared PLL. */
	if (WARN_ON(dpll == DPLL_ID_PRIVATE))
		return 0;

	pll = &dev_priv->shared_dplls[dpll];
	state = &pll->config.hw_state;

	clock.m1 = 2;
	clock.m2 = (state->pll0 & PORT_PLL_M2_MASK) << 22;
	if (state->pll3 & PORT_PLL_M2_FRAC_ENABLE)
		clock.m2 |= state->pll2 & PORT_PLL_M2_FRAC_MASK;
	clock.n = (state->pll1 & PORT_PLL_N_MASK) >> PORT_PLL_N_SHIFT;
	clock.p1 = (state->ebb0 & PORT_PLL_P1_MASK) >> PORT_PLL_P1_SHIFT;
	clock.p2 = (state->ebb0 & PORT_PLL_P2_MASK) >> PORT_PLL_P2_SHIFT;

	return chv_calc_dpll_params(100000, &clock);
1169 1170 1171 1172 1173 1174 1175 1176 1177
}

static void bxt_ddi_clock_get(struct intel_encoder *encoder,
				struct intel_crtc_state *pipe_config)
{
	struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
	enum port port = intel_ddi_get_encoder_port(encoder);
	uint32_t dpll = port;

1178
	pipe_config->port_clock = bxt_calc_pll_link(dev_priv, dpll);
1179

1180
	ddi_dotclock_get(pipe_config);
1181 1182
}

1183
void intel_ddi_clock_get(struct intel_encoder *encoder,
1184
			 struct intel_crtc_state *pipe_config)
1185
{
1186 1187 1188 1189
	struct drm_device *dev = encoder->base.dev;

	if (INTEL_INFO(dev)->gen <= 8)
		hsw_ddi_clock_get(encoder, pipe_config);
1190
	else if (IS_SKYLAKE(dev))
1191
		skl_ddi_clock_get(encoder, pipe_config);
1192 1193
	else if (IS_BROXTON(dev))
		bxt_ddi_clock_get(encoder, pipe_config);
1194 1195
}

1196
static void
1197 1198
hsw_ddi_calculate_wrpll(int clock /* in Hz */,
			unsigned *r2_out, unsigned *n2_out, unsigned *p_out)
1199 1200 1201
{
	uint64_t freq2k;
	unsigned p, n2, r2;
1202
	struct hsw_wrpll_rnp best = { 0, 0, 0 };
1203 1204 1205 1206
	unsigned budget;

	freq2k = clock / 100;

1207
	budget = hsw_wrpll_get_budget_for_freq(clock);
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250

	/* Special case handling for 540 pixel clock: bypass WR PLL entirely
	 * and directly pass the LC PLL to it. */
	if (freq2k == 5400000) {
		*n2_out = 2;
		*p_out = 1;
		*r2_out = 2;
		return;
	}

	/*
	 * Ref = LC_FREQ / R, where Ref is the actual reference input seen by
	 * the WR PLL.
	 *
	 * We want R so that REF_MIN <= Ref <= REF_MAX.
	 * Injecting R2 = 2 * R gives:
	 *   REF_MAX * r2 > LC_FREQ * 2 and
	 *   REF_MIN * r2 < LC_FREQ * 2
	 *
	 * Which means the desired boundaries for r2 are:
	 *  LC_FREQ * 2 / REF_MAX < r2 < LC_FREQ * 2 / REF_MIN
	 *
	 */
	for (r2 = LC_FREQ * 2 / REF_MAX + 1;
	     r2 <= LC_FREQ * 2 / REF_MIN;
	     r2++) {

		/*
		 * VCO = N * Ref, that is: VCO = N * LC_FREQ / R
		 *
		 * Once again we want VCO_MIN <= VCO <= VCO_MAX.
		 * Injecting R2 = 2 * R and N2 = 2 * N, we get:
		 *   VCO_MAX * r2 > n2 * LC_FREQ and
		 *   VCO_MIN * r2 < n2 * LC_FREQ)
		 *
		 * Which means the desired boundaries for n2 are:
		 * VCO_MIN * r2 / LC_FREQ < n2 < VCO_MAX * r2 / LC_FREQ
		 */
		for (n2 = VCO_MIN * r2 / LC_FREQ + 1;
		     n2 <= VCO_MAX * r2 / LC_FREQ;
		     n2++) {

			for (p = P_MIN; p <= P_MAX; p += P_INC)
1251 1252
				hsw_wrpll_update_rnp(freq2k, budget,
						     r2, n2, p, &best);
1253 1254
		}
	}
1255

1256 1257 1258
	*n2_out = best.n2;
	*p_out = best.p;
	*r2_out = best.r2;
1259 1260
}

1261
static bool
1262
hsw_ddi_pll_select(struct intel_crtc *intel_crtc,
1263
		   struct intel_crtc_state *crtc_state,
1264 1265
		   struct intel_encoder *intel_encoder,
		   int clock)
1266
{
1267
	if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
1268
		struct intel_shared_dpll *pll;
1269
		uint32_t val;
1270
		unsigned p, n2, r2;
1271

1272
		hsw_ddi_calculate_wrpll(clock * 1000, &r2, &n2, &p);
P
Paulo Zanoni 已提交
1273

1274
		val = WRPLL_PLL_ENABLE | WRPLL_PLL_LCPLL |
P
Paulo Zanoni 已提交
1275 1276 1277
		      WRPLL_DIVIDER_REFERENCE(r2) | WRPLL_DIVIDER_FEEDBACK(n2) |
		      WRPLL_DIVIDER_POST(p);

1278 1279 1280
		memset(&crtc_state->dpll_hw_state, 0,
		       sizeof(crtc_state->dpll_hw_state));

1281
		crtc_state->dpll_hw_state.wrpll = val;
1282

1283
		pll = intel_get_shared_dpll(intel_crtc, crtc_state);
1284 1285 1286 1287
		if (pll == NULL) {
			DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
					 pipe_name(intel_crtc->pipe));
			return false;
P
Paulo Zanoni 已提交
1288
		}
1289

1290
		crtc_state->ddi_pll_sel = PORT_CLK_SEL_WRPLL(pll->id);
1291 1292 1293 1294 1295
	}

	return true;
}

1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
struct skl_wrpll_context {
	uint64_t min_deviation;		/* current minimal deviation */
	uint64_t central_freq;		/* chosen central freq */
	uint64_t dco_freq;		/* chosen dco freq */
	unsigned int p;			/* chosen divider */
};

static void skl_wrpll_context_init(struct skl_wrpll_context *ctx)
{
	memset(ctx, 0, sizeof(*ctx));

	ctx->min_deviation = U64_MAX;
}

/* DCO freq must be within +1%/-6%  of the DCO central freq */
#define SKL_DCO_MAX_PDEVIATION	100
#define SKL_DCO_MAX_NDEVIATION	600

static void skl_wrpll_try_divider(struct skl_wrpll_context *ctx,
				  uint64_t central_freq,
				  uint64_t dco_freq,
				  unsigned int divider)
{
	uint64_t deviation;

	deviation = div64_u64(10000 * abs_diff(dco_freq, central_freq),
			      central_freq);

	/* positive deviation */
	if (dco_freq >= central_freq) {
		if (deviation < SKL_DCO_MAX_PDEVIATION &&
		    deviation < ctx->min_deviation) {
			ctx->min_deviation = deviation;
			ctx->central_freq = central_freq;
			ctx->dco_freq = dco_freq;
			ctx->p = divider;
		}
	/* negative deviation */
	} else if (deviation < SKL_DCO_MAX_NDEVIATION &&
		   deviation < ctx->min_deviation) {
		ctx->min_deviation = deviation;
		ctx->central_freq = central_freq;
		ctx->dco_freq = dco_freq;
		ctx->p = divider;
	}
}

static void skl_wrpll_get_multipliers(unsigned int p,
				      unsigned int *p0 /* out */,
				      unsigned int *p1 /* out */,
				      unsigned int *p2 /* out */)
{
	/* even dividers */
	if (p % 2 == 0) {
		unsigned int half = p / 2;

		if (half == 1 || half == 2 || half == 3 || half == 5) {
			*p0 = 2;
			*p1 = 1;
			*p2 = half;
		} else if (half % 2 == 0) {
			*p0 = 2;
			*p1 = half / 2;
			*p2 = 2;
		} else if (half % 3 == 0) {
			*p0 = 3;
			*p1 = half / 3;
			*p2 = 2;
		} else if (half % 7 == 0) {
			*p0 = 7;
			*p1 = half / 7;
			*p2 = 2;
		}
	} else if (p == 3 || p == 9) {  /* 3, 5, 7, 9, 15, 21, 35 */
		*p0 = 3;
		*p1 = 1;
		*p2 = p / 3;
	} else if (p == 5 || p == 7) {
		*p0 = p;
		*p1 = 1;
		*p2 = 1;
	} else if (p == 15) {
		*p0 = 3;
		*p1 = 1;
		*p2 = 5;
	} else if (p == 21) {
		*p0 = 7;
		*p1 = 1;
		*p2 = 3;
	} else if (p == 35) {
		*p0 = 7;
		*p1 = 1;
		*p2 = 5;
	}
}

1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
struct skl_wrpll_params {
	uint32_t        dco_fraction;
	uint32_t        dco_integer;
	uint32_t        qdiv_ratio;
	uint32_t        qdiv_mode;
	uint32_t        kdiv;
	uint32_t        pdiv;
	uint32_t        central_freq;
};

1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
static void skl_wrpll_params_populate(struct skl_wrpll_params *params,
				      uint64_t afe_clock,
				      uint64_t central_freq,
				      uint32_t p0, uint32_t p1, uint32_t p2)
{
	uint64_t dco_freq;

	switch (central_freq) {
	case 9600000000ULL:
		params->central_freq = 0;
		break;
	case 9000000000ULL:
		params->central_freq = 1;
		break;
	case 8400000000ULL:
		params->central_freq = 3;
	}

	switch (p0) {
	case 1:
		params->pdiv = 0;
		break;
	case 2:
		params->pdiv = 1;
		break;
	case 3:
		params->pdiv = 2;
		break;
	case 7:
		params->pdiv = 4;
		break;
	default:
		WARN(1, "Incorrect PDiv\n");
	}

	switch (p2) {
	case 5:
		params->kdiv = 0;
		break;
	case 2:
		params->kdiv = 1;
		break;
	case 3:
		params->kdiv = 2;
		break;
	case 1:
		params->kdiv = 3;
		break;
	default:
		WARN(1, "Incorrect KDiv\n");
	}

	params->qdiv_ratio = p1;
	params->qdiv_mode = (params->qdiv_ratio == 1) ? 0 : 1;

	dco_freq = p0 * p1 * p2 * afe_clock;

