raid5.c 171.5 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4
/*
 * raid5.c : Multiple Devices driver for Linux
 *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
 *	   Copyright (C) 1999, 2000 Ingo Molnar
5
 *	   Copyright (C) 2002, 2003 H. Peter Anvin
L
Linus Torvalds 已提交
6
 *
7 8 9
 * RAID-4/5/6 management functions.
 * Thanks to Penguin Computing for making the RAID-6 development possible
 * by donating a test server!
L
Linus Torvalds 已提交
10 11 12 13 14 15 16 17 18 19 20
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2, or (at your option)
 * any later version.
 *
 * You should have received a copy of the GNU General Public License
 * (for example /usr/src/linux/COPYING); if not, write to the Free
 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

21 22 23 24 25 26 27 28 29
/*
 * BITMAP UNPLUGGING:
 *
 * The sequencing for updating the bitmap reliably is a little
 * subtle (and I got it wrong the first time) so it deserves some
 * explanation.
 *
 * We group bitmap updates into batches.  Each batch has a number.
 * We may write out several batches at once, but that isn't very important.
30 31
 * conf->seq_write is the number of the last batch successfully written.
 * conf->seq_flush is the number of the last batch that was closed to
32 33 34
 *    new additions.
 * When we discover that we will need to write to any block in a stripe
 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35
 * the number of the batch it will be in. This is seq_flush+1.
36 37 38 39 40 41 42 43 44
 * When we are ready to do a write, if that batch hasn't been written yet,
 *   we plug the array and queue the stripe for later.
 * When an unplug happens, we increment bm_flush, thus closing the current
 *   batch.
 * When we notice that bm_flush > bm_write, we write out all pending updates
 * to the bitmap, and advance bm_write to where bm_flush was.
 * This may occasionally write a bit out twice, but is sure never to
 * miss any bits.
 */
L
Linus Torvalds 已提交
45

46
#include <linux/blkdev.h>
47
#include <linux/kthread.h>
48
#include <linux/raid/pq.h>
49
#include <linux/async_tx.h>
50
#include <linux/module.h>
51
#include <linux/async.h>
52
#include <linux/seq_file.h>
53
#include <linux/cpu.h>
54
#include <linux/slab.h>
55
#include <linux/ratelimit.h>
56
#include "md.h"
57
#include "raid5.h"
58
#include "raid0.h"
59
#include "bitmap.h"
60

L
Linus Torvalds 已提交
61 62 63 64 65 66 67 68 69
/*
 * Stripe cache
 */

#define NR_STRIPES		256
#define STRIPE_SIZE		PAGE_SIZE
#define STRIPE_SHIFT		(PAGE_SHIFT - 9)
#define STRIPE_SECTORS		(STRIPE_SIZE>>9)
#define	IO_THRESHOLD		1
70
#define BYPASS_THRESHOLD	1
71
#define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
L
Linus Torvalds 已提交
72 73
#define HASH_MASK		(NR_HASH - 1)

74
static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
75 76 77 78
{
	int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
	return &conf->stripe_hashtbl[hash];
}
L
Linus Torvalds 已提交
79 80 81 82 83 84 85

/* bio's attached to a stripe+device for I/O are linked together in bi_sector
 * order without overlap.  There may be several bio's per stripe+device, and
 * a bio could span several devices.
 * When walking this list for a particular stripe+device, we must never proceed
 * beyond a bio that extends past this device, as the next bio might no longer
 * be valid.
86
 * This function is used to determine the 'next' bio in the list, given the sector
L
Linus Torvalds 已提交
87 88
 * of the current stripe+device
 */
89 90 91 92 93 94 95 96
static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
{
	int sectors = bio->bi_size >> 9;
	if (bio->bi_sector + sectors < sector + STRIPE_SECTORS)
		return bio->bi_next;
	else
		return NULL;
}
L
Linus Torvalds 已提交
97

98
/*
99 100
 * We maintain a biased count of active stripes in the bottom 16 bits of
 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
101 102 103
 */
static inline int raid5_bi_phys_segments(struct bio *bio)
{
104
	return bio->bi_phys_segments & 0xffff;
105 106 107 108
}

static inline int raid5_bi_hw_segments(struct bio *bio)
{
109
	return (bio->bi_phys_segments >> 16) & 0xffff;
110 111 112 113 114 115 116 117 118 119 120 121 122
}

static inline int raid5_dec_bi_phys_segments(struct bio *bio)
{
	--bio->bi_phys_segments;
	return raid5_bi_phys_segments(bio);
}

static inline int raid5_dec_bi_hw_segments(struct bio *bio)
{
	unsigned short val = raid5_bi_hw_segments(bio);

	--val;
123
	bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
124 125 126 127 128
	return val;
}

static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
{
129
	bio->bi_phys_segments = raid5_bi_phys_segments(bio) | (cnt << 16);
130 131
}

132 133 134
/* Find first data disk in a raid6 stripe */
static inline int raid6_d0(struct stripe_head *sh)
{
135 136 137 138
	if (sh->ddf_layout)
		/* ddf always start from first device */
		return 0;
	/* md starts just after Q block */
139 140 141 142 143
	if (sh->qd_idx == sh->disks - 1)
		return 0;
	else
		return sh->qd_idx + 1;
}
144 145 146 147 148
static inline int raid6_next_disk(int disk, int raid_disks)
{
	disk++;
	return (disk < raid_disks) ? disk : 0;
}
149

150 151 152 153 154
/* When walking through the disks in a raid5, starting at raid6_d0,
 * We need to map each disk to a 'slot', where the data disks are slot
 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
 * is raid_disks-1.  This help does that mapping.
 */
155 156
static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
			     int *count, int syndrome_disks)
157
{
158
	int slot = *count;
159

160
	if (sh->ddf_layout)
161
		(*count)++;
162
	if (idx == sh->pd_idx)
163
		return syndrome_disks;
164
	if (idx == sh->qd_idx)
165
		return syndrome_disks + 1;
166
	if (!sh->ddf_layout)
167
		(*count)++;
168 169 170
	return slot;
}

171 172 173 174 175 176 177 178
static void return_io(struct bio *return_bi)
{
	struct bio *bi = return_bi;
	while (bi) {

		return_bi = bi->bi_next;
		bi->bi_next = NULL;
		bi->bi_size = 0;
179
		bio_endio(bi, 0);
180 181 182 183
		bi = return_bi;
	}
}

184
static void print_raid5_conf (struct r5conf *conf);
L
Linus Torvalds 已提交
185

186 187 188 189 190 191 192
static int stripe_operations_active(struct stripe_head *sh)
{
	return sh->check_state || sh->reconstruct_state ||
	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
}

193
static void __release_stripe(struct r5conf *conf, struct stripe_head *sh)
L
Linus Torvalds 已提交
194 195
{
	if (atomic_dec_and_test(&sh->count)) {
196 197
		BUG_ON(!list_empty(&sh->lru));
		BUG_ON(atomic_read(&conf->active_stripes)==0);
L
Linus Torvalds 已提交
198
		if (test_bit(STRIPE_HANDLE, &sh->state)) {
N
NeilBrown 已提交
199
			if (test_bit(STRIPE_DELAYED, &sh->state))
L
Linus Torvalds 已提交
200
				list_add_tail(&sh->lru, &conf->delayed_list);
N
NeilBrown 已提交
201 202
			else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
				   sh->bm_seq - conf->seq_write > 0)
203
				list_add_tail(&sh->lru, &conf->bitmap_list);
N
NeilBrown 已提交
204
			else {
205
				clear_bit(STRIPE_BIT_DELAY, &sh->state);
L
Linus Torvalds 已提交
206
				list_add_tail(&sh->lru, &conf->handle_list);
207
			}
L
Linus Torvalds 已提交
208 209
			md_wakeup_thread(conf->mddev->thread);
		} else {
210
			BUG_ON(stripe_operations_active(sh));
211 212 213
			if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
				if (atomic_dec_return(&conf->preread_active_stripes)
				    < IO_THRESHOLD)
L
Linus Torvalds 已提交
214 215
					md_wakeup_thread(conf->mddev->thread);
			atomic_dec(&conf->active_stripes);
216 217
			if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
				list_add_tail(&sh->lru, &conf->inactive_list);
L
Linus Torvalds 已提交
218
				wake_up(&conf->wait_for_stripe);
219 220
				if (conf->retry_read_aligned)
					md_wakeup_thread(conf->mddev->thread);
221
			}
L
Linus Torvalds 已提交
222 223 224
		}
	}
}
225

L
Linus Torvalds 已提交
226 227
static void release_stripe(struct stripe_head *sh)
{
228
	struct r5conf *conf = sh->raid_conf;
L
Linus Torvalds 已提交
229
	unsigned long flags;
230

L
Linus Torvalds 已提交
231 232 233 234 235
	spin_lock_irqsave(&conf->device_lock, flags);
	__release_stripe(conf, sh);
	spin_unlock_irqrestore(&conf->device_lock, flags);
}

236
static inline void remove_hash(struct stripe_head *sh)
L
Linus Torvalds 已提交
237
{
238 239
	pr_debug("remove_hash(), stripe %llu\n",
		(unsigned long long)sh->sector);
L
Linus Torvalds 已提交
240

241
	hlist_del_init(&sh->hash);
L
Linus Torvalds 已提交
242 243
}

244
static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
L
Linus Torvalds 已提交
245
{
246
	struct hlist_head *hp = stripe_hash(conf, sh->sector);
L
Linus Torvalds 已提交
247

248 249
	pr_debug("insert_hash(), stripe %llu\n",
		(unsigned long long)sh->sector);
L
Linus Torvalds 已提交
250

251
	hlist_add_head(&sh->hash, hp);
L
Linus Torvalds 已提交
252 253 254 255
}


/* find an idle stripe, make sure it is unhashed, and return it. */
256
static struct stripe_head *get_free_stripe(struct r5conf *conf)
L
Linus Torvalds 已提交
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
{
	struct stripe_head *sh = NULL;
	struct list_head *first;

	if (list_empty(&conf->inactive_list))
		goto out;
	first = conf->inactive_list.next;
	sh = list_entry(first, struct stripe_head, lru);
	list_del_init(first);
	remove_hash(sh);
	atomic_inc(&conf->active_stripes);
out:
	return sh;
}

272
static void shrink_buffers(struct stripe_head *sh)
L
Linus Torvalds 已提交
273 274 275
{
	struct page *p;
	int i;
276
	int num = sh->raid_conf->pool_size;
L
Linus Torvalds 已提交
277

278
	for (i = 0; i < num ; i++) {
L
Linus Torvalds 已提交
279 280 281 282
		p = sh->dev[i].page;
		if (!p)
			continue;
		sh->dev[i].page = NULL;
283
		put_page(p);
L
Linus Torvalds 已提交
284 285 286
	}
}

287
static int grow_buffers(struct stripe_head *sh)
L
Linus Torvalds 已提交
288 289
{
	int i;
290
	int num = sh->raid_conf->pool_size;
L
Linus Torvalds 已提交
291

292
	for (i = 0; i < num; i++) {
L
Linus Torvalds 已提交
293 294 295 296 297 298 299 300 301 302
		struct page *page;

		if (!(page = alloc_page(GFP_KERNEL))) {
			return 1;
		}
		sh->dev[i].page = page;
	}
	return 0;
}

303
static void raid5_build_block(struct stripe_head *sh, int i, int previous);
304
static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
305
			    struct stripe_head *sh);
L
Linus Torvalds 已提交
306

307
static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
L
Linus Torvalds 已提交
308
{
309
	struct r5conf *conf = sh->raid_conf;
310
	int i;
L
Linus Torvalds 已提交
311

312 313
	BUG_ON(atomic_read(&sh->count) != 0);
	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
314
	BUG_ON(stripe_operations_active(sh));
315

316
	pr_debug("init_stripe called, stripe %llu\n",
L
Linus Torvalds 已提交
317 318 319
		(unsigned long long)sh->sector);

	remove_hash(sh);
320

321
	sh->generation = conf->generation - previous;
322
	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
L
Linus Torvalds 已提交
323
	sh->sector = sector;
324
	stripe_set_idx(sector, conf, previous, sh);
L
Linus Torvalds 已提交
325 326
	sh->state = 0;

327 328

	for (i = sh->disks; i--; ) {
L
Linus Torvalds 已提交
329 330
		struct r5dev *dev = &sh->dev[i];

331
		if (dev->toread || dev->read || dev->towrite || dev->written ||
L
Linus Torvalds 已提交
332
		    test_bit(R5_LOCKED, &dev->flags)) {
333
			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
L
Linus Torvalds 已提交
334
			       (unsigned long long)sh->sector, i, dev->toread,
335
			       dev->read, dev->towrite, dev->written,
L
Linus Torvalds 已提交
336
			       test_bit(R5_LOCKED, &dev->flags));
337
			WARN_ON(1);
L
Linus Torvalds 已提交
338 339
		}
		dev->flags = 0;
340
		raid5_build_block(sh, i, previous);
L
Linus Torvalds 已提交
341 342 343 344
	}
	insert_hash(conf, sh);
}

345
static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
346
					 short generation)
L
Linus Torvalds 已提交
347 348
{
	struct stripe_head *sh;
349
	struct hlist_node *hn;
L
Linus Torvalds 已提交
350

351
	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
352
	hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
353
		if (sh->sector == sector && sh->generation == generation)
L
Linus Torvalds 已提交
354
			return sh;
355
	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
L
Linus Torvalds 已提交
356 357 358
	return NULL;
}

359 360 361 362 363 364 365 366 367 368 369 370 371
/*
 * Need to check if array has failed when deciding whether to:
 *  - start an array
 *  - remove non-faulty devices
 *  - add a spare
 *  - allow a reshape
 * This determination is simple when no reshape is happening.
 * However if there is a reshape, we need to carefully check
 * both the before and after sections.
 * This is because some failed devices may only affect one
 * of the two sections, and some non-in_sync devices may
 * be insync in the section most affected by failed devices.
 */
372
static int calc_degraded(struct r5conf *conf)
373
{
374
	int degraded, degraded2;
375 376 377 378 379
	int i;

	rcu_read_lock();
	degraded = 0;
	for (i = 0; i < conf->previous_raid_disks; i++) {
380
		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
		if (!rdev || test_bit(Faulty, &rdev->flags))
			degraded++;
		else if (test_bit(In_sync, &rdev->flags))
			;
		else
			/* not in-sync or faulty.
			 * If the reshape increases the number of devices,
			 * this is being recovered by the reshape, so
			 * this 'previous' section is not in_sync.
			 * If the number of devices is being reduced however,
			 * the device can only be part of the array if
			 * we are reverting a reshape, so this section will
			 * be in-sync.
			 */
			if (conf->raid_disks >= conf->previous_raid_disks)
				degraded++;
	}
	rcu_read_unlock();
399 400
	if (conf->raid_disks == conf->previous_raid_disks)
		return degraded;
401
	rcu_read_lock();
402
	degraded2 = 0;
403
	for (i = 0; i < conf->raid_disks; i++) {
404
		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
405
		if (!rdev || test_bit(Faulty, &rdev->flags))
406
			degraded2++;
407 408 409 410 411 412 413 414 415
		else if (test_bit(In_sync, &rdev->flags))
			;
		else
			/* not in-sync or faulty.
			 * If reshape increases the number of devices, this
			 * section has already been recovered, else it
			 * almost certainly hasn't.
			 */
			if (conf->raid_disks <= conf->previous_raid_disks)
416
				degraded2++;
417 418
	}
	rcu_read_unlock();
419 420 421 422 423 424 425 426 427 428 429 430 431
	if (degraded2 > degraded)
		return degraded2;
	return degraded;
}

static int has_failed(struct r5conf *conf)
{
	int degraded;

	if (conf->mddev->reshape_position == MaxSector)
		return conf->mddev->degraded > conf->max_degraded;

	degraded = calc_degraded(conf);
432 433 434 435 436
	if (degraded > conf->max_degraded)
		return 1;
	return 0;
}

437
static struct stripe_head *
438
get_active_stripe(struct r5conf *conf, sector_t sector,
439
		  int previous, int noblock, int noquiesce)
L
Linus Torvalds 已提交
440 441 442
{
	struct stripe_head *sh;

443
	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
L
Linus Torvalds 已提交
444 445 446 447

	spin_lock_irq(&conf->device_lock);

	do {
448
		wait_event_lock_irq(conf->wait_for_stripe,
449
				    conf->quiesce == 0 || noquiesce,
450
				    conf->device_lock, /* nothing */);
451
		sh = __find_stripe(conf, sector, conf->generation - previous);
L
Linus Torvalds 已提交
452 453 454 455 456 457 458 459 460
		if (!sh) {
			if (!conf->inactive_blocked)
				sh = get_free_stripe(conf);
			if (noblock && sh == NULL)
				break;
			if (!sh) {
				conf->inactive_blocked = 1;
				wait_event_lock_irq(conf->wait_for_stripe,
						    !list_empty(&conf->inactive_list) &&
461 462
						    (atomic_read(&conf->active_stripes)
						     < (conf->max_nr_stripes *3/4)
L
Linus Torvalds 已提交
463 464
						     || !conf->inactive_blocked),
						    conf->device_lock,
465
						    );
L
Linus Torvalds 已提交
466 467
				conf->inactive_blocked = 0;
			} else
468
				init_stripe(sh, sector, previous);
L
Linus Torvalds 已提交
469 470
		} else {
			if (atomic_read(&sh->count)) {
471 472
				BUG_ON(!list_empty(&sh->lru)
				    && !test_bit(STRIPE_EXPANDING, &sh->state));
L
Linus Torvalds 已提交
473 474 475
			} else {
				if (!test_bit(STRIPE_HANDLE, &sh->state))
					atomic_inc(&conf->active_stripes);
476 477
				if (list_empty(&sh->lru) &&
				    !test_bit(STRIPE_EXPANDING, &sh->state))
478 479
					BUG();
				list_del_init(&sh->lru);
L
Linus Torvalds 已提交
480 481 482 483 484 485 486 487 488 489 490
			}
		}
	} while (sh == NULL);

	if (sh)
		atomic_inc(&sh->count);

	spin_unlock_irq(&conf->device_lock);
	return sh;
}

491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
/* Determine if 'data_offset' or 'new_data_offset' should be used
 * in this stripe_head.
 */
static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
{
	sector_t progress = conf->reshape_progress;
	/* Need a memory barrier to make sure we see the value
	 * of conf->generation, or ->data_offset that was set before
	 * reshape_progress was updated.
	 */
	smp_rmb();
	if (progress == MaxSector)
		return 0;
	if (sh->generation == conf->generation - 1)
		return 0;
	/* We are in a reshape, and this is a new-generation stripe,
	 * so use new_data_offset.
	 */
	return 1;
}

512 513 514 515
static void
raid5_end_read_request(struct bio *bi, int error);
static void
raid5_end_write_request(struct bio *bi, int error);
516

517
static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
518
{
519
	struct r5conf *conf = sh->raid_conf;
520 521 522 523 524 525
	int i, disks = sh->disks;

	might_sleep();

	for (i = disks; i--; ) {
		int rw;
526
		int replace_only = 0;
527 528
		struct bio *bi, *rbi;
		struct md_rdev *rdev, *rrdev = NULL;
T
Tejun Heo 已提交
529 530 531 532 533 534
		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
			if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
				rw = WRITE_FUA;
			else
				rw = WRITE;
		} else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
535
			rw = READ;
536 537 538 539 540
		else if (test_and_clear_bit(R5_WantReplace,
					    &sh->dev[i].flags)) {
			rw = WRITE;
			replace_only = 1;
		} else
541
			continue;
S
Shaohua Li 已提交
542 543
		if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
			rw |= REQ_SYNC;
544 545

		bi = &sh->dev[i].req;
546
		rbi = &sh->dev[i].rreq; /* For writing to replacement */
547 548

		bi->bi_rw = rw;
549 550
		rbi->bi_rw = rw;
		if (rw & WRITE) {
551
			bi->bi_end_io = raid5_end_write_request;
552 553
			rbi->bi_end_io = raid5_end_write_request;
		} else
554 555 556
			bi->bi_end_io = raid5_end_read_request;

		rcu_read_lock();
557
		rrdev = rcu_dereference(conf->disks[i].replacement);
558 559 560 561 562 563
		smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
		rdev = rcu_dereference(conf->disks[i].rdev);
		if (!rdev) {
			rdev = rrdev;
			rrdev = NULL;
		}
564 565 566
		if (rw & WRITE) {
			if (replace_only)
				rdev = NULL;
567 568 569
			if (rdev == rrdev)
				/* We raced and saw duplicates */
				rrdev = NULL;
570
		} else {
571
			if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev)
572 573 574
				rdev = rrdev;
			rrdev = NULL;
		}
575

576 577 578 579
		if (rdev && test_bit(Faulty, &rdev->flags))
			rdev = NULL;
		if (rdev)
			atomic_inc(&rdev->nr_pending);
580 581 582 583
		if (rrdev && test_bit(Faulty, &rrdev->flags))
			rrdev = NULL;
		if (rrdev)
			atomic_inc(&rrdev->nr_pending);
584 585
		rcu_read_unlock();

586
		/* We have already checked bad blocks for reads.  Now
587 588
		 * need to check for writes.  We never accept write errors
		 * on the replacement, so we don't to check rrdev.
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
		 */
		while ((rw & WRITE) && rdev &&
		       test_bit(WriteErrorSeen, &rdev->flags)) {
			sector_t first_bad;
			int bad_sectors;
			int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
					      &first_bad, &bad_sectors);
			if (!bad)
				break;

			if (bad < 0) {
				set_bit(BlockedBadBlocks, &rdev->flags);
				if (!conf->mddev->external &&
				    conf->mddev->flags) {
					/* It is very unlikely, but we might
					 * still need to write out the
					 * bad block log - better give it
					 * a chance*/
					md_check_recovery(conf->mddev);
				}
609 610 611 612 613 614
				/*
				 * Because md_wait_for_blocked_rdev
				 * will dec nr_pending, we must
				 * increment it first.
				 */
				atomic_inc(&rdev->nr_pending);
615 616 617 618 619 620 621 622
				md_wait_for_blocked_rdev(rdev, conf->mddev);
			} else {
				/* Acknowledged bad block - skip the write */
				rdev_dec_pending(rdev, conf->mddev);
				rdev = NULL;
			}
		}

623
		if (rdev) {
624 625
			if (s->syncing || s->expanding || s->expanded
			    || s->replacing)
626 627
				md_sync_acct(rdev->bdev, STRIPE_SECTORS);

D
Dan Williams 已提交
628 629
			set_bit(STRIPE_IO_STARTED, &sh->state);

