acpi_lpss.c 30.5 KB
Newer Older
1 2 3
/*
 * ACPI support for Intel Lynxpoint LPSS.
 *
4
 * Copyright (C) 2013, Intel Corporation
5 6 7 8 9 10 11 12 13 14 15 16 17
 * Authors: Mika Westerberg <mika.westerberg@linux.intel.com>
 *          Rafael J. Wysocki <rafael.j.wysocki@intel.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/acpi.h>
#include <linux/clkdev.h>
#include <linux/clk-provider.h>
#include <linux/err.h>
#include <linux/io.h>
18
#include <linux/mutex.h>
19 20
#include <linux/platform_device.h>
#include <linux/platform_data/clk-lpss.h>
21
#include <linux/platform_data/x86/pmc_atom.h>
22
#include <linux/pm_domain.h>
23
#include <linux/pm_runtime.h>
24
#include <linux/pwm.h>
25
#include <linux/suspend.h>
26
#include <linux/delay.h>
27 28 29 30 31

#include "internal.h"

ACPI_MODULE_NAME("acpi_lpss");

32 33
#ifdef CONFIG_X86_INTEL_LPSS

34
#include <asm/cpu_device_id.h>
35
#include <asm/intel-family.h>
36 37
#include <asm/iosf_mbi.h>

38 39
#define LPSS_ADDR(desc) ((unsigned long)&desc)

40
#define LPSS_CLK_SIZE	0x04
41 42 43
#define LPSS_LTR_SIZE	0x18

/* Offsets relative to LPSS_PRIVATE_OFFSET */
44
#define LPSS_CLK_DIVIDER_DEF_MASK	(BIT(1) | BIT(16))
45 46 47
#define LPSS_RESETS			0x04
#define LPSS_RESETS_RESET_FUNC		BIT(0)
#define LPSS_RESETS_RESET_APB		BIT(1)
48 49
#define LPSS_GENERAL			0x08
#define LPSS_GENERAL_LTR_MODE_SW	BIT(2)
50
#define LPSS_GENERAL_UART_RTS_OVRD	BIT(3)
51 52
#define LPSS_SW_LTR			0x10
#define LPSS_AUTO_LTR			0x14
53 54 55 56 57 58 59
#define LPSS_LTR_SNOOP_REQ		BIT(15)
#define LPSS_LTR_SNOOP_MASK		0x0000FFFF
#define LPSS_LTR_SNOOP_LAT_1US		0x800
#define LPSS_LTR_SNOOP_LAT_32US		0xC00
#define LPSS_LTR_SNOOP_LAT_SHIFT	5
#define LPSS_LTR_SNOOP_LAT_CUTOFF	3000
#define LPSS_LTR_MAX_VAL		0x3FF
60 61
#define LPSS_TX_INT			0x20
#define LPSS_TX_INT_MASK		BIT(1)
62

63 64
#define LPSS_PRV_REG_COUNT		9

H
Heikki Krogerus 已提交
65 66 67 68 69 70
/* LPSS Flags */
#define LPSS_CLK			BIT(0)
#define LPSS_CLK_GATE			BIT(1)
#define LPSS_CLK_DIVIDER		BIT(2)
#define LPSS_LTR			BIT(3)
#define LPSS_SAVE_CTX			BIT(4)
71
#define LPSS_NO_D3_DELAY		BIT(5)
72

73 74 75 76
/* Crystal Cove PMIC shares same ACPI ID between different platforms */
#define BYT_CRC_HRV			2
#define CHT_CRC_HRV			3

77
struct lpss_private_data;
78 79

struct lpss_device_desc {
H
Heikki Krogerus 已提交
80
	unsigned int flags;
81
	const char *clk_con_id;
82
	unsigned int prv_offset;
83
	size_t prv_size_override;
84
	struct property_entry *properties;
85
	void (*setup)(struct lpss_private_data *pdata);
86 87
};

88
static const struct lpss_device_desc lpss_dma_desc = {
89
	.flags = LPSS_CLK,
90 91
};

92
struct lpss_private_data {
93
	struct acpi_device *adev;
94 95
	void __iomem *mmio_base;
	resource_size_t mmio_size;
96
	unsigned int fixed_clk_rate;
97 98
	struct clk *clk;
	const struct lpss_device_desc *dev_desc;
99
	u32 prv_reg_ctx[LPSS_PRV_REG_COUNT];
100 101
};

102 103 104 105 106 107
/* LPSS run time quirks */
static unsigned int lpss_quirks;

/*
 * LPSS_QUIRK_ALWAYS_POWER_ON: override power state for LPSS DMA device.
 *
108
 * The LPSS DMA controller has neither _PS0 nor _PS3 method. Moreover
109 110 111 112 113 114 115 116 117 118
 * it can be powered off automatically whenever the last LPSS device goes down.
 * In case of no power any access to the DMA controller will hang the system.
 * The behaviour is reproduced on some HP laptops based on Intel BayTrail as
 * well as on ASuS T100TA transformer.
 *
 * This quirk overrides power state of entire LPSS island to keep DMA powered
 * on whenever we have at least one other device in use.
 */
#define LPSS_QUIRK_ALWAYS_POWER_ON	BIT(0)

119 120 121 122
/* UART Component Parameter Register */
#define LPSS_UART_CPR			0xF4
#define LPSS_UART_CPR_AFCE		BIT(4)

123 124
static void lpss_uart_setup(struct lpss_private_data *pdata)
{
125
	unsigned int offset;
126
	u32 val;
127

128
	offset = pdata->dev_desc->prv_offset + LPSS_TX_INT;
129 130 131 132 133 134 135 136 137 138
	val = readl(pdata->mmio_base + offset);
	writel(val | LPSS_TX_INT_MASK, pdata->mmio_base + offset);

	val = readl(pdata->mmio_base + LPSS_UART_CPR);
	if (!(val & LPSS_UART_CPR_AFCE)) {
		offset = pdata->dev_desc->prv_offset + LPSS_GENERAL;
		val = readl(pdata->mmio_base + offset);
		val |= LPSS_GENERAL_UART_RTS_OVRD;
		writel(val, pdata->mmio_base + offset);
	}
139 140
}