	/*
	 * Intermediate values are in Hz.
	 * Divide by MHz to match bsepc
	 */
1463
	params->dco_integer = div_u64(dco_freq, 24 * MHz(1));
1464
	params->dco_fraction =
1465 1466
		div_u64((div_u64(dco_freq, 24) -
			 params->dco_integer * MHz(1)) * 0x8000, MHz(1));
1467 1468
}

1469
static bool
1470 1471 1472 1473
skl_ddi_calculate_wrpll(int clock /* in Hz */,
			struct skl_wrpll_params *wrpll_params)
{
	uint64_t afe_clock = clock * 5; /* AFE Clock is 5x Pixel clock */
1474 1475 1476
	uint64_t dco_central_freq[3] = {8400000000ULL,
					9000000000ULL,
					9600000000ULL};
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
	static const int even_dividers[] = {  4,  6,  8, 10, 12, 14, 16, 18, 20,
					     24, 28, 30, 32, 36, 40, 42, 44,
					     48, 52, 54, 56, 60, 64, 66, 68,
					     70, 72, 76, 78, 80, 84, 88, 90,
					     92, 96, 98 };
	static const int odd_dividers[] = { 3, 5, 7, 9, 15, 21, 35 };
	static const struct {
		const int *list;
		int n_dividers;
	} dividers[] = {
		{ even_dividers, ARRAY_SIZE(even_dividers) },
		{ odd_dividers, ARRAY_SIZE(odd_dividers) },
	};
	struct skl_wrpll_context ctx;
	unsigned int dco, d, i;
	unsigned int p0, p1, p2;

	skl_wrpll_context_init(&ctx);

	for (d = 0; d < ARRAY_SIZE(dividers); d++) {
		for (dco = 0; dco < ARRAY_SIZE(dco_central_freq); dco++) {
			for (i = 0; i < dividers[d].n_dividers; i++) {
				unsigned int p = dividers[d].list[i];
				uint64_t dco_freq = p * afe_clock;

				skl_wrpll_try_divider(&ctx,
						      dco_central_freq[dco],
						      dco_freq,
						      p);
1506 1507 1508 1509 1510 1511 1512
				/*
				 * Skip the remaining dividers if we're sure to
				 * have found the definitive divider, we can't
				 * improve a 0 deviation.
				 */
				if (ctx.min_deviation == 0)
					goto skip_remaining_dividers;
1513 1514
			}
		}
1515

1516
skip_remaining_dividers:
1517 1518 1519 1520 1521 1522
		/*
		 * If a solution is found with an even divider, prefer
		 * this one.
		 */
		if (d == 0 && ctx.p)
			break;
1523 1524
	}

1525 1526
	if (!ctx.p) {
		DRM_DEBUG_DRIVER("No valid divider found for %dHz\n", clock);
1527
		return false;
1528
	}
1529

1530 1531 1532 1533 1534 1535 1536 1537
	/*
	 * gcc incorrectly analyses that these can be used without being
	 * initialized. To be fair, it's hard to guess.
	 */
	p0 = p1 = p2 = 0;
	skl_wrpll_get_multipliers(ctx.p, &p0, &p1, &p2);
	skl_wrpll_params_populate(wrpll_params, afe_clock, ctx.central_freq,
				  p0, p1, p2);
1538 1539

	return true;
1540 1541 1542 1543
}

static bool
skl_ddi_pll_select(struct intel_crtc *intel_crtc,
1544
		   struct intel_crtc_state *crtc_state,
1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
		   struct intel_encoder *intel_encoder,
		   int clock)
{
	struct intel_shared_dpll *pll;
	uint32_t ctrl1, cfgcr1, cfgcr2;

	/*
	 * See comment in intel_dpll_hw_state to understand why we always use 0
	 * as the DPLL id in this function.
	 */

	ctrl1 = DPLL_CTRL1_OVERRIDE(0);

	if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
		struct skl_wrpll_params wrpll_params = { 0, };

		ctrl1 |= DPLL_CTRL1_HDMI_MODE(0);

1563 1564
		if (!skl_ddi_calculate_wrpll(clock * 1000, &wrpll_params))
			return false;
1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580

		cfgcr1 = DPLL_CFGCR1_FREQ_ENABLE |
			 DPLL_CFGCR1_DCO_FRACTION(wrpll_params.dco_fraction) |
			 wrpll_params.dco_integer;

		cfgcr2 = DPLL_CFGCR2_QDIV_RATIO(wrpll_params.qdiv_ratio) |
			 DPLL_CFGCR2_QDIV_MODE(wrpll_params.qdiv_mode) |
			 DPLL_CFGCR2_KDIV(wrpll_params.kdiv) |
			 DPLL_CFGCR2_PDIV(wrpll_params.pdiv) |
			 wrpll_params.central_freq;
	} else if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT) {
		struct drm_encoder *encoder = &intel_encoder->base;
		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);

		switch (intel_dp->link_bw) {
		case DP_LINK_BW_1_62:
1581
			ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, 0);
1582 1583
			break;
		case DP_LINK_BW_2_7:
1584
			ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350, 0);
1585 1586
			break;
		case DP_LINK_BW_5_4:
1587
			ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700, 0);
1588 1589 1590 1591 1592 1593 1594
			break;
		}

		cfgcr1 = cfgcr2 = 0;
	} else /* eDP */
		return true;

1595 1596 1597
	memset(&crtc_state->dpll_hw_state, 0,
	       sizeof(crtc_state->dpll_hw_state));

1598 1599 1600
	crtc_state->dpll_hw_state.ctrl1 = ctrl1;
	crtc_state->dpll_hw_state.cfgcr1 = cfgcr1;
	crtc_state->dpll_hw_state.cfgcr2 = cfgcr2;
1601

1602
	pll = intel_get_shared_dpll(intel_crtc, crtc_state);
1603 1604 1605 1606 1607 1608 1609
	if (pll == NULL) {
		DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
				 pipe_name(intel_crtc->pipe));
		return false;
	}

	/* shared DPLL id 0 is DPLL 1 */
1610
	crtc_state->ddi_pll_sel = pll->id + 1;
1611 1612 1613

	return true;
}
1614

1615 1616
/* bxt clock parameters */
struct bxt_clk_div {
1617
	int clock;
1618 1619 1620 1621 1622 1623 1624 1625 1626
	uint32_t p1;
	uint32_t p2;
	uint32_t m2_int;
	uint32_t m2_frac;
	bool m2_frac_en;
	uint32_t n;
};

/* pre-calculated values for DP linkrates */
1627 1628 1629 1630 1631 1632 1633 1634
static const struct bxt_clk_div bxt_dp_clk_val[] = {
	{162000, 4, 2, 32, 1677722, 1, 1},
	{270000, 4, 1, 27,       0, 0, 1},
	{540000, 2, 1, 27,       0, 0, 1},
	{216000, 3, 2, 32, 1677722, 1, 1},
	{243000, 4, 1, 24, 1258291, 1, 1},
	{324000, 4, 1, 32, 1677722, 1, 1},
	{432000, 3, 1, 32, 1677722, 1, 1}
1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
};

static bool
bxt_ddi_pll_select(struct intel_crtc *intel_crtc,
		   struct intel_crtc_state *crtc_state,
		   struct intel_encoder *intel_encoder,
		   int clock)
{
	struct intel_shared_dpll *pll;
	struct bxt_clk_div clk_div = {0};
1645 1646
	int vco = 0;
	uint32_t prop_coef, int_coef, gain_ctl, targ_cnt;
1647
	uint32_t lanestagger;
1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670

	if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
		intel_clock_t best_clock;

		/* Calculate HDMI div */
		/*
		 * FIXME: tie the following calculation into
		 * i9xx_crtc_compute_clock
		 */
		if (!bxt_find_best_dpll(crtc_state, clock, &best_clock)) {
			DRM_DEBUG_DRIVER("no PLL dividers found for clock %d pipe %c\n",
					 clock, pipe_name(intel_crtc->pipe));
			return false;
		}

		clk_div.p1 = best_clock.p1;
		clk_div.p2 = best_clock.p2;
		WARN_ON(best_clock.m1 != 2);
		clk_div.n = best_clock.n;
		clk_div.m2_int = best_clock.m2 >> 22;
		clk_div.m2_frac = best_clock.m2 & ((1 << 22) - 1);
		clk_div.m2_frac_en = clk_div.m2_frac != 0;

1671
		vco = best_clock.vco;
1672 1673
	} else if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
			intel_encoder->type == INTEL_OUTPUT_EDP) {
1674
		int i;
1675

1676 1677 1678 1679 1680 1681
		clk_div = bxt_dp_clk_val[0];
		for (i = 0; i < ARRAY_SIZE(bxt_dp_clk_val); ++i) {
			if (bxt_dp_clk_val[i].clock == clock) {
				clk_div = bxt_dp_clk_val[i];
				break;
			}
1682
		}
1683 1684 1685
		vco = clock * 10 / 2 * clk_div.p1 * clk_div.p2;
	}

1686
	if (vco >= 6200000 && vco <= 6700000) {
1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
		prop_coef = 4;
		int_coef = 9;
		gain_ctl = 3;
		targ_cnt = 8;
	} else if ((vco > 5400000 && vco < 6200000) ||
			(vco >= 4800000 && vco < 5400000)) {
		prop_coef = 5;
		int_coef = 11;
		gain_ctl = 3;
		targ_cnt = 9;
	} else if (vco == 5400000) {
		prop_coef = 3;
		int_coef = 8;
		gain_ctl = 1;
		targ_cnt = 9;
	} else {
		DRM_ERROR("Invalid VCO\n");
		return false;
1705 1706
	}

1707 1708 1709
	memset(&crtc_state->dpll_hw_state, 0,
	       sizeof(crtc_state->dpll_hw_state));

1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
	if (clock > 270000)
		lanestagger = 0x18;
	else if (clock > 135000)
		lanestagger = 0x0d;
	else if (clock > 67000)
		lanestagger = 0x07;
	else if (clock > 33000)
		lanestagger = 0x04;
	else
		lanestagger = 0x02;