630 631
			bi->bi_bdev = rdev->bdev;
			pr_debug("%s: for %llu schedule op %ld on disc %d\n",
632
				__func__, (unsigned long long)sh->sector,
633 634
				bi->bi_rw, i);
			atomic_inc(&sh->count);
635 636 637 638 639 640
			if (use_new_offset(conf, sh))
				bi->bi_sector = (sh->sector
						 + rdev->new_data_offset);
			else
				bi->bi_sector = (sh->sector
						 + rdev->data_offset);
641 642 643 644 645 646
			bi->bi_flags = 1 << BIO_UPTODATE;
			bi->bi_idx = 0;
			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
			bi->bi_io_vec[0].bv_offset = 0;
			bi->bi_size = STRIPE_SIZE;
			bi->bi_next = NULL;
647 648
			if (rrdev)
				set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
649
			generic_make_request(bi);
650 651
		}
		if (rrdev) {
652 653
			if (s->syncing || s->expanding || s->expanded
			    || s->replacing)
654 655 656 657 658 659 660 661 662 663
				md_sync_acct(rrdev->bdev, STRIPE_SECTORS);

			set_bit(STRIPE_IO_STARTED, &sh->state);

			rbi->bi_bdev = rrdev->bdev;
			pr_debug("%s: for %llu schedule op %ld on "
				 "replacement disc %d\n",
				__func__, (unsigned long long)sh->sector,
				rbi->bi_rw, i);
			atomic_inc(&sh->count);
664 665 666 667 668 669
			if (use_new_offset(conf, sh))
				rbi->bi_sector = (sh->sector
						  + rrdev->new_data_offset);
			else
				rbi->bi_sector = (sh->sector
						  + rrdev->data_offset);
670 671 672 673 674 675 676 677 678
			rbi->bi_flags = 1 << BIO_UPTODATE;
			rbi->bi_idx = 0;
			rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
			rbi->bi_io_vec[0].bv_offset = 0;
			rbi->bi_size = STRIPE_SIZE;
			rbi->bi_next = NULL;
			generic_make_request(rbi);
		}
		if (!rdev && !rrdev) {
679
			if (rw & WRITE)
680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
				set_bit(STRIPE_DEGRADED, &sh->state);
			pr_debug("skip op %ld on disc %d for sector %llu\n",
				bi->bi_rw, i, (unsigned long long)sh->sector);
			clear_bit(R5_LOCKED, &sh->dev[i].flags);
			set_bit(STRIPE_HANDLE, &sh->state);
		}
	}
}

static struct dma_async_tx_descriptor *
async_copy_data(int frombio, struct bio *bio, struct page *page,
	sector_t sector, struct dma_async_tx_descriptor *tx)
{
	struct bio_vec *bvl;
	struct page *bio_page;
	int i;
	int page_offset;
697
	struct async_submit_ctl submit;
D
Dan Williams 已提交
698
	enum async_tx_flags flags = 0;
699 700 701 702 703

	if (bio->bi_sector >= sector)
		page_offset = (signed)(bio->bi_sector - sector) * 512;
	else
		page_offset = (signed)(sector - bio->bi_sector) * -512;
704

D
Dan Williams 已提交
705 706 707 708
	if (frombio)
		flags |= ASYNC_TX_FENCE;
	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);

709
	bio_for_each_segment(bvl, bio, i) {
710
		int len = bvl->bv_len;
711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
		int clen;
		int b_offset = 0;

		if (page_offset < 0) {
			b_offset = -page_offset;
			page_offset += b_offset;
			len -= b_offset;
		}

		if (len > 0 && page_offset + len > STRIPE_SIZE)
			clen = STRIPE_SIZE - page_offset;
		else
			clen = len;

		if (clen > 0) {
726 727
			b_offset += bvl->bv_offset;
			bio_page = bvl->bv_page;
728 729
			if (frombio)
				tx = async_memcpy(page, bio_page, page_offset,
730
						  b_offset, clen, &submit);
731 732
			else
				tx = async_memcpy(bio_page, page, b_offset,
733
						  page_offset, clen, &submit);
734
		}
735 736 737
		/* chain the operations */
		submit.depend_tx = tx;

738 739 740 741 742 743 744 745 746 747 748 749
		if (clen < len) /* hit end of page */
			break;
		page_offset +=  len;
	}

	return tx;
}

static void ops_complete_biofill(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;
	struct bio *return_bi = NULL;
750
	struct r5conf *conf = sh->raid_conf;
751
	int i;
752

753
	pr_debug("%s: stripe %llu\n", __func__,
754 755 756
		(unsigned long long)sh->sector);

	/* clear completed biofills */
757
	spin_lock_irq(&conf->device_lock);
758 759 760 761
	for (i = sh->disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];

		/* acknowledge completion of a biofill operation */
762 763
		/* and check if we need to reply to a read request,
		 * new R5_Wantfill requests are held off until
764
		 * !STRIPE_BIOFILL_RUN
765 766
		 */
		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
767 768 769 770 771 772 773 774
			struct bio *rbi, *rbi2;

			BUG_ON(!dev->read);
			rbi = dev->read;
			dev->read = NULL;
			while (rbi && rbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
				rbi2 = r5_next_bio(rbi, dev->sector);
775
				if (!raid5_dec_bi_phys_segments(rbi)) {
776 777 778 779 780 781 782
					rbi->bi_next = return_bi;
					return_bi = rbi;
				}
				rbi = rbi2;
			}
		}
	}
783 784
	spin_unlock_irq(&conf->device_lock);
	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
785 786 787

	return_io(return_bi);

788
	set_bit(STRIPE_HANDLE, &sh->state);
789 790 791 792 793 794
	release_stripe(sh);
}

static void ops_run_biofill(struct stripe_head *sh)
{
	struct dma_async_tx_descriptor *tx = NULL;
795
	struct r5conf *conf = sh->raid_conf;
796
	struct async_submit_ctl submit;
797 798
	int i;

799
	pr_debug("%s: stripe %llu\n", __func__,
800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
		(unsigned long long)sh->sector);

	for (i = sh->disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		if (test_bit(R5_Wantfill, &dev->flags)) {
			struct bio *rbi;
			spin_lock_irq(&conf->device_lock);
			dev->read = rbi = dev->toread;
			dev->toread = NULL;
			spin_unlock_irq(&conf->device_lock);
			while (rbi && rbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
				tx = async_copy_data(0, rbi, dev->page,
					dev->sector, tx);
				rbi = r5_next_bio(rbi, dev->sector);
			}
		}
	}

	atomic_inc(&sh->count);
820 821
	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
	async_trigger_callback(&submit);
822 823
}

824
static void mark_target_uptodate(struct stripe_head *sh, int target)
825
{
826
	struct r5dev *tgt;
827

828 829
	if (target < 0)
		return;
830

831
	tgt = &sh->dev[target];
832 833 834
	set_bit(R5_UPTODATE, &tgt->flags);
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	clear_bit(R5_Wantcompute, &tgt->flags);
835 836
}

837
static void ops_complete_compute(void *stripe_head_ref)
838 839 840
{
	struct stripe_head *sh = stripe_head_ref;

841
	pr_debug("%s: stripe %llu\n", __func__,
842 843
		(unsigned long long)sh->sector);

844
	/* mark the computed target(s) as uptodate */
845
	mark_target_uptodate(sh, sh->ops.target);
846
	mark_target_uptodate(sh, sh->ops.target2);
847

848 849 850
	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
	if (sh->check_state == check_state_compute_run)
		sh->check_state = check_state_compute_result;
851 852 853 854
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

855 856 857 858 859 860 861 862 863
/* return a pointer to the address conversion region of the scribble buffer */
static addr_conv_t *to_addr_conv(struct stripe_head *sh,
				 struct raid5_percpu *percpu)
{
	return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
}

static struct dma_async_tx_descriptor *
ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
864 865
{
	int disks = sh->disks;
866
	struct page **xor_srcs = percpu->scribble;
867 868 869 870 871
	int target = sh->ops.target;
	struct r5dev *tgt = &sh->dev[target];
	struct page *xor_dest = tgt->page;
	int count = 0;
	struct dma_async_tx_descriptor *tx;
872
	struct async_submit_ctl submit;
873 874 875
	int i;

	pr_debug("%s: stripe %llu block: %d\n",
876
		__func__, (unsigned long long)sh->sector, target);
877 878 879 880 881 882 883 884
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));

	for (i = disks; i--; )
		if (i != target)
			xor_srcs[count++] = sh->dev[i].page;

	atomic_inc(&sh->count);

D
Dan Williams 已提交
885
	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
886
			  ops_complete_compute, sh, to_addr_conv(sh, percpu));
887
	if (unlikely(count == 1))
888
		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
889
	else
890
		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
891 892 893 894

	return tx;
}

895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
/* set_syndrome_sources - populate source buffers for gen_syndrome
 * @srcs - (struct page *) array of size sh->disks
 * @sh - stripe_head to parse
 *
 * Populates srcs in proper layout order for the stripe and returns the
 * 'count' of sources to be used in a call to async_gen_syndrome.  The P
 * destination buffer is recorded in srcs[count] and the Q destination
 * is recorded in srcs[count+1]].
 */
static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
{
	int disks = sh->disks;
	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
	int d0_idx = raid6_d0(sh);
	int count;
	int i;

	for (i = 0; i < disks; i++)
913
		srcs[i] = NULL;
914 915 916 917 918 919 920 921 922 923

	count = 0;
	i = d0_idx;
	do {
		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);

		srcs[slot] = sh->dev[i].page;
		i = raid6_next_disk(i, disks);
	} while (i != d0_idx);

924
	return syndrome_disks;
925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
}

static struct dma_async_tx_descriptor *
ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
{
	int disks = sh->disks;
	struct page **blocks = percpu->scribble;
	int target;
	int qd_idx = sh->qd_idx;
	struct dma_async_tx_descriptor *tx;
	struct async_submit_ctl submit;
	struct r5dev *tgt;
	struct page *dest;
	int i;
	int count;

	if (sh->ops.target < 0)
		target = sh->ops.target2;
	else if (sh->ops.target2 < 0)
		target = sh->ops.target;
945
	else
946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961
		/* we should only have one valid target */
		BUG();
	BUG_ON(target < 0);
	pr_debug("%s: stripe %llu block: %d\n",
		__func__, (unsigned long long)sh->sector, target);

	tgt = &sh->dev[target];
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	dest = tgt->page;

	atomic_inc(&sh->count);

	if (target == qd_idx) {
		count = set_syndrome_sources(blocks, sh);
		blocks[count] = NULL; /* regenerating p is not necessary */
		BUG_ON(blocks[count+1] != dest); /* q should already be set */
D
Dan Williams 已提交
962 963
		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
				  ops_complete_compute, sh,
964 965 966 967 968 969 970 971 972 973 974
				  to_addr_conv(sh, percpu));
		tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
	} else {
		/* Compute any data- or p-drive using XOR */
		count = 0;
		for (i = disks; i-- ; ) {
			if (i == target || i == qd_idx)
				continue;
			blocks[count++] = sh->dev[i].page;
		}

D
Dan Williams 已提交
975 976
		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
				  NULL, ops_complete_compute, sh,
977 978 979
				  to_addr_conv(sh, percpu));
		tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
	}
980 981 982 983

	return tx;
}

984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
static struct dma_async_tx_descriptor *
ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
{
	int i, count, disks = sh->disks;
	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
	int d0_idx = raid6_d0(sh);
	int faila = -1, failb = -1;
	int target = sh->ops.target;
	int target2 = sh->ops.target2;
	struct r5dev *tgt = &sh->dev[target];
	struct r5dev *tgt2 = &sh->dev[target2];
	struct dma_async_tx_descriptor *tx;
	struct page **blocks = percpu->scribble;
	struct async_submit_ctl submit;

	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
		 __func__, (unsigned long long)sh->sector, target, target2);
	BUG_ON(target < 0 || target2 < 0);
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));

1005
	/* we need to open-code set_syndrome_sources to handle the
1006 1007 1008
	 * slot number conversion for 'faila' and 'failb'
	 */
	for (i = 0; i < disks ; i++)
1009
		blocks[i] = NULL;
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
	count = 0;
	i = d0_idx;
	do {
		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);

		blocks[slot] = sh->dev[i].page;

		if (i == target)
			faila = slot;
		if (i == target2)
			failb = slot;
		i = raid6_next_disk(i, disks);
	} while (i != d0_idx);

	BUG_ON(faila == failb);
	if (failb < faila)
		swap(faila, failb);
	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
		 __func__, (unsigned long long)sh->sector, faila, failb);

	atomic_inc(&sh->count);

	if (failb == syndrome_disks+1) {
		/* Q disk is one of the missing disks */
		if (faila == syndrome_disks) {
			/* Missing P+Q, just recompute */
D
Dan Williams 已提交
1036 1037 1038
			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
					  ops_complete_compute, sh,
					  to_addr_conv(sh, percpu));
1039
			return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
						  STRIPE_SIZE, &submit);
		} else {
			struct page *dest;
			int data_target;
			int qd_idx = sh->qd_idx;

			/* Missing D+Q: recompute D from P, then recompute Q */
			if (target == qd_idx)
				data_target = target2;
			else
				data_target = target;

			count = 0;
			for (i = disks; i-- ; ) {
				if (i == data_target || i == qd_idx)
					continue;
				blocks[count++] = sh->dev[i].page;
			}
			dest = sh->dev[data_target].page;
D
Dan Williams 已提交
1059 1060 1061 1062
			init_async_submit(&submit,
					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
					  NULL, NULL, NULL,
					  to_addr_conv(sh, percpu));
1063 1064 1065 1066
			tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
				       &submit);

			count = set_syndrome_sources(blocks, sh);
D
Dan Williams 已提交
1067 1068 1069
			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
					  ops_complete_compute, sh,
					  to_addr_conv(sh, percpu));
1070 1071 1072 1073
			return async_gen_syndrome(blocks, 0, count+2,
						  STRIPE_SIZE, &submit);
		}
	} else {
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
				  ops_complete_compute, sh,
				  to_addr_conv(sh, percpu));
		if (failb == syndrome_disks) {
			/* We're missing D+P. */
			return async_raid6_datap_recov(syndrome_disks+2,
						       STRIPE_SIZE, faila,
						       blocks, &submit);
		} else {
			/* We're missing D+D. */
			return async_raid6_2data_recov(syndrome_disks+2,
						       STRIPE_SIZE, faila, failb,
						       blocks, &submit);
		}
1088 1089 1090 1091
	}
}


1092 1093 1094 1095
static void ops_complete_prexor(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;

1096
	pr_debug("%s: stripe %llu\n", __func__,
1097 1098 1099 1100
		(unsigned long long)sh->sector);
}

static struct dma_async_tx_descriptor *
1101 1102
ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
	       struct dma_async_tx_descriptor *tx)
1103 1104
{
	int disks = sh->disks;
1105
	struct page **xor_srcs = percpu->scribble;
1106
	int count = 0, pd_idx = sh->pd_idx, i;
1107
	struct async_submit_ctl submit;
1108 1109 1110 1111

	/* existing parity data subtracted */
	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;

1112
	pr_debug("%s: stripe %llu\n", __func__,
1113 1114 1115 1116 1117
		(unsigned long long)sh->sector);

	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		/* Only process blocks that are known to be uptodate */
1118
		if (test_bit(R5_Wantdrain, &dev->flags))
1119 1120 1121
			xor_srcs[count++] = dev->page;
	}

D
Dan Williams 已提交
1122
	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1123
			  ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1124
	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1125 1126 1127 1128 1129

	return tx;
}

static struct dma_async_tx_descriptor *
1130
ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1131 1132
{
	int disks = sh->disks;
1133
	int i;
1134

1135
	pr_debug("%s: stripe %llu\n", __func__,
1136 1137 1138 1139 1140 1141
		(unsigned long long)sh->sector);

	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		struct bio *chosen;

1142
		if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1143 1144
			struct bio *wbi;

1145
			spin_lock_irq(&sh->raid_conf->device_lock);
1146 1147 1148 1149
			chosen = dev->towrite;
			dev->towrite = NULL;
			BUG_ON(dev->written);
			wbi = dev->written = chosen;
1150
			spin_unlock_irq(&sh->raid_conf->device_lock);
1151 1152 1153

			while (wbi && wbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
T
Tejun Heo 已提交
1154 1155
				if (wbi->bi_rw & REQ_FUA)
					set_bit(R5_WantFUA, &dev->flags);
S
Shaohua Li 已提交
1156 1157
				if (wbi->bi_rw & REQ_SYNC)
					set_bit(R5_SyncIO, &dev->flags);
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
				tx = async_copy_data(1, wbi, dev->page,
					dev->sector, tx);
				wbi = r5_next_bio(wbi, dev->sector);
			}
		}
	}

	return tx;
}

1168
static void ops_complete_reconstruct(void *stripe_head_ref)
1169 1170
{
	struct stripe_head *sh = stripe_head_ref;
1171 1172 1173 1174
	int disks = sh->disks;
	int pd_idx = sh->pd_idx;
	int qd_idx = sh->qd_idx;
	int i;
S
Shaohua Li 已提交
1175
	bool fua = false, sync = false;
1176

1177
	pr_debug("%s: stripe %llu\n", __func__,
1178 1179
		(unsigned long long)sh->sector);

S
Shaohua Li 已提交
1180
	for (i = disks; i--; ) {
T
Tejun Heo 已提交
1181
		fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
S
Shaohua Li 已提交
1182 1183
		sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
	}
T
Tejun Heo 已提交
1184

1185 1186
	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
1187

T
Tejun Heo 已提交
1188
		if (dev->written || i == pd_idx || i == qd_idx) {
1189
			set_bit(R5_UPTODATE, &dev->flags);
T
Tejun Heo 已提交
1190 1191
			if (fua)
				set_bit(R5_WantFUA, &dev->flags);
S
Shaohua Li 已提交
1192 1193
			if (sync)
				set_bit(R5_SyncIO, &dev->flags);
T
Tejun Heo 已提交
1194
		}
1195 1196
	}

1197 1198 1199 1200 1201 1202 1203 1204
	if (sh->reconstruct_state == reconstruct_state_drain_run)
		sh->reconstruct_state = reconstruct_state_drain_result;
	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
	else {
		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
		sh->reconstruct_state = reconstruct_state_result;
	}
1205 1206 1207 1208 1209 1210

	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

static void
1211 1212
ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
		     struct dma_async_tx_descriptor *tx)
1213 1214
{
	int disks = sh->disks;
1215
	struct page **xor_srcs = percpu->scribble;
1216
	struct async_submit_ctl submit;
1217 1218
	int count = 0, pd_idx = sh->pd_idx, i;
	struct page *xor_dest;
1219
	int prexor = 0;
1220 1221
	unsigned long flags;

1222
	pr_debug("%s: stripe %llu\n", __func__,
1223 1224 1225 1226 1227
		(unsigned long long)sh->sector);

	/* check if prexor is active which means only process blocks
	 * that are part of a read-modify-write (written)
	 */
1228 1229
	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
		prexor = 1;
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (dev->written)
				xor_srcs[count++] = dev->page;
		}
	} else {
		xor_dest = sh->dev[pd_idx].page;
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (i != pd_idx)
				xor_srcs[count++] = dev->page;
		}
	}

	/* 1/ if we prexor'd then the dest is reused as a source
	 * 2/ if we did not prexor then we are redoing the parity
	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
	 * for the synchronous xor case
	 */
1250
	flags = ASYNC_TX_ACK |
1251 1252 1253 1254
		(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);

	atomic_inc(&sh->count);

1255
	init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1256
			  to_addr_conv(sh, percpu));
1257 1258 1259 1260
	if (unlikely(count == 1))
		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
	else
		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1261 1262
}

1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
static void
ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
		     struct dma_async_tx_descriptor *tx)
{
	struct async_submit_ctl submit;
	struct page **blocks = percpu->scribble;
	int count;

	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);

	count = set_syndrome_sources(blocks, sh);

	atomic_inc(&sh->count);

	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
			  sh, to_addr_conv(sh, percpu));
	async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1280 1281 1282 1283 1284 1285
}

static void ops_complete_check(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;

1286
	pr_debug("%s: stripe %llu\n", __func__,
1287 1288
		(unsigned long long)sh->sector);

1289
	sh->check_state = check_state_check_result;
1290 1291 1292 1293
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

1294
static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1295 1296
{
	int disks = sh->disks;
1297 1298 1299
	int pd_idx = sh->pd_idx;
	int qd_idx = sh->qd_idx;
	struct page *xor_dest;
1300
	struct page **xor_srcs = percpu->scribble;
1301
	struct dma_async_tx_descriptor *tx;
1302
	struct async_submit_ctl submit;
1303 1304
	int count;
	int i;
1305

1306
	pr_debug("%s: stripe %llu\n", __func__,
1307 1308
		(unsigned long long)sh->sector);

1309 1310 1311
	count = 0;
	xor_dest = sh->dev[pd_idx].page;
	xor_srcs[count++] = xor_dest;
1312
	for (i = disks; i--; ) {
1313 1314 1315
		if (i == pd_idx || i == qd_idx)
			continue;
		xor_srcs[count++] = sh->dev[i].page;
1316 1317
	}

1318 1319
	init_async_submit(&submit, 0, NULL, NULL, NULL,
			  to_addr_conv(sh, percpu));
D
Dan Williams 已提交
1320
	tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1321
			   &sh->ops.zero_sum_result, &submit);
1322 1323

	atomic_inc(&sh->count);
1324 1325
	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
	tx = async_trigger_callback(&submit);
1326 1327
}

1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
{
	struct page **srcs = percpu->scribble;
	struct async_submit_ctl submit;
	int count;

	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
		(unsigned long long)sh->sector, checkp);

	count = set_syndrome_sources(srcs, sh);
	if (!checkp)
		srcs[count] = NULL;
1340 1341

	atomic_inc(&sh->count);
1342 1343 1344 1345
	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
			  sh, to_addr_conv(sh, percpu));
	async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
			   &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1346 1347
}

1348
static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1349 1350 1351
{
	int overlap_clear = 0, i, disks = sh->disks;
	struct dma_async_tx_descriptor *tx = NULL;
1352
	struct r5conf *conf = sh->raid_conf;
1353
	int level = conf->level;
1354 1355
	struct raid5_percpu *percpu;
	unsigned long cpu;
1356

1357 1358
	cpu = get_cpu();
	percpu = per_cpu_ptr(conf->percpu, cpu);
1359
	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1360 1361 1362 1363
		ops_run_biofill(sh);
		overlap_clear++;
	}

1364
	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
		if (level < 6)
			tx = ops_run_compute5(sh, percpu);
		else {
			if (sh->ops.target2 < 0 || sh->ops.target < 0)
				tx = ops_run_compute6_1(sh, percpu);
			else
				tx = ops_run_compute6_2(sh, percpu);
		}
		/* terminate the chain if reconstruct is not set to be run */
		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1375 1376
			async_tx_ack(tx);
	}
1377

1378
	if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1379
		tx = ops_run_prexor(sh, percpu, tx);
1380

1381
	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1382
		tx = ops_run_biodrain(sh, tx);
1383 1384 1385
		overlap_clear++;
	}

1386 1387 1388 1389 1390 1391
	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
		if (level < 6)
			ops_run_reconstruct5(sh, percpu, tx);
		else
			ops_run_reconstruct6(sh, percpu, tx);
	}
1392

1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
		if (sh->check_state == check_state_run)
			ops_run_check_p(sh, percpu);
		else if (sh->check_state == check_state_run_q)
			ops_run_check_pq(sh, percpu, 0);
		else if (sh->check_state == check_state_run_pq)
			ops_run_check_pq(sh, percpu, 1);
		else
			BUG();
	}
1403 1404 1405 1406 1407 1408 1409

	if (overlap_clear)
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (test_and_clear_bit(R5_Overlap, &dev->flags))
				wake_up(&sh->raid_conf->wait_for_overlap);
		}
1410
	put_cpu();
1411 1412
}

1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
#ifdef CONFIG_MULTICORE_RAID456
static void async_run_ops(void *param, async_cookie_t cookie)
{
	struct stripe_head *sh = param;
	unsigned long ops_request = sh->ops.request;

	clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
	wake_up(&sh->ops.wait_for_ops);

	__raid_run_ops(sh, ops_request);
	release_stripe(sh);
}

static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
{
	/* since handle_stripe can be called outside of raid5d context
	 * we need to ensure sh->ops.request is de-staged before another
	 * request arrives
	 */
	wait_event(sh->ops.wait_for_ops,
		   !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
	sh->ops.request = ops_request;

	atomic_inc(&sh->count);
	async_schedule(async_run_ops, sh);
}
#else
#define raid_run_ops __raid_run_ops
#endif

1443
static int grow_one_stripe(struct r5conf *conf)
L
Linus Torvalds 已提交
1444 1445
{
	struct stripe_head *sh;
N
Namhyung Kim 已提交
1446
	sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1447 1448
	if (!sh)
		return 0;
N
Namhyung Kim 已提交
1449

1450
	sh->raid_conf = conf;
1451 1452 1453
	#ifdef CONFIG_MULTICORE_RAID456
	init_waitqueue_head(&sh->ops.wait_for_ops);
	#endif
1454