141
static void lpss_deassert_reset(struct lpss_private_data *pdata)
142 143 144 145 146 147 148 149
{
	unsigned int offset;
	u32 val;

	offset = pdata->dev_desc->prv_offset + LPSS_RESETS;
	val = readl(pdata->mmio_base + offset);
	val |= LPSS_RESETS_RESET_APB | LPSS_RESETS_RESET_FUNC;
	writel(val, pdata->mmio_base + offset);
150 151
}

152 153 154 155 156 157 158 159 160 161 162 163
/*
 * BYT PWM used for backlight control by the i915 driver on systems without
 * the Crystal Cove PMIC.
 */
static struct pwm_lookup byt_pwm_lookup[] = {
	PWM_LOOKUP_WITH_MODULE("80860F09:00", 0, "0000:00:02.0",
			       "pwm_backlight", 0, PWM_POLARITY_NORMAL,
			       "pwm-lpss-platform"),
};

static void byt_pwm_setup(struct lpss_private_data *pdata)
{
164 165 166 167 168 169
	struct acpi_device *adev = pdata->adev;

	/* Only call pwm_add_table for the first PWM controller */
	if (!adev->pnp.unique_id || strcmp(adev->pnp.unique_id, "1"))
		return;

170
	if (!acpi_dev_present("INT33FD", NULL, BYT_CRC_HRV))
171 172 173
		pwm_add_table(byt_pwm_lookup, ARRAY_SIZE(byt_pwm_lookup));
}

174 175 176 177 178
#define LPSS_I2C_ENABLE			0x6c

static void byt_i2c_setup(struct lpss_private_data *pdata)
{
	lpss_deassert_reset(pdata);
179

180 181
	if (readl(pdata->mmio_base + pdata->dev_desc->prv_offset))
		pdata->fixed_clk_rate = 133000000;
182 183

	writel(0, pdata->mmio_base + LPSS_I2C_ENABLE);
184
}
185

186 187 188 189 190 191 192 193 194
/* BSW PWM used for backlight control by the i915 driver */
static struct pwm_lookup bsw_pwm_lookup[] = {
	PWM_LOOKUP_WITH_MODULE("80862288:00", 0, "0000:00:02.0",
			       "pwm_backlight", 0, PWM_POLARITY_NORMAL,
			       "pwm-lpss-platform"),
};

static void bsw_pwm_setup(struct lpss_private_data *pdata)
{
195 196 197 198 199 200
	struct acpi_device *adev = pdata->adev;

	/* Only call pwm_add_table for the first PWM controller */
	if (!adev->pnp.unique_id || strcmp(adev->pnp.unique_id, "1"))
		return;

201 202 203
	pwm_add_table(bsw_pwm_lookup, ARRAY_SIZE(bsw_pwm_lookup));
}

204
static const struct lpss_device_desc lpt_dev_desc = {
H
Heikki Krogerus 已提交
205
	.flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_LTR,
206 207 208
	.prv_offset = 0x800,
};

209
static const struct lpss_device_desc lpt_i2c_dev_desc = {
H
Heikki Krogerus 已提交
210
	.flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_LTR,
211 212 213
	.prv_offset = 0x800,
};

214 215 216 217 218 219 220
static struct property_entry uart_properties[] = {
	PROPERTY_ENTRY_U32("reg-io-width", 4),
	PROPERTY_ENTRY_U32("reg-shift", 2),
	PROPERTY_ENTRY_BOOL("snps,uart-16550-compatible"),
	{ },
};

221
static const struct lpss_device_desc lpt_uart_dev_desc = {
H
Heikki Krogerus 已提交
222
	.flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_LTR,
223
	.clk_con_id = "baudclk",
224 225
	.prv_offset = 0x800,
	.setup = lpss_uart_setup,
226
	.properties = uart_properties,
227 228
};

229
static const struct lpss_device_desc lpt_sdio_dev_desc = {
H
Heikki Krogerus 已提交
230
	.flags = LPSS_LTR,
231
	.prv_offset = 0x1000,
232
	.prv_size_override = 0x1018,
233 234
};

235
static const struct lpss_device_desc byt_pwm_dev_desc = {
236
	.flags = LPSS_SAVE_CTX,
237
	.prv_offset = 0x800,
238
	.setup = byt_pwm_setup,
239 240
};

241 242
static const struct lpss_device_desc bsw_pwm_dev_desc = {
	.flags = LPSS_SAVE_CTX | LPSS_NO_D3_DELAY,
243
	.prv_offset = 0x800,
244
	.setup = bsw_pwm_setup,
245 246
};

247
static const struct lpss_device_desc byt_uart_dev_desc = {
248
	.flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX,
249
	.clk_con_id = "baudclk",
250
	.prv_offset = 0x800,
251
	.setup = lpss_uart_setup,
252
	.properties = uart_properties,
253 254
};

255 256 257 258 259 260
static const struct lpss_device_desc bsw_uart_dev_desc = {
	.flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX
			| LPSS_NO_D3_DELAY,
	.clk_con_id = "baudclk",
	.prv_offset = 0x800,
	.setup = lpss_uart_setup,
261
	.properties = uart_properties,
262 263
};

264
static const struct lpss_device_desc byt_spi_dev_desc = {
265
	.flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX,
266 267 268
	.prv_offset = 0x400,
};

269
static const struct lpss_device_desc byt_sdio_dev_desc = {
270
	.flags = LPSS_CLK,
271 272
};

273
static const struct lpss_device_desc byt_i2c_dev_desc = {
274
	.flags = LPSS_CLK | LPSS_SAVE_CTX,
275
	.prv_offset = 0x800,
276
	.setup = byt_i2c_setup,
277 278
};