1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
	crtc_state->dpll_hw_state.ebb0 =
		PORT_PLL_P1(clk_div.p1) | PORT_PLL_P2(clk_div.p2);
	crtc_state->dpll_hw_state.pll0 = clk_div.m2_int;
	crtc_state->dpll_hw_state.pll1 = PORT_PLL_N(clk_div.n);
	crtc_state->dpll_hw_state.pll2 = clk_div.m2_frac;

	if (clk_div.m2_frac_en)
		crtc_state->dpll_hw_state.pll3 =
			PORT_PLL_M2_FRAC_ENABLE;

	crtc_state->dpll_hw_state.pll6 =
1732
		prop_coef | PORT_PLL_INT_COEFF(int_coef);
1733
	crtc_state->dpll_hw_state.pll6 |=
1734 1735 1736
		PORT_PLL_GAIN_CTL(gain_ctl);

	crtc_state->dpll_hw_state.pll8 = targ_cnt;
1737

1738 1739
	crtc_state->dpll_hw_state.pll9 = 5 << PORT_PLL_LOCK_THRESHOLD_SHIFT;

1740 1741 1742
	crtc_state->dpll_hw_state.pll10 =
		PORT_PLL_DCO_AMP(PORT_PLL_DCO_AMP_DEFAULT)
		| PORT_PLL_DCO_AMP_OVR_EN_H;
1743

1744 1745
	crtc_state->dpll_hw_state.ebb4 = PORT_PLL_10BIT_CLK_ENABLE;

1746
	crtc_state->dpll_hw_state.pcsdw12 =
1747
		LANESTAGGER_STRAP_OVRD | lanestagger;
1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761

	pll = intel_get_shared_dpll(intel_crtc, crtc_state);
	if (pll == NULL) {
		DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
			pipe_name(intel_crtc->pipe));
		return false;
	}

	/* shared DPLL id 0 is DPLL A */
	crtc_state->ddi_pll_sel = pll->id;

	return true;
}

1762 1763 1764 1765 1766 1767 1768
/*
 * Tries to find a *shared* PLL for the CRTC and store it in
 * intel_crtc->ddi_pll_sel.
 *
 * For private DPLLs, compute_config() should do the selection for us. This
 * function should be folded into compute_config() eventually.
 */
1769 1770
bool intel_ddi_pll_select(struct intel_crtc *intel_crtc,
			  struct intel_crtc_state *crtc_state)
1771
{
1772
	struct drm_device *dev = intel_crtc->base.dev;
1773
	struct intel_encoder *intel_encoder =
1774
		intel_ddi_get_crtc_new_encoder(crtc_state);
1775
	int clock = crtc_state->port_clock;
1776

1777
	if (IS_SKYLAKE(dev))
1778 1779
		return skl_ddi_pll_select(intel_crtc, crtc_state,
					  intel_encoder, clock);
1780 1781 1782
	else if (IS_BROXTON(dev))
		return bxt_ddi_pll_select(intel_crtc, crtc_state,
					  intel_encoder, clock);
1783
	else
1784 1785
		return hsw_ddi_pll_select(intel_crtc, crtc_state,
					  intel_encoder, clock);
1786 1787
}

1788 1789 1790 1791 1792
void intel_ddi_set_pipe_settings(struct drm_crtc *crtc)
{
	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
1793
	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1794 1795 1796
	int type = intel_encoder->type;
	uint32_t temp;

1797
	if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP || type == INTEL_OUTPUT_DP_MST) {
1798
		temp = TRANS_MSA_SYNC_CLK;
1799
		switch (intel_crtc->config->pipe_bpp) {
1800
		case 18:
1801
			temp |= TRANS_MSA_6_BPC;
1802 1803
			break;
		case 24:
1804
			temp |= TRANS_MSA_8_BPC;
1805 1806
			break;
		case 30:
1807
			temp |= TRANS_MSA_10_BPC;
1808 1809
			break;
		case 36:
1810
			temp |= TRANS_MSA_12_BPC;
1811 1812
			break;
		default:
1813
			BUG();
1814
		}
1815
		I915_WRITE(TRANS_MSA_MISC(cpu_transcoder), temp);
1816 1817 1818
	}
}

1819 1820 1821 1822 1823
void intel_ddi_set_vc_payload_alloc(struct drm_crtc *crtc, bool state)
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1824
	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1825 1826 1827 1828 1829 1830 1831 1832 1833
	uint32_t temp;
	temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
	if (state == true)
		temp |= TRANS_DDI_DP_VC_PAYLOAD_ALLOC;
	else
		temp &= ~TRANS_DDI_DP_VC_PAYLOAD_ALLOC;
	I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp);
}

1834
void intel_ddi_enable_transcoder_func(struct drm_crtc *crtc)
1835 1836 1837
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
1838
	struct drm_encoder *encoder = &intel_encoder->base;
1839 1840
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1841
	enum pipe pipe = intel_crtc->pipe;
1842
	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1843
	enum port port = intel_ddi_get_encoder_port(intel_encoder);
1844
	int type = intel_encoder->type;
1845 1846
	uint32_t temp;

1847 1848
	/* Enable TRANS_DDI_FUNC_CTL for the pipe to work in HDMI mode */
	temp = TRANS_DDI_FUNC_ENABLE;
1849
	temp |= TRANS_DDI_SELECT_PORT(port);
1850

1851
	switch (intel_crtc->config->pipe_bpp) {
1852
	case 18:
1853
		temp |= TRANS_DDI_BPC_6;
1854 1855
		break;
	case 24:
1856
		temp |= TRANS_DDI_BPC_8;
1857 1858
		break;
	case 30:
1859
		temp |= TRANS_DDI_BPC_10;
1860 1861
		break;
	case 36:
1862
		temp |= TRANS_DDI_BPC_12;
1863 1864
		break;
	default:
1865
		BUG();
1866
	}
1867

1868
	if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_PVSYNC)
1869
		temp |= TRANS_DDI_PVSYNC;
1870
	if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_PHSYNC)
1871
		temp |= TRANS_DDI_PHSYNC;
1872

1873 1874 1875
	if (cpu_transcoder == TRANSCODER_EDP) {
		switch (pipe) {
		case PIPE_A:
1876 1877 1878 1879
			/* On Haswell, can only use the always-on power well for
			 * eDP when not using the panel fitter, and when not
			 * using motion blur mitigation (which we don't
			 * support). */
1880
			if (IS_HASWELL(dev) &&
1881 1882
			    (intel_crtc->config->pch_pfit.enabled ||
			     intel_crtc->config->pch_pfit.force_thru))
1883 1884 1885
				temp |= TRANS_DDI_EDP_INPUT_A_ONOFF;
			else
				temp |= TRANS_DDI_EDP_INPUT_A_ON;
1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898
			break;
		case PIPE_B:
			temp |= TRANS_DDI_EDP_INPUT_B_ONOFF;
			break;
		case PIPE_C:
			temp |= TRANS_DDI_EDP_INPUT_C_ONOFF;
			break;
		default:
			BUG();
			break;
		}
	}

1899
	if (type == INTEL_OUTPUT_HDMI) {
1900
		if (intel_crtc->config->has_hdmi_sink)
1901
			temp |= TRANS_DDI_MODE_SELECT_HDMI;
1902
		else
1903
			temp |= TRANS_DDI_MODE_SELECT_DVI;
1904

1905
	} else if (type == INTEL_OUTPUT_ANALOG) {
1906
		temp |= TRANS_DDI_MODE_SELECT_FDI;
1907
		temp |= (intel_crtc->config->fdi_lanes - 1) << 1;
1908 1909 1910 1911 1912

	} else if (type == INTEL_OUTPUT_DISPLAYPORT ||
		   type == INTEL_OUTPUT_EDP) {
		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);

1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
		if (intel_dp->is_mst) {
			temp |= TRANS_DDI_MODE_SELECT_DP_MST;
		} else
			temp |= TRANS_DDI_MODE_SELECT_DP_SST;

		temp |= DDI_PORT_WIDTH(intel_dp->lane_count);
	} else if (type == INTEL_OUTPUT_DP_MST) {
		struct intel_dp *intel_dp = &enc_to_mst(encoder)->primary->dp;

		if (intel_dp->is_mst) {
			temp |= TRANS_DDI_MODE_SELECT_DP_MST;
		} else
			temp |= TRANS_DDI_MODE_SELECT_DP_SST;
1926

1927
		temp |= DDI_PORT_WIDTH(intel_dp->lane_count);
1928
	} else {
1929 1930
		WARN(1, "Invalid encoder type %d for pipe %c\n",
		     intel_encoder->type, pipe_name(pipe));
1931 1932
	}

1933
	I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp);
1934
}
1935

1936 1937
void intel_ddi_disable_transcoder_func(struct drm_i915_private *dev_priv,
				       enum transcoder cpu_transcoder)
1938
{
1939
	uint32_t reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1940 1941
	uint32_t val = I915_READ(reg);

1942
	val &= ~(TRANS_DDI_FUNC_ENABLE | TRANS_DDI_PORT_MASK | TRANS_DDI_DP_VC_PAYLOAD_ALLOC);
1943
	val |= TRANS_DDI_PORT_NONE;
1944
	I915_WRITE(reg, val);
1945 1946
}

1947 1948 1949 1950 1951 1952 1953 1954 1955
bool intel_ddi_connector_get_hw_state(struct intel_connector *intel_connector)
{
	struct drm_device *dev = intel_connector->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_encoder *intel_encoder = intel_connector->encoder;
	int type = intel_connector->base.connector_type;
	enum port port = intel_ddi_get_encoder_port(intel_encoder);
	enum pipe pipe = 0;
	enum transcoder cpu_transcoder;
1956
	enum intel_display_power_domain power_domain;
1957 1958
	uint32_t tmp;

1959
	power_domain = intel_display_port_power_domain(intel_encoder);
1960
	if (!intel_display_power_is_enabled(dev_priv, power_domain))
1961 1962
		return false;