1455 1456
	if (grow_buffers(sh)) {
		shrink_buffers(sh);
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
		kmem_cache_free(conf->slab_cache, sh);
		return 0;
	}
	/* we just created an active stripe so... */
	atomic_set(&sh->count, 1);
	atomic_inc(&conf->active_stripes);
	INIT_LIST_HEAD(&sh->lru);
	release_stripe(sh);
	return 1;
}

1468
static int grow_stripes(struct r5conf *conf, int num)
1469
{
1470
	struct kmem_cache *sc;
1471
	int devs = max(conf->raid_disks, conf->previous_raid_disks);
L
Linus Torvalds 已提交
1472

1473 1474 1475 1476 1477 1478 1479 1480
	if (conf->mddev->gendisk)
		sprintf(conf->cache_name[0],
			"raid%d-%s", conf->level, mdname(conf->mddev));
	else
		sprintf(conf->cache_name[0],
			"raid%d-%p", conf->level, conf->mddev);
	sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);

1481 1482
	conf->active_name = 0;
	sc = kmem_cache_create(conf->cache_name[conf->active_name],
L
Linus Torvalds 已提交
1483
			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1484
			       0, 0, NULL);
L
Linus Torvalds 已提交
1485 1486 1487
	if (!sc)
		return 1;
	conf->slab_cache = sc;
1488
	conf->pool_size = devs;
1489
	while (num--)
1490
		if (!grow_one_stripe(conf))
L
Linus Torvalds 已提交
1491 1492 1493
			return 1;
	return 0;
}
1494

1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
/**
 * scribble_len - return the required size of the scribble region
 * @num - total number of disks in the array
 *
 * The size must be enough to contain:
 * 1/ a struct page pointer for each device in the array +2
 * 2/ room to convert each entry in (1) to its corresponding dma
 *    (dma_map_page()) or page (page_address()) address.
 *
 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
 * calculate over all devices (not just the data blocks), using zeros in place
 * of the P and Q blocks.
 */
static size_t scribble_len(int num)
{
	size_t len;

	len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);

	return len;
}

1517
static int resize_stripes(struct r5conf *conf, int newsize)
1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
{
	/* Make all the stripes able to hold 'newsize' devices.
	 * New slots in each stripe get 'page' set to a new page.
	 *
	 * This happens in stages:
	 * 1/ create a new kmem_cache and allocate the required number of
	 *    stripe_heads.
	 * 2/ gather all the old stripe_heads and tranfer the pages across
	 *    to the new stripe_heads.  This will have the side effect of
	 *    freezing the array as once all stripe_heads have been collected,
	 *    no IO will be possible.  Old stripe heads are freed once their
	 *    pages have been transferred over, and the old kmem_cache is
	 *    freed when all stripes are done.
	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
	 *    we simple return a failre status - no need to clean anything up.
	 * 4/ allocate new pages for the new slots in the new stripe_heads.
	 *    If this fails, we don't bother trying the shrink the
	 *    stripe_heads down again, we just leave them as they are.
	 *    As each stripe_head is processed the new one is released into
	 *    active service.
	 *
	 * Once step2 is started, we cannot afford to wait for a write,
	 * so we use GFP_NOIO allocations.
	 */
	struct stripe_head *osh, *nsh;
	LIST_HEAD(newstripes);
	struct disk_info *ndisks;
1545
	unsigned long cpu;
1546
	int err;
1547
	struct kmem_cache *sc;
1548 1549 1550 1551 1552
	int i;

	if (newsize <= conf->pool_size)
		return 0; /* never bother to shrink */

1553 1554 1555
	err = md_allow_write(conf->mddev);
	if (err)
		return err;
1556

1557 1558 1559
	/* Step 1 */
	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1560
			       0, 0, NULL);
1561 1562 1563 1564
	if (!sc)
		return -ENOMEM;

	for (i = conf->max_nr_stripes; i; i--) {
N
Namhyung Kim 已提交
1565
		nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1566 1567 1568 1569
		if (!nsh)
			break;

		nsh->raid_conf = conf;
1570 1571 1572
		#ifdef CONFIG_MULTICORE_RAID456
		init_waitqueue_head(&nsh->ops.wait_for_ops);
		#endif
1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594

		list_add(&nsh->lru, &newstripes);
	}
	if (i) {
		/* didn't get enough, give up */
		while (!list_empty(&newstripes)) {
			nsh = list_entry(newstripes.next, struct stripe_head, lru);
			list_del(&nsh->lru);
			kmem_cache_free(sc, nsh);
		}
		kmem_cache_destroy(sc);
		return -ENOMEM;
	}
	/* Step 2 - Must use GFP_NOIO now.
	 * OK, we have enough stripes, start collecting inactive
	 * stripes and copying them over
	 */
	list_for_each_entry(nsh, &newstripes, lru) {
		spin_lock_irq(&conf->device_lock);
		wait_event_lock_irq(conf->wait_for_stripe,
				    !list_empty(&conf->inactive_list),
				    conf->device_lock,
N
NeilBrown 已提交
1595
				    );
1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609
		osh = get_free_stripe(conf);
		spin_unlock_irq(&conf->device_lock);
		atomic_set(&nsh->count, 1);
		for(i=0; i<conf->pool_size; i++)
			nsh->dev[i].page = osh->dev[i].page;
		for( ; i<newsize; i++)
			nsh->dev[i].page = NULL;
		kmem_cache_free(conf->slab_cache, osh);
	}
	kmem_cache_destroy(conf->slab_cache);

	/* Step 3.
	 * At this point, we are holding all the stripes so the array
	 * is completely stalled, so now is a good time to resize
1610
	 * conf->disks and the scribble region
1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
	 */
	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
	if (ndisks) {
		for (i=0; i<conf->raid_disks; i++)
			ndisks[i] = conf->disks[i];
		kfree(conf->disks);
		conf->disks = ndisks;
	} else
		err = -ENOMEM;

1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
	get_online_cpus();
	conf->scribble_len = scribble_len(newsize);
	for_each_present_cpu(cpu) {
		struct raid5_percpu *percpu;
		void *scribble;

		percpu = per_cpu_ptr(conf->percpu, cpu);
		scribble = kmalloc(conf->scribble_len, GFP_NOIO);

		if (scribble) {
			kfree(percpu->scribble);
			percpu->scribble = scribble;
		} else {
			err = -ENOMEM;
			break;
		}
	}
	put_online_cpus();

1640 1641 1642 1643
	/* Step 4, return new stripes to service */
	while(!list_empty(&newstripes)) {
		nsh = list_entry(newstripes.next, struct stripe_head, lru);
		list_del_init(&nsh->lru);
1644

1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660
		for (i=conf->raid_disks; i < newsize; i++)
			if (nsh->dev[i].page == NULL) {
				struct page *p = alloc_page(GFP_NOIO);
				nsh->dev[i].page = p;
				if (!p)
					err = -ENOMEM;
			}
		release_stripe(nsh);
	}
	/* critical section pass, GFP_NOIO no longer needed */

	conf->slab_cache = sc;
	conf->active_name = 1-conf->active_name;
	conf->pool_size = newsize;
	return err;
}
L
Linus Torvalds 已提交
1661

1662
static int drop_one_stripe(struct r5conf *conf)
L
Linus Torvalds 已提交
1663 1664 1665
{
	struct stripe_head *sh;

1666 1667 1668 1669 1670
	spin_lock_irq(&conf->device_lock);
	sh = get_free_stripe(conf);
	spin_unlock_irq(&conf->device_lock);
	if (!sh)
		return 0;
1671
	BUG_ON(atomic_read(&sh->count));
1672
	shrink_buffers(sh);
1673 1674 1675 1676 1677
	kmem_cache_free(conf->slab_cache, sh);
	atomic_dec(&conf->active_stripes);
	return 1;
}

1678
static void shrink_stripes(struct r5conf *conf)
1679 1680 1681 1682
{
	while (drop_one_stripe(conf))
		;

N
NeilBrown 已提交
1683 1684
	if (conf->slab_cache)
		kmem_cache_destroy(conf->slab_cache);
L
Linus Torvalds 已提交
1685 1686 1687
	conf->slab_cache = NULL;
}

1688
static void raid5_end_read_request(struct bio * bi, int error)
L
Linus Torvalds 已提交
1689
{
1690
	struct stripe_head *sh = bi->bi_private;
1691
	struct r5conf *conf = sh->raid_conf;
1692
	int disks = sh->disks, i;
L
Linus Torvalds 已提交
1693
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1694
	char b[BDEVNAME_SIZE];
1695
	struct md_rdev *rdev = NULL;
1696
	sector_t s;
L
Linus Torvalds 已提交
1697 1698 1699 1700 1701

	for (i=0 ; i<disks; i++)
		if (bi == &sh->dev[i].req)
			break;

1702 1703
	pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
L
Linus Torvalds 已提交
1704 1705 1706
		uptodate);
	if (i == disks) {
		BUG();
1707
		return;
L
Linus Torvalds 已提交
1708
	}
1709
	if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1710 1711 1712 1713 1714
		/* If replacement finished while this request was outstanding,
		 * 'replacement' might be NULL already.
		 * In that case it moved down to 'rdev'.
		 * rdev is not removed until all requests are finished.
		 */
1715
		rdev = conf->disks[i].replacement;
1716
	if (!rdev)
1717
		rdev = conf->disks[i].rdev;
L
Linus Torvalds 已提交
1718

1719 1720 1721 1722
	if (use_new_offset(conf, sh))
		s = sh->sector + rdev->new_data_offset;
	else
		s = sh->sector + rdev->data_offset;
L
Linus Torvalds 已提交
1723 1724
	if (uptodate) {
		set_bit(R5_UPTODATE, &sh->dev[i].flags);
1725
		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1726 1727 1728 1729
			/* Note that this cannot happen on a
			 * replacement device.  We just fail those on
			 * any error
			 */
1730 1731 1732 1733 1734
			printk_ratelimited(
				KERN_INFO
				"md/raid:%s: read error corrected"
				" (%lu sectors at %llu on %s)\n",
				mdname(conf->mddev), STRIPE_SECTORS,
1735
				(unsigned long long)s,
1736
				bdevname(rdev->bdev, b));
1737
			atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1738 1739 1740
			clear_bit(R5_ReadError, &sh->dev[i].flags);
			clear_bit(R5_ReWrite, &sh->dev[i].flags);
		}
1741 1742
		if (atomic_read(&rdev->read_errors))
			atomic_set(&rdev->read_errors, 0);
L
Linus Torvalds 已提交
1743
	} else {
1744
		const char *bdn = bdevname(rdev->bdev, b);
1745
		int retry = 0;
1746
		int set_bad = 0;
1747

L
Linus Torvalds 已提交
1748
		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1749
		atomic_inc(&rdev->read_errors);
1750 1751 1752 1753 1754 1755
		if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
			printk_ratelimited(
				KERN_WARNING
				"md/raid:%s: read error on replacement device "
				"(sector %llu on %s).\n",
				mdname(conf->mddev),
1756
				(unsigned long long)s,
1757
				bdn);
1758 1759
		else if (conf->mddev->degraded >= conf->max_degraded) {
			set_bad = 1;
1760 1761 1762 1763 1764
			printk_ratelimited(
				KERN_WARNING
				"md/raid:%s: read error not correctable "
				"(sector %llu on %s).\n",
				mdname(conf->mddev),
1765
				(unsigned long long)s,
1766
				bdn);
1767
		} else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
1768
			/* Oh, no!!! */
1769
			set_bad = 1;
1770 1771 1772 1773 1774
			printk_ratelimited(
				KERN_WARNING
				"md/raid:%s: read error NOT corrected!! "
				"(sector %llu on %s).\n",
				mdname(conf->mddev),
1775
				(unsigned long long)s,
1776
				bdn);
1777
		} else if (atomic_read(&rdev->read_errors)
1778
			 > conf->max_nr_stripes)
N
NeilBrown 已提交
1779
			printk(KERN_WARNING
1780
			       "md/raid:%s: Too many read errors, failing device %s.\n",
1781
			       mdname(conf->mddev), bdn);
1782 1783 1784 1785 1786
		else
			retry = 1;
		if (retry)
			set_bit(R5_ReadError, &sh->dev[i].flags);
		else {
1787 1788
			clear_bit(R5_ReadError, &sh->dev[i].flags);
			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1789 1790 1791 1792 1793
			if (!(set_bad
			      && test_bit(In_sync, &rdev->flags)
			      && rdev_set_badblocks(
				      rdev, sh->sector, STRIPE_SECTORS, 0)))
				md_error(conf->mddev, rdev);
1794
		}
L
Linus Torvalds 已提交
1795
	}
1796
	rdev_dec_pending(rdev, conf->mddev);
L
Linus Torvalds 已提交
1797 1798 1799 1800 1801
	clear_bit(R5_LOCKED, &sh->dev[i].flags);
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

1802
static void raid5_end_write_request(struct bio *bi, int error)
L
Linus Torvalds 已提交
1803
{
1804
	struct stripe_head *sh = bi->bi_private;
1805
	struct r5conf *conf = sh->raid_conf;
1806
	int disks = sh->disks, i;
1807
	struct md_rdev *uninitialized_var(rdev);
L
Linus Torvalds 已提交
1808
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1809 1810
	sector_t first_bad;
	int bad_sectors;
1811
	int replacement = 0;
L
Linus Torvalds 已提交
1812

1813 1814 1815
	for (i = 0 ; i < disks; i++) {
		if (bi == &sh->dev[i].req) {
			rdev = conf->disks[i].rdev;
L
Linus Torvalds 已提交
1816
			break;
1817 1818 1819
		}
		if (bi == &sh->dev[i].rreq) {
			rdev = conf->disks[i].replacement;
1820 1821 1822 1823 1824 1825 1826 1827
			if (rdev)
				replacement = 1;
			else
				/* rdev was removed and 'replacement'
				 * replaced it.  rdev is not removed
				 * until all requests are finished.
				 */
				rdev = conf->disks[i].rdev;
1828 1829 1830
			break;
		}
	}
1831
	pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
L
Linus Torvalds 已提交
1832 1833 1834 1835
		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
		uptodate);
	if (i == disks) {
		BUG();
1836
		return;
L
Linus Torvalds 已提交
1837 1838
	}

1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
	if (replacement) {
		if (!uptodate)
			md_error(conf->mddev, rdev);
		else if (is_badblock(rdev, sh->sector,
				     STRIPE_SECTORS,
				     &first_bad, &bad_sectors))
			set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
	} else {
		if (!uptodate) {
			set_bit(WriteErrorSeen, &rdev->flags);
			set_bit(R5_WriteError, &sh->dev[i].flags);
1850 1851 1852
			if (!test_and_set_bit(WantReplacement, &rdev->flags))
				set_bit(MD_RECOVERY_NEEDED,
					&rdev->mddev->recovery);
1853 1854 1855 1856 1857 1858
		} else if (is_badblock(rdev, sh->sector,
				       STRIPE_SECTORS,
				       &first_bad, &bad_sectors))
			set_bit(R5_MadeGood, &sh->dev[i].flags);
	}
	rdev_dec_pending(rdev, conf->mddev);
L
Linus Torvalds 已提交
1859

1860 1861
	if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
		clear_bit(R5_LOCKED, &sh->dev[i].flags);
L
Linus Torvalds 已提交
1862
	set_bit(STRIPE_HANDLE, &sh->state);
1863
	release_stripe(sh);
L
Linus Torvalds 已提交
1864 1865
}

1866
static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
L
Linus Torvalds 已提交
1867
	
1868
static void raid5_build_block(struct stripe_head *sh, int i, int previous)
L
Linus Torvalds 已提交
1869 1870 1871 1872 1873 1874 1875 1876
{
	struct r5dev *dev = &sh->dev[i];

	bio_init(&dev->req);
	dev->req.bi_io_vec = &dev->vec;
	dev->req.bi_vcnt++;
	dev->req.bi_max_vecs++;
	dev->req.bi_private = sh;
1877
	dev->vec.bv_page = dev->page;
L
Linus Torvalds 已提交
1878

1879 1880 1881 1882 1883 1884 1885
	bio_init(&dev->rreq);
	dev->rreq.bi_io_vec = &dev->rvec;
	dev->rreq.bi_vcnt++;
	dev->rreq.bi_max_vecs++;
	dev->rreq.bi_private = sh;
	dev->rvec.bv_page = dev->page;

L
Linus Torvalds 已提交
1886
	dev->flags = 0;
1887
	dev->sector = compute_blocknr(sh, i, previous);
L
Linus Torvalds 已提交
1888 1889
}

1890
static void error(struct mddev *mddev, struct md_rdev *rdev)
L
Linus Torvalds 已提交
1891 1892
{
	char b[BDEVNAME_SIZE];
1893
	struct r5conf *conf = mddev->private;
1894
	unsigned long flags;
1895
	pr_debug("raid456: error called\n");
L
Linus Torvalds 已提交
1896

1897 1898 1899 1900 1901 1902
	spin_lock_irqsave(&conf->device_lock, flags);
	clear_bit(In_sync, &rdev->flags);
	mddev->degraded = calc_degraded(conf);
	spin_unlock_irqrestore(&conf->device_lock, flags);
	set_bit(MD_RECOVERY_INTR, &mddev->recovery);

1903
	set_bit(Blocked, &rdev->flags);
1904 1905 1906 1907 1908 1909 1910 1911 1912
	set_bit(Faulty, &rdev->flags);
	set_bit(MD_CHANGE_DEVS, &mddev->flags);
	printk(KERN_ALERT
	       "md/raid:%s: Disk failure on %s, disabling device.\n"
	       "md/raid:%s: Operation continuing on %d devices.\n",
	       mdname(mddev),
	       bdevname(rdev->bdev, b),
	       mdname(mddev),
	       conf->raid_disks - mddev->degraded);
1913
}
L
Linus Torvalds 已提交
1914 1915 1916 1917 1918

/*
 * Input: a 'big' sector number,
 * Output: index of the data and parity disk, and the sector # in them.
 */
1919
static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
1920 1921
				     int previous, int *dd_idx,
				     struct stripe_head *sh)
L
Linus Torvalds 已提交
1922
{
N
NeilBrown 已提交
1923
	sector_t stripe, stripe2;
1924
	sector_t chunk_number;
L
Linus Torvalds 已提交
1925
	unsigned int chunk_offset;
1926
	int pd_idx, qd_idx;
1927
	int ddf_layout = 0;
L
Linus Torvalds 已提交
1928
	sector_t new_sector;
1929 1930
	int algorithm = previous ? conf->prev_algo
				 : conf->algorithm;
1931 1932
	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
					 : conf->chunk_sectors;
1933 1934 1935
	int raid_disks = previous ? conf->previous_raid_disks
				  : conf->raid_disks;
	int data_disks = raid_disks - conf->max_degraded;
L
Linus Torvalds 已提交
1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947

	/* First compute the information on this sector */

	/*
	 * Compute the chunk number and the sector offset inside the chunk
	 */
	chunk_offset = sector_div(r_sector, sectors_per_chunk);
	chunk_number = r_sector;

	/*
	 * Compute the stripe number
	 */
1948 1949
	stripe = chunk_number;
	*dd_idx = sector_div(stripe, data_disks);
N
NeilBrown 已提交
1950
	stripe2 = stripe;
L
Linus Torvalds 已提交
1951 1952 1953
	/*
	 * Select the parity disk based on the user selected algorithm.
	 */
1954
	pd_idx = qd_idx = -1;
1955 1956
	switch(conf->level) {
	case 4:
1957
		pd_idx = data_disks;
1958 1959
		break;
	case 5:
1960
		switch (algorithm) {
L
Linus Torvalds 已提交
1961
		case ALGORITHM_LEFT_ASYMMETRIC:
N
NeilBrown 已提交
1962
			pd_idx = data_disks - sector_div(stripe2, raid_disks);
1963
			if (*dd_idx >= pd_idx)
L
Linus Torvalds 已提交
1964 1965 1966
				(*dd_idx)++;
			break;
		case ALGORITHM_RIGHT_ASYMMETRIC:
N
NeilBrown 已提交
1967
			pd_idx = sector_div(stripe2, raid_disks);
1968
			if (*dd_idx >= pd_idx)
L
Linus Torvalds 已提交
1969 1970 1971
				(*dd_idx)++;
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
N
NeilBrown 已提交
1972
			pd_idx = data_disks - sector_div(stripe2, raid_disks);
1973
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
L
Linus Torvalds 已提交
1974 1975
			break;
		case ALGORITHM_RIGHT_SYMMETRIC:
N
NeilBrown 已提交
1976
			pd_idx = sector_div(stripe2, raid_disks);
1977
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
L
Linus Torvalds 已提交
1978
			break;
1979 1980 1981 1982 1983 1984 1985
		case ALGORITHM_PARITY_0:
			pd_idx = 0;
			(*dd_idx)++;
			break;
		case ALGORITHM_PARITY_N:
			pd_idx = data_disks;
			break;
L
Linus Torvalds 已提交
1986
		default:
1987
			BUG();
1988 1989 1990 1991
		}
		break;
	case 6:

1992
		switch (algorithm) {
1993
		case ALGORITHM_LEFT_ASYMMETRIC:
N
NeilBrown 已提交
1994
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1995 1996
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
1997
				(*dd_idx)++;	/* Q D D D P */
1998 1999
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
2000 2001 2002
				(*dd_idx) += 2; /* D D P Q D */
			break;
		case ALGORITHM_RIGHT_ASYMMETRIC:
N
NeilBrown 已提交
2003
			pd_idx = sector_div(stripe2, raid_disks);
2004 2005
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
2006
				(*dd_idx)++;	/* Q D D D P */
2007 2008
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
2009 2010 2011
				(*dd_idx) += 2; /* D D P Q D */
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
N
NeilBrown 已提交
2012
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2013 2014
			qd_idx = (pd_idx + 1) % raid_disks;
			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2015 2016
			break;
		case ALGORITHM_RIGHT_SYMMETRIC:
N
NeilBrown 已提交
2017
			pd_idx = sector_div(stripe2, raid_disks);
2018 2019
			qd_idx = (pd_idx + 1) % raid_disks;
			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2020
			break;
2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035

		case ALGORITHM_PARITY_0:
			pd_idx = 0;
			qd_idx = 1;
			(*dd_idx) += 2;
			break;
		case ALGORITHM_PARITY_N:
			pd_idx = data_disks;
			qd_idx = data_disks + 1;
			break;

		case ALGORITHM_ROTATING_ZERO_RESTART:
			/* Exactly the same as RIGHT_ASYMMETRIC, but or
			 * of blocks for computing Q is different.
			 */
N
NeilBrown 已提交
2036
			pd_idx = sector_div(stripe2, raid_disks);
2037 2038 2039 2040 2041 2042
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
				(*dd_idx)++;	/* Q D D D P */
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
				(*dd_idx) += 2; /* D D P Q D */
2043
			ddf_layout = 1;
2044 2045 2046 2047 2048 2049 2050
			break;

		case ALGORITHM_ROTATING_N_RESTART:
			/* Same a left_asymmetric, by first stripe is
			 * D D D P Q  rather than
			 * Q D D D P
			 */
N
NeilBrown 已提交
2051 2052
			stripe2 += 1;
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2053 2054 2055 2056 2057 2058
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
				(*dd_idx)++;	/* Q D D D P */
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
				(*dd_idx) += 2; /* D D P Q D */
2059
			ddf_layout = 1;
2060 2061 2062 2063
			break;

		case ALGORITHM_ROTATING_N_CONTINUE:
			/* Same as left_symmetric but Q is before P */
N
NeilBrown 已提交
2064
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2065 2066
			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2067
			ddf_layout = 1;
2068 2069 2070 2071
			break;

		case ALGORITHM_LEFT_ASYMMETRIC_6:
			/* RAID5 left_asymmetric, with Q on last device */
N
NeilBrown 已提交
2072
			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2073 2074 2075 2076 2077 2078
			if (*dd_idx >= pd_idx)
				(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_RIGHT_ASYMMETRIC_6:
N
NeilBrown 已提交
2079
			pd_idx = sector_div(stripe2, raid_disks-1);
2080 2081 2082 2083 2084 2085
			if (*dd_idx >= pd_idx)
				(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_LEFT_SYMMETRIC_6:
N
NeilBrown 已提交
2086
			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2087 2088 2089 2090 2091
			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_RIGHT_SYMMETRIC_6:
N
NeilBrown 已提交
2092
			pd_idx = sector_div(stripe2, raid_disks-1);
2093 2094 2095 2096 2097 2098 2099 2100 2101 2102
			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_PARITY_0_6:
			pd_idx = 0;
			(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