279 280 281 282 283 284
static const struct lpss_device_desc bsw_i2c_dev_desc = {
	.flags = LPSS_CLK | LPSS_SAVE_CTX | LPSS_NO_D3_DELAY,
	.prv_offset = 0x800,
	.setup = byt_i2c_setup,
};

285
static const struct lpss_device_desc bsw_spi_dev_desc = {
286 287
	.flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX
			| LPSS_NO_D3_DELAY,
288 289 290 291
	.prv_offset = 0x400,
	.setup = lpss_deassert_reset,
};

292 293 294
#define ICPU(model)	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_ANY, }

static const struct x86_cpu_id lpss_cpu_ids[] = {
295
	ICPU(INTEL_FAM6_ATOM_SILVERMONT),	/* Valleyview, Bay Trail */
296
	ICPU(INTEL_FAM6_ATOM_AIRMONT),	/* Braswell, Cherry Trail */
297 298 299
	{}
};

300 301 302 303 304 305
#else

#define LPSS_ADDR(desc) (0UL)

#endif /* CONFIG_X86_INTEL_LPSS */

306
static const struct acpi_device_id acpi_lpss_device_ids[] = {
307
	/* Generic LPSS devices */
308
	{ "INTL9C60", LPSS_ADDR(lpss_dma_desc) },
309

310
	/* Lynxpoint LPSS devices */
311 312 313 314 315 316 317
	{ "INT33C0", LPSS_ADDR(lpt_dev_desc) },
	{ "INT33C1", LPSS_ADDR(lpt_dev_desc) },
	{ "INT33C2", LPSS_ADDR(lpt_i2c_dev_desc) },
	{ "INT33C3", LPSS_ADDR(lpt_i2c_dev_desc) },
	{ "INT33C4", LPSS_ADDR(lpt_uart_dev_desc) },
	{ "INT33C5", LPSS_ADDR(lpt_uart_dev_desc) },
	{ "INT33C6", LPSS_ADDR(lpt_sdio_dev_desc) },
318 319
	{ "INT33C7", },

320
	/* BayTrail LPSS devices */
321 322 323 324 325
	{ "80860F09", LPSS_ADDR(byt_pwm_dev_desc) },
	{ "80860F0A", LPSS_ADDR(byt_uart_dev_desc) },
	{ "80860F0E", LPSS_ADDR(byt_spi_dev_desc) },
	{ "80860F14", LPSS_ADDR(byt_sdio_dev_desc) },
	{ "80860F41", LPSS_ADDR(byt_i2c_dev_desc) },
326
	{ "INT33B2", },
327
	{ "INT33FC", },
328

329
	/* Braswell LPSS devices */
330
	{ "80862286", LPSS_ADDR(lpss_dma_desc) },
331 332
	{ "80862288", LPSS_ADDR(bsw_pwm_dev_desc) },
	{ "8086228A", LPSS_ADDR(bsw_uart_dev_desc) },
333
	{ "8086228E", LPSS_ADDR(bsw_spi_dev_desc) },
334
	{ "808622C0", LPSS_ADDR(lpss_dma_desc) },
335
	{ "808622C1", LPSS_ADDR(bsw_i2c_dev_desc) },
336

337
	/* Broadwell LPSS devices */
338 339 340 341 342 343 344
	{ "INT3430", LPSS_ADDR(lpt_dev_desc) },
	{ "INT3431", LPSS_ADDR(lpt_dev_desc) },
	{ "INT3432", LPSS_ADDR(lpt_i2c_dev_desc) },
	{ "INT3433", LPSS_ADDR(lpt_i2c_dev_desc) },
	{ "INT3434", LPSS_ADDR(lpt_uart_dev_desc) },
	{ "INT3435", LPSS_ADDR(lpt_uart_dev_desc) },
	{ "INT3436", LPSS_ADDR(lpt_sdio_dev_desc) },
345 346
	{ "INT3437", },

H
Heikki Krogerus 已提交
347 348
	/* Wildcat Point LPSS devices */
	{ "INT3438", LPSS_ADDR(lpt_dev_desc) },
349

350 351 352
	{ }
};

353 354
#ifdef CONFIG_X86_INTEL_LPSS

355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
static int is_memory(struct acpi_resource *res, void *not_used)
{
	struct resource r;
	return !acpi_dev_resource_memory(res, &r);
}

/* LPSS main clock device. */
static struct platform_device *lpss_clk_dev;

static inline void lpt_register_clock_device(void)
{
	lpss_clk_dev = platform_device_register_simple("clk-lpt", -1, NULL, 0);
}

static int register_device_clock(struct acpi_device *adev,
				 struct lpss_private_data *pdata)
{
	const struct lpss_device_desc *dev_desc = pdata->dev_desc;
373
	const char *devname = dev_name(&adev->dev);
374
	struct clk *clk;
375
	struct lpss_clk_data *clk_data;
376 377
	const char *parent, *clk_name;
	void __iomem *prv_base;
378 379 380 381

	if (!lpss_clk_dev)
		lpt_register_clock_device();

382 383 384
	clk_data = platform_get_drvdata(lpss_clk_dev);
	if (!clk_data)
		return -ENODEV;
385
	clk = clk_data->clk;
386 387

	if (!pdata->mmio_base
388
	    || pdata->mmio_size < dev_desc->prv_offset + LPSS_CLK_SIZE)
389 390
		return -ENODATA;

391
	parent = clk_data->name;
392
	prv_base = pdata->mmio_base + dev_desc->prv_offset;
393

394 395 396 397
	if (pdata->fixed_clk_rate) {
		clk = clk_register_fixed_rate(NULL, devname, parent, 0,
					      pdata->fixed_clk_rate);
		goto out;
398 399
	}