1963 1964 1965 1966 1967 1968
	if (!intel_encoder->get_hw_state(intel_encoder, &pipe))
		return false;

	if (port == PORT_A)
		cpu_transcoder = TRANSCODER_EDP;
	else
D
Daniel Vetter 已提交
1969
		cpu_transcoder = (enum transcoder) pipe;
1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981

	tmp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));

	switch (tmp & TRANS_DDI_MODE_SELECT_MASK) {
	case TRANS_DDI_MODE_SELECT_HDMI:
	case TRANS_DDI_MODE_SELECT_DVI:
		return (type == DRM_MODE_CONNECTOR_HDMIA);

	case TRANS_DDI_MODE_SELECT_DP_SST:
		if (type == DRM_MODE_CONNECTOR_eDP)
			return true;
		return (type == DRM_MODE_CONNECTOR_DisplayPort);
1982 1983 1984 1985
	case TRANS_DDI_MODE_SELECT_DP_MST:
		/* if the transcoder is in MST state then
		 * connector isn't connected */
		return false;
1986 1987 1988 1989 1990 1991 1992 1993 1994

	case TRANS_DDI_MODE_SELECT_FDI:
		return (type == DRM_MODE_CONNECTOR_VGA);

	default:
		return false;
	}
}

1995 1996 1997 1998 1999
bool intel_ddi_get_hw_state(struct intel_encoder *encoder,
			    enum pipe *pipe)
{
	struct drm_device *dev = encoder->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
2000
	enum port port = intel_ddi_get_encoder_port(encoder);
2001
	enum intel_display_power_domain power_domain;
2002 2003 2004
	u32 tmp;
	int i;

2005
	power_domain = intel_display_port_power_domain(encoder);
2006
	if (!intel_display_power_is_enabled(dev_priv, power_domain))
2007 2008
		return false;

2009
	tmp = I915_READ(DDI_BUF_CTL(port));
2010 2011 2012 2013

	if (!(tmp & DDI_BUF_CTL_ENABLE))
		return false;

2014 2015
	if (port == PORT_A) {
		tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
2016

2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036
		switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
		case TRANS_DDI_EDP_INPUT_A_ON:
		case TRANS_DDI_EDP_INPUT_A_ONOFF:
			*pipe = PIPE_A;
			break;
		case TRANS_DDI_EDP_INPUT_B_ONOFF:
			*pipe = PIPE_B;
			break;
		case TRANS_DDI_EDP_INPUT_C_ONOFF:
			*pipe = PIPE_C;
			break;
		}

		return true;
	} else {
		for (i = TRANSCODER_A; i <= TRANSCODER_C; i++) {
			tmp = I915_READ(TRANS_DDI_FUNC_CTL(i));

			if ((tmp & TRANS_DDI_PORT_MASK)
			    == TRANS_DDI_SELECT_PORT(port)) {
2037 2038 2039
				if ((tmp & TRANS_DDI_MODE_SELECT_MASK) == TRANS_DDI_MODE_SELECT_DP_MST)
					return false;

2040 2041 2042
				*pipe = i;
				return true;
			}
2043 2044 2045
		}
	}

2046
	DRM_DEBUG_KMS("No pipe for ddi port %c found\n", port_name(port));
2047

2048
	return false;
2049 2050
}

2051 2052 2053 2054 2055 2056
void intel_ddi_enable_pipe_clock(struct intel_crtc *intel_crtc)
{
	struct drm_crtc *crtc = &intel_crtc->base;
	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
	struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
	enum port port = intel_ddi_get_encoder_port(intel_encoder);
2057
	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
2058

2059 2060 2061
	if (cpu_transcoder != TRANSCODER_EDP)
		I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
			   TRANS_CLK_SEL_PORT(port));
2062 2063 2064 2065 2066
}

void intel_ddi_disable_pipe_clock(struct intel_crtc *intel_crtc)
{
	struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
2067
	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
2068

2069 2070 2071
	if (cpu_transcoder != TRANSCODER_EDP)
		I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
			   TRANS_CLK_SEL_DISABLED);
2072 2073
}

2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115
static void skl_ddi_set_iboost(struct drm_device *dev, u32 level,
			       enum port port, int type)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	const struct ddi_buf_trans *ddi_translations;
	uint8_t iboost;
	int n_entries;
	u32 reg;

	if (type == INTEL_OUTPUT_DISPLAYPORT) {
		ddi_translations = skl_get_buf_trans_dp(dev, &n_entries);
		iboost = ddi_translations[port].i_boost;
	} else if (type == INTEL_OUTPUT_EDP) {
		ddi_translations = skl_get_buf_trans_edp(dev, &n_entries);
		iboost = ddi_translations[port].i_boost;
	} else if (type == INTEL_OUTPUT_HDMI) {
		ddi_translations = skl_get_buf_trans_hdmi(dev, &n_entries);
		iboost = ddi_translations[port].i_boost;
	} else {
		return;
	}

	/* Make sure that the requested I_boost is valid */
	if (iboost && iboost != 0x1 && iboost != 0x3 && iboost != 0x7) {
		DRM_ERROR("Invalid I_boost value %u\n", iboost);
		return;
	}

	reg = I915_READ(DISPIO_CR_TX_BMU_CR0);
	reg &= ~BALANCE_LEG_MASK(port);
	reg &= ~(1 << (BALANCE_LEG_DISABLE_SHIFT + port));

	if (iboost)
		reg |= iboost << BALANCE_LEG_SHIFT(port);
	else
		reg |= 1 << (BALANCE_LEG_DISABLE_SHIFT + port);

	I915_WRITE(DISPIO_CR_TX_BMU_CR0, reg);
}

static void bxt_ddi_vswing_sequence(struct drm_device *dev, u32 level,
				    enum port port, int type)
2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	const struct bxt_ddi_buf_trans *ddi_translations;
	u32 n_entries, i;
	uint32_t val;

	if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
		n_entries = ARRAY_SIZE(bxt_ddi_translations_dp);
		ddi_translations = bxt_ddi_translations_dp;
	} else if (type == INTEL_OUTPUT_HDMI) {
		n_entries = ARRAY_SIZE(bxt_ddi_translations_hdmi);
		ddi_translations = bxt_ddi_translations_hdmi;
	} else {
		DRM_DEBUG_KMS("Vswing programming not done for encoder %d\n",
				type);
		return;
	}

	/* Check if default value has to be used */
	if (level >= n_entries ||
	    (type == INTEL_OUTPUT_HDMI && level == HDMI_LEVEL_SHIFT_UNKNOWN)) {
		for (i = 0; i < n_entries; i++) {
			if (ddi_translations[i].default_index) {
				level = i;
				break;
			}
		}
	}

	/*
	 * While we write to the group register to program all lanes at once we
	 * can read only lane registers and we pick lanes 0/1 for that.
	 */
	val = I915_READ(BXT_PORT_PCS_DW10_LN01(port));
	val &= ~(TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT);
	I915_WRITE(BXT_PORT_PCS_DW10_GRP(port), val);

	val = I915_READ(BXT_PORT_TX_DW2_LN0(port));
	val &= ~(MARGIN_000 | UNIQ_TRANS_SCALE);
	val |= ddi_translations[level].margin << MARGIN_000_SHIFT |
	       ddi_translations[level].scale << UNIQ_TRANS_SCALE_SHIFT;
	I915_WRITE(BXT_PORT_TX_DW2_GRP(port), val);

	val = I915_READ(BXT_PORT_TX_DW3_LN0(port));
	val &= ~UNIQE_TRANGE_EN_METHOD;
	if (ddi_translations[level].enable)
		val |= UNIQE_TRANGE_EN_METHOD;
	I915_WRITE(BXT_PORT_TX_DW3_GRP(port), val);

	val = I915_READ(BXT_PORT_TX_DW4_LN0(port));
	val &= ~DE_EMPHASIS;
	val |= ddi_translations[level].deemphasis << DEEMPH_SHIFT;
	I915_WRITE(BXT_PORT_TX_DW4_GRP(port), val);

	val = I915_READ(BXT_PORT_PCS_DW10_LN01(port));
	val |= TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT;
	I915_WRITE(BXT_PORT_PCS_DW10_GRP(port), val);
}

2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241
static uint32_t translate_signal_level(int signal_levels)
{
	uint32_t level;

	switch (signal_levels) {
	default:
		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level: 0x%x\n",
			      signal_levels);
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
		level = 0;
		break;
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
		level = 1;
		break;
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
		level = 2;
		break;
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_3:
		level = 3;
		break;

	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
		level = 4;
		break;
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
		level = 5;
		break;
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
		level = 6;
		break;

	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
		level = 7;
		break;
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
		level = 8;
		break;

	case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
		level = 9;
		break;
	}

	return level;
}

uint32_t ddi_signal_levels(struct intel_dp *intel_dp)
{
	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
	struct drm_device *dev = dport->base.base.dev;
	struct intel_encoder *encoder = &dport->base;
	uint8_t train_set = intel_dp->train_set[0];
	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
					 DP_TRAIN_PRE_EMPHASIS_MASK);
	enum port port = dport->port;
	uint32_t level;

	level = translate_signal_level(signal_levels);

	if (IS_SKYLAKE(dev))
		skl_ddi_set_iboost(dev, level, port, encoder->type);
	else if (IS_BROXTON(dev))
		bxt_ddi_vswing_sequence(dev, level, port, encoder->type);

	return DDI_BUF_TRANS_SELECT(level);
}

P
Paulo Zanoni 已提交
2242
static void intel_ddi_pre_enable(struct intel_encoder *intel_encoder)
2243
{
2244
	struct drm_encoder *encoder = &intel_encoder->base;
2245 2246
	struct drm_device *dev = encoder->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
2247
	struct intel_crtc *crtc = to_intel_crtc(encoder->crtc);
2248
	enum port port = intel_ddi_get_encoder_port(intel_encoder);
2249
	int type = intel_encoder->type;
2250
	int hdmi_level;
2251

2252 2253
	if (type == INTEL_OUTPUT_EDP) {
		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2254
		intel_edp_panel_on(intel_dp);
2255
	}
2256

2257
	if (IS_SKYLAKE(dev)) {
2258
		uint32_t dpll = crtc->config->ddi_pll_sel;
2259 2260
		uint32_t val;

2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
		/*
		 * DPLL0 is used for eDP and is the only "private" DPLL (as
		 * opposed to shared) on SKL
		 */
		if (type == INTEL_OUTPUT_EDP) {
			WARN_ON(dpll != SKL_DPLL0);

			val = I915_READ(DPLL_CTRL1);

			val &= ~(DPLL_CTRL1_HDMI_MODE(dpll) |
				 DPLL_CTRL1_SSC(dpll) |
2272
				 DPLL_CTRL1_LINK_RATE_MASK(dpll));
2273
			val |= crtc->config->dpll_hw_state.ctrl1 << (dpll * 6);
2274 2275 2276 2277 2278 2279