2103
		default:
2104
			BUG();
2105 2106
		}
		break;
L
Linus Torvalds 已提交
2107 2108
	}

2109 2110 2111
	if (sh) {
		sh->pd_idx = pd_idx;
		sh->qd_idx = qd_idx;
2112
		sh->ddf_layout = ddf_layout;
2113
	}
L
Linus Torvalds 已提交
2114 2115 2116 2117 2118 2119 2120 2121
	/*
	 * Finally, compute the new sector number
	 */
	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
	return new_sector;
}


2122
static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
L
Linus Torvalds 已提交
2123
{
2124
	struct r5conf *conf = sh->raid_conf;
2125 2126
	int raid_disks = sh->disks;
	int data_disks = raid_disks - conf->max_degraded;
L
Linus Torvalds 已提交
2127
	sector_t new_sector = sh->sector, check;
2128 2129
	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
					 : conf->chunk_sectors;
2130 2131
	int algorithm = previous ? conf->prev_algo
				 : conf->algorithm;
L
Linus Torvalds 已提交
2132 2133
	sector_t stripe;
	int chunk_offset;
2134 2135
	sector_t chunk_number;
	int dummy1, dd_idx = i;
L
Linus Torvalds 已提交
2136
	sector_t r_sector;
2137
	struct stripe_head sh2;
L
Linus Torvalds 已提交
2138

2139

L
Linus Torvalds 已提交
2140 2141 2142
	chunk_offset = sector_div(new_sector, sectors_per_chunk);
	stripe = new_sector;

2143 2144 2145 2146 2147
	if (i == sh->pd_idx)
		return 0;
	switch(conf->level) {
	case 4: break;
	case 5:
2148
		switch (algorithm) {
L
Linus Torvalds 已提交
2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
		case ALGORITHM_LEFT_ASYMMETRIC:
		case ALGORITHM_RIGHT_ASYMMETRIC:
			if (i > sh->pd_idx)
				i--;
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
		case ALGORITHM_RIGHT_SYMMETRIC:
			if (i < sh->pd_idx)
				i += raid_disks;
			i -= (sh->pd_idx + 1);
			break;
2160 2161 2162 2163 2164
		case ALGORITHM_PARITY_0:
			i -= 1;
			break;
		case ALGORITHM_PARITY_N:
			break;
L
Linus Torvalds 已提交
2165
		default:
2166
			BUG();
2167 2168 2169
		}
		break;
	case 6:
2170
		if (i == sh->qd_idx)
2171
			return 0; /* It is the Q disk */
2172
		switch (algorithm) {
2173 2174
		case ALGORITHM_LEFT_ASYMMETRIC:
		case ALGORITHM_RIGHT_ASYMMETRIC:
2175 2176 2177 2178
		case ALGORITHM_ROTATING_ZERO_RESTART:
		case ALGORITHM_ROTATING_N_RESTART:
			if (sh->pd_idx == raid_disks-1)
				i--;	/* Q D D D P */
2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192
			else if (i > sh->pd_idx)
				i -= 2; /* D D P Q D */
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
		case ALGORITHM_RIGHT_SYMMETRIC:
			if (sh->pd_idx == raid_disks-1)
				i--; /* Q D D D P */
			else {
				/* D D P Q D */
				if (i < sh->pd_idx)
					i += raid_disks;
				i -= (sh->pd_idx + 2);
			}
			break;
2193 2194 2195 2196 2197 2198
		case ALGORITHM_PARITY_0:
			i -= 2;
			break;
		case ALGORITHM_PARITY_N:
			break;
		case ALGORITHM_ROTATING_N_CONTINUE:
2199
			/* Like left_symmetric, but P is before Q */
2200 2201
			if (sh->pd_idx == 0)
				i--;	/* P D D D Q */
2202 2203 2204 2205 2206 2207
			else {
				/* D D Q P D */
				if (i < sh->pd_idx)
					i += raid_disks;
				i -= (sh->pd_idx + 1);
			}
2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222
			break;
		case ALGORITHM_LEFT_ASYMMETRIC_6:
		case ALGORITHM_RIGHT_ASYMMETRIC_6:
			if (i > sh->pd_idx)
				i--;
			break;
		case ALGORITHM_LEFT_SYMMETRIC_6:
		case ALGORITHM_RIGHT_SYMMETRIC_6:
			if (i < sh->pd_idx)
				i += data_disks + 1;
			i -= (sh->pd_idx + 1);
			break;
		case ALGORITHM_PARITY_0_6:
			i -= 1;
			break;
2223
		default:
2224
			BUG();
2225 2226
		}
		break;
L
Linus Torvalds 已提交
2227 2228 2229
	}

	chunk_number = stripe * data_disks + i;
2230
	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
L
Linus Torvalds 已提交
2231

2232
	check = raid5_compute_sector(conf, r_sector,
2233
				     previous, &dummy1, &sh2);
2234 2235
	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
		|| sh2.qd_idx != sh->qd_idx) {
2236 2237
		printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
		       mdname(conf->mddev));
L
Linus Torvalds 已提交
2238 2239 2240 2241 2242 2243
		return 0;
	}
	return r_sector;
}


2244
static void
2245
schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2246
			 int rcw, int expand)
2247 2248
{
	int i, pd_idx = sh->pd_idx, disks = sh->disks;
2249
	struct r5conf *conf = sh->raid_conf;
2250
	int level = conf->level;
2251 2252 2253 2254 2255 2256 2257

	if (rcw) {
		/* if we are not expanding this is a proper write request, and
		 * there will be bios with new data to be drained into the
		 * stripe cache
		 */
		if (!expand) {
2258 2259 2260 2261
			sh->reconstruct_state = reconstruct_state_drain_run;
			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
		} else
			sh->reconstruct_state = reconstruct_state_run;
2262

2263
		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2264 2265 2266 2267 2268 2269

		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];

			if (dev->towrite) {
				set_bit(R5_LOCKED, &dev->flags);
2270
				set_bit(R5_Wantdrain, &dev->flags);
2271 2272
				if (!expand)
					clear_bit(R5_UPTODATE, &dev->flags);
2273
				s->locked++;
2274 2275
			}
		}
2276
		if (s->locked + conf->max_degraded == disks)
2277
			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2278
				atomic_inc(&conf->pending_full_writes);
2279
	} else {
2280
		BUG_ON(level == 6);
2281 2282 2283
		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));

2284
		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2285 2286
		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2287
		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2288 2289 2290 2291 2292 2293 2294 2295

		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (i == pd_idx)
				continue;

			if (dev->towrite &&
			    (test_bit(R5_UPTODATE, &dev->flags) ||
2296 2297
			     test_bit(R5_Wantcompute, &dev->flags))) {
				set_bit(R5_Wantdrain, &dev->flags);
2298 2299
				set_bit(R5_LOCKED, &dev->flags);
				clear_bit(R5_UPTODATE, &dev->flags);
2300
				s->locked++;
2301 2302 2303 2304
			}
		}
	}

2305
	/* keep the parity disk(s) locked while asynchronous operations
2306 2307 2308 2309
	 * are in flight
	 */
	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2310
	s->locked++;
2311

2312 2313 2314 2315 2316 2317 2318 2319 2320
	if (level == 6) {
		int qd_idx = sh->qd_idx;
		struct r5dev *dev = &sh->dev[qd_idx];

		set_bit(R5_LOCKED, &dev->flags);
		clear_bit(R5_UPTODATE, &dev->flags);
		s->locked++;
	}

2321
	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2322
		__func__, (unsigned long long)sh->sector,
2323
		s->locked, s->ops_request);
2324
}
2325

L
Linus Torvalds 已提交
2326 2327
/*
 * Each stripe/dev can have one or more bion attached.
2328
 * toread/towrite point to the first in a chain.
L
Linus Torvalds 已提交
2329 2330 2331 2332 2333
 * The bi_next chain must be in order.
 */
static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
{
	struct bio **bip;
2334
	struct r5conf *conf = sh->raid_conf;
2335
	int firstwrite=0;
L
Linus Torvalds 已提交
2336

2337
	pr_debug("adding bi b#%llu to stripe s#%llu\n",
L
Linus Torvalds 已提交
2338 2339 2340 2341 2342
		(unsigned long long)bi->bi_sector,
		(unsigned long long)sh->sector);


	spin_lock_irq(&conf->device_lock);
2343
	if (forwrite) {
L
Linus Torvalds 已提交
2344
		bip = &sh->dev[dd_idx].towrite;
2345 2346 2347
		if (*bip == NULL && sh->dev[dd_idx].written == NULL)
			firstwrite = 1;
	} else
L
Linus Torvalds 已提交
2348 2349 2350 2351 2352 2353 2354 2355 2356
		bip = &sh->dev[dd_idx].toread;
	while (*bip && (*bip)->bi_sector < bi->bi_sector) {
		if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
			goto overlap;
		bip = & (*bip)->bi_next;
	}
	if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
		goto overlap;

2357
	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
L
Linus Torvalds 已提交
2358 2359 2360
	if (*bip)
		bi->bi_next = *bip;
	*bip = bi;
2361
	bi->bi_phys_segments++;
2362

L
Linus Torvalds 已提交
2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375
	if (forwrite) {
		/* check if page is covered */
		sector_t sector = sh->dev[dd_idx].sector;
		for (bi=sh->dev[dd_idx].towrite;
		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
			     bi && bi->bi_sector <= sector;
		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
			if (bi->bi_sector + (bi->bi_size>>9) >= sector)
				sector = bi->bi_sector + (bi->bi_size>>9);
		}
		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
			set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
	}
2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387
	spin_unlock_irq(&conf->device_lock);

	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
		(unsigned long long)(*bip)->bi_sector,
		(unsigned long long)sh->sector, dd_idx);

	if (conf->mddev->bitmap && firstwrite) {
		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
				  STRIPE_SECTORS, 0);
		sh->bm_seq = conf->seq_flush+1;
		set_bit(STRIPE_BIT_DELAY, &sh->state);
	}
L
Linus Torvalds 已提交
2388 2389 2390 2391 2392 2393 2394 2395
	return 1;

 overlap:
	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
	spin_unlock_irq(&conf->device_lock);
	return 0;
}

2396
static void end_reshape(struct r5conf *conf);
2397

2398
static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
2399
			    struct stripe_head *sh)
2400
{
2401
	int sectors_per_chunk =
2402
		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2403
	int dd_idx;
2404
	int chunk_offset = sector_div(stripe, sectors_per_chunk);
2405
	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2406

2407 2408
	raid5_compute_sector(conf,
			     stripe * (disks - conf->max_degraded)
2409
			     *sectors_per_chunk + chunk_offset,
2410
			     previous,
2411
			     &dd_idx, sh);
2412 2413
}

2414
static void
2415
handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
2416 2417 2418 2419 2420 2421 2422 2423 2424
				struct stripe_head_state *s, int disks,
				struct bio **return_bi)
{
	int i;
	for (i = disks; i--; ) {
		struct bio *bi;
		int bitmap_end = 0;

		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2425
			struct md_rdev *rdev;
2426 2427 2428
			rcu_read_lock();
			rdev = rcu_dereference(conf->disks[i].rdev);
			if (rdev && test_bit(In_sync, &rdev->flags))
2429 2430 2431
				atomic_inc(&rdev->nr_pending);
			else
				rdev = NULL;
2432
			rcu_read_unlock();
2433 2434 2435 2436 2437 2438 2439 2440
			if (rdev) {
				if (!rdev_set_badblocks(
					    rdev,
					    sh->sector,
					    STRIPE_SECTORS, 0))
					md_error(conf->mddev, rdev);
				rdev_dec_pending(rdev, conf->mddev);
			}
2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457
		}
		spin_lock_irq(&conf->device_lock);
		/* fail all writes first */
		bi = sh->dev[i].towrite;
		sh->dev[i].towrite = NULL;
		if (bi) {
			s->to_write--;
			bitmap_end = 1;
		}

		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
			wake_up(&conf->wait_for_overlap);

		while (bi && bi->bi_sector <
			sh->dev[i].sector + STRIPE_SECTORS) {
			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2458
			if (!raid5_dec_bi_phys_segments(bi)) {
2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472
				md_write_end(conf->mddev);
				bi->bi_next = *return_bi;
				*return_bi = bi;
			}
			bi = nextbi;
		}
		/* and fail all 'written' */
		bi = sh->dev[i].written;
		sh->dev[i].written = NULL;
		if (bi) bitmap_end = 1;
		while (bi && bi->bi_sector <
		       sh->dev[i].sector + STRIPE_SECTORS) {
			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2473
			if (!raid5_dec_bi_phys_segments(bi)) {
2474 2475 2476 2477 2478 2479 2480
				md_write_end(conf->mddev);
				bi->bi_next = *return_bi;
				*return_bi = bi;
			}
			bi = bi2;
		}

2481 2482 2483 2484 2485 2486
		/* fail any reads if this device is non-operational and
		 * the data has not reached the cache yet.
		 */
		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
2487 2488 2489 2490 2491 2492 2493 2494 2495 2496
			bi = sh->dev[i].toread;
			sh->dev[i].toread = NULL;
			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
				wake_up(&conf->wait_for_overlap);
			if (bi) s->to_read--;
			while (bi && bi->bi_sector <
			       sh->dev[i].sector + STRIPE_SECTORS) {
				struct bio *nextbi =
					r5_next_bio(bi, sh->dev[i].sector);
				clear_bit(BIO_UPTODATE, &bi->bi_flags);
2497
				if (!raid5_dec_bi_phys_segments(bi)) {
2498 2499 2500 2501 2502 2503 2504 2505 2506 2507
					bi->bi_next = *return_bi;
					*return_bi = bi;
				}
				bi = nextbi;
			}
		}
		spin_unlock_irq(&conf->device_lock);
		if (bitmap_end)
			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
					STRIPE_SECTORS, 0, 0);
2508 2509 2510 2511
		/* If we were in the middle of a write the parity block might
		 * still be locked - so just clear all R5_LOCKED flags
		 */
		clear_bit(R5_LOCKED, &sh->dev[i].flags);
2512 2513
	}

2514 2515 2516
	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
		if (atomic_dec_and_test(&conf->pending_full_writes))
			md_wakeup_thread(conf->mddev->thread);
2517 2518
}

2519
static void
2520
handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
2521 2522 2523 2524 2525 2526 2527
		   struct stripe_head_state *s)
{
	int abort = 0;
	int i;

	clear_bit(STRIPE_SYNCING, &sh->state);
	s->syncing = 0;
2528
	s->replacing = 0;
2529
	/* There is nothing more to do for sync/check/repair.
2530 2531 2532
	 * Don't even need to abort as that is handled elsewhere
	 * if needed, and not always wanted e.g. if there is a known
	 * bad block here.
2533
	 * For recover/replace we need to record a bad block on all
2534 2535
	 * non-sync devices, or abort the recovery
	 */
2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558
	if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
		/* During recovery devices cannot be removed, so
		 * locking and refcounting of rdevs is not needed
		 */
		for (i = 0; i < conf->raid_disks; i++) {
			struct md_rdev *rdev = conf->disks[i].rdev;
			if (rdev
			    && !test_bit(Faulty, &rdev->flags)
			    && !test_bit(In_sync, &rdev->flags)
			    && !rdev_set_badblocks(rdev, sh->sector,
						   STRIPE_SECTORS, 0))
				abort = 1;
			rdev = conf->disks[i].replacement;
			if (rdev
			    && !test_bit(Faulty, &rdev->flags)
			    && !test_bit(In_sync, &rdev->flags)
			    && !rdev_set_badblocks(rdev, sh->sector,
						   STRIPE_SECTORS, 0))
				abort = 1;
		}
		if (abort)
			conf->recovery_disabled =
				conf->mddev->recovery_disabled;
2559
	}
2560
	md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
2561 2562
}

2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578
static int want_replace(struct stripe_head *sh, int disk_idx)
{
	struct md_rdev *rdev;
	int rv = 0;
	/* Doing recovery so rcu locking not required */
	rdev = sh->raid_conf->disks[disk_idx].replacement;
	if (rdev
	    && !test_bit(Faulty, &rdev->flags)
	    && !test_bit(In_sync, &rdev->flags)
	    && (rdev->recovery_offset <= sh->sector
		|| rdev->mddev->recovery_cp <= sh->sector))
		rv = 1;

	return rv;
}

2579
/* fetch_block - checks the given member device to see if its data needs
2580 2581 2582
 * to be read or computed to satisfy a request.
 *
 * Returns 1 when no more member devices need to be checked, otherwise returns
2583
 * 0 to tell the loop in handle_stripe_fill to continue
2584
 */
2585 2586
static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
		       int disk_idx, int disks)
2587
{
2588
	struct r5dev *dev = &sh->dev[disk_idx];
2589 2590
	struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
				  &sh->dev[s->failed_num[1]] };
2591

2592
	/* is the data in this block needed, and can we get it? */
2593 2594 2595 2596 2597
	if (!test_bit(R5_LOCKED, &dev->flags) &&
	    !test_bit(R5_UPTODATE, &dev->flags) &&
	    (dev->toread ||
	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
	     s->syncing || s->expanding ||
2598
	     (s->replacing && want_replace(sh, disk_idx)) ||
2599 2600
	     (s->failed >= 1 && fdev[0]->toread) ||
	     (s->failed >= 2 && fdev[1]->toread) ||
2601 2602 2603
	     (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
	      !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
	     (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
2604 2605 2606 2607 2608 2609
		/* we would like to get this block, possibly by computing it,
		 * otherwise read it if the backing disk is insync
		 */
		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
		BUG_ON(test_bit(R5_Wantread, &dev->flags));
		if ((s->uptodate == disks - 1) &&
2610 2611
		    (s->failed && (disk_idx == s->failed_num[0] ||
				   disk_idx == s->failed_num[1]))) {
2612 2613
			/* have disk failed, and we're requested to fetch it;
			 * do compute it
2614
			 */
2615 2616 2617 2618 2619 2620 2621 2622
			pr_debug("Computing stripe %llu block %d\n",
			       (unsigned long long)sh->sector, disk_idx);
			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
			set_bit(R5_Wantcompute, &dev->flags);
			sh->ops.target = disk_idx;
			sh->ops.target2 = -1; /* no 2nd target */
			s->req_compute = 1;
2623 2624 2625 2626 2627 2628
			/* Careful: from this point on 'uptodate' is in the eye
			 * of raid_run_ops which services 'compute' operations
			 * before writes. R5_Wantcompute flags a block that will
			 * be R5_UPTODATE by the time it is needed for a
			 * subsequent operation.
			 */
2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641
			s->uptodate++;
			return 1;
		} else if (s->uptodate == disks-2 && s->failed >= 2) {
			/* Computing 2-failure is *very* expensive; only
			 * do it if failed >= 2
			 */
			int other;
			for (other = disks; other--; ) {
				if (other == disk_idx)
					continue;
				if (!test_bit(R5_UPTODATE,
				      &sh->dev[other].flags))
					break;
2642
			}
2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661
			BUG_ON(other < 0);
			pr_debug("Computing stripe %llu blocks %d,%d\n",
			       (unsigned long long)sh->sector,
			       disk_idx, other);
			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
			set_bit(R5_Wantcompute, &sh->dev[other].flags);
			sh->ops.target = disk_idx;
			sh->ops.target2 = other;
			s->uptodate += 2;
			s->req_compute = 1;
			return 1;
		} else if (test_bit(R5_Insync, &dev->flags)) {
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantread, &dev->flags);
			s->locked++;
			pr_debug("Reading block %d (sync=%d)\n",
				disk_idx, s->syncing);
2662 2663
		}
	}
2664 2665 2666 2667 2668

	return 0;
}

/**
2669
 * handle_stripe_fill - read or compute data to satisfy pending requests.
2670
 */
2671 2672 2673
static void handle_stripe_fill(struct stripe_head *sh,
			       struct stripe_head_state *s,
			       int disks)
2674 2675 2676 2677 2678 2679 2680 2681 2682 2683
{
	int i;

	/* look for blocks to read/compute, skip this if a compute
	 * is already in flight, or if the stripe contents are in the
	 * midst of changing due to a write
	 */
	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
	    !sh->reconstruct_state)
		for (i = disks; i--; )
2684
			if (fetch_block(sh, s, i, disks))
2685
				break;
2686 2687 2688 2689
	set_bit(STRIPE_HANDLE, &sh->state);
}


2690
/* handle_stripe_clean_event
2691 2692 2693 2694
 * any written block on an uptodate or failed drive can be returned.
 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
 * never LOCKED, so we don't need to test 'failed' directly.
 */
2695
static void handle_stripe_clean_event(struct r5conf *conf,
2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708
	struct stripe_head *sh, int disks, struct bio **return_bi)
{
	int i;
	struct r5dev *dev;

	for (i = disks; i--; )
		if (sh->dev[i].written) {
			dev = &sh->dev[i];
			if (!test_bit(R5_LOCKED, &dev->flags) &&
				test_bit(R5_UPTODATE, &dev->flags)) {
				/* We can return any write requests */
				struct bio *wbi, *wbi2;
				int bitmap_end = 0;
2709
				pr_debug("Return write for disc %d\n", i);
2710 2711 2712 2713 2714 2715
				spin_lock_irq(&conf->device_lock);
				wbi = dev->written;
				dev->written = NULL;
				while (wbi && wbi->bi_sector <
					dev->sector + STRIPE_SECTORS) {
					wbi2 = r5_next_bio(wbi, dev->sector);
2716
					if (!raid5_dec_bi_phys_segments(wbi)) {
2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733
						md_write_end(conf->mddev);
						wbi->bi_next = *return_bi;
						*return_bi = wbi;
					}
					wbi = wbi2;
				}
				if (dev->towrite == NULL)
					bitmap_end = 1;
				spin_unlock_irq(&conf->device_lock);
				if (bitmap_end)
					bitmap_endwrite(conf->mddev->bitmap,
							sh->sector,
							STRIPE_SECTORS,
					 !test_bit(STRIPE_DEGRADED, &sh->state),
							0);
			}
		}
2734 2735 2736 2737

	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
		if (atomic_dec_and_test(&conf->pending_full_writes))
			md_wakeup_thread(conf->mddev->thread);
2738 2739
}