H
Heikki Krogerus 已提交
400
	if (dev_desc->flags & LPSS_CLK_GATE) {
401 402 403 404 405
		clk = clk_register_gate(NULL, devname, parent, 0,
					prv_base, 0, 0, NULL);
		parent = devname;
	}

H
Heikki Krogerus 已提交
406
	if (dev_desc->flags & LPSS_CLK_DIVIDER) {
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
		/* Prevent division by zero */
		if (!readl(prv_base))
			writel(LPSS_CLK_DIVIDER_DEF_MASK, prv_base);

		clk_name = kasprintf(GFP_KERNEL, "%s-div", devname);
		if (!clk_name)
			return -ENOMEM;
		clk = clk_register_fractional_divider(NULL, clk_name, parent,
						      0, prv_base,
						      1, 15, 16, 15, 0, NULL);
		parent = clk_name;

		clk_name = kasprintf(GFP_KERNEL, "%s-update", devname);
		if (!clk_name) {
			kfree(parent);
			return -ENOMEM;
		}
		clk = clk_register_gate(NULL, clk_name, parent,
					CLK_SET_RATE_PARENT | CLK_SET_RATE_GATE,
					prv_base, 31, 0, NULL);
		kfree(parent);
		kfree(clk_name);
429
	}
430
out:
431 432
	if (IS_ERR(clk))
		return PTR_ERR(clk);
433

434
	pdata->clk = clk;
435
	clk_register_clkdev(clk, dev_desc->clk_con_id, devname);
436 437 438
	return 0;
}

439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
struct lpss_device_links {
	const char *supplier_hid;
	const char *supplier_uid;
	const char *consumer_hid;
	const char *consumer_uid;
	u32 flags;
};

/*
 * The _DEP method is used to identify dependencies but instead of creating
 * device links for every handle in _DEP, only links in the following list are
 * created. That is necessary because, in the general case, _DEP can refer to
 * devices that might not have drivers, or that are on different buses, or where
 * the supplier is not enumerated until after the consumer is probed.
 */
static const struct lpss_device_links lpss_device_links[] = {
	{"808622C1", "7", "80860F14", "3", DL_FLAG_PM_RUNTIME},
};

static bool hid_uid_match(const char *hid1, const char *uid1,
			  const char *hid2, const char *uid2)
{
	return !strcmp(hid1, hid2) && uid1 && uid2 && !strcmp(uid1, uid2);
}

static bool acpi_lpss_is_supplier(struct acpi_device *adev,
				  const struct lpss_device_links *link)
{
	return hid_uid_match(acpi_device_hid(adev), acpi_device_uid(adev),
			     link->supplier_hid, link->supplier_uid);
}

static bool acpi_lpss_is_consumer(struct acpi_device *adev,
				  const struct lpss_device_links *link)
{
	return hid_uid_match(acpi_device_hid(adev), acpi_device_uid(adev),
			     link->consumer_hid, link->consumer_uid);
}

struct hid_uid {
	const char *hid;
	const char *uid;
};

static int match_hid_uid(struct device *dev, void *data)
{
	struct acpi_device *adev = ACPI_COMPANION(dev);
	struct hid_uid *id = data;

	if (!adev)
		return 0;

	return hid_uid_match(acpi_device_hid(adev), acpi_device_uid(adev),
			     id->hid, id->uid);
}

static struct device *acpi_lpss_find_device(const char *hid, const char *uid)
{
	struct hid_uid data = {
		.hid = hid,
		.uid = uid,
	};

	return bus_find_device(&platform_bus_type, NULL, &data, match_hid_uid);
}

static bool acpi_lpss_dep(struct acpi_device *adev, acpi_handle handle)
{
	struct acpi_handle_list dep_devices;
	acpi_status status;
	int i;

	if (!acpi_has_method(adev->handle, "_DEP"))
		return false;

	status = acpi_evaluate_reference(adev->handle, "_DEP", NULL,
					 &dep_devices);
	if (ACPI_FAILURE(status)) {
		dev_dbg(&adev->dev, "Failed to evaluate _DEP.\n");
		return false;
	}

	for (i = 0; i < dep_devices.count; i++) {
		if (dep_devices.handles[i] == handle)
			return true;
	}

	return false;
}

static void acpi_lpss_link_consumer(struct device *dev1,
				    const struct lpss_device_links *link)
{
	struct device *dev2;

	dev2 = acpi_lpss_find_device(link->consumer_hid, link->consumer_uid);
	if (!dev2)
		return;

	if (acpi_lpss_dep(ACPI_COMPANION(dev2), ACPI_HANDLE(dev1)))
		device_link_add(dev2, dev1, link->flags);

	put_device(dev2);
}

static void acpi_lpss_link_supplier(struct device *dev1,
				    const struct lpss_device_links *link)
{
	struct device *dev2;

	dev2 = acpi_lpss_find_device(link->supplier_hid, link->supplier_uid);
	if (!dev2)
		return;

	if (acpi_lpss_dep(ACPI_COMPANION(dev1), ACPI_HANDLE(dev2)))
		device_link_add(dev1, dev2, link->flags);

	put_device(dev2);
}

static void acpi_lpss_create_device_links(struct acpi_device *adev,
					  struct platform_device *pdev)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(lpss_device_links); i++) {
		const struct lpss_device_links *link = &lpss_device_links[i];

		if (acpi_lpss_is_supplier(adev, link))
			acpi_lpss_link_consumer(&pdev->dev, link);

		if (acpi_lpss_is_consumer(adev, link))
			acpi_lpss_link_supplier(&pdev->dev, link);
	}
}

575 576 577
static int acpi_lpss_create_device(struct acpi_device *adev,
				   const struct acpi_device_id *id)
{
578
	const struct lpss_device_desc *dev_desc;
579
	struct lpss_private_data *pdata;
580
	struct resource_entry *rentry;
581
	struct list_head resource_list;
582
	struct platform_device *pdev;
583 584
	int ret;