			I915_WRITE(DPLL_CTRL1, val);
			POSTING_READ(DPLL_CTRL1);
		}

		/* DDI -> PLL mapping  */
2280 2281 2282 2283 2284 2285 2286 2287
		val = I915_READ(DPLL_CTRL2);

		val &= ~(DPLL_CTRL2_DDI_CLK_OFF(port) |
			DPLL_CTRL2_DDI_CLK_SEL_MASK(port));
		val |= (DPLL_CTRL2_DDI_CLK_SEL(dpll, port) |
			DPLL_CTRL2_DDI_SEL_OVERRIDE(port));

		I915_WRITE(DPLL_CTRL2, val);
2288

2289
	} else if (INTEL_INFO(dev)->gen < 9) {
2290 2291
		WARN_ON(crtc->config->ddi_pll_sel == PORT_CLK_SEL_NONE);
		I915_WRITE(PORT_CLK_SEL(port), crtc->config->ddi_pll_sel);
2292
	}
2293

2294
	if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
2295
		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2296

2297
		intel_ddi_init_dp_buf_reg(intel_encoder);
2298 2299 2300 2301

		intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
		intel_dp_start_link_train(intel_dp);
		intel_dp_complete_link_train(intel_dp);
2302
		if (port != PORT_A || INTEL_INFO(dev)->gen >= 9)
2303
			intel_dp_stop_link_train(intel_dp);
2304 2305 2306
	} else if (type == INTEL_OUTPUT_HDMI) {
		struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);

2307 2308 2309 2310 2311 2312
		if (IS_BROXTON(dev)) {
			hdmi_level = dev_priv->vbt.
				ddi_port_info[port].hdmi_level_shift;
			bxt_ddi_vswing_sequence(dev, hdmi_level, port,
					INTEL_OUTPUT_HDMI);
		}
2313
		intel_hdmi->set_infoframes(encoder,
2314 2315
					   crtc->config->has_hdmi_sink,
					   &crtc->config->base.adjusted_mode);
2316
	}
2317 2318
}

P
Paulo Zanoni 已提交
2319
static void intel_ddi_post_disable(struct intel_encoder *intel_encoder)
2320 2321
{
	struct drm_encoder *encoder = &intel_encoder->base;
2322 2323
	struct drm_device *dev = encoder->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
2324
	enum port port = intel_ddi_get_encoder_port(intel_encoder);
2325
	int type = intel_encoder->type;
2326
	uint32_t val;
2327
	bool wait = false;
2328 2329 2330 2331 2332

	val = I915_READ(DDI_BUF_CTL(port));
	if (val & DDI_BUF_CTL_ENABLE) {
		val &= ~DDI_BUF_CTL_ENABLE;
		I915_WRITE(DDI_BUF_CTL(port), val);
2333
		wait = true;
2334
	}
2335

2336 2337 2338 2339 2340 2341 2342 2343
	val = I915_READ(DP_TP_CTL(port));
	val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
	val |= DP_TP_CTL_LINK_TRAIN_PAT1;
	I915_WRITE(DP_TP_CTL(port), val);

	if (wait)
		intel_wait_ddi_buf_idle(dev_priv, port);

2344
	if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
2345
		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2346
		intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
2347
		intel_edp_panel_vdd_on(intel_dp);
2348
		intel_edp_panel_off(intel_dp);
2349 2350
	}

2351 2352 2353
	if (IS_SKYLAKE(dev))
		I915_WRITE(DPLL_CTRL2, (I915_READ(DPLL_CTRL2) |
					DPLL_CTRL2_DDI_CLK_OFF(port)));
2354
	else if (INTEL_INFO(dev)->gen < 9)
2355
		I915_WRITE(PORT_CLK_SEL(port), PORT_CLK_SEL_NONE);
2356 2357
}

P
Paulo Zanoni 已提交
2358
static void intel_enable_ddi(struct intel_encoder *intel_encoder)
2359
{
2360
	struct drm_encoder *encoder = &intel_encoder->base;
2361 2362
	struct drm_crtc *crtc = encoder->crtc;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2363
	struct drm_device *dev = encoder->dev;
2364
	struct drm_i915_private *dev_priv = dev->dev_private;
2365 2366
	enum port port = intel_ddi_get_encoder_port(intel_encoder);
	int type = intel_encoder->type;
2367

2368
	if (type == INTEL_OUTPUT_HDMI) {
2369 2370 2371
		struct intel_digital_port *intel_dig_port =
			enc_to_dig_port(encoder);

2372 2373 2374 2375
		/* In HDMI/DVI mode, the port width, and swing/emphasis values
		 * are ignored so nothing special needs to be done besides
		 * enabling the port.
		 */
2376
		I915_WRITE(DDI_BUF_CTL(port),
2377 2378
			   intel_dig_port->saved_port_bits |
			   DDI_BUF_CTL_ENABLE);
2379 2380 2381
	} else if (type == INTEL_OUTPUT_EDP) {
		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);

2382
		if (port == PORT_A && INTEL_INFO(dev)->gen < 9)
2383 2384
			intel_dp_stop_link_train(intel_dp);

2385
		intel_edp_backlight_on(intel_dp);
R
Rodrigo Vivi 已提交
2386
		intel_psr_enable(intel_dp);
V
Vandana Kannan 已提交
2387
		intel_edp_drrs_enable(intel_dp);
2388
	}
2389

2390
	if (intel_crtc->config->has_audio) {
2391
		intel_display_power_get(dev_priv, POWER_DOMAIN_AUDIO);
2392
		intel_audio_codec_enable(intel_encoder);
2393
	}
2394 2395
}

P
Paulo Zanoni 已提交
2396
static void intel_disable_ddi(struct intel_encoder *intel_encoder)
2397
{
2398
	struct drm_encoder *encoder = &intel_encoder->base;
2399 2400
	struct drm_crtc *crtc = encoder->crtc;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2401
	int type = intel_encoder->type;
2402 2403
	struct drm_device *dev = encoder->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
2404

2405
	if (intel_crtc->config->has_audio) {
2406
		intel_audio_codec_disable(intel_encoder);
2407 2408
		intel_display_power_put(dev_priv, POWER_DOMAIN_AUDIO);
	}
2409

2410 2411 2412
	if (type == INTEL_OUTPUT_EDP) {
		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);

V
Vandana Kannan 已提交
2413
		intel_edp_drrs_disable(intel_dp);
R
Rodrigo Vivi 已提交
2414
		intel_psr_disable(intel_dp);
2415
		intel_edp_backlight_off(intel_dp);
2416
	}
2417
}
P
Paulo Zanoni 已提交
2418

2419 2420 2421
static void hsw_ddi_pll_enable(struct drm_i915_private *dev_priv,
			       struct intel_shared_dpll *pll)
{
2422
	I915_WRITE(WRPLL_CTL(pll->id), pll->config.hw_state.wrpll);
2423 2424 2425 2426
	POSTING_READ(WRPLL_CTL(pll->id));
	udelay(20);
}

2427 2428 2429 2430 2431 2432 2433 2434 2435 2436
static void hsw_ddi_pll_disable(struct drm_i915_private *dev_priv,
				struct intel_shared_dpll *pll)
{
	uint32_t val;

	val = I915_READ(WRPLL_CTL(pll->id));
	I915_WRITE(WRPLL_CTL(pll->id), val & ~WRPLL_PLL_ENABLE);
	POSTING_READ(WRPLL_CTL(pll->id));
}

2437 2438 2439 2440 2441 2442
static bool hsw_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
				     struct intel_shared_dpll *pll,
				     struct intel_dpll_hw_state *hw_state)
{
	uint32_t val;

2443
	if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
2444 2445 2446 2447 2448 2449 2450 2451
		return false;

	val = I915_READ(WRPLL_CTL(pll->id));
	hw_state->wrpll = val;

	return val & WRPLL_PLL_ENABLE;
}

2452
static const char * const hsw_ddi_pll_names[] = {
2453 2454 2455 2456
	"WRPLL 1",
	"WRPLL 2",
};

2457
static void hsw_shared_dplls_init(struct drm_i915_private *dev_priv)
P
Paulo Zanoni 已提交
2458
{
2459 2460
	int i;

2461
	dev_priv->num_shared_dpll = 2;
2462

2463
	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
2464 2465
		dev_priv->shared_dplls[i].id = i;
		dev_priv->shared_dplls[i].name = hsw_ddi_pll_names[i];
2466
		dev_priv->shared_dplls[i].disable = hsw_ddi_pll_disable;
2467
		dev_priv->shared_dplls[i].enable = hsw_ddi_pll_enable;
2468 2469
		dev_priv->shared_dplls[i].get_hw_state =
			hsw_ddi_pll_get_hw_state;
2470
	}
2471 2472
}

2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517
static const char * const skl_ddi_pll_names[] = {
	"DPLL 1",
	"DPLL 2",
	"DPLL 3",
};

struct skl_dpll_regs {
	u32 ctl, cfgcr1, cfgcr2;
};

/* this array is indexed by the *shared* pll id */
static const struct skl_dpll_regs skl_dpll_regs[3] = {
	{
		/* DPLL 1 */
		.ctl = LCPLL2_CTL,
		.cfgcr1 = DPLL1_CFGCR1,
		.cfgcr2 = DPLL1_CFGCR2,
	},
	{
		/* DPLL 2 */
		.ctl = WRPLL_CTL1,
		.cfgcr1 = DPLL2_CFGCR1,
		.cfgcr2 = DPLL2_CFGCR2,
	},
	{
		/* DPLL 3 */
		.ctl = WRPLL_CTL2,
		.cfgcr1 = DPLL3_CFGCR1,
		.cfgcr2 = DPLL3_CFGCR2,
	},
};

static void skl_ddi_pll_enable(struct drm_i915_private *dev_priv,
			       struct intel_shared_dpll *pll)
{
	uint32_t val;
	unsigned int dpll;
	const struct skl_dpll_regs *regs = skl_dpll_regs;

	/* DPLL0 is not part of the shared DPLLs, so pll->id is 0 for DPLL1 */
	dpll = pll->id + 1;

	val = I915_READ(DPLL_CTRL1);

	val &= ~(DPLL_CTRL1_HDMI_MODE(dpll) | DPLL_CTRL1_SSC(dpll) |
2518
		 DPLL_CTRL1_LINK_RATE_MASK(dpll));
2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593
	val |= pll->config.hw_state.ctrl1 << (dpll * 6);