2740
static void handle_stripe_dirtying(struct r5conf *conf,
2741 2742 2743
				   struct stripe_head *sh,
				   struct stripe_head_state *s,
				   int disks)
2744 2745
{
	int rmw = 0, rcw = 0, i;
2746 2747 2748 2749 2750 2751 2752
	if (conf->max_degraded == 2) {
		/* RAID6 requires 'rcw' in current implementation
		 * Calculate the real rcw later - for now fake it
		 * look like rcw is cheaper
		 */
		rcw = 1; rmw = 2;
	} else for (i = disks; i--; ) {
2753 2754 2755 2756
		/* would I have to read this buffer for read_modify_write */
		struct r5dev *dev = &sh->dev[i];
		if ((dev->towrite || i == sh->pd_idx) &&
		    !test_bit(R5_LOCKED, &dev->flags) &&
2757 2758
		    !(test_bit(R5_UPTODATE, &dev->flags) ||
		      test_bit(R5_Wantcompute, &dev->flags))) {
2759 2760 2761 2762 2763 2764 2765 2766
			if (test_bit(R5_Insync, &dev->flags))
				rmw++;
			else
				rmw += 2*disks;  /* cannot read it */
		}
		/* Would I have to read this buffer for reconstruct_write */
		if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
		    !test_bit(R5_LOCKED, &dev->flags) &&
2767 2768 2769
		    !(test_bit(R5_UPTODATE, &dev->flags) ||
		    test_bit(R5_Wantcompute, &dev->flags))) {
			if (test_bit(R5_Insync, &dev->flags)) rcw++;
2770 2771 2772 2773
			else
				rcw += 2*disks;
		}
	}
2774
	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2775 2776 2777 2778 2779 2780 2781 2782
		(unsigned long long)sh->sector, rmw, rcw);
	set_bit(STRIPE_HANDLE, &sh->state);
	if (rmw < rcw && rmw > 0)
		/* prefer read-modify-write, but need to get some data */
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if ((dev->towrite || i == sh->pd_idx) &&
			    !test_bit(R5_LOCKED, &dev->flags) &&
2783 2784
			    !(test_bit(R5_UPTODATE, &dev->flags) ||
			    test_bit(R5_Wantcompute, &dev->flags)) &&
2785 2786 2787
			    test_bit(R5_Insync, &dev->flags)) {
				if (
				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2788
					pr_debug("Read_old block "
2789 2790 2791 2792 2793 2794 2795 2796 2797 2798
						"%d for r-m-w\n", i);
					set_bit(R5_LOCKED, &dev->flags);
					set_bit(R5_Wantread, &dev->flags);
					s->locked++;
				} else {
					set_bit(STRIPE_DELAYED, &sh->state);
					set_bit(STRIPE_HANDLE, &sh->state);
				}
			}
		}
2799
	if (rcw <= rmw && rcw > 0) {
2800
		/* want reconstruct write, but need to get some data */
2801
		rcw = 0;
2802 2803 2804
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2805
			    i != sh->pd_idx && i != sh->qd_idx &&
2806
			    !test_bit(R5_LOCKED, &dev->flags) &&
2807
			    !(test_bit(R5_UPTODATE, &dev->flags) ||
2808 2809 2810 2811
			      test_bit(R5_Wantcompute, &dev->flags))) {
				rcw++;
				if (!test_bit(R5_Insync, &dev->flags))
					continue; /* it's a failed drive */
2812 2813
				if (
				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2814
					pr_debug("Read_old block "
2815 2816 2817 2818 2819 2820 2821 2822 2823 2824
						"%d for Reconstruct\n", i);
					set_bit(R5_LOCKED, &dev->flags);
					set_bit(R5_Wantread, &dev->flags);
					s->locked++;
				} else {
					set_bit(STRIPE_DELAYED, &sh->state);
					set_bit(STRIPE_HANDLE, &sh->state);
				}
			}
		}
2825
	}
2826 2827 2828
	/* now if nothing is locked, and if we have enough data,
	 * we can start a write request
	 */
2829 2830
	/* since handle_stripe can be called at any time we need to handle the
	 * case where a compute block operation has been submitted and then a
2831 2832
	 * subsequent call wants to start a write request.  raid_run_ops only
	 * handles the case where compute block and reconstruct are requested
2833 2834 2835
	 * simultaneously.  If this is not the case then new writes need to be
	 * held off until the compute completes.
	 */
2836 2837 2838
	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
	    !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2839
		schedule_reconstruction(sh, s, rcw == 0, 0);
2840 2841
}

2842
static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
2843 2844
				struct stripe_head_state *s, int disks)
{
2845
	struct r5dev *dev = NULL;
2846

2847
	set_bit(STRIPE_HANDLE, &sh->state);
2848

2849 2850 2851
	switch (sh->check_state) {
	case check_state_idle:
		/* start a new check operation if there are no failures */
2852 2853
		if (s->failed == 0) {
			BUG_ON(s->uptodate != disks);
2854 2855
			sh->check_state = check_state_run;
			set_bit(STRIPE_OP_CHECK, &s->ops_request);
2856 2857
			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
			s->uptodate--;
2858
			break;
2859
		}
2860
		dev = &sh->dev[s->failed_num[0]];
2861 2862 2863 2864 2865 2866 2867 2868 2869
		/* fall through */
	case check_state_compute_result:
		sh->check_state = check_state_idle;
		if (!dev)
			dev = &sh->dev[sh->pd_idx];

		/* check that a write has not made the stripe insync */
		if (test_bit(STRIPE_INSYNC, &sh->state))
			break;
D
Dan Williams 已提交
2870

2871 2872 2873 2874 2875
		/* either failed parity check, or recovery is happening */
		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
		BUG_ON(s->uptodate != disks);

		set_bit(R5_LOCKED, &dev->flags);
2876
		s->locked++;
2877
		set_bit(R5_Wantwrite, &dev->flags);
2878

2879 2880
		clear_bit(STRIPE_DEGRADED, &sh->state);
		set_bit(STRIPE_INSYNC, &sh->state);
2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896
		break;
	case check_state_run:
		break; /* we will be called again upon completion */
	case check_state_check_result:
		sh->check_state = check_state_idle;

		/* if a failure occurred during the check operation, leave
		 * STRIPE_INSYNC not set and let the stripe be handled again
		 */
		if (s->failed)
			break;

		/* handle a successful check operation, if parity is correct
		 * we are done.  Otherwise update the mismatch count and repair
		 * parity if !MD_RECOVERY_CHECK
		 */
D
Dan Williams 已提交
2897
		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908
			/* parity is correct (on disc,
			 * not in buffer any more)
			 */
			set_bit(STRIPE_INSYNC, &sh->state);
		else {
			conf->mddev->resync_mismatches += STRIPE_SECTORS;
			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
				/* don't try to repair!! */
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				sh->check_state = check_state_compute_run;
2909
				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2910 2911 2912 2913
				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
				set_bit(R5_Wantcompute,
					&sh->dev[sh->pd_idx].flags);
				sh->ops.target = sh->pd_idx;
2914
				sh->ops.target2 = -1;
2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925
				s->uptodate++;
			}
		}
		break;
	case check_state_compute_run:
		break;
	default:
		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
		       __func__, sh->check_state,
		       (unsigned long long) sh->sector);
		BUG();
2926 2927 2928 2929
	}
}


2930
static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
2931
				  struct stripe_head_state *s,
2932
				  int disks)
2933 2934
{
	int pd_idx = sh->pd_idx;
N
NeilBrown 已提交
2935
	int qd_idx = sh->qd_idx;
2936
	struct r5dev *dev;
2937 2938 2939 2940

	set_bit(STRIPE_HANDLE, &sh->state);

	BUG_ON(s->failed > 2);
2941

2942 2943 2944 2945 2946 2947
	/* Want to check and possibly repair P and Q.
	 * However there could be one 'failed' device, in which
	 * case we can only check one of them, possibly using the
	 * other to generate missing data
	 */

2948 2949 2950
	switch (sh->check_state) {
	case check_state_idle:
		/* start a new check operation if there are < 2 failures */
2951
		if (s->failed == s->q_failed) {
2952
			/* The only possible failed device holds Q, so it
2953 2954 2955
			 * makes sense to check P (If anything else were failed,
			 * we would have used P to recreate it).
			 */
2956
			sh->check_state = check_state_run;
2957
		}
2958
		if (!s->q_failed && s->failed < 2) {
2959
			/* Q is not failed, and we didn't use it to generate
2960 2961
			 * anything, so it makes sense to check it
			 */
2962 2963 2964 2965
			if (sh->check_state == check_state_run)
				sh->check_state = check_state_run_pq;
			else
				sh->check_state = check_state_run_q;
2966 2967
		}

2968 2969
		/* discard potentially stale zero_sum_result */
		sh->ops.zero_sum_result = 0;
2970

2971 2972 2973 2974
		if (sh->check_state == check_state_run) {
			/* async_xor_zero_sum destroys the contents of P */
			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
			s->uptodate--;
2975
		}
2976 2977 2978 2979 2980 2981 2982
		if (sh->check_state >= check_state_run &&
		    sh->check_state <= check_state_run_pq) {
			/* async_syndrome_zero_sum preserves P and Q, so
			 * no need to mark them !uptodate here
			 */
			set_bit(STRIPE_OP_CHECK, &s->ops_request);
			break;
2983 2984
		}

2985 2986 2987 2988 2989
		/* we have 2-disk failure */
		BUG_ON(s->failed != 2);
		/* fall through */
	case check_state_compute_result:
		sh->check_state = check_state_idle;
2990

2991 2992 2993
		/* check that a write has not made the stripe insync */
		if (test_bit(STRIPE_INSYNC, &sh->state))
			break;
2994 2995

		/* now write out any block on a failed drive,
2996
		 * or P or Q if they were recomputed
2997
		 */
2998
		BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
2999
		if (s->failed == 2) {
3000
			dev = &sh->dev[s->failed_num[1]];
3001 3002 3003 3004 3005
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
		if (s->failed >= 1) {
3006
			dev = &sh->dev[s->failed_num[0]];
3007 3008 3009 3010
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
3011
		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3012 3013 3014 3015 3016
			dev = &sh->dev[pd_idx];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
3017
		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3018 3019 3020 3021 3022 3023 3024 3025
			dev = &sh->dev[qd_idx];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
		clear_bit(STRIPE_DEGRADED, &sh->state);

		set_bit(STRIPE_INSYNC, &sh->state);
3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089
		break;
	case check_state_run:
	case check_state_run_q:
	case check_state_run_pq:
		break; /* we will be called again upon completion */
	case check_state_check_result:
		sh->check_state = check_state_idle;

		/* handle a successful check operation, if parity is correct
		 * we are done.  Otherwise update the mismatch count and repair
		 * parity if !MD_RECOVERY_CHECK
		 */
		if (sh->ops.zero_sum_result == 0) {
			/* both parities are correct */
			if (!s->failed)
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				/* in contrast to the raid5 case we can validate
				 * parity, but still have a failure to write
				 * back
				 */
				sh->check_state = check_state_compute_result;
				/* Returning at this point means that we may go
				 * off and bring p and/or q uptodate again so
				 * we make sure to check zero_sum_result again
				 * to verify if p or q need writeback
				 */
			}
		} else {
			conf->mddev->resync_mismatches += STRIPE_SECTORS;
			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
				/* don't try to repair!! */
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				int *target = &sh->ops.target;

				sh->ops.target = -1;
				sh->ops.target2 = -1;
				sh->check_state = check_state_compute_run;
				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
					set_bit(R5_Wantcompute,
						&sh->dev[pd_idx].flags);
					*target = pd_idx;
					target = &sh->ops.target2;
					s->uptodate++;
				}
				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
					set_bit(R5_Wantcompute,
						&sh->dev[qd_idx].flags);
					*target = qd_idx;
					s->uptodate++;
				}
			}
		}
		break;
	case check_state_compute_run:
		break;
	default:
		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
		       __func__, sh->check_state,
		       (unsigned long long) sh->sector);
		BUG();
3090 3091 3092
	}
}

3093
static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3094 3095 3096 3097 3098 3099
{
	int i;

	/* We have read all the blocks in this stripe and now we need to
	 * copy some of them into a target stripe for expand.
	 */
3100
	struct dma_async_tx_descriptor *tx = NULL;
3101 3102
	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
	for (i = 0; i < sh->disks; i++)
N
NeilBrown 已提交
3103
		if (i != sh->pd_idx && i != sh->qd_idx) {
3104
			int dd_idx, j;
3105
			struct stripe_head *sh2;
3106
			struct async_submit_ctl submit;
3107

3108
			sector_t bn = compute_blocknr(sh, i, 1);
3109 3110
			sector_t s = raid5_compute_sector(conf, bn, 0,
							  &dd_idx, NULL);
3111
			sh2 = get_active_stripe(conf, s, 0, 1, 1);
3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123
			if (sh2 == NULL)
				/* so far only the early blocks of this stripe
				 * have been requested.  When later blocks
				 * get requested, we will try again
				 */
				continue;
			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
				/* must have already done this block */
				release_stripe(sh2);
				continue;
			}
3124 3125

			/* place all the copies on one channel */
3126
			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3127
			tx = async_memcpy(sh2->dev[dd_idx].page,
3128
					  sh->dev[i].page, 0, 0, STRIPE_SIZE,
3129
					  &submit);
3130

3131 3132 3133 3134
			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
			for (j = 0; j < conf->raid_disks; j++)
				if (j != sh2->pd_idx &&
3135
				    j != sh2->qd_idx &&
3136 3137 3138 3139 3140 3141 3142
				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
					break;
			if (j == conf->raid_disks) {
				set_bit(STRIPE_EXPAND_READY, &sh2->state);
				set_bit(STRIPE_HANDLE, &sh2->state);
			}
			release_stripe(sh2);
3143

3144
		}
3145 3146 3147 3148 3149
	/* done submitting copies, wait for them to complete */
	if (tx) {
		async_tx_ack(tx);
		dma_wait_for_async_tx(tx);
	}
3150
}
L
Linus Torvalds 已提交
3151 3152 3153 3154

/*
 * handle_stripe - do things to a stripe.
 *
3155 3156
 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
 * state of various bits to see what needs to be done.
L
Linus Torvalds 已提交
3157
 * Possible results:
3158 3159
 *    return some read requests which now have data
 *    return some write requests which are safely on storage
L
Linus Torvalds 已提交
3160 3161 3162 3163 3164
 *    schedule a read on some buffers
 *    schedule a write of some buffers
 *    return confirmation of parity correctness
 *
 */
3165

3166
static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
L
Linus Torvalds 已提交
3167
{
3168
	struct r5conf *conf = sh->raid_conf;
3169
	int disks = sh->disks;
3170 3171
	struct r5dev *dev;
	int i;
3172
	int do_recovery = 0;
L
Linus Torvalds 已提交
3173

3174 3175 3176 3177 3178 3179
	memset(s, 0, sizeof(*s));

	s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
	s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
	s->failed_num[0] = -1;
	s->failed_num[1] = -1;
L
Linus Torvalds 已提交
3180

3181
	/* Now to look around and see what can be done */
L
Linus Torvalds 已提交
3182
	rcu_read_lock();
3183
	spin_lock_irq(&conf->device_lock);
3184
	for (i=disks; i--; ) {
3185
		struct md_rdev *rdev;
3186 3187 3188
		sector_t first_bad;
		int bad_sectors;
		int is_bad = 0;
3189

3190
		dev = &sh->dev[i];
L
Linus Torvalds 已提交
3191

3192
		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3193 3194
			 i, dev->flags,
			 dev->toread, dev->towrite, dev->written);
3195 3196 3197 3198 3199 3200 3201 3202
		/* maybe we can reply to a read
		 *
		 * new wantfill requests are only permitted while
		 * ops_complete_biofill is guaranteed to be inactive
		 */
		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
			set_bit(R5_Wantfill, &dev->flags);
L
Linus Torvalds 已提交
3203

3204
		/* now count some things */
3205 3206 3207 3208
		if (test_bit(R5_LOCKED, &dev->flags))
			s->locked++;
		if (test_bit(R5_UPTODATE, &dev->flags))
			s->uptodate++;
3209
		if (test_bit(R5_Wantcompute, &dev->flags)) {
3210 3211
			s->compute++;
			BUG_ON(s->compute > 2);
3212
		}
L
Linus Torvalds 已提交
3213

3214
		if (test_bit(R5_Wantfill, &dev->flags))
3215
			s->to_fill++;
3216
		else if (dev->toread)
3217
			s->to_read++;
3218
		if (dev->towrite) {
3219
			s->to_write++;
3220
			if (!test_bit(R5_OVERWRITE, &dev->flags))
3221
				s->non_overwrite++;
3222
		}
3223
		if (dev->written)
3224
			s->written++;
3225 3226 3227 3228 3229 3230 3231 3232 3233 3234
		/* Prefer to use the replacement for reads, but only
		 * if it is recovered enough and has no bad blocks.
		 */
		rdev = rcu_dereference(conf->disks[i].replacement);
		if (rdev && !test_bit(Faulty, &rdev->flags) &&
		    rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
		    !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
				 &first_bad, &bad_sectors))
			set_bit(R5_ReadRepl, &dev->flags);
		else {
3235 3236
			if (rdev)
				set_bit(R5_NeedReplace, &dev->flags);
3237 3238 3239
			rdev = rcu_dereference(conf->disks[i].rdev);
			clear_bit(R5_ReadRepl, &dev->flags);
		}
3240 3241
		if (rdev && test_bit(Faulty, &rdev->flags))
			rdev = NULL;
3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253
		if (rdev) {
			is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
					     &first_bad, &bad_sectors);
			if (s->blocked_rdev == NULL
			    && (test_bit(Blocked, &rdev->flags)
				|| is_bad < 0)) {
				if (is_bad < 0)
					set_bit(BlockedBadBlocks,
						&rdev->flags);
				s->blocked_rdev = rdev;
				atomic_inc(&rdev->nr_pending);
			}
3254
		}
3255 3256 3257
		clear_bit(R5_Insync, &dev->flags);
		if (!rdev)
			/* Not in-sync */;
3258 3259
		else if (is_bad) {
			/* also not in-sync */
3260 3261
			if (!test_bit(WriteErrorSeen, &rdev->flags) &&
			    test_bit(R5_UPTODATE, &dev->flags)) {
3262 3263 3264 3265 3266 3267 3268
				/* treat as in-sync, but with a read error
				 * which we can now try to correct
				 */
				set_bit(R5_Insync, &dev->flags);
				set_bit(R5_ReadError, &dev->flags);
			}
		} else if (test_bit(In_sync, &rdev->flags))
3269
			set_bit(R5_Insync, &dev->flags);
3270
		else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3271
			/* in sync if before recovery_offset */
3272 3273 3274 3275 3276 3277 3278 3279 3280
			set_bit(R5_Insync, &dev->flags);
		else if (test_bit(R5_UPTODATE, &dev->flags) &&
			 test_bit(R5_Expanded, &dev->flags))
			/* If we've reshaped into here, we assume it is Insync.
			 * We will shortly update recovery_offset to make
			 * it official.
			 */
			set_bit(R5_Insync, &dev->flags);

A
Adam Kwolek 已提交
3281
		if (rdev && test_bit(R5_WriteError, &dev->flags)) {
3282 3283 3284 3285 3286 3287 3288
			/* This flag does not apply to '.replacement'
			 * only to .rdev, so make sure to check that*/
			struct md_rdev *rdev2 = rcu_dereference(
				conf->disks[i].rdev);
			if (rdev2 == rdev)
				clear_bit(R5_Insync, &dev->flags);
			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3289
				s->handle_bad_blocks = 1;
3290
				atomic_inc(&rdev2->nr_pending);
3291 3292 3293
			} else
				clear_bit(R5_WriteError, &dev->flags);
		}
A
Adam Kwolek 已提交
3294
		if (rdev && test_bit(R5_MadeGood, &dev->flags)) {
3295 3296 3297 3298 3299
			/* This flag does not apply to '.replacement'
			 * only to .rdev, so make sure to check that*/
			struct md_rdev *rdev2 = rcu_dereference(
				conf->disks[i].rdev);
			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3300
				s->handle_bad_blocks = 1;
3301
				atomic_inc(&rdev2->nr_pending);
3302 3303 3304
			} else
				clear_bit(R5_MadeGood, &dev->flags);
		}
3305 3306 3307 3308 3309 3310 3311 3312 3313
		if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
			struct md_rdev *rdev2 = rcu_dereference(
				conf->disks[i].replacement);
			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
				s->handle_bad_blocks = 1;
				atomic_inc(&rdev2->nr_pending);
			} else
				clear_bit(R5_MadeGoodRepl, &dev->flags);
		}
3314
		if (!test_bit(R5_Insync, &dev->flags)) {
3315 3316 3317
			/* The ReadError flag will just be confusing now */
			clear_bit(R5_ReadError, &dev->flags);
			clear_bit(R5_ReWrite, &dev->flags);
L
Linus Torvalds 已提交
3318
		}
3319 3320 3321
		if (test_bit(R5_ReadError, &dev->flags))
			clear_bit(R5_Insync, &dev->flags);
		if (!test_bit(R5_Insync, &dev->flags)) {
3322 3323 3324
			if (s->failed < 2)
				s->failed_num[s->failed] = i;
			s->failed++;
3325 3326
			if (rdev && !test_bit(Faulty, &rdev->flags))
				do_recovery = 1;
3327
		}
L
Linus Torvalds 已提交
3328
	}
3329
	spin_unlock_irq(&conf->device_lock);
3330 3331 3332 3333
	if (test_bit(STRIPE_SYNCING, &sh->state)) {
		/* If there is a failed device being replaced,
		 *     we must be recovering.
		 * else if we are after recovery_cp, we must be syncing
3334
		 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
3335 3336 3337 3338 3339
		 * else we can only be replacing
		 * sync and recovery both need to read all devices, and so
		 * use the same flag.
		 */
		if (do_recovery ||
3340 3341
		    sh->sector >= conf->mddev->recovery_cp ||
		    test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
3342 3343 3344 3345
			s->syncing = 1;
		else
			s->replacing = 1;
	}
L
Linus Torvalds 已提交
3346
	rcu_read_unlock();
3347 3348 3349 3350 3351
}

static void handle_stripe(struct stripe_head *sh)
{
	struct stripe_head_state s;
3352
	struct r5conf *conf = sh->raid_conf;
3353
	int i;
3354 3355
	int prexor;
	int disks = sh->disks;
3356
	struct r5dev *pdev, *qdev;
3357 3358

	clear_bit(STRIPE_HANDLE, &sh->state);
3359
	if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376
		/* already being handled, ensure it gets handled
		 * again when current action finishes */
		set_bit(STRIPE_HANDLE, &sh->state);
		return;
	}

	if (test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
		set_bit(STRIPE_SYNCING, &sh->state);
		clear_bit(STRIPE_INSYNC, &sh->state);
	}
	clear_bit(STRIPE_DELAYED, &sh->state);

	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
	       (unsigned long long)sh->sector, sh->state,
	       atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
	       sh->check_state, sh->reconstruct_state);
3377

3378
	analyse_stripe(sh, &s);
3379

3380 3381 3382 3383 3384
	if (s.handle_bad_blocks) {
		set_bit(STRIPE_HANDLE, &sh->state);
		goto finish;
	}

3385 3386
	if (unlikely(s.blocked_rdev)) {
		if (s.syncing || s.expanding || s.expanded ||
3387
		    s.replacing || s.to_write || s.written) {
3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407
			set_bit(STRIPE_HANDLE, &sh->state);
			goto finish;
		}
		/* There is nothing for the blocked_rdev to block */
		rdev_dec_pending(s.blocked_rdev, conf->mddev);
		s.blocked_rdev = NULL;
	}

	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
	}

	pr_debug("locked=%d uptodate=%d to_read=%d"
	       " to_write=%d failed=%d failed_num=%d,%d\n",
	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
	       s.failed_num[0], s.failed_num[1]);
	/* check if the array has lost more than max_degraded devices and,
	 * if so, some requests might need to be failed.
	 */
3408 3409 3410 3411 3412
	if (s.failed > conf->max_degraded) {
		sh->check_state = 0;
		sh->reconstruct_state = 0;
		if (s.to_read+s.to_write+s.written)
			handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3413
		if (s.syncing + s.replacing)
3414 3415
			handle_failed_sync(conf, sh, &s);
	}
3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443

	/*
	 * might be able to return some write requests if the parity blocks
	 * are safe, or on a failed drive
	 */
	pdev = &sh->dev[sh->pd_idx];
	s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
		|| (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
	qdev = &sh->dev[sh->qd_idx];
	s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
		|| (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
		|| conf->level < 6;

	if (s.written &&
	    (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
			     && !test_bit(R5_LOCKED, &pdev->flags)
			     && test_bit(R5_UPTODATE, &pdev->flags)))) &&
	    (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
			     && !test_bit(R5_LOCKED, &qdev->flags)
			     && test_bit(R5_UPTODATE, &qdev->flags)))))
		handle_stripe_clean_event(conf, sh, disks, &s.return_bi);