585
	dev_desc = (const struct lpss_device_desc *)id->driver_data;
586
	if (!dev_desc) {
587
		pdev = acpi_create_platform_device(adev, NULL);
588 589
		return IS_ERR_OR_NULL(pdev) ? PTR_ERR(pdev) : 1;
	}
590 591 592 593 594 595 596 597 598 599
	pdata = kzalloc(sizeof(*pdata), GFP_KERNEL);
	if (!pdata)
		return -ENOMEM;

	INIT_LIST_HEAD(&resource_list);
	ret = acpi_dev_get_resources(adev, &resource_list, is_memory, NULL);
	if (ret < 0)
		goto err_out;

	list_for_each_entry(rentry, &resource_list, node)
600
		if (resource_type(rentry->res) == IORESOURCE_MEM) {
601 602 603
			if (dev_desc->prv_size_override)
				pdata->mmio_size = dev_desc->prv_size_override;
			else
604 605
				pdata->mmio_size = resource_size(rentry->res);
			pdata->mmio_base = ioremap(rentry->res->start,
606 607 608 609 610 611
						   pdata->mmio_size);
			break;
		}

	acpi_dev_free_resource_list(&resource_list);

612
	if (!pdata->mmio_base) {
613 614
		/* Avoid acpi_bus_attach() instantiating a pdev for this dev. */
		adev->pnp.type.platform_id = 0;
615 616
		/* Skip the device, but continue the namespace scan. */
		ret = 0;
617 618 619
		goto err_out;
	}

620
	pdata->adev = adev;
621 622
	pdata->dev_desc = dev_desc;

623 624 625
	if (dev_desc->setup)
		dev_desc->setup(pdata);

H
Heikki Krogerus 已提交
626
	if (dev_desc->flags & LPSS_CLK) {
627 628
		ret = register_device_clock(adev, pdata);
		if (ret) {
629 630 631
			/* Skip the device, but continue the namespace scan. */
			ret = 0;
			goto err_out;
632 633 634
		}
	}

635 636 637 638 639 640 641 642 643 644 645 646
	/*
	 * This works around a known issue in ACPI tables where LPSS devices
	 * have _PS0 and _PS3 without _PSC (and no power resources), so
	 * acpi_bus_init_power() will assume that the BIOS has put them into D0.
	 */
	ret = acpi_device_fix_up_power(adev);
	if (ret) {
		/* Skip the device, but continue the namespace scan. */
		ret = 0;
		goto err_out;
	}

647
	adev->driver_data = pdata;
648
	pdev = acpi_create_platform_device(adev, dev_desc->properties);
649
	if (!IS_ERR_OR_NULL(pdev)) {
650
		acpi_lpss_create_device_links(adev, pdev);
651 652
		return 1;
	}
653

654
	ret = PTR_ERR(pdev);
655 656 657 658 659 660 661
	adev->driver_data = NULL;

 err_out:
	kfree(pdata);
	return ret;
}

662 663 664 665 666 667 668 669 670 671 672
static u32 __lpss_reg_read(struct lpss_private_data *pdata, unsigned int reg)
{
	return readl(pdata->mmio_base + pdata->dev_desc->prv_offset + reg);
}

static void __lpss_reg_write(u32 val, struct lpss_private_data *pdata,
			     unsigned int reg)
{
	writel(val, pdata->mmio_base + pdata->dev_desc->prv_offset + reg);
}

673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
static int lpss_reg_read(struct device *dev, unsigned int reg, u32 *val)
{
	struct acpi_device *adev;
	struct lpss_private_data *pdata;
	unsigned long flags;
	int ret;

	ret = acpi_bus_get_device(ACPI_HANDLE(dev), &adev);
	if (WARN_ON(ret))
		return ret;

	spin_lock_irqsave(&dev->power.lock, flags);
	if (pm_runtime_suspended(dev)) {
		ret = -EAGAIN;
		goto out;
	}
	pdata = acpi_driver_data(adev);
	if (WARN_ON(!pdata || !pdata->mmio_base)) {
		ret = -ENODEV;
		goto out;
	}
694
	*val = __lpss_reg_read(pdata, reg);
695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741

 out:
	spin_unlock_irqrestore(&dev->power.lock, flags);
	return ret;
}

static ssize_t lpss_ltr_show(struct device *dev, struct device_attribute *attr,
			     char *buf)
{
	u32 ltr_value = 0;
	unsigned int reg;
	int ret;

	reg = strcmp(attr->attr.name, "auto_ltr") ? LPSS_SW_LTR : LPSS_AUTO_LTR;
	ret = lpss_reg_read(dev, reg, &ltr_value);
	if (ret)
		return ret;

	return snprintf(buf, PAGE_SIZE, "%08x\n", ltr_value);
}

static ssize_t lpss_ltr_mode_show(struct device *dev,
				  struct device_attribute *attr, char *buf)
{
	u32 ltr_mode = 0;
	char *outstr;
	int ret;

	ret = lpss_reg_read(dev, LPSS_GENERAL, &ltr_mode);
	if (ret)
		return ret;

	outstr = (ltr_mode & LPSS_GENERAL_LTR_MODE_SW) ? "sw" : "auto";
	return sprintf(buf, "%s\n", outstr);
}

static DEVICE_ATTR(auto_ltr, S_IRUSR, lpss_ltr_show, NULL);
static DEVICE_ATTR(sw_ltr, S_IRUSR, lpss_ltr_show, NULL);
static DEVICE_ATTR(ltr_mode, S_IRUSR, lpss_ltr_mode_show, NULL);

static struct attribute *lpss_attrs[] = {
	&dev_attr_auto_ltr.attr,
	&dev_attr_sw_ltr.attr,
	&dev_attr_ltr_mode.attr,
	NULL,
};

742
static const struct attribute_group lpss_attr_group = {
743 744 745 746
	.attrs = lpss_attrs,
	.name = "lpss_ltr",
};