	I915_WRITE(DPLL_CTRL1, val);
	POSTING_READ(DPLL_CTRL1);

	I915_WRITE(regs[pll->id].cfgcr1, pll->config.hw_state.cfgcr1);
	I915_WRITE(regs[pll->id].cfgcr2, pll->config.hw_state.cfgcr2);
	POSTING_READ(regs[pll->id].cfgcr1);
	POSTING_READ(regs[pll->id].cfgcr2);

	/* the enable bit is always bit 31 */
	I915_WRITE(regs[pll->id].ctl,
		   I915_READ(regs[pll->id].ctl) | LCPLL_PLL_ENABLE);

	if (wait_for(I915_READ(DPLL_STATUS) & DPLL_LOCK(dpll), 5))
		DRM_ERROR("DPLL %d not locked\n", dpll);
}

static void skl_ddi_pll_disable(struct drm_i915_private *dev_priv,
				struct intel_shared_dpll *pll)
{
	const struct skl_dpll_regs *regs = skl_dpll_regs;

	/* the enable bit is always bit 31 */
	I915_WRITE(regs[pll->id].ctl,
		   I915_READ(regs[pll->id].ctl) & ~LCPLL_PLL_ENABLE);
	POSTING_READ(regs[pll->id].ctl);
}

static bool skl_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
				     struct intel_shared_dpll *pll,
				     struct intel_dpll_hw_state *hw_state)
{
	uint32_t val;
	unsigned int dpll;
	const struct skl_dpll_regs *regs = skl_dpll_regs;

	if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
		return false;

	/* DPLL0 is not part of the shared DPLLs, so pll->id is 0 for DPLL1 */
	dpll = pll->id + 1;

	val = I915_READ(regs[pll->id].ctl);
	if (!(val & LCPLL_PLL_ENABLE))
		return false;

	val = I915_READ(DPLL_CTRL1);
	hw_state->ctrl1 = (val >> (dpll * 6)) & 0x3f;

	/* avoid reading back stale values if HDMI mode is not enabled */
	if (val & DPLL_CTRL1_HDMI_MODE(dpll)) {
		hw_state->cfgcr1 = I915_READ(regs[pll->id].cfgcr1);
		hw_state->cfgcr2 = I915_READ(regs[pll->id].cfgcr2);
	}

	return true;
}

static void skl_shared_dplls_init(struct drm_i915_private *dev_priv)
{
	int i;

	dev_priv->num_shared_dpll = 3;

	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
		dev_priv->shared_dplls[i].id = i;
		dev_priv->shared_dplls[i].name = skl_ddi_pll_names[i];
		dev_priv->shared_dplls[i].disable = skl_ddi_pll_disable;
		dev_priv->shared_dplls[i].enable = skl_ddi_pll_enable;
		dev_priv->shared_dplls[i].get_hw_state =
			skl_ddi_pll_get_hw_state;
	}
}

2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717
static void broxton_phy_init(struct drm_i915_private *dev_priv,
			     enum dpio_phy phy)
{
	enum port port;
	uint32_t val;

	val = I915_READ(BXT_P_CR_GT_DISP_PWRON);
	val |= GT_DISPLAY_POWER_ON(phy);
	I915_WRITE(BXT_P_CR_GT_DISP_PWRON, val);

	/* Considering 10ms timeout until BSpec is updated */
	if (wait_for(I915_READ(BXT_PORT_CL1CM_DW0(phy)) & PHY_POWER_GOOD, 10))
		DRM_ERROR("timeout during PHY%d power on\n", phy);

	for (port =  (phy == DPIO_PHY0 ? PORT_B : PORT_A);
	     port <= (phy == DPIO_PHY0 ? PORT_C : PORT_A); port++) {
		int lane;

		for (lane = 0; lane < 4; lane++) {
			val = I915_READ(BXT_PORT_TX_DW14_LN(port, lane));
			/*
			 * Note that on CHV this flag is called UPAR, but has
			 * the same function.
			 */
			val &= ~LATENCY_OPTIM;
			if (lane != 1)
				val |= LATENCY_OPTIM;

			I915_WRITE(BXT_PORT_TX_DW14_LN(port, lane), val);
		}
	}

	/* Program PLL Rcomp code offset */
	val = I915_READ(BXT_PORT_CL1CM_DW9(phy));
	val &= ~IREF0RC_OFFSET_MASK;
	val |= 0xE4 << IREF0RC_OFFSET_SHIFT;
	I915_WRITE(BXT_PORT_CL1CM_DW9(phy), val);

	val = I915_READ(BXT_PORT_CL1CM_DW10(phy));
	val &= ~IREF1RC_OFFSET_MASK;
	val |= 0xE4 << IREF1RC_OFFSET_SHIFT;
	I915_WRITE(BXT_PORT_CL1CM_DW10(phy), val);

	/* Program power gating */
	val = I915_READ(BXT_PORT_CL1CM_DW28(phy));
	val |= OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN |
		SUS_CLK_CONFIG;
	I915_WRITE(BXT_PORT_CL1CM_DW28(phy), val);

	if (phy == DPIO_PHY0) {
		val = I915_READ(BXT_PORT_CL2CM_DW6_BC);
		val |= DW6_OLDO_DYN_PWR_DOWN_EN;
		I915_WRITE(BXT_PORT_CL2CM_DW6_BC, val);
	}

	val = I915_READ(BXT_PORT_CL1CM_DW30(phy));
	val &= ~OCL2_LDOFUSE_PWR_DIS;
	/*
	 * On PHY1 disable power on the second channel, since no port is
	 * connected there. On PHY0 both channels have a port, so leave it
	 * enabled.
	 * TODO: port C is only connected on BXT-P, so on BXT0/1 we should
	 * power down the second channel on PHY0 as well.
	 */
	if (phy == DPIO_PHY1)
		val |= OCL2_LDOFUSE_PWR_DIS;
	I915_WRITE(BXT_PORT_CL1CM_DW30(phy), val);

	if (phy == DPIO_PHY0) {
		uint32_t grc_code;
		/*
		 * PHY0 isn't connected to an RCOMP resistor so copy over
		 * the corresponding calibrated value from PHY1, and disable
		 * the automatic calibration on PHY0.
		 */
		if (wait_for(I915_READ(BXT_PORT_REF_DW3(DPIO_PHY1)) & GRC_DONE,
			     10))
			DRM_ERROR("timeout waiting for PHY1 GRC\n");

		val = I915_READ(BXT_PORT_REF_DW6(DPIO_PHY1));
		val = (val & GRC_CODE_MASK) >> GRC_CODE_SHIFT;
		grc_code = val << GRC_CODE_FAST_SHIFT |
			   val << GRC_CODE_SLOW_SHIFT |
			   val;
		I915_WRITE(BXT_PORT_REF_DW6(DPIO_PHY0), grc_code);

		val = I915_READ(BXT_PORT_REF_DW8(DPIO_PHY0));
		val |= GRC_DIS | GRC_RDY_OVRD;
		I915_WRITE(BXT_PORT_REF_DW8(DPIO_PHY0), val);
	}

	val = I915_READ(BXT_PHY_CTL_FAMILY(phy));
	val |= COMMON_RESET_DIS;
	I915_WRITE(BXT_PHY_CTL_FAMILY(phy), val);
}

void broxton_ddi_phy_init(struct drm_device *dev)
{
	/* Enable PHY1 first since it provides Rcomp for PHY0 */
	broxton_phy_init(dev->dev_private, DPIO_PHY1);
	broxton_phy_init(dev->dev_private, DPIO_PHY0);
}

static void broxton_phy_uninit(struct drm_i915_private *dev_priv,
			       enum dpio_phy phy)
{
	uint32_t val;

	val = I915_READ(BXT_PHY_CTL_FAMILY(phy));
	val &= ~COMMON_RESET_DIS;
	I915_WRITE(BXT_PHY_CTL_FAMILY(phy), val);
}

void broxton_ddi_phy_uninit(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	broxton_phy_uninit(dev_priv, DPIO_PHY1);
	broxton_phy_uninit(dev_priv, DPIO_PHY0);

	/* FIXME: do this in broxton_phy_uninit per phy */
	I915_WRITE(BXT_P_CR_GT_DISP_PWRON, 0);
}

2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
static const char * const bxt_ddi_pll_names[] = {
	"PORT PLL A",
	"PORT PLL B",
	"PORT PLL C",
};

static void bxt_ddi_pll_enable(struct drm_i915_private *dev_priv,
				struct intel_shared_dpll *pll)
{
	uint32_t temp;
	enum port port = (enum port)pll->id;	/* 1:1 port->PLL mapping */

	temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
	temp &= ~PORT_PLL_REF_SEL;
	/* Non-SSC reference */
	I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);

	/* Disable 10 bit clock */
	temp = I915_READ(BXT_PORT_PLL_EBB_4(port));
	temp &= ~PORT_PLL_10BIT_CLK_ENABLE;
	I915_WRITE(BXT_PORT_PLL_EBB_4(port), temp);

	/* Write P1 & P2 */
	temp = I915_READ(BXT_PORT_PLL_EBB_0(port));
	temp &= ~(PORT_PLL_P1_MASK | PORT_PLL_P2_MASK);
	temp |= pll->config.hw_state.ebb0;
	I915_WRITE(BXT_PORT_PLL_EBB_0(port), temp);

	/* Write M2 integer */
	temp = I915_READ(BXT_PORT_PLL(port, 0));
	temp &= ~PORT_PLL_M2_MASK;
	temp |= pll->config.hw_state.pll0;
	I915_WRITE(BXT_PORT_PLL(port, 0), temp);

	/* Write N */
	temp = I915_READ(BXT_PORT_PLL(port, 1));
	temp &= ~PORT_PLL_N_MASK;
	temp |= pll->config.hw_state.pll1;
	I915_WRITE(BXT_PORT_PLL(port, 1), temp);

	/* Write M2 fraction */
	temp = I915_READ(BXT_PORT_PLL(port, 2));
	temp &= ~PORT_PLL_M2_FRAC_MASK;
	temp |= pll->config.hw_state.pll2;
	I915_WRITE(BXT_PORT_PLL(port, 2), temp);