	/* Now we might consider reading some blocks, either to check/generate
	 * parity, or to satisfy requests
	 * or to load a block that is being partially written.
	 */
	if (s.to_read || s.non_overwrite
	    || (conf->level == 6 && s.to_write && s.failed)
3444 3445 3446
	    || (s.syncing && (s.uptodate + s.compute < disks))
	    || s.replacing
	    || s.expanding)
3447 3448
		handle_stripe_fill(sh, &s, disks);

3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506
	/* Now we check to see if any write operations have recently
	 * completed
	 */
	prexor = 0;
	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
		prexor = 1;
	if (sh->reconstruct_state == reconstruct_state_drain_result ||
	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
		sh->reconstruct_state = reconstruct_state_idle;

		/* All the 'written' buffers and the parity block are ready to
		 * be written back to disk
		 */
		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
		BUG_ON(sh->qd_idx >= 0 &&
		       !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags));
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (test_bit(R5_LOCKED, &dev->flags) &&
				(i == sh->pd_idx || i == sh->qd_idx ||
				 dev->written)) {
				pr_debug("Writing block %d\n", i);
				set_bit(R5_Wantwrite, &dev->flags);
				if (prexor)
					continue;
				if (!test_bit(R5_Insync, &dev->flags) ||
				    ((i == sh->pd_idx || i == sh->qd_idx)  &&
				     s.failed == 0))
					set_bit(STRIPE_INSYNC, &sh->state);
			}
		}
		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
			s.dec_preread_active = 1;
	}

	/* Now to consider new write requests and what else, if anything
	 * should be read.  We do not handle new writes when:
	 * 1/ A 'write' operation (copy+xor) is already in flight.
	 * 2/ A 'check' operation is in flight, as it may clobber the parity
	 *    block.
	 */
	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
		handle_stripe_dirtying(conf, sh, &s, disks);

	/* maybe we need to check and possibly fix the parity for this stripe
	 * Any reads will already have been scheduled, so we just see if enough
	 * data is available.  The parity check is held off while parity
	 * dependent operations are in flight.
	 */
	if (sh->check_state ||
	    (s.syncing && s.locked == 0 &&
	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
	     !test_bit(STRIPE_INSYNC, &sh->state))) {
		if (conf->level == 6)
			handle_parity_checks6(conf, sh, &s, disks);
		else
			handle_parity_checks5(conf, sh, &s, disks);
	}
3507

3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521
	if (s.replacing && s.locked == 0
	    && !test_bit(STRIPE_INSYNC, &sh->state)) {
		/* Write out to replacement devices where possible */
		for (i = 0; i < conf->raid_disks; i++)
			if (test_bit(R5_UPTODATE, &sh->dev[i].flags) &&
			    test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
				set_bit(R5_WantReplace, &sh->dev[i].flags);
				set_bit(R5_LOCKED, &sh->dev[i].flags);
				s.locked++;
			}
		set_bit(STRIPE_INSYNC, &sh->state);
	}
	if ((s.syncing || s.replacing) && s.locked == 0 &&
	    test_bit(STRIPE_INSYNC, &sh->state)) {
3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550
		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
		clear_bit(STRIPE_SYNCING, &sh->state);
	}

	/* If the failed drives are just a ReadError, then we might need
	 * to progress the repair/check process
	 */
	if (s.failed <= conf->max_degraded && !conf->mddev->ro)
		for (i = 0; i < s.failed; i++) {
			struct r5dev *dev = &sh->dev[s.failed_num[i]];
			if (test_bit(R5_ReadError, &dev->flags)
			    && !test_bit(R5_LOCKED, &dev->flags)
			    && test_bit(R5_UPTODATE, &dev->flags)
				) {
				if (!test_bit(R5_ReWrite, &dev->flags)) {
					set_bit(R5_Wantwrite, &dev->flags);
					set_bit(R5_ReWrite, &dev->flags);
					set_bit(R5_LOCKED, &dev->flags);
					s.locked++;
				} else {
					/* let's read it back */
					set_bit(R5_Wantread, &dev->flags);
					set_bit(R5_LOCKED, &dev->flags);
					s.locked++;
				}
			}
		}


3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577
	/* Finish reconstruct operations initiated by the expansion process */
	if (sh->reconstruct_state == reconstruct_state_result) {
		struct stripe_head *sh_src
			= get_active_stripe(conf, sh->sector, 1, 1, 1);
		if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
			/* sh cannot be written until sh_src has been read.
			 * so arrange for sh to be delayed a little
			 */
			set_bit(STRIPE_DELAYED, &sh->state);
			set_bit(STRIPE_HANDLE, &sh->state);
			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
					      &sh_src->state))
				atomic_inc(&conf->preread_active_stripes);
			release_stripe(sh_src);
			goto finish;
		}
		if (sh_src)
			release_stripe(sh_src);

		sh->reconstruct_state = reconstruct_state_idle;
		clear_bit(STRIPE_EXPANDING, &sh->state);
		for (i = conf->raid_disks; i--; ) {
			set_bit(R5_Wantwrite, &sh->dev[i].flags);
			set_bit(R5_LOCKED, &sh->dev[i].flags);
			s.locked++;
		}
	}
3578

3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594
	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
	    !sh->reconstruct_state) {
		/* Need to write out all blocks after computing parity */
		sh->disks = conf->raid_disks;
		stripe_set_idx(sh->sector, conf, 0, sh);
		schedule_reconstruction(sh, &s, 1, 1);
	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
		clear_bit(STRIPE_EXPAND_READY, &sh->state);
		atomic_dec(&conf->reshape_stripes);
		wake_up(&conf->wait_for_overlap);
		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
	}

	if (s.expanding && s.locked == 0 &&
	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
		handle_stripe_expansion(conf, sh);
3595

3596
finish:
3597
	/* wait for this device to become unblocked */
3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609
	if (unlikely(s.blocked_rdev)) {
		if (conf->mddev->external)
			md_wait_for_blocked_rdev(s.blocked_rdev,
						 conf->mddev);
		else
			/* Internal metadata will immediately
			 * be written by raid5d, so we don't
			 * need to wait here.
			 */
			rdev_dec_pending(s.blocked_rdev,
					 conf->mddev);
	}
3610

3611 3612
	if (s.handle_bad_blocks)
		for (i = disks; i--; ) {
3613
			struct md_rdev *rdev;
3614 3615 3616 3617 3618 3619 3620 3621 3622
			struct r5dev *dev = &sh->dev[i];
			if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
				/* We own a safe reference to the rdev */
				rdev = conf->disks[i].rdev;
				if (!rdev_set_badblocks(rdev, sh->sector,
							STRIPE_SECTORS, 0))
					md_error(conf->mddev, rdev);
				rdev_dec_pending(rdev, conf->mddev);
			}
3623 3624 3625
			if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
				rdev = conf->disks[i].rdev;
				rdev_clear_badblocks(rdev, sh->sector,
3626
						     STRIPE_SECTORS, 0);
3627 3628
				rdev_dec_pending(rdev, conf->mddev);
			}
3629 3630
			if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
				rdev = conf->disks[i].replacement;
3631 3632 3633
				if (!rdev)
					/* rdev have been moved down */
					rdev = conf->disks[i].rdev;
3634
				rdev_clear_badblocks(rdev, sh->sector,
3635
						     STRIPE_SECTORS, 0);
3636 3637
				rdev_dec_pending(rdev, conf->mddev);
			}
3638 3639
		}

3640 3641 3642
	if (s.ops_request)
		raid_run_ops(sh, s.ops_request);

D
Dan Williams 已提交
3643
	ops_run_io(sh, &s);
3644

3645
	if (s.dec_preread_active) {
3646
		/* We delay this until after ops_run_io so that if make_request
T
Tejun Heo 已提交
3647
		 * is waiting on a flush, it won't continue until the writes
3648 3649 3650 3651 3652 3653 3654 3655
		 * have actually been submitted.
		 */
		atomic_dec(&conf->preread_active_stripes);
		if (atomic_read(&conf->preread_active_stripes) <
		    IO_THRESHOLD)
			md_wakeup_thread(conf->mddev->thread);
	}

3656
	return_io(s.return_bi);
3657

3658
	clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
3659 3660
}

3661
static void raid5_activate_delayed(struct r5conf *conf)
3662 3663 3664 3665 3666 3667 3668 3669 3670 3671
{
	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
		while (!list_empty(&conf->delayed_list)) {
			struct list_head *l = conf->delayed_list.next;
			struct stripe_head *sh;
			sh = list_entry(l, struct stripe_head, lru);
			list_del_init(l);
			clear_bit(STRIPE_DELAYED, &sh->state);
			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
				atomic_inc(&conf->preread_active_stripes);
3672
			list_add_tail(&sh->lru, &conf->hold_list);
3673
		}
N
NeilBrown 已提交
3674
	}
3675 3676
}

3677
static void activate_bit_delay(struct r5conf *conf)
3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690
{
	/* device_lock is held */
	struct list_head head;
	list_add(&head, &conf->bitmap_list);
	list_del_init(&conf->bitmap_list);
	while (!list_empty(&head)) {
		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
		list_del_init(&sh->lru);
		atomic_inc(&sh->count);
		__release_stripe(conf, sh);
	}
}

3691
int md_raid5_congested(struct mddev *mddev, int bits)
3692
{
3693
	struct r5conf *conf = mddev->private;
3694 3695 3696 3697

	/* No difference between reads and writes.  Just check
	 * how busy the stripe_cache is
	 */
3698

3699 3700 3701 3702 3703 3704 3705 3706 3707
	if (conf->inactive_blocked)
		return 1;
	if (conf->quiesce)
		return 1;
	if (list_empty_careful(&conf->inactive_list))
		return 1;

	return 0;
}
N
NeilBrown 已提交
3708 3709 3710 3711
EXPORT_SYMBOL_GPL(md_raid5_congested);

static int raid5_congested(void *data, int bits)
{
3712
	struct mddev *mddev = data;
N
NeilBrown 已提交
3713 3714 3715 3716

	return mddev_congested(mddev, bits) ||
		md_raid5_congested(mddev, bits);
}
3717

3718 3719 3720
/* We want read requests to align with chunks where possible,
 * but write requests don't need to.
 */
3721 3722 3723
static int raid5_mergeable_bvec(struct request_queue *q,
				struct bvec_merge_data *bvm,
				struct bio_vec *biovec)
3724
{
3725
	struct mddev *mddev = q->queuedata;
3726
	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3727
	int max;
3728
	unsigned int chunk_sectors = mddev->chunk_sectors;
3729
	unsigned int bio_sectors = bvm->bi_size >> 9;
3730

3731
	if ((bvm->bi_rw & 1) == WRITE)
3732 3733
		return biovec->bv_len; /* always allow writes to be mergeable */

3734 3735
	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
		chunk_sectors = mddev->new_chunk_sectors;
3736 3737 3738 3739 3740 3741 3742 3743
	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
	if (max < 0) max = 0;
	if (max <= biovec->bv_len && bio_sectors == 0)
		return biovec->bv_len;
	else
		return max;
}

3744

3745
static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
3746 3747
{
	sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3748
	unsigned int chunk_sectors = mddev->chunk_sectors;
3749 3750
	unsigned int bio_sectors = bio->bi_size >> 9;

3751 3752
	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
		chunk_sectors = mddev->new_chunk_sectors;
3753 3754 3755 3756
	return  chunk_sectors >=
		((sector & (chunk_sectors - 1)) + bio_sectors);
}

3757 3758 3759 3760
/*
 *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
 *  later sampled by raid5d.
 */
3761
static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774
{
	unsigned long flags;

	spin_lock_irqsave(&conf->device_lock, flags);

	bi->bi_next = conf->retry_read_aligned_list;
	conf->retry_read_aligned_list = bi;

	spin_unlock_irqrestore(&conf->device_lock, flags);
	md_wakeup_thread(conf->mddev->thread);
}


3775
static struct bio *remove_bio_from_retry(struct r5conf *conf)
3776 3777 3778 3779 3780 3781 3782 3783 3784 3785
{
	struct bio *bi;

	bi = conf->retry_read_aligned;
	if (bi) {
		conf->retry_read_aligned = NULL;
		return bi;
	}
	bi = conf->retry_read_aligned_list;
	if(bi) {
3786
		conf->retry_read_aligned_list = bi->bi_next;
3787
		bi->bi_next = NULL;
3788 3789 3790 3791
		/*
		 * this sets the active strip count to 1 and the processed
		 * strip count to zero (upper 8 bits)
		 */
3792 3793 3794 3795 3796 3797 3798
		bi->bi_phys_segments = 1; /* biased count of active stripes */
	}

	return bi;
}


3799 3800 3801 3802 3803 3804
/*
 *  The "raid5_align_endio" should check if the read succeeded and if it
 *  did, call bio_endio on the original bio (having bio_put the new bio
 *  first).
 *  If the read failed..
 */
3805
static void raid5_align_endio(struct bio *bi, int error)
3806 3807
{
	struct bio* raid_bi  = bi->bi_private;
3808
	struct mddev *mddev;
3809
	struct r5conf *conf;
3810
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3811
	struct md_rdev *rdev;
3812

3813
	bio_put(bi);
3814 3815 3816

	rdev = (void*)raid_bi->bi_next;
	raid_bi->bi_next = NULL;
3817 3818
	mddev = rdev->mddev;
	conf = mddev->private;
3819 3820 3821 3822

	rdev_dec_pending(rdev, conf->mddev);

	if (!error && uptodate) {
3823
		bio_endio(raid_bi, 0);
3824 3825
		if (atomic_dec_and_test(&conf->active_aligned_reads))
			wake_up(&conf->wait_for_stripe);
3826
		return;
3827 3828 3829
	}


3830
	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3831 3832

	add_bio_to_retry(raid_bi, conf);
3833 3834
}

3835 3836
static int bio_fits_rdev(struct bio *bi)
{
3837
	struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3838

3839
	if ((bi->bi_size>>9) > queue_max_sectors(q))
3840 3841
		return 0;
	blk_recount_segments(q, bi);
3842
	if (bi->bi_phys_segments > queue_max_segments(q))
3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854
		return 0;

	if (q->merge_bvec_fn)
		/* it's too hard to apply the merge_bvec_fn at this stage,
		 * just just give up
		 */
		return 0;

	return 1;
}


3855
static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
3856
{
3857
	struct r5conf *conf = mddev->private;
N
NeilBrown 已提交
3858
	int dd_idx;
3859
	struct bio* align_bi;
3860
	struct md_rdev *rdev;
3861
	sector_t end_sector;
3862 3863

	if (!in_chunk_boundary(mddev, raid_bio)) {
3864
		pr_debug("chunk_aligned_read : non aligned\n");
3865 3866 3867
		return 0;
	}
	/*
3868
	 * use bio_clone_mddev to make a copy of the bio
3869
	 */
3870
	align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881
	if (!align_bi)
		return 0;
	/*
	 *   set bi_end_io to a new function, and set bi_private to the
	 *     original bio.
	 */
	align_bi->bi_end_io  = raid5_align_endio;
	align_bi->bi_private = raid_bio;
	/*
	 *	compute position
	 */
3882 3883
	align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
						    0,
3884
						    &dd_idx, NULL);
3885

3886
	end_sector = align_bi->bi_sector + (align_bi->bi_size >> 9);
3887
	rcu_read_lock();
3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898
	rdev = rcu_dereference(conf->disks[dd_idx].replacement);
	if (!rdev || test_bit(Faulty, &rdev->flags) ||
	    rdev->recovery_offset < end_sector) {
		rdev = rcu_dereference(conf->disks[dd_idx].rdev);
		if (rdev &&
		    (test_bit(Faulty, &rdev->flags) ||
		    !(test_bit(In_sync, &rdev->flags) ||
		      rdev->recovery_offset >= end_sector)))
			rdev = NULL;
	}
	if (rdev) {
3899 3900 3901
		sector_t first_bad;
		int bad_sectors;

3902 3903
		atomic_inc(&rdev->nr_pending);
		rcu_read_unlock();
3904 3905 3906 3907
		raid_bio->bi_next = (void*)rdev;
		align_bi->bi_bdev =  rdev->bdev;
		align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);

3908 3909 3910 3911
		if (!bio_fits_rdev(align_bi) ||
		    is_badblock(rdev, align_bi->bi_sector, align_bi->bi_size>>9,
				&first_bad, &bad_sectors)) {
			/* too big in some way, or has a known bad block */
3912 3913 3914 3915 3916
			bio_put(align_bi);
			rdev_dec_pending(rdev, mddev);
			return 0;
		}

3917 3918 3919
		/* No reshape active, so we can trust rdev->data_offset */
		align_bi->bi_sector += rdev->data_offset;

3920 3921 3922 3923 3924 3925 3926
		spin_lock_irq(&conf->device_lock);
		wait_event_lock_irq(conf->wait_for_stripe,
				    conf->quiesce == 0,
				    conf->device_lock, /* nothing */);
		atomic_inc(&conf->active_aligned_reads);
		spin_unlock_irq(&conf->device_lock);

3927 3928 3929 3930
		generic_make_request(align_bi);
		return 1;
	} else {
		rcu_read_unlock();
3931
		bio_put(align_bi);
3932 3933 3934 3935
		return 0;
	}
}

3936 3937 3938 3939 3940 3941 3942 3943 3944 3945
/* __get_priority_stripe - get the next stripe to process
 *
 * Full stripe writes are allowed to pass preread active stripes up until
 * the bypass_threshold is exceeded.  In general the bypass_count
 * increments when the handle_list is handled before the hold_list; however, it
 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
 * stripe with in flight i/o.  The bypass_count will be reset when the
 * head of the hold_list has changed, i.e. the head was promoted to the
 * handle_list.
 */
3946
static struct stripe_head *__get_priority_stripe(struct r5conf *conf)
3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987
{
	struct stripe_head *sh;

	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
		  __func__,
		  list_empty(&conf->handle_list) ? "empty" : "busy",
		  list_empty(&conf->hold_list) ? "empty" : "busy",
		  atomic_read(&conf->pending_full_writes), conf->bypass_count);

	if (!list_empty(&conf->handle_list)) {
		sh = list_entry(conf->handle_list.next, typeof(*sh), lru);

		if (list_empty(&conf->hold_list))
			conf->bypass_count = 0;
		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
			if (conf->hold_list.next == conf->last_hold)
				conf->bypass_count++;
			else {
				conf->last_hold = conf->hold_list.next;
				conf->bypass_count -= conf->bypass_threshold;
				if (conf->bypass_count < 0)
					conf->bypass_count = 0;
			}
		}
	} else if (!list_empty(&conf->hold_list) &&
		   ((conf->bypass_threshold &&
		     conf->bypass_count > conf->bypass_threshold) ||
		    atomic_read(&conf->pending_full_writes) == 0)) {
		sh = list_entry(conf->hold_list.next,
				typeof(*sh), lru);
		conf->bypass_count -= conf->bypass_threshold;
		if (conf->bypass_count < 0)
			conf->bypass_count = 0;
	} else
		return NULL;

	list_del_init(&sh->lru);
	atomic_inc(&sh->count);
	BUG_ON(atomic_read(&sh->count) != 1);
	return sh;
}
3988

3989
static void make_request(struct mddev *mddev, struct bio * bi)
L
Linus Torvalds 已提交
3990
{
3991
	struct r5conf *conf = mddev->private;
3992
	int dd_idx;
L
Linus Torvalds 已提交
3993 3994 3995
	sector_t new_sector;
	sector_t logical_sector, last_sector;
	struct stripe_head *sh;
3996
	const int rw = bio_data_dir(bi);
3997
	int remaining;
3998
	int plugged;
L
Linus Torvalds 已提交
3999

T
Tejun Heo 已提交
4000 4001
	if (unlikely(bi->bi_rw & REQ_FLUSH)) {
		md_flush_request(mddev, bi);
4002
		return;
4003 4004
	}

4005
	md_write_start(mddev, bi);
4006

4007
	if (rw == READ &&
4008
	     mddev->reshape_position == MaxSector &&
4009
	     chunk_aligned_read(mddev,bi))
4010
		return;
4011

L
Linus Torvalds 已提交
4012 4013 4014 4015
	logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
	last_sector = bi->bi_sector + (bi->bi_size>>9);
	bi->bi_next = NULL;
	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
4016

4017
	plugged = mddev_check_plugged(mddev);
L
Linus Torvalds 已提交
4018 4019
	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
		DEFINE_WAIT(w);
4020
		int previous;
4021

4022
	retry:
4023
		previous = 0;
4024
		prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
4025
		if (unlikely(conf->reshape_progress != MaxSector)) {
4026
			/* spinlock is needed as reshape_progress may be
4027 4028
			 * 64bit on a 32bit platform, and so it might be
			 * possible to see a half-updated value
4029
			 * Of course reshape_progress could change after
4030 4031 4032 4033
			 * the lock is dropped, so once we get a reference
			 * to the stripe that we think it is, we will have
			 * to check again.
			 */
4034
			spin_lock_irq(&conf->device_lock);
4035
			if (mddev->reshape_backwards
4036 4037
			    ? logical_sector < conf->reshape_progress
			    : logical_sector >= conf->reshape_progress) {
4038 4039
				previous = 1;
			} else {
4040
				if (mddev->reshape_backwards
4041 4042
				    ? logical_sector < conf->reshape_safe
				    : logical_sector >= conf->reshape_safe) {
4043 4044 4045 4046 4047
					spin_unlock_irq(&conf->device_lock);
					schedule();
					goto retry;
				}
			}
4048 4049
			spin_unlock_irq(&conf->device_lock);
		}
4050

4051 4052
		new_sector = raid5_compute_sector(conf, logical_sector,
						  previous,
4053
						  &dd_idx, NULL);
4054
		pr_debug("raid456: make_request, sector %llu logical %llu\n",
L
Linus Torvalds 已提交
4055 4056 4057
			(unsigned long long)new_sector, 
			(unsigned long long)logical_sector);

4058
		sh = get_active_stripe(conf, new_sector, previous,
4059
				       (bi->bi_rw&RWA_MASK), 0);
L
Linus Torvalds 已提交
4060
		if (sh) {
4061
			if (unlikely(previous)) {
4062
				/* expansion might have moved on while waiting for a
4063 4064 4065 4066 4067 4068
				 * stripe, so we must do the range check again.
				 * Expansion could still move past after this
				 * test, but as we are holding a reference to
				 * 'sh', we know that if that happens,
				 *  STRIPE_EXPANDING will get set and the expansion
				 * won't proceed until we finish with the stripe.
4069 4070 4071
				 */
				int must_retry = 0;
				spin_lock_irq(&conf->device_lock);
4072
				if (mddev->reshape_backwards
4073 4074
				    ? logical_sector >= conf->reshape_progress
				    : logical_sector < conf->reshape_progress)
4075 4076 4077 4078 4079
					/* mismatch, need to try again */
					must_retry = 1;
				spin_unlock_irq(&conf->device_lock);
				if (must_retry) {
					release_stripe(sh);
4080
					schedule();
4081 4082 4083
					goto retry;
				}
			}
4084

4085
			if (rw == WRITE &&
4086
			    logical_sector >= mddev->suspend_lo &&
4087 4088
			    logical_sector < mddev->suspend_hi) {
				release_stripe(sh);
4089 4090 4091 4092 4093 4094 4095 4096 4097 4098
				/* As the suspend_* range is controlled by
				 * userspace, we want an interruptible
				 * wait.
				 */
				flush_signals(current);
				prepare_to_wait(&conf->wait_for_overlap,
						&w, TASK_INTERRUPTIBLE);
				if (logical_sector >= mddev->suspend_lo &&
				    logical_sector < mddev->suspend_hi)
					schedule();
4099 4100
				goto retry;
			}
4101 4102