747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
static void acpi_lpss_set_ltr(struct device *dev, s32 val)
{
	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
	u32 ltr_mode, ltr_val;

	ltr_mode = __lpss_reg_read(pdata, LPSS_GENERAL);
	if (val < 0) {
		if (ltr_mode & LPSS_GENERAL_LTR_MODE_SW) {
			ltr_mode &= ~LPSS_GENERAL_LTR_MODE_SW;
			__lpss_reg_write(ltr_mode, pdata, LPSS_GENERAL);
		}
		return;
	}
	ltr_val = __lpss_reg_read(pdata, LPSS_SW_LTR) & ~LPSS_LTR_SNOOP_MASK;
	if (val >= LPSS_LTR_SNOOP_LAT_CUTOFF) {
		ltr_val |= LPSS_LTR_SNOOP_LAT_32US;
		val = LPSS_LTR_MAX_VAL;
	} else if (val > LPSS_LTR_MAX_VAL) {
		ltr_val |= LPSS_LTR_SNOOP_LAT_32US | LPSS_LTR_SNOOP_REQ;
		val >>= LPSS_LTR_SNOOP_LAT_SHIFT;
	} else {
		ltr_val |= LPSS_LTR_SNOOP_LAT_1US | LPSS_LTR_SNOOP_REQ;
	}
	ltr_val |= val;
	__lpss_reg_write(ltr_val, pdata, LPSS_SW_LTR);
	if (!(ltr_mode & LPSS_GENERAL_LTR_MODE_SW)) {
		ltr_mode |= LPSS_GENERAL_LTR_MODE_SW;
		__lpss_reg_write(ltr_mode, pdata, LPSS_GENERAL);
	}
}

778 779 780 781
#ifdef CONFIG_PM
/**
 * acpi_lpss_save_ctx() - Save the private registers of LPSS device
 * @dev: LPSS device
782
 * @pdata: pointer to the private data of the LPSS device
783 784 785 786 787
 *
 * Most LPSS devices have private registers which may loose their context when
 * the device is powered down. acpi_lpss_save_ctx() saves those registers into
 * prv_reg_ctx array.
 */
788 789
static void acpi_lpss_save_ctx(struct device *dev,
			       struct lpss_private_data *pdata)
790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
{
	unsigned int i;

	for (i = 0; i < LPSS_PRV_REG_COUNT; i++) {
		unsigned long offset = i * sizeof(u32);

		pdata->prv_reg_ctx[i] = __lpss_reg_read(pdata, offset);
		dev_dbg(dev, "saving 0x%08x from LPSS reg at offset 0x%02lx\n",
			pdata->prv_reg_ctx[i], offset);
	}
}

/**
 * acpi_lpss_restore_ctx() - Restore the private registers of LPSS device
 * @dev: LPSS device
805
 * @pdata: pointer to the private data of the LPSS device
806 807 808
 *
 * Restores the registers that were previously stored with acpi_lpss_save_ctx().
 */
809 810
static void acpi_lpss_restore_ctx(struct device *dev,
				  struct lpss_private_data *pdata)
811 812 813
{
	unsigned int i;

814 815 816 817 818 819 820 821 822 823 824
	for (i = 0; i < LPSS_PRV_REG_COUNT; i++) {
		unsigned long offset = i * sizeof(u32);

		__lpss_reg_write(pdata->prv_reg_ctx[i], pdata, offset);
		dev_dbg(dev, "restoring 0x%08x to LPSS reg at offset 0x%02lx\n",
			pdata->prv_reg_ctx[i], offset);
	}
}

static void acpi_lpss_d3_to_d0_delay(struct lpss_private_data *pdata)
{
825 826 827 828
	/*
	 * The following delay is needed or the subsequent write operations may
	 * fail. The LPSS devices are actually PCI devices and the PCI spec
	 * expects 10ms delay before the device can be accessed after D3 to D0
829
	 * transition. However some platforms like BSW does not need this delay.
830
	 */
831 832 833 834 835 836
	unsigned int delay = 10;	/* default 10ms delay */

	if (pdata->dev_desc->flags & LPSS_NO_D3_DELAY)
		delay = 0;

	msleep(delay);
837 838
}

839 840 841 842 843
static int acpi_lpss_activate(struct device *dev)
{
	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
	int ret;

844
	ret = acpi_dev_resume(dev);
845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863
	if (ret)
		return ret;

	acpi_lpss_d3_to_d0_delay(pdata);

	/*
	 * This is called only on ->probe() stage where a device is either in
	 * known state defined by BIOS or most likely powered off. Due to this
	 * we have to deassert reset line to be sure that ->probe() will
	 * recognize the device.
	 */
	if (pdata->dev_desc->flags & LPSS_SAVE_CTX)
		lpss_deassert_reset(pdata);

	return 0;
}

static void acpi_lpss_dismiss(struct device *dev)
{
864
	acpi_dev_suspend(dev, false);
865 866
}

867 868 869 870 871 872 873 874 875 876 877 878 879 880
/* IOSF SB for LPSS island */
#define LPSS_IOSF_UNIT_LPIOEP		0xA0
#define LPSS_IOSF_UNIT_LPIO1		0xAB
#define LPSS_IOSF_UNIT_LPIO2		0xAC

#define LPSS_IOSF_PMCSR			0x84
#define LPSS_PMCSR_D0			0
#define LPSS_PMCSR_D3hot		3
#define LPSS_PMCSR_Dx_MASK		GENMASK(1, 0)