	/* Write M2 fraction enable */
	temp = I915_READ(BXT_PORT_PLL(port, 3));
	temp &= ~PORT_PLL_M2_FRAC_ENABLE;
	temp |= pll->config.hw_state.pll3;
	I915_WRITE(BXT_PORT_PLL(port, 3), temp);

	/* Write coeff */
	temp = I915_READ(BXT_PORT_PLL(port, 6));
	temp &= ~PORT_PLL_PROP_COEFF_MASK;
	temp &= ~PORT_PLL_INT_COEFF_MASK;
	temp &= ~PORT_PLL_GAIN_CTL_MASK;
	temp |= pll->config.hw_state.pll6;
	I915_WRITE(BXT_PORT_PLL(port, 6), temp);

	/* Write calibration val */
	temp = I915_READ(BXT_PORT_PLL(port, 8));
	temp &= ~PORT_PLL_TARGET_CNT_MASK;
	temp |= pll->config.hw_state.pll8;
	I915_WRITE(BXT_PORT_PLL(port, 8), temp);

2784 2785
	temp = I915_READ(BXT_PORT_PLL(port, 9));
	temp &= ~PORT_PLL_LOCK_THRESHOLD_MASK;
2786
	temp |= pll->config.hw_state.pll9;
2787 2788 2789 2790 2791 2792 2793
	I915_WRITE(BXT_PORT_PLL(port, 9), temp);

	temp = I915_READ(BXT_PORT_PLL(port, 10));
	temp &= ~PORT_PLL_DCO_AMP_OVR_EN_H;
	temp &= ~PORT_PLL_DCO_AMP_MASK;
	temp |= pll->config.hw_state.pll10;
	I915_WRITE(BXT_PORT_PLL(port, 10), temp);
2794 2795 2796 2797 2798

	/* Recalibrate with new settings */
	temp = I915_READ(BXT_PORT_PLL_EBB_4(port));
	temp |= PORT_PLL_RECALIBRATE;
	I915_WRITE(BXT_PORT_PLL_EBB_4(port), temp);
2799 2800
	temp &= ~PORT_PLL_10BIT_CLK_ENABLE;
	temp |= pll->config.hw_state.ebb4;
2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850
	I915_WRITE(BXT_PORT_PLL_EBB_4(port), temp);

	/* Enable PLL */
	temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
	temp |= PORT_PLL_ENABLE;
	I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
	POSTING_READ(BXT_PORT_PLL_ENABLE(port));

	if (wait_for_atomic_us((I915_READ(BXT_PORT_PLL_ENABLE(port)) &
			PORT_PLL_LOCK), 200))
		DRM_ERROR("PLL %d not locked\n", port);

	/*
	 * While we write to the group register to program all lanes at once we
	 * can read only lane registers and we pick lanes 0/1 for that.
	 */
	temp = I915_READ(BXT_PORT_PCS_DW12_LN01(port));
	temp &= ~LANE_STAGGER_MASK;
	temp &= ~LANESTAGGER_STRAP_OVRD;
	temp |= pll->config.hw_state.pcsdw12;
	I915_WRITE(BXT_PORT_PCS_DW12_GRP(port), temp);
}

static void bxt_ddi_pll_disable(struct drm_i915_private *dev_priv,
					struct intel_shared_dpll *pll)
{
	enum port port = (enum port)pll->id;	/* 1:1 port->PLL mapping */
	uint32_t temp;

	temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
	temp &= ~PORT_PLL_ENABLE;
	I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
	POSTING_READ(BXT_PORT_PLL_ENABLE(port));
}

static bool bxt_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
					struct intel_shared_dpll *pll,
					struct intel_dpll_hw_state *hw_state)
{
	enum port port = (enum port)pll->id;	/* 1:1 port->PLL mapping */
	uint32_t val;

	if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
		return false;

	val = I915_READ(BXT_PORT_PLL_ENABLE(port));
	if (!(val & PORT_PLL_ENABLE))
		return false;

	hw_state->ebb0 = I915_READ(BXT_PORT_PLL_EBB_0(port));
2851 2852
	hw_state->ebb0 &= PORT_PLL_P1_MASK | PORT_PLL_P2_MASK;

2853 2854 2855
	hw_state->ebb4 = I915_READ(BXT_PORT_PLL_EBB_4(port));
	hw_state->ebb4 &= PORT_PLL_10BIT_CLK_ENABLE;

2856
	hw_state->pll0 = I915_READ(BXT_PORT_PLL(port, 0));
2857 2858
	hw_state->pll0 &= PORT_PLL_M2_MASK;

2859
	hw_state->pll1 = I915_READ(BXT_PORT_PLL(port, 1));
2860 2861
	hw_state->pll1 &= PORT_PLL_N_MASK;

2862
	hw_state->pll2 = I915_READ(BXT_PORT_PLL(port, 2));
2863 2864
	hw_state->pll2 &= PORT_PLL_M2_FRAC_MASK;

2865
	hw_state->pll3 = I915_READ(BXT_PORT_PLL(port, 3));
2866 2867
	hw_state->pll3 &= PORT_PLL_M2_FRAC_ENABLE;

2868
	hw_state->pll6 = I915_READ(BXT_PORT_PLL(port, 6));
2869 2870 2871 2872
	hw_state->pll6 &= PORT_PLL_PROP_COEFF_MASK |
			  PORT_PLL_INT_COEFF_MASK |
			  PORT_PLL_GAIN_CTL_MASK;

2873
	hw_state->pll8 = I915_READ(BXT_PORT_PLL(port, 8));
2874 2875
	hw_state->pll8 &= PORT_PLL_TARGET_CNT_MASK;

2876 2877 2878
	hw_state->pll9 = I915_READ(BXT_PORT_PLL(port, 9));
	hw_state->pll9 &= PORT_PLL_LOCK_THRESHOLD_MASK;

2879
	hw_state->pll10 = I915_READ(BXT_PORT_PLL(port, 10));
2880 2881 2882
	hw_state->pll10 &= PORT_PLL_DCO_AMP_OVR_EN_H |
			   PORT_PLL_DCO_AMP_MASK;

2883 2884 2885 2886 2887 2888 2889 2890 2891 2892
	/*
	 * While we write to the group register to program all lanes at once we
	 * can read only lane registers. We configure all lanes the same way, so
	 * here just read out lanes 0/1 and output a note if lanes 2/3 differ.
	 */
	hw_state->pcsdw12 = I915_READ(BXT_PORT_PCS_DW12_LN01(port));
	if (I915_READ(BXT_PORT_PCS_DW12_LN23(port) != hw_state->pcsdw12))
		DRM_DEBUG_DRIVER("lane stagger config different for lane 01 (%08x) and 23 (%08x)\n",
				 hw_state->pcsdw12,
				 I915_READ(BXT_PORT_PCS_DW12_LN23(port)));
2893
	hw_state->pcsdw12 &= LANE_STAGGER_MASK | LANESTAGGER_STRAP_OVRD;
2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913

	return true;
}

static void bxt_shared_dplls_init(struct drm_i915_private *dev_priv)
{
	int i;

	dev_priv->num_shared_dpll = 3;

	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
		dev_priv->shared_dplls[i].id = i;
		dev_priv->shared_dplls[i].name = bxt_ddi_pll_names[i];
		dev_priv->shared_dplls[i].disable = bxt_ddi_pll_disable;
		dev_priv->shared_dplls[i].enable = bxt_ddi_pll_enable;
		dev_priv->shared_dplls[i].get_hw_state =
			bxt_ddi_pll_get_hw_state;
	}
}

2914 2915 2916 2917 2918
void intel_ddi_pll_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t val = I915_READ(LCPLL_CTL);

2919 2920
	if (IS_SKYLAKE(dev))
		skl_shared_dplls_init(dev_priv);
2921 2922
	else if (IS_BROXTON(dev))
		bxt_shared_dplls_init(dev_priv);
2923 2924
	else
		hsw_shared_dplls_init(dev_priv);
P
Paulo Zanoni 已提交
2925

2926
	if (IS_SKYLAKE(dev)) {
2927 2928 2929
		int cdclk_freq;

		cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
2930
		dev_priv->skl_boot_cdclk = cdclk_freq;
2931 2932
		if (!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_ENABLE))
			DRM_ERROR("LCPLL1 is disabled\n");
2933 2934
		else
			intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
2935 2936
	} else if (IS_BROXTON(dev)) {
		broxton_init_cdclk(dev);
2937
		broxton_ddi_phy_init(dev);
2938 2939 2940 2941 2942 2943 2944 2945 2946
	} else {
		/*
		 * The LCPLL register should be turned on by the BIOS. For now
		 * let's just check its state and print errors in case
		 * something is wrong.  Don't even try to turn it on.
		 */

		if (val & LCPLL_CD_SOURCE_FCLK)
			DRM_ERROR("CDCLK source is not LCPLL\n");
P
Paulo Zanoni 已提交
2947

2948 2949 2950
		if (val & LCPLL_PLL_DISABLE)
			DRM_ERROR("LCPLL is disabled\n");
	}
P
Paulo Zanoni 已提交
2951
}
2952 2953 2954

void intel_ddi_prepare_link_retrain(struct drm_encoder *encoder)
{
2955 2956
	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
	struct intel_dp *intel_dp = &intel_dig_port->dp;
2957
	struct drm_i915_private *dev_priv = encoder->dev->dev_private;
2958
	enum port port = intel_dig_port->port;
2959
	uint32_t val;
2960
	bool wait = false;
2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979

	if (I915_READ(DP_TP_CTL(port)) & DP_TP_CTL_ENABLE) {
		val = I915_READ(DDI_BUF_CTL(port));
		if (val & DDI_BUF_CTL_ENABLE) {
			val &= ~DDI_BUF_CTL_ENABLE;
			I915_WRITE(DDI_BUF_CTL(port), val);
			wait = true;
		}

		val = I915_READ(DP_TP_CTL(port));
		val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
		val |= DP_TP_CTL_LINK_TRAIN_PAT1;
		I915_WRITE(DP_TP_CTL(port), val);
		POSTING_READ(DP_TP_CTL(port));