			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4103
			    !add_stripe_bio(sh, bi, dd_idx, rw)) {
4104 4105
				/* Stripe is busy expanding or
				 * add failed due to overlap.  Flush everything
L
Linus Torvalds 已提交
4106 4107
				 * and wait a while
				 */
N
NeilBrown 已提交
4108
				md_wakeup_thread(mddev->thread);
L
Linus Torvalds 已提交
4109 4110 4111 4112 4113
				release_stripe(sh);
				schedule();
				goto retry;
			}
			finish_wait(&conf->wait_for_overlap, &w);
4114 4115
			set_bit(STRIPE_HANDLE, &sh->state);
			clear_bit(STRIPE_DELAYED, &sh->state);
T
Tejun Heo 已提交
4116
			if ((bi->bi_rw & REQ_SYNC) &&
4117 4118
			    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
				atomic_inc(&conf->preread_active_stripes);
L
Linus Torvalds 已提交
4119 4120 4121 4122 4123 4124 4125 4126 4127
			release_stripe(sh);
		} else {
			/* cannot get stripe for read-ahead, just give-up */
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
			finish_wait(&conf->wait_for_overlap, &w);
			break;
		}
			
	}
4128 4129 4130
	if (!plugged)
		md_wakeup_thread(mddev->thread);

L
Linus Torvalds 已提交
4131
	spin_lock_irq(&conf->device_lock);
4132
	remaining = raid5_dec_bi_phys_segments(bi);
4133 4134
	spin_unlock_irq(&conf->device_lock);
	if (remaining == 0) {
L
Linus Torvalds 已提交
4135

4136
		if ( rw == WRITE )
L
Linus Torvalds 已提交
4137
			md_write_end(mddev);
4138

4139
		bio_endio(bi, 0);
L
Linus Torvalds 已提交
4140 4141 4142
	}
}

4143
static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
D
Dan Williams 已提交
4144

4145
static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
L
Linus Torvalds 已提交
4146
{
4147 4148 4149 4150 4151 4152 4153 4154 4155
	/* reshaping is quite different to recovery/resync so it is
	 * handled quite separately ... here.
	 *
	 * On each call to sync_request, we gather one chunk worth of
	 * destination stripes and flag them as expanding.
	 * Then we find all the source stripes and request reads.
	 * As the reads complete, handle_stripe will copy the data
	 * into the destination stripe and release that stripe.
	 */
4156
	struct r5conf *conf = mddev->private;
L
Linus Torvalds 已提交
4157
	struct stripe_head *sh;
4158
	sector_t first_sector, last_sector;
4159 4160 4161
	int raid_disks = conf->previous_raid_disks;
	int data_disks = raid_disks - conf->max_degraded;
	int new_data_disks = conf->raid_disks - conf->max_degraded;
4162 4163
	int i;
	int dd_idx;
4164
	sector_t writepos, readpos, safepos;
4165
	sector_t stripe_addr;
4166
	int reshape_sectors;
4167
	struct list_head stripes;
4168

4169 4170
	if (sector_nr == 0) {
		/* If restarting in the middle, skip the initial sectors */
4171
		if (mddev->reshape_backwards &&
4172 4173 4174
		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
			sector_nr = raid5_size(mddev, 0, 0)
				- conf->reshape_progress;
4175
		} else if (!mddev->reshape_backwards &&
4176 4177
			   conf->reshape_progress > 0)
			sector_nr = conf->reshape_progress;
4178
		sector_div(sector_nr, new_data_disks);
4179
		if (sector_nr) {
4180 4181
			mddev->curr_resync_completed = sector_nr;
			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4182 4183 4184
			*skipped = 1;
			return sector_nr;
		}
4185 4186
	}

4187 4188 4189 4190
	/* We need to process a full chunk at a time.
	 * If old and new chunk sizes differ, we need to process the
	 * largest of these
	 */
4191 4192
	if (mddev->new_chunk_sectors > mddev->chunk_sectors)
		reshape_sectors = mddev->new_chunk_sectors;
4193
	else
4194
		reshape_sectors = mddev->chunk_sectors;
4195

4196 4197 4198 4199 4200
	/* We update the metadata at least every 10 seconds, or when
	 * the data about to be copied would over-write the source of
	 * the data at the front of the range.  i.e. one new_stripe
	 * along from reshape_progress new_maps to after where
	 * reshape_safe old_maps to
4201
	 */
4202
	writepos = conf->reshape_progress;
4203
	sector_div(writepos, new_data_disks);
4204 4205
	readpos = conf->reshape_progress;
	sector_div(readpos, data_disks);
4206
	safepos = conf->reshape_safe;
4207
	sector_div(safepos, data_disks);
4208
	if (mddev->reshape_backwards) {
4209
		writepos -= min_t(sector_t, reshape_sectors, writepos);
4210
		readpos += reshape_sectors;
4211
		safepos += reshape_sectors;
4212
	} else {
4213
		writepos += reshape_sectors;
4214 4215
		readpos -= min_t(sector_t, reshape_sectors, readpos);
		safepos -= min_t(sector_t, reshape_sectors, safepos);
4216
	}
4217

4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232
	/* Having calculated the 'writepos' possibly use it
	 * to set 'stripe_addr' which is where we will write to.
	 */
	if (mddev->reshape_backwards) {
		BUG_ON(conf->reshape_progress == 0);
		stripe_addr = writepos;
		BUG_ON((mddev->dev_sectors &
			~((sector_t)reshape_sectors - 1))
		       - reshape_sectors - stripe_addr
		       != sector_nr);
	} else {
		BUG_ON(writepos != sector_nr + reshape_sectors);
		stripe_addr = sector_nr;
	}

4233 4234 4235 4236
	/* 'writepos' is the most advanced device address we might write.
	 * 'readpos' is the least advanced device address we might read.
	 * 'safepos' is the least address recorded in the metadata as having
	 *     been reshaped.
4237 4238 4239 4240
	 * If there is a min_offset_diff, these are adjusted either by
	 * increasing the safepos/readpos if diff is negative, or
	 * increasing writepos if diff is positive.
	 * If 'readpos' is then behind 'writepos', there is no way that we can
4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252
	 * ensure safety in the face of a crash - that must be done by userspace
	 * making a backup of the data.  So in that case there is no particular
	 * rush to update metadata.
	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
	 * update the metadata to advance 'safepos' to match 'readpos' so that
	 * we can be safe in the event of a crash.
	 * So we insist on updating metadata if safepos is behind writepos and
	 * readpos is beyond writepos.
	 * In any case, update the metadata every 10 seconds.
	 * Maybe that number should be configurable, but I'm not sure it is
	 * worth it.... maybe it could be a multiple of safemode_delay???
	 */
4253 4254 4255 4256 4257 4258
	if (conf->min_offset_diff < 0) {
		safepos += -conf->min_offset_diff;
		readpos += -conf->min_offset_diff;
	} else
		writepos += conf->min_offset_diff;

4259
	if ((mddev->reshape_backwards
4260 4261 4262
	     ? (safepos > writepos && readpos < writepos)
	     : (safepos < writepos && readpos > writepos)) ||
	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4263 4264 4265
		/* Cannot proceed until we've updated the superblock... */
		wait_event(conf->wait_for_overlap,
			   atomic_read(&conf->reshape_stripes)==0);
4266
		mddev->reshape_position = conf->reshape_progress;
4267
		mddev->curr_resync_completed = sector_nr;
4268
		conf->reshape_checkpoint = jiffies;
4269
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4270
		md_wakeup_thread(mddev->thread);
4271
		wait_event(mddev->sb_wait, mddev->flags == 0 ||
4272 4273
			   kthread_should_stop());
		spin_lock_irq(&conf->device_lock);
4274
		conf->reshape_safe = mddev->reshape_position;
4275 4276
		spin_unlock_irq(&conf->device_lock);
		wake_up(&conf->wait_for_overlap);
4277
		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4278 4279
	}

4280
	INIT_LIST_HEAD(&stripes);
4281
	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4282
		int j;
4283
		int skipped_disk = 0;
4284
		sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4285 4286 4287 4288 4289 4290 4291 4292 4293
		set_bit(STRIPE_EXPANDING, &sh->state);
		atomic_inc(&conf->reshape_stripes);
		/* If any of this stripe is beyond the end of the old
		 * array, then we need to zero those blocks
		 */
		for (j=sh->disks; j--;) {
			sector_t s;
			if (j == sh->pd_idx)
				continue;
4294
			if (conf->level == 6 &&
4295
			    j == sh->qd_idx)
4296
				continue;
4297
			s = compute_blocknr(sh, j, 0);
D
Dan Williams 已提交
4298
			if (s < raid5_size(mddev, 0, 0)) {
4299
				skipped_disk = 1;
4300 4301 4302 4303 4304 4305
				continue;
			}
			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
			set_bit(R5_Expanded, &sh->dev[j].flags);
			set_bit(R5_UPTODATE, &sh->dev[j].flags);
		}
4306
		if (!skipped_disk) {
4307 4308 4309
			set_bit(STRIPE_EXPAND_READY, &sh->state);
			set_bit(STRIPE_HANDLE, &sh->state);
		}
4310
		list_add(&sh->lru, &stripes);
4311 4312
	}
	spin_lock_irq(&conf->device_lock);
4313
	if (mddev->reshape_backwards)
4314
		conf->reshape_progress -= reshape_sectors * new_data_disks;
4315
	else
4316
		conf->reshape_progress += reshape_sectors * new_data_disks;
4317 4318 4319 4320 4321 4322 4323
	spin_unlock_irq(&conf->device_lock);
	/* Ok, those stripe are ready. We can start scheduling
	 * reads on the source stripes.
	 * The source stripes are determined by mapping the first and last
	 * block on the destination stripes.
	 */
	first_sector =
4324
		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4325
				     1, &dd_idx, NULL);
4326
	last_sector =
4327
		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4328
					    * new_data_disks - 1),
4329
				     1, &dd_idx, NULL);
A
Andre Noll 已提交
4330 4331
	if (last_sector >= mddev->dev_sectors)
		last_sector = mddev->dev_sectors - 1;
4332
	while (first_sector <= last_sector) {
4333
		sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4334 4335 4336 4337 4338
		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
		set_bit(STRIPE_HANDLE, &sh->state);
		release_stripe(sh);
		first_sector += STRIPE_SECTORS;
	}
4339 4340 4341 4342 4343 4344 4345 4346
	/* Now that the sources are clearly marked, we can release
	 * the destination stripes
	 */
	while (!list_empty(&stripes)) {
		sh = list_entry(stripes.next, struct stripe_head, lru);
		list_del_init(&sh->lru);
		release_stripe(sh);
	}
4347 4348 4349
	/* If this takes us to the resync_max point where we have to pause,
	 * then we need to write out the superblock.
	 */
4350
	sector_nr += reshape_sectors;
4351 4352
	if ((sector_nr - mddev->curr_resync_completed) * 2
	    >= mddev->resync_max - mddev->curr_resync_completed) {
4353 4354 4355
		/* Cannot proceed until we've updated the superblock... */
		wait_event(conf->wait_for_overlap,
			   atomic_read(&conf->reshape_stripes) == 0);
4356
		mddev->reshape_position = conf->reshape_progress;
4357
		mddev->curr_resync_completed = sector_nr;
4358
		conf->reshape_checkpoint = jiffies;
4359 4360 4361 4362 4363 4364
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
		md_wakeup_thread(mddev->thread);
		wait_event(mddev->sb_wait,
			   !test_bit(MD_CHANGE_DEVS, &mddev->flags)
			   || kthread_should_stop());
		spin_lock_irq(&conf->device_lock);
4365
		conf->reshape_safe = mddev->reshape_position;
4366 4367
		spin_unlock_irq(&conf->device_lock);
		wake_up(&conf->wait_for_overlap);
4368
		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4369
	}
4370
	return reshape_sectors;
4371 4372 4373
}

/* FIXME go_faster isn't used */
4374
static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
4375
{
4376
	struct r5conf *conf = mddev->private;
4377
	struct stripe_head *sh;
A
Andre Noll 已提交
4378
	sector_t max_sector = mddev->dev_sectors;
N
NeilBrown 已提交
4379
	sector_t sync_blocks;
4380 4381
	int still_degraded = 0;
	int i;
L
Linus Torvalds 已提交
4382

4383
	if (sector_nr >= max_sector) {
L
Linus Torvalds 已提交
4384
		/* just being told to finish up .. nothing much to do */
4385

4386 4387 4388 4389
		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
			end_reshape(conf);
			return 0;
		}
4390 4391 4392 4393

		if (mddev->curr_resync < max_sector) /* aborted */
			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
					&sync_blocks, 1);
4394
		else /* completed sync */
4395 4396 4397
			conf->fullsync = 0;
		bitmap_close_sync(mddev->bitmap);

L
Linus Torvalds 已提交
4398 4399
		return 0;
	}
4400

4401 4402 4403
	/* Allow raid5_quiesce to complete */
	wait_event(conf->wait_for_overlap, conf->quiesce != 2);

4404 4405
	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
		return reshape_request(mddev, sector_nr, skipped);
4406

4407 4408 4409 4410 4411 4412
	/* No need to check resync_max as we never do more than one
	 * stripe, and as resync_max will always be on a chunk boundary,
	 * if the check in md_do_sync didn't fire, there is no chance
	 * of overstepping resync_max here
	 */

4413
	/* if there is too many failed drives and we are trying
L
Linus Torvalds 已提交
4414 4415 4416
	 * to resync, then assert that we are finished, because there is
	 * nothing we can do.
	 */
4417
	if (mddev->degraded >= conf->max_degraded &&
4418
	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
A
Andre Noll 已提交
4419
		sector_t rv = mddev->dev_sectors - sector_nr;
4420
		*skipped = 1;
L
Linus Torvalds 已提交
4421 4422
		return rv;
	}
4423
	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4424
	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4425 4426 4427 4428 4429 4430
	    !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
		/* we can skip this block, and probably more */
		sync_blocks /= STRIPE_SECTORS;
		*skipped = 1;
		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
	}
L
Linus Torvalds 已提交
4431

N
NeilBrown 已提交
4432 4433
	bitmap_cond_end_sync(mddev->bitmap, sector_nr);

4434
	sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
L
Linus Torvalds 已提交
4435
	if (sh == NULL) {
4436
		sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
L
Linus Torvalds 已提交
4437
		/* make sure we don't swamp the stripe cache if someone else
4438
		 * is trying to get access
L
Linus Torvalds 已提交
4439
		 */
4440
		schedule_timeout_uninterruptible(1);
L
Linus Torvalds 已提交
4441
	}
4442 4443 4444 4445
	/* Need to check if array will still be degraded after recovery/resync
	 * We don't need to check the 'failed' flag as when that gets set,
	 * recovery aborts.
	 */
4446
	for (i = 0; i < conf->raid_disks; i++)
4447 4448 4449 4450 4451
		if (conf->disks[i].rdev == NULL)
			still_degraded = 1;

	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);

4452
	set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
L
Linus Torvalds 已提交
4453

4454
	handle_stripe(sh);
L
Linus Torvalds 已提交
4455 4456 4457 4458 4459
	release_stripe(sh);

	return STRIPE_SECTORS;
}

4460
static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472
{
	/* We may not be able to submit a whole bio at once as there
	 * may not be enough stripe_heads available.
	 * We cannot pre-allocate enough stripe_heads as we may need
	 * more than exist in the cache (if we allow ever large chunks).
	 * So we do one stripe head at a time and record in
	 * ->bi_hw_segments how many have been done.
	 *
	 * We *know* that this entire raid_bio is in one chunk, so
	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
	 */
	struct stripe_head *sh;
4473
	int dd_idx;
4474 4475 4476 4477 4478 4479
	sector_t sector, logical_sector, last_sector;
	int scnt = 0;
	int remaining;
	int handled = 0;

	logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4480
	sector = raid5_compute_sector(conf, logical_sector,
4481
				      0, &dd_idx, NULL);
4482 4483 4484
	last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);

	for (; logical_sector < last_sector;
4485 4486 4487
	     logical_sector += STRIPE_SECTORS,
		     sector += STRIPE_SECTORS,
		     scnt++) {
4488

4489
		if (scnt < raid5_bi_hw_segments(raid_bio))
4490 4491 4492
			/* already done this stripe */
			continue;

4493
		sh = get_active_stripe(conf, sector, 0, 1, 0);
4494 4495 4496

		if (!sh) {
			/* failed to get a stripe - must wait */
4497
			raid5_set_bi_hw_segments(raid_bio, scnt);
4498 4499 4500 4501
			conf->retry_read_aligned = raid_bio;
			return handled;
		}

4502 4503
		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
			release_stripe(sh);
4504
			raid5_set_bi_hw_segments(raid_bio, scnt);
4505 4506 4507 4508
			conf->retry_read_aligned = raid_bio;
			return handled;
		}

4509
		handle_stripe(sh);
4510 4511 4512 4513
		release_stripe(sh);
		handled++;
	}
	spin_lock_irq(&conf->device_lock);
4514
	remaining = raid5_dec_bi_phys_segments(raid_bio);
4515
	spin_unlock_irq(&conf->device_lock);
4516 4517
	if (remaining == 0)
		bio_endio(raid_bio, 0);
4518 4519 4520 4521 4522 4523
	if (atomic_dec_and_test(&conf->active_aligned_reads))
		wake_up(&conf->wait_for_stripe);
	return handled;
}


L
Linus Torvalds 已提交
4524 4525 4526 4527 4528 4529 4530
/*
 * This is our raid5 kernel thread.
 *
 * We scan the hash table for stripes which can be handled now.
 * During the scan, completed stripes are saved for us by the interrupt
 * handler, so that they will not have to wait for our next wakeup.
 */
4531
static void raid5d(struct mddev *mddev)
L
Linus Torvalds 已提交
4532 4533
{
	struct stripe_head *sh;
4534
	struct r5conf *conf = mddev->private;
L
Linus Torvalds 已提交
4535
	int handled;
4536
	struct blk_plug plug;
L
Linus Torvalds 已提交
4537

4538
	pr_debug("+++ raid5d active\n");
L
Linus Torvalds 已提交
4539 4540 4541

	md_check_recovery(mddev);

4542
	blk_start_plug(&plug);
L
Linus Torvalds 已提交
4543 4544 4545
	handled = 0;
	spin_lock_irq(&conf->device_lock);
	while (1) {
4546
		struct bio *bio;
L
Linus Torvalds 已提交
4547

4548 4549 4550 4551
		if (atomic_read(&mddev->plug_cnt) == 0 &&
		    !list_empty(&conf->bitmap_list)) {
			/* Now is a good time to flush some bitmap updates */
			conf->seq_flush++;
4552
			spin_unlock_irq(&conf->device_lock);
4553
			bitmap_unplug(mddev->bitmap);
4554
			spin_lock_irq(&conf->device_lock);
4555
			conf->seq_write = conf->seq_flush;
4556 4557
			activate_bit_delay(conf);
		}
4558 4559
		if (atomic_read(&mddev->plug_cnt) == 0)
			raid5_activate_delayed(conf);
4560

4561 4562 4563 4564 4565 4566 4567 4568 4569 4570
		while ((bio = remove_bio_from_retry(conf))) {
			int ok;
			spin_unlock_irq(&conf->device_lock);
			ok = retry_aligned_read(conf, bio);
			spin_lock_irq(&conf->device_lock);
			if (!ok)
				break;
			handled++;
		}

4571 4572
		sh = __get_priority_stripe(conf);

4573
		if (!sh)
L
Linus Torvalds 已提交
4574 4575 4576 4577
			break;
		spin_unlock_irq(&conf->device_lock);
		
		handled++;
4578 4579 4580
		handle_stripe(sh);
		release_stripe(sh);
		cond_resched();
L
Linus Torvalds 已提交
4581

4582 4583 4584
		if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
			md_check_recovery(mddev);

L
Linus Torvalds 已提交
4585 4586
		spin_lock_irq(&conf->device_lock);
	}
4587
	pr_debug("%d stripes handled\n", handled);
L
Linus Torvalds 已提交
4588 4589 4590

	spin_unlock_irq(&conf->device_lock);

4591
	async_tx_issue_pending_all();
4592
	blk_finish_plug(&plug);
L
Linus Torvalds 已提交
4593

4594
	pr_debug("--- raid5d inactive\n");
L
Linus Torvalds 已提交
4595 4596
}

4597
static ssize_t
4598
raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
4599
{
4600
	struct r5conf *conf = mddev->private;
4601 4602 4603 4604
	if (conf)
		return sprintf(page, "%d\n", conf->max_nr_stripes);
	else
		return 0;
4605 4606
}

4607
int
4608
raid5_set_cache_size(struct mddev *mddev, int size)
4609
{
4610
	struct r5conf *conf = mddev->private;
4611 4612
	int err;

4613
	if (size <= 16 || size > 32768)
4614
		return -EINVAL;
4615
	while (size < conf->max_nr_stripes) {
4616 4617 4618 4619 4620
		if (drop_one_stripe(conf))
			conf->max_nr_stripes--;
		else
			break;
	}
4621 4622 4623
	err = md_allow_write(mddev);
	if (err)
		return err;
4624
	while (size > conf->max_nr_stripes) {
4625 4626 4627 4628
		if (grow_one_stripe(conf))
			conf->max_nr_stripes++;
		else break;
	}
4629 4630 4631 4632 4633
	return 0;
}
EXPORT_SYMBOL(raid5_set_cache_size);

static ssize_t
4634
raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
4635
{
4636
	struct r5conf *conf = mddev->private;
4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649
	unsigned long new;
	int err;

	if (len >= PAGE_SIZE)
		return -EINVAL;
	if (!conf)
		return -ENODEV;

	if (strict_strtoul(page, 10, &new))
		return -EINVAL;
	err = raid5_set_cache_size(mddev, new);
	if (err)
		return err;
4650 4651
	return len;
}
4652

4653 4654 4655 4656
static struct md_sysfs_entry
raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
				raid5_show_stripe_cache_size,
				raid5_store_stripe_cache_size);
4657

4658
static ssize_t
4659
raid5_show_preread_threshold(struct mddev *mddev, char *page)
4660
{
4661
	struct r5conf *conf = mddev->private;
4662 4663 4664 4665 4666 4667 4668
	if (conf)
		return sprintf(page, "%d\n", conf->bypass_threshold);
	else
		return 0;
}

static ssize_t
4669
raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
4670
{
4671
	struct r5conf *conf = mddev->private;
4672
	unsigned long new;
4673 4674 4675 4676 4677
	if (len >= PAGE_SIZE)
		return -EINVAL;
	if (!conf)
		return -ENODEV;

4678
	if (strict_strtoul(page, 10, &new))
4679
		return -EINVAL;
4680
	if (new > conf->max_nr_stripes)
4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691
		return -EINVAL;
	conf->bypass_threshold = new;
	return len;
}

static struct md_sysfs_entry
raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
					S_IRUGO | S_IWUSR,
					raid5_show_preread_threshold,
					raid5_store_preread_threshold);

4692
static ssize_t
4693
stripe_cache_active_show(struct mddev *mddev, char *page)
4694
{
4695
	struct r5conf *conf = mddev->private;
4696 4697 4698 4699
	if (conf)
		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
	else
		return 0;
4700 4701
}

4702 4703
static struct md_sysfs_entry
raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4704

4705
static struct attribute *raid5_attrs[] =  {
4706 4707
	&raid5_stripecache_size.attr,
	&raid5_stripecache_active.attr,
4708
	&raid5_preread_bypass_threshold.attr,
4709 4710
	NULL,
};
4711 4712 4713
static struct attribute_group raid5_attrs_group = {
	.name = NULL,
	.attrs = raid5_attrs,
4714 4715
};

4716
static sector_t
4717
raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
4718
{
4719
	struct r5conf *conf = mddev->private;
4720 4721 4722

	if (!sectors)
		sectors = mddev->dev_sectors;
4723
	if (!raid_disks)
4724
		/* size is defined by the smallest of previous and new size */
4725
		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4726

4727
	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4728
	sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4729 4730 4731
	return sectors * (raid_disks - conf->max_degraded);
}

4732
static void raid5_free_percpu(struct r5conf *conf)
4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743
{
	struct raid5_percpu *percpu;
	unsigned long cpu;

	if (!conf->percpu)
		return;