#define LPSS_IOSF_GPIODEF0		0x154
#define LPSS_GPIODEF0_DMA1_D3		BIT(2)
#define LPSS_GPIODEF0_DMA2_D3		BIT(3)
#define LPSS_GPIODEF0_DMA_D3_MASK	GENMASK(3, 2)
881
#define LPSS_GPIODEF0_DMA_LLP		BIT(13)
882 883

static DEFINE_MUTEX(lpss_iosf_mutex);
884
static bool lpss_iosf_d3_entered = true;
885 886 887 888

static void lpss_iosf_enter_d3_state(void)
{
	u32 value1 = 0;
889
	u32 mask1 = LPSS_GPIODEF0_DMA_D3_MASK | LPSS_GPIODEF0_DMA_LLP;
890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926
	u32 value2 = LPSS_PMCSR_D3hot;
	u32 mask2 = LPSS_PMCSR_Dx_MASK;
	/*
	 * PMC provides an information about actual status of the LPSS devices.
	 * Here we read the values related to LPSS power island, i.e. LPSS
	 * devices, excluding both LPSS DMA controllers, along with SCC domain.
	 */
	u32 func_dis, d3_sts_0, pmc_status, pmc_mask = 0xfe000ffe;
	int ret;

	ret = pmc_atom_read(PMC_FUNC_DIS, &func_dis);
	if (ret)
		return;

	mutex_lock(&lpss_iosf_mutex);

	ret = pmc_atom_read(PMC_D3_STS_0, &d3_sts_0);
	if (ret)
		goto exit;

	/*
	 * Get the status of entire LPSS power island per device basis.
	 * Shutdown both LPSS DMA controllers if and only if all other devices
	 * are already in D3hot.
	 */
	pmc_status = (~(d3_sts_0 | func_dis)) & pmc_mask;
	if (pmc_status)
		goto exit;

	iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO1, MBI_CFG_WRITE,
			LPSS_IOSF_PMCSR, value2, mask2);

	iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO2, MBI_CFG_WRITE,
			LPSS_IOSF_PMCSR, value2, mask2);

	iosf_mbi_modify(LPSS_IOSF_UNIT_LPIOEP, MBI_CR_WRITE,
			LPSS_IOSF_GPIODEF0, value1, mask1);
927 928 929

	lpss_iosf_d3_entered = true;

930 931 932 933 934 935
exit:
	mutex_unlock(&lpss_iosf_mutex);
}

static void lpss_iosf_exit_d3_state(void)
{
936 937 938
	u32 value1 = LPSS_GPIODEF0_DMA1_D3 | LPSS_GPIODEF0_DMA2_D3 |
		     LPSS_GPIODEF0_DMA_LLP;
	u32 mask1 = LPSS_GPIODEF0_DMA_D3_MASK | LPSS_GPIODEF0_DMA_LLP;
939 940 941 942 943
	u32 value2 = LPSS_PMCSR_D0;
	u32 mask2 = LPSS_PMCSR_Dx_MASK;

	mutex_lock(&lpss_iosf_mutex);

944 945 946 947 948
	if (!lpss_iosf_d3_entered)
		goto exit;

	lpss_iosf_d3_entered = false;

949 950 951 952 953 954 955 956 957
	iosf_mbi_modify(LPSS_IOSF_UNIT_LPIOEP, MBI_CR_WRITE,
			LPSS_IOSF_GPIODEF0, value1, mask1);

	iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO2, MBI_CFG_WRITE,
			LPSS_IOSF_PMCSR, value2, mask2);

	iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO1, MBI_CFG_WRITE,
			LPSS_IOSF_PMCSR, value2, mask2);

958
exit:
959 960 961
	mutex_unlock(&lpss_iosf_mutex);
}

962
static int acpi_lpss_suspend(struct device *dev, bool wakeup)
963
{
964 965
	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
	int ret;
966

967 968 969
	if (pdata->dev_desc->flags & LPSS_SAVE_CTX)
		acpi_lpss_save_ctx(dev, pdata);

970
	ret = acpi_dev_suspend(dev, wakeup);
971 972 973 974 975 976

	/*
	 * This call must be last in the sequence, otherwise PMC will return
	 * wrong status for devices being about to be powered off. See
	 * lpss_iosf_enter_d3_state() for further information.
	 */
977
	if (acpi_target_system_state() == ACPI_STATE_S0 &&
978
	    lpss_quirks & LPSS_QUIRK_ALWAYS_POWER_ON && iosf_mbi_available())
979 980 981
		lpss_iosf_enter_d3_state();

	return ret;
982 983
}

984
static int acpi_lpss_resume(struct device *dev)
985
{
986 987
	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
	int ret;
988

989 990 991 992
	/*
	 * This call is kept first to be in symmetry with
	 * acpi_lpss_runtime_suspend() one.
	 */
993
	if (lpss_quirks & LPSS_QUIRK_ALWAYS_POWER_ON && iosf_mbi_available())
994 995
		lpss_iosf_exit_d3_state();

996
	ret = acpi_dev_resume(dev);
997 998 999
	if (ret)
		return ret;

1000 1001
	acpi_lpss_d3_to_d0_delay(pdata);

1002 1003 1004
	if (pdata->dev_desc->flags & LPSS_SAVE_CTX)
		acpi_lpss_restore_ctx(dev, pdata);

1005 1006 1007 1008 1009 1010
	return 0;
}

#ifdef CONFIG_PM_SLEEP
static int acpi_lpss_suspend_late(struct device *dev)
{
1011 1012 1013 1014
	int ret;

	if (dev_pm_smart_suspend_and_suspended(dev))
		return 0;
1015

1016
	ret = pm_generic_suspend_late(dev);
1017
	return ret ? ret : acpi_lpss_suspend(dev, device_may_wakeup(dev));
1018 1019 1020 1021
}

static int acpi_lpss_resume_early(struct device *dev)
{
1022
	int ret = acpi_lpss_resume(dev);
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036

	return ret ? ret : pm_generic_resume_early(dev);
}
#endif /* CONFIG_PM_SLEEP */

static int acpi_lpss_runtime_suspend(struct device *dev)
{
	int ret = pm_generic_runtime_suspend(dev);

	return ret ? ret : acpi_lpss_suspend(dev, true);
}

static int acpi_lpss_runtime_resume(struct device *dev)
{
1037
	int ret = acpi_lpss_resume(dev);
1038 1039