		if (wait)
			intel_wait_ddi_buf_idle(dev_priv, port);
	}

2980
	val = DP_TP_CTL_ENABLE |
2981
	      DP_TP_CTL_LINK_TRAIN_PAT1 | DP_TP_CTL_SCRAMBLE_DISABLE;
2982 2983 2984 2985 2986 2987 2988
	if (intel_dp->is_mst)
		val |= DP_TP_CTL_MODE_MST;
	else {
		val |= DP_TP_CTL_MODE_SST;
		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
			val |= DP_TP_CTL_ENHANCED_FRAME_ENABLE;
	}
2989 2990 2991 2992 2993 2994 2995 2996 2997
	I915_WRITE(DP_TP_CTL(port), val);
	POSTING_READ(DP_TP_CTL(port));

	intel_dp->DP |= DDI_BUF_CTL_ENABLE;
	I915_WRITE(DDI_BUF_CTL(port), intel_dp->DP);
	POSTING_READ(DDI_BUF_CTL(port));

	udelay(600);
}
P
Paulo Zanoni 已提交
2998

2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024
void intel_ddi_fdi_disable(struct drm_crtc *crtc)
{
	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
	struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
	uint32_t val;

	intel_ddi_post_disable(intel_encoder);

	val = I915_READ(_FDI_RXA_CTL);
	val &= ~FDI_RX_ENABLE;
	I915_WRITE(_FDI_RXA_CTL, val);

	val = I915_READ(_FDI_RXA_MISC);
	val &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
	val |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
	I915_WRITE(_FDI_RXA_MISC, val);

	val = I915_READ(_FDI_RXA_CTL);
	val &= ~FDI_PCDCLK;
	I915_WRITE(_FDI_RXA_CTL, val);

	val = I915_READ(_FDI_RXA_CTL);
	val &= ~FDI_RX_PLL_ENABLE;
	I915_WRITE(_FDI_RXA_CTL, val);
}

3025
void intel_ddi_get_config(struct intel_encoder *encoder,
3026
			  struct intel_crtc_state *pipe_config)
3027 3028 3029
{
	struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
3030
	enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
3031
	struct intel_hdmi *intel_hdmi;
3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043
	u32 temp, flags = 0;

	temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
	if (temp & TRANS_DDI_PHSYNC)
		flags |= DRM_MODE_FLAG_PHSYNC;
	else
		flags |= DRM_MODE_FLAG_NHSYNC;
	if (temp & TRANS_DDI_PVSYNC)
		flags |= DRM_MODE_FLAG_PVSYNC;
	else
		flags |= DRM_MODE_FLAG_NVSYNC;

3044
	pipe_config->base.adjusted_mode.flags |= flags;
3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061

	switch (temp & TRANS_DDI_BPC_MASK) {
	case TRANS_DDI_BPC_6:
		pipe_config->pipe_bpp = 18;
		break;
	case TRANS_DDI_BPC_8:
		pipe_config->pipe_bpp = 24;
		break;
	case TRANS_DDI_BPC_10:
		pipe_config->pipe_bpp = 30;
		break;
	case TRANS_DDI_BPC_12:
		pipe_config->pipe_bpp = 36;
		break;
	default:
		break;
	}
3062 3063 3064

	switch (temp & TRANS_DDI_MODE_SELECT_MASK) {
	case TRANS_DDI_MODE_SELECT_HDMI:
3065
		pipe_config->has_hdmi_sink = true;
3066 3067 3068 3069
		intel_hdmi = enc_to_intel_hdmi(&encoder->base);

		if (intel_hdmi->infoframe_enabled(&encoder->base))
			pipe_config->has_infoframe = true;
3070
		break;
3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081
	case TRANS_DDI_MODE_SELECT_DVI:
	case TRANS_DDI_MODE_SELECT_FDI:
		break;
	case TRANS_DDI_MODE_SELECT_DP_SST:
	case TRANS_DDI_MODE_SELECT_DP_MST:
		pipe_config->has_dp_encoder = true;
		intel_dp_get_m_n(intel_crtc, pipe_config);
		break;
	default:
		break;
	}
3082

3083
	if (intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_AUDIO)) {
3084
		temp = I915_READ(HSW_AUD_PIN_ELD_CP_VLD);
3085
		if (temp & AUDIO_OUTPUT_ENABLE(intel_crtc->pipe))
3086 3087
			pipe_config->has_audio = true;
	}
3088

3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107
	if (encoder->type == INTEL_OUTPUT_EDP && dev_priv->vbt.edp_bpp &&
	    pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
		/*
		 * This is a big fat ugly hack.
		 *
		 * Some machines in UEFI boot mode provide us a VBT that has 18
		 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
		 * unknown we fail to light up. Yet the same BIOS boots up with
		 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
		 * max, not what it tells us to use.
		 *
		 * Note: This will still be broken if the eDP panel is not lit
		 * up by the BIOS, and thus we can't get the mode at module
		 * load.
		 */
		DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
			      pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
		dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
	}
3108

3109
	intel_ddi_clock_get(encoder, pipe_config);
3110 3111
}

P
Paulo Zanoni 已提交
3112 3113 3114 3115 3116 3117
static void intel_ddi_destroy(struct drm_encoder *encoder)
{
	/* HDMI has nothing special to destroy, so we can go with this. */
	intel_dp_encoder_destroy(encoder);
}

3118
static bool intel_ddi_compute_config(struct intel_encoder *encoder,
3119
				     struct intel_crtc_state *pipe_config)
P
Paulo Zanoni 已提交
3120
{
3121
	int type = encoder->type;
3122
	int port = intel_ddi_get_encoder_port(encoder);
P
Paulo Zanoni 已提交
3123

3124
	WARN(type == INTEL_OUTPUT_UNKNOWN, "compute_config() on unknown output!\n");
P
Paulo Zanoni 已提交
3125

3126 3127 3128
	if (port == PORT_A)
		pipe_config->cpu_transcoder = TRANSCODER_EDP;

P
Paulo Zanoni 已提交
3129
	if (type == INTEL_OUTPUT_HDMI)
3130
		return intel_hdmi_compute_config(encoder, pipe_config);
P
Paulo Zanoni 已提交
3131
	else
3132
		return intel_dp_compute_config(encoder, pipe_config);
P
Paulo Zanoni 已提交
3133 3134 3135 3136 3137 3138
}

static const struct drm_encoder_funcs intel_ddi_funcs = {
	.destroy = intel_ddi_destroy,
};

3139 3140 3141 3142 3143 3144
static struct intel_connector *
intel_ddi_init_dp_connector(struct intel_digital_port *intel_dig_port)
{
	struct intel_connector *connector;
	enum port port = intel_dig_port->port;

3145
	connector = intel_connector_alloc();
3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163
	if (!connector)
		return NULL;

	intel_dig_port->dp.output_reg = DDI_BUF_CTL(port);
	if (!intel_dp_init_connector(intel_dig_port, connector)) {
		kfree(connector);
		return NULL;
	}

	return connector;
}

static struct intel_connector *
intel_ddi_init_hdmi_connector(struct intel_digital_port *intel_dig_port)
{
	struct intel_connector *connector;
	enum port port = intel_dig_port->port;

3164
	connector = intel_connector_alloc();
3165 3166 3167 3168 3169 3170 3171 3172 3173
	if (!connector)
		return NULL;

	intel_dig_port->hdmi.hdmi_reg = DDI_BUF_CTL(port);
	intel_hdmi_init_connector(intel_dig_port, connector);

	return connector;
}

P
Paulo Zanoni 已提交
3174 3175
void intel_ddi_init(struct drm_device *dev, enum port port)
{
3176
	struct drm_i915_private *dev_priv = dev->dev_private;
P
Paulo Zanoni 已提交
3177 3178 3179
	struct intel_digital_port *intel_dig_port;
	struct intel_encoder *intel_encoder;
	struct drm_encoder *encoder;
3180 3181 3182 3183 3184 3185
	bool init_hdmi, init_dp;

	init_hdmi = (dev_priv->vbt.ddi_port_info[port].supports_dvi ||
		     dev_priv->vbt.ddi_port_info[port].supports_hdmi);
	init_dp = dev_priv->vbt.ddi_port_info[port].supports_dp;
	if (!init_dp && !init_hdmi) {
3186
		DRM_DEBUG_KMS("VBT says port %c is not DVI/HDMI/DP compatible, assuming it is\n",
3187 3188 3189 3190
			      port_name(port));
		init_hdmi = true;
		init_dp = true;
	}
P
Paulo Zanoni 已提交
3191

3192
	intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
P
Paulo Zanoni 已提交
3193 3194 3195 3196 3197 3198 3199 3200 3201
	if (!intel_dig_port)
		return;

	intel_encoder = &intel_dig_port->base;
	encoder = &intel_encoder->base;

	drm_encoder_init(dev, encoder, &intel_ddi_funcs,
			 DRM_MODE_ENCODER_TMDS);

3202
	intel_encoder->compute_config = intel_ddi_compute_config;
P
Paulo Zanoni 已提交
3203 3204 3205 3206 3207
	intel_encoder->enable = intel_enable_ddi;
	intel_encoder->pre_enable = intel_ddi_pre_enable;
	intel_encoder->disable = intel_disable_ddi;
	intel_encoder->post_disable = intel_ddi_post_disable;
	intel_encoder->get_hw_state = intel_ddi_get_hw_state;
3208
	intel_encoder->get_config = intel_ddi_get_config;
P
Paulo Zanoni 已提交
3209 3210

	intel_dig_port->port = port;
3211 3212 3213
	intel_dig_port->saved_port_bits = I915_READ(DDI_BUF_CTL(port)) &
					  (DDI_BUF_PORT_REVERSAL |
					   DDI_A_4_LANES);
P
Paulo Zanoni 已提交
3214 3215

	intel_encoder->type = INTEL_OUTPUT_UNKNOWN;
3216
	intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
3217
	intel_encoder->cloneable = 0;
P
Paulo Zanoni 已提交
3218

3219 3220 3221
	if (init_dp) {
		if (!intel_ddi_init_dp_connector(intel_dig_port))
			goto err;
3222

3223
		intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
3224
		dev_priv->hotplug.irq_port[port] = intel_dig_port;
3225
	}
3226

3227 3228
	/* In theory we don't need the encoder->type check, but leave it just in
	 * case we have some really bad VBTs... */
3229 3230 3231
	if (intel_encoder->type != INTEL_OUTPUT_EDP && init_hdmi) {
		if (!intel_ddi_init_hdmi_connector(intel_dig_port))
			goto err;
3232
	}
3233 3234 3235 3236 3237 3238

	return;

err:
	drm_encoder_cleanup(encoder);
	kfree(intel_dig_port);
P
Paulo Zanoni 已提交
3239
}