	return ret ? ret : pm_generic_runtime_resume(dev);
1040 1041 1042 1043
}
#endif /* CONFIG_PM */

static struct dev_pm_domain acpi_lpss_pm_domain = {
1044 1045 1046 1047
#ifdef CONFIG_PM
	.activate = acpi_lpss_activate,
	.dismiss = acpi_lpss_dismiss,
#endif
1048
	.ops = {
1049
#ifdef CONFIG_PM
1050 1051
#ifdef CONFIG_PM_SLEEP
		.prepare = acpi_subsys_prepare,
1052
		.complete = acpi_subsys_complete,
1053
		.suspend = acpi_subsys_suspend,
1054
		.suspend_late = acpi_lpss_suspend_late,
1055 1056
		.suspend_noirq = acpi_subsys_suspend_noirq,
		.resume_noirq = acpi_subsys_resume_noirq,
1057
		.resume_early = acpi_lpss_resume_early,
1058
		.freeze = acpi_subsys_freeze,
1059 1060 1061
		.freeze_late = acpi_subsys_freeze_late,
		.freeze_noirq = acpi_subsys_freeze_noirq,
		.thaw_noirq = acpi_subsys_thaw_noirq,
1062
		.poweroff = acpi_subsys_suspend,
1063
		.poweroff_late = acpi_lpss_suspend_late,
1064 1065
		.poweroff_noirq = acpi_subsys_suspend_noirq,
		.restore_noirq = acpi_subsys_resume_noirq,
1066
		.restore_early = acpi_lpss_resume_early,
1067 1068 1069 1070 1071 1072 1073
#endif
		.runtime_suspend = acpi_lpss_runtime_suspend,
		.runtime_resume = acpi_lpss_runtime_resume,
#endif
	},
};

1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
static int acpi_lpss_platform_notify(struct notifier_block *nb,
				     unsigned long action, void *data)
{
	struct platform_device *pdev = to_platform_device(data);
	struct lpss_private_data *pdata;
	struct acpi_device *adev;
	const struct acpi_device_id *id;

	id = acpi_match_device(acpi_lpss_device_ids, &pdev->dev);
	if (!id || !id->driver_data)
		return 0;

	if (acpi_bus_get_device(ACPI_HANDLE(&pdev->dev), &adev))
		return 0;

	pdata = acpi_driver_data(adev);
1090
	if (!pdata)
1091 1092
		return 0;

1093 1094
	if (pdata->mmio_base &&
	    pdata->mmio_size < pdata->dev_desc->prv_offset + LPSS_LTR_SIZE) {
1095 1096 1097 1098
		dev_err(&pdev->dev, "MMIO size insufficient to access LTR\n");
		return 0;
	}

1099
	switch (action) {
1100
	case BUS_NOTIFY_BIND_DRIVER:
1101
		dev_pm_domain_set(&pdev->dev, &acpi_lpss_pm_domain);
1102
		break;
1103
	case BUS_NOTIFY_DRIVER_NOT_BOUND:
1104
	case BUS_NOTIFY_UNBOUND_DRIVER:
1105
		dev_pm_domain_set(&pdev->dev, NULL);
1106 1107
		break;
	case BUS_NOTIFY_ADD_DEVICE:
1108
		dev_pm_domain_set(&pdev->dev, &acpi_lpss_pm_domain);
H
Heikki Krogerus 已提交
1109
		if (pdata->dev_desc->flags & LPSS_LTR)
1110 1111
			return sysfs_create_group(&pdev->dev.kobj,
						  &lpss_attr_group);
1112
		break;
1113
	case BUS_NOTIFY_DEL_DEVICE:
H
Heikki Krogerus 已提交
1114
		if (pdata->dev_desc->flags & LPSS_LTR)
1115
			sysfs_remove_group(&pdev->dev.kobj, &lpss_attr_group);
1116
		dev_pm_domain_set(&pdev->dev, NULL);
1117
		break;
1118 1119 1120
	default:
		break;
	}
1121

1122
	return 0;
1123 1124 1125 1126 1127 1128
}

static struct notifier_block acpi_lpss_nb = {
	.notifier_call = acpi_lpss_platform_notify,
};

1129 1130 1131 1132
static void acpi_lpss_bind(struct device *dev)
{
	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));

H
Heikki Krogerus 已提交
1133
	if (!pdata || !pdata->mmio_base || !(pdata->dev_desc->flags & LPSS_LTR))
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
		return;

	if (pdata->mmio_size >= pdata->dev_desc->prv_offset + LPSS_LTR_SIZE)
		dev->power.set_latency_tolerance = acpi_lpss_set_ltr;
	else
		dev_err(dev, "MMIO size insufficient to access LTR\n");
}

static void acpi_lpss_unbind(struct device *dev)
{
	dev->power.set_latency_tolerance = NULL;
}

1147 1148 1149
static struct acpi_scan_handler lpss_handler = {
	.ids = acpi_lpss_device_ids,
	.attach = acpi_lpss_create_device,
1150 1151
	.bind = acpi_lpss_bind,
	.unbind = acpi_lpss_unbind,
1152 1153 1154 1155
};

void __init acpi_lpss_init(void)
{
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
	const struct x86_cpu_id *id;
	int ret;

	ret = lpt_clk_init();
	if (ret)
		return;

	id = x86_match_cpu(lpss_cpu_ids);
	if (id)
		lpss_quirks |= LPSS_QUIRK_ALWAYS_POWER_ON;

	bus_register_notifier(&platform_bus_type, &acpi_lpss_nb);
	acpi_scan_add_handler(&lpss_handler);
1169
}
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182

#else

static struct acpi_scan_handler lpss_handler = {
	.ids = acpi_lpss_device_ids,
};

void __init acpi_lpss_init(void)
{
	acpi_scan_add_handler(&lpss_handler);
}

#endif /* CONFIG_X86_INTEL_LPSS */