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		percpu = per_cpu_ptr(conf->percpu, cpu);
		safe_put_page(percpu->spare_page);
4744
		kfree(percpu->scribble);
4745 4746 4747 4748 4749 4750 4751 4752 4753
	}
#ifdef CONFIG_HOTPLUG_CPU
	unregister_cpu_notifier(&conf->cpu_notify);
#endif
	put_online_cpus();

	free_percpu(conf->percpu);
}

4754
static void free_conf(struct r5conf *conf)
4755 4756
{
	shrink_stripes(conf);
4757
	raid5_free_percpu(conf);
4758 4759 4760 4761 4762
	kfree(conf->disks);
	kfree(conf->stripe_hashtbl);
	kfree(conf);
}

4763 4764 4765 4766
#ifdef CONFIG_HOTPLUG_CPU
static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
			      void *hcpu)
{
4767
	struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
4768 4769 4770 4771 4772 4773
	long cpu = (long)hcpu;
	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
4774
		if (conf->level == 6 && !percpu->spare_page)
4775
			percpu->spare_page = alloc_page(GFP_KERNEL);
4776 4777 4778 4779 4780 4781 4782
		if (!percpu->scribble)
			percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);

		if (!percpu->scribble ||
		    (conf->level == 6 && !percpu->spare_page)) {
			safe_put_page(percpu->spare_page);
			kfree(percpu->scribble);
4783 4784
			pr_err("%s: failed memory allocation for cpu%ld\n",
			       __func__, cpu);
4785
			return notifier_from_errno(-ENOMEM);
4786 4787 4788 4789 4790
		}
		break;
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
		safe_put_page(percpu->spare_page);
4791
		kfree(percpu->scribble);
4792
		percpu->spare_page = NULL;
4793
		percpu->scribble = NULL;
4794 4795 4796 4797 4798 4799 4800 4801
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}
#endif

4802
static int raid5_alloc_percpu(struct r5conf *conf)
4803 4804 4805
{
	unsigned long cpu;
	struct page *spare_page;
4806
	struct raid5_percpu __percpu *allcpus;
4807
	void *scribble;
4808 4809 4810 4811 4812 4813 4814 4815 4816 4817
	int err;

	allcpus = alloc_percpu(struct raid5_percpu);
	if (!allcpus)
		return -ENOMEM;
	conf->percpu = allcpus;

	get_online_cpus();
	err = 0;
	for_each_present_cpu(cpu) {
4818 4819 4820 4821 4822 4823 4824 4825
		if (conf->level == 6) {
			spare_page = alloc_page(GFP_KERNEL);
			if (!spare_page) {
				err = -ENOMEM;
				break;
			}
			per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
		}
4826
		scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4827
		if (!scribble) {
4828 4829 4830
			err = -ENOMEM;
			break;
		}
4831
		per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843
	}
#ifdef CONFIG_HOTPLUG_CPU
	conf->cpu_notify.notifier_call = raid456_cpu_notify;
	conf->cpu_notify.priority = 0;
	if (err == 0)
		err = register_cpu_notifier(&conf->cpu_notify);
#endif
	put_online_cpus();

	return err;
}

4844
static struct r5conf *setup_conf(struct mddev *mddev)
L
Linus Torvalds 已提交
4845
{
4846
	struct r5conf *conf;
4847
	int raid_disk, memory, max_disks;
4848
	struct md_rdev *rdev;
L
Linus Torvalds 已提交
4849
	struct disk_info *disk;
4850
	char pers_name[6];
L
Linus Torvalds 已提交
4851

N
NeilBrown 已提交
4852 4853 4854
	if (mddev->new_level != 5
	    && mddev->new_level != 4
	    && mddev->new_level != 6) {
4855
		printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
N
NeilBrown 已提交
4856 4857
		       mdname(mddev), mddev->new_level);
		return ERR_PTR(-EIO);
L
Linus Torvalds 已提交
4858
	}
N
NeilBrown 已提交
4859 4860 4861 4862
	if ((mddev->new_level == 5
	     && !algorithm_valid_raid5(mddev->new_layout)) ||
	    (mddev->new_level == 6
	     && !algorithm_valid_raid6(mddev->new_layout))) {
4863
		printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
N
NeilBrown 已提交
4864 4865
		       mdname(mddev), mddev->new_layout);
		return ERR_PTR(-EIO);
4866
	}
N
NeilBrown 已提交
4867
	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4868
		printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
N
NeilBrown 已提交
4869 4870
		       mdname(mddev), mddev->raid_disks);
		return ERR_PTR(-EINVAL);
4871 4872
	}

4873 4874 4875
	if (!mddev->new_chunk_sectors ||
	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
	    !is_power_of_2(mddev->new_chunk_sectors)) {
4876 4877
		printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
		       mdname(mddev), mddev->new_chunk_sectors << 9);
N
NeilBrown 已提交
4878
		return ERR_PTR(-EINVAL);
4879 4880
	}

4881
	conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
N
NeilBrown 已提交
4882
	if (conf == NULL)
L
Linus Torvalds 已提交
4883
		goto abort;
4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895
	spin_lock_init(&conf->device_lock);
	init_waitqueue_head(&conf->wait_for_stripe);
	init_waitqueue_head(&conf->wait_for_overlap);
	INIT_LIST_HEAD(&conf->handle_list);
	INIT_LIST_HEAD(&conf->hold_list);
	INIT_LIST_HEAD(&conf->delayed_list);
	INIT_LIST_HEAD(&conf->bitmap_list);
	INIT_LIST_HEAD(&conf->inactive_list);
	atomic_set(&conf->active_stripes, 0);
	atomic_set(&conf->preread_active_stripes, 0);
	atomic_set(&conf->active_aligned_reads, 0);
	conf->bypass_threshold = BYPASS_THRESHOLD;
4896
	conf->recovery_disabled = mddev->recovery_disabled - 1;
N
NeilBrown 已提交
4897 4898 4899 4900 4901

	conf->raid_disks = mddev->raid_disks;
	if (mddev->reshape_position == MaxSector)
		conf->previous_raid_disks = mddev->raid_disks;
	else
4902
		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4903 4904
	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
	conf->scribble_len = scribble_len(max_disks);
4905

4906
	conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
4907 4908 4909
			      GFP_KERNEL);
	if (!conf->disks)
		goto abort;
4910

L
Linus Torvalds 已提交
4911 4912
	conf->mddev = mddev;

4913
	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
L
Linus Torvalds 已提交
4914 4915
		goto abort;

4916 4917 4918 4919
	conf->level = mddev->new_level;
	if (raid5_alloc_percpu(conf) != 0)
		goto abort;

4920
	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
L
Linus Torvalds 已提交
4921

N
NeilBrown 已提交
4922
	rdev_for_each(rdev, mddev) {
L
Linus Torvalds 已提交
4923
		raid_disk = rdev->raid_disk;
4924
		if (raid_disk >= max_disks
L
Linus Torvalds 已提交
4925 4926 4927 4928
		    || raid_disk < 0)
			continue;
		disk = conf->disks + raid_disk;

4929 4930 4931 4932 4933 4934 4935 4936 4937
		if (test_bit(Replacement, &rdev->flags)) {
			if (disk->replacement)
				goto abort;
			disk->replacement = rdev;
		} else {
			if (disk->rdev)
				goto abort;
			disk->rdev = rdev;
		}
L
Linus Torvalds 已提交
4938

4939
		if (test_bit(In_sync, &rdev->flags)) {
L
Linus Torvalds 已提交
4940
			char b[BDEVNAME_SIZE];
4941 4942 4943
			printk(KERN_INFO "md/raid:%s: device %s operational as raid"
			       " disk %d\n",
			       mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
J
Jonathan Brassow 已提交
4944
		} else if (rdev->saved_raid_disk != raid_disk)
4945 4946
			/* Cannot rely on bitmap to complete recovery */
			conf->fullsync = 1;
L
Linus Torvalds 已提交
4947 4948
	}

4949
	conf->chunk_sectors = mddev->new_chunk_sectors;
N
NeilBrown 已提交
4950
	conf->level = mddev->new_level;
4951 4952 4953 4954
	if (conf->level == 6)
		conf->max_degraded = 2;
	else
		conf->max_degraded = 1;
N
NeilBrown 已提交
4955
	conf->algorithm = mddev->new_layout;
L
Linus Torvalds 已提交
4956
	conf->max_nr_stripes = NR_STRIPES;
4957
	conf->reshape_progress = mddev->reshape_position;
4958
	if (conf->reshape_progress != MaxSector) {
4959
		conf->prev_chunk_sectors = mddev->chunk_sectors;
4960 4961
		conf->prev_algo = mddev->layout;
	}
L
Linus Torvalds 已提交
4962

N
NeilBrown 已提交
4963
	memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4964
		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
N
NeilBrown 已提交
4965 4966
	if (grow_stripes(conf, conf->max_nr_stripes)) {
		printk(KERN_ERR
4967 4968
		       "md/raid:%s: couldn't allocate %dkB for buffers\n",
		       mdname(mddev), memory);
N
NeilBrown 已提交
4969 4970
		goto abort;
	} else
4971 4972
		printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
		       mdname(mddev), memory);
L
Linus Torvalds 已提交
4973

4974 4975
	sprintf(pers_name, "raid%d", mddev->new_level);
	conf->thread = md_register_thread(raid5d, mddev, pers_name);
N
NeilBrown 已提交
4976 4977
	if (!conf->thread) {
		printk(KERN_ERR
4978
		       "md/raid:%s: couldn't allocate thread.\n",
N
NeilBrown 已提交
4979
		       mdname(mddev));
4980 4981
		goto abort;
	}
N
NeilBrown 已提交
4982 4983 4984 4985 4986

	return conf;

 abort:
	if (conf) {
4987
		free_conf(conf);
N
NeilBrown 已提交
4988 4989 4990 4991 4992
		return ERR_PTR(-EIO);
	} else
		return ERR_PTR(-ENOMEM);
}

4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019

static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
{
	switch (algo) {
	case ALGORITHM_PARITY_0:
		if (raid_disk < max_degraded)
			return 1;
		break;
	case ALGORITHM_PARITY_N:
		if (raid_disk >= raid_disks - max_degraded)
			return 1;
		break;
	case ALGORITHM_PARITY_0_6:
		if (raid_disk == 0 || 
		    raid_disk == raid_disks - 1)
			return 1;
		break;
	case ALGORITHM_LEFT_ASYMMETRIC_6:
	case ALGORITHM_RIGHT_ASYMMETRIC_6:
	case ALGORITHM_LEFT_SYMMETRIC_6:
	case ALGORITHM_RIGHT_SYMMETRIC_6:
		if (raid_disk == raid_disks - 1)
			return 1;
	}
	return 0;
}

5020
static int run(struct mddev *mddev)
N
NeilBrown 已提交
5021
{
5022
	struct r5conf *conf;
5023
	int working_disks = 0;
5024
	int dirty_parity_disks = 0;
5025
	struct md_rdev *rdev;
5026
	sector_t reshape_offset = 0;
5027
	int i;
5028 5029
	long long min_offset_diff = 0;
	int first = 1;
N
NeilBrown 已提交
5030

5031
	if (mddev->recovery_cp != MaxSector)
5032
		printk(KERN_NOTICE "md/raid:%s: not clean"
5033 5034
		       " -- starting background reconstruction\n",
		       mdname(mddev));
5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051

	rdev_for_each(rdev, mddev) {
		long long diff;
		if (rdev->raid_disk < 0)
			continue;
		diff = (rdev->new_data_offset - rdev->data_offset);
		if (first) {
			min_offset_diff = diff;
			first = 0;
		} else if (mddev->reshape_backwards &&
			 diff < min_offset_diff)
			min_offset_diff = diff;
		else if (!mddev->reshape_backwards &&
			 diff > min_offset_diff)
			min_offset_diff = diff;
	}

N
NeilBrown 已提交
5052 5053
	if (mddev->reshape_position != MaxSector) {
		/* Check that we can continue the reshape.
5054 5055 5056 5057 5058 5059 5060 5061 5062 5063
		 * Difficulties arise if the stripe we would write to
		 * next is at or after the stripe we would read from next.
		 * For a reshape that changes the number of devices, this
		 * is only possible for a very short time, and mdadm makes
		 * sure that time appears to have past before assembling
		 * the array.  So we fail if that time hasn't passed.
		 * For a reshape that keeps the number of devices the same
		 * mdadm must be monitoring the reshape can keeping the
		 * critical areas read-only and backed up.  It will start
		 * the array in read-only mode, so we check for that.
N
NeilBrown 已提交
5064 5065 5066
		 */
		sector_t here_new, here_old;
		int old_disks;
5067
		int max_degraded = (mddev->level == 6 ? 2 : 1);
N
NeilBrown 已提交
5068

5069
		if (mddev->new_level != mddev->level) {
5070
			printk(KERN_ERR "md/raid:%s: unsupported reshape "
N
NeilBrown 已提交
5071 5072 5073 5074 5075 5076 5077 5078 5079 5080
			       "required - aborting.\n",
			       mdname(mddev));
			return -EINVAL;
		}
		old_disks = mddev->raid_disks - mddev->delta_disks;
		/* reshape_position must be on a new-stripe boundary, and one
		 * further up in new geometry must map after here in old
		 * geometry.
		 */
		here_new = mddev->reshape_position;
5081
		if (sector_div(here_new, mddev->new_chunk_sectors *
N
NeilBrown 已提交
5082
			       (mddev->raid_disks - max_degraded))) {
5083 5084
			printk(KERN_ERR "md/raid:%s: reshape_position not "
			       "on a stripe boundary\n", mdname(mddev));
N
NeilBrown 已提交
5085 5086
			return -EINVAL;
		}
5087
		reshape_offset = here_new * mddev->new_chunk_sectors;
N
NeilBrown 已提交
5088 5089
		/* here_new is the stripe we will write to */
		here_old = mddev->reshape_position;
5090
		sector_div(here_old, mddev->chunk_sectors *
N
NeilBrown 已提交
5091 5092 5093
			   (old_disks-max_degraded));
		/* here_old is the first stripe that we might need to read
		 * from */
5094
		if (mddev->delta_disks == 0) {
5095 5096 5097 5098 5099 5100
			if ((here_new * mddev->new_chunk_sectors !=
			     here_old * mddev->chunk_sectors)) {
				printk(KERN_ERR "md/raid:%s: reshape position is"
				       " confused - aborting\n", mdname(mddev));
				return -EINVAL;
			}
5101
			/* We cannot be sure it is safe to start an in-place
5102
			 * reshape.  It is only safe if user-space is monitoring
5103 5104 5105 5106 5107
			 * and taking constant backups.
			 * mdadm always starts a situation like this in
			 * readonly mode so it can take control before
			 * allowing any writes.  So just check for that.
			 */
5108 5109 5110 5111 5112 5113 5114
			if (abs(min_offset_diff) >= mddev->chunk_sectors &&
			    abs(min_offset_diff) >= mddev->new_chunk_sectors)
				/* not really in-place - so OK */;
			else if (mddev->ro == 0) {
				printk(KERN_ERR "md/raid:%s: in-place reshape "
				       "must be started in read-only mode "
				       "- aborting\n",
5115
				       mdname(mddev));
5116 5117
				return -EINVAL;
			}
5118
		} else if (mddev->reshape_backwards
5119
		    ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
5120 5121
		       here_old * mddev->chunk_sectors)
		    : (here_new * mddev->new_chunk_sectors >=
5122
		       here_old * mddev->chunk_sectors + (-min_offset_diff))) {
N
NeilBrown 已提交
5123
			/* Reading from the same stripe as writing to - bad */
5124 5125 5126
			printk(KERN_ERR "md/raid:%s: reshape_position too early for "
			       "auto-recovery - aborting.\n",
			       mdname(mddev));
N
NeilBrown 已提交
5127 5128
			return -EINVAL;
		}
5129 5130
		printk(KERN_INFO "md/raid:%s: reshape will continue\n",
		       mdname(mddev));
N
NeilBrown 已提交
5131 5132 5133 5134
		/* OK, we should be able to continue; */
	} else {
		BUG_ON(mddev->level != mddev->new_level);
		BUG_ON(mddev->layout != mddev->new_layout);
5135
		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
N
NeilBrown 已提交
5136
		BUG_ON(mddev->delta_disks != 0);
L
Linus Torvalds 已提交
5137
	}
N
NeilBrown 已提交
5138

5139 5140 5141 5142 5143
	if (mddev->private == NULL)
		conf = setup_conf(mddev);
	else
		conf = mddev->private;

N
NeilBrown 已提交
5144 5145 5146
	if (IS_ERR(conf))
		return PTR_ERR(conf);

5147
	conf->min_offset_diff = min_offset_diff;
N
NeilBrown 已提交
5148 5149 5150 5151
	mddev->thread = conf->thread;
	conf->thread = NULL;
	mddev->private = conf;

5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162
	for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
	     i++) {
		rdev = conf->disks[i].rdev;
		if (!rdev && conf->disks[i].replacement) {
			/* The replacement is all we have yet */
			rdev = conf->disks[i].replacement;
			conf->disks[i].replacement = NULL;
			clear_bit(Replacement, &rdev->flags);
			conf->disks[i].rdev = rdev;
		}
		if (!rdev)
5163
			continue;
5164 5165 5166 5167 5168 5169 5170
		if (conf->disks[i].replacement &&
		    conf->reshape_progress != MaxSector) {
			/* replacements and reshape simply do not mix. */
			printk(KERN_ERR "md: cannot handle concurrent "
			       "replacement and reshape.\n");
			goto abort;
		}
5171
		if (test_bit(In_sync, &rdev->flags)) {
N
NeilBrown 已提交
5172
			working_disks++;
5173 5174
			continue;
		}
5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202
		/* This disc is not fully in-sync.  However if it
		 * just stored parity (beyond the recovery_offset),
		 * when we don't need to be concerned about the
		 * array being dirty.
		 * When reshape goes 'backwards', we never have
		 * partially completed devices, so we only need
		 * to worry about reshape going forwards.
		 */
		/* Hack because v0.91 doesn't store recovery_offset properly. */
		if (mddev->major_version == 0 &&
		    mddev->minor_version > 90)
			rdev->recovery_offset = reshape_offset;
			
		if (rdev->recovery_offset < reshape_offset) {
			/* We need to check old and new layout */
			if (!only_parity(rdev->raid_disk,
					 conf->algorithm,
					 conf->raid_disks,
					 conf->max_degraded))
				continue;
		}
		if (!only_parity(rdev->raid_disk,
				 conf->prev_algo,
				 conf->previous_raid_disks,
				 conf->max_degraded))
			continue;
		dirty_parity_disks++;
	}
N
NeilBrown 已提交
5203

5204 5205 5206
	/*
	 * 0 for a fully functional array, 1 or 2 for a degraded array.
	 */
5207
	mddev->degraded = calc_degraded(conf);
N
NeilBrown 已提交
5208

5209
	if (has_failed(conf)) {
5210
		printk(KERN_ERR "md/raid:%s: not enough operational devices"
L
Linus Torvalds 已提交
5211
			" (%d/%d failed)\n",
5212
			mdname(mddev), mddev->degraded, conf->raid_disks);
L
Linus Torvalds 已提交
5213 5214 5215
		goto abort;
	}

N
NeilBrown 已提交
5216
	/* device size must be a multiple of chunk size */
5217
	mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
N
NeilBrown 已提交
5218 5219
	mddev->resync_max_sectors = mddev->dev_sectors;

5220
	if (mddev->degraded > dirty_parity_disks &&
L
Linus Torvalds 已提交
5221
	    mddev->recovery_cp != MaxSector) {
5222 5223
		if (mddev->ok_start_degraded)
			printk(KERN_WARNING
5224 5225
			       "md/raid:%s: starting dirty degraded array"
			       " - data corruption possible.\n",
5226 5227 5228
			       mdname(mddev));
		else {
			printk(KERN_ERR
5229
			       "md/raid:%s: cannot start dirty degraded array.\n",
5230 5231 5232
			       mdname(mddev));
			goto abort;
		}
L
Linus Torvalds 已提交
5233 5234 5235
	}

	if (mddev->degraded == 0)
5236 5237
		printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
		       " devices, algorithm %d\n", mdname(mddev), conf->level,
5238 5239
		       mddev->raid_disks-mddev->degraded, mddev->raid_disks,
		       mddev->new_layout);
L
Linus Torvalds 已提交
5240
	else
5241 5242 5243 5244 5245
		printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
		       " out of %d devices, algorithm %d\n",
		       mdname(mddev), conf->level,
		       mddev->raid_disks - mddev->degraded,
		       mddev->raid_disks, mddev->new_layout);
L
Linus Torvalds 已提交
5246 5247 5248

	print_raid5_conf(conf);

5249 5250
	if (conf->reshape_progress != MaxSector) {
		conf->reshape_safe = conf->reshape_progress;
5251 5252 5253 5254 5255 5256
		atomic_set(&conf->reshape_stripes, 0);
		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5257
							"reshape");
5258 5259
	}

L
Linus Torvalds 已提交
5260 5261

	/* Ok, everything is just fine now */
5262 5263
	if (mddev->to_remove == &raid5_attrs_group)
		mddev->to_remove = NULL;
N
NeilBrown 已提交
5264 5265
	else if (mddev->kobj.sd &&
	    sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5266
		printk(KERN_WARNING
5267
		       "raid5: failed to create sysfs attributes for %s\n",
5268
		       mdname(mddev));
5269
	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5270

5271
	if (mddev->queue) {
5272
		int chunk_size;
5273 5274 5275 5276 5277 5278 5279 5280 5281
		/* read-ahead size must cover two whole stripes, which
		 * is 2 * (datadisks) * chunksize where 'n' is the
		 * number of raid devices
		 */
		int data_disks = conf->previous_raid_disks - conf->max_degraded;
		int stripe = data_disks *
			((mddev->chunk_sectors << 9) / PAGE_SIZE);
		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
N
NeilBrown 已提交
5282

5283
		blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5284

N
NeilBrown 已提交
5285 5286
		mddev->queue->backing_dev_info.congested_data = mddev;
		mddev->queue->backing_dev_info.congested_fn = raid5_congested;
5287

5288 5289 5290 5291
		chunk_size = mddev->chunk_sectors << 9;
		blk_queue_io_min(mddev->queue, chunk_size);
		blk_queue_io_opt(mddev->queue, chunk_size *
				 (conf->raid_disks - conf->max_degraded));
5292

5293
		rdev_for_each(rdev, mddev) {
5294 5295
			disk_stack_limits(mddev->gendisk, rdev->bdev,
					  rdev->data_offset << 9);
5296 5297 5298
			disk_stack_limits(mddev->gendisk, rdev->bdev,
					  rdev->new_data_offset << 9);
		}
5299
	}
5300

L
Linus Torvalds 已提交
5301 5302
	return 0;
abort:
5303
	md_unregister_thread(&mddev->thread);
N
NeilBrown 已提交
5304 5305
	print_raid5_conf(conf);
	free_conf(conf);
L
Linus Torvalds 已提交
5306
	mddev->private = NULL;
5307
	printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
L
Linus Torvalds 已提交
5308 5309 5310
	return -EIO;
}

5311
static int stop(struct mddev *mddev)
L
Linus Torvalds 已提交
5312
{
5313
	struct r5conf *conf = mddev->private;
L
Linus Torvalds 已提交
5314

5315
	md_unregister_thread(&mddev->thread);
N
NeilBrown 已提交
5316 5317
	if (mddev->queue)
		mddev->queue->backing_dev_info.congested_fn = NULL;
5318
	free_conf(conf);
5319 5320
	mddev->private = NULL;
	mddev->to_remove = &raid5_attrs_group;
L
Linus Torvalds 已提交
5321 5322 5323
	return 0;
}

5324
static void status(struct seq_file *seq, struct mddev *mddev)
L
Linus Torvalds 已提交
5325
{
5326
	struct r5conf *conf = mddev->private;
L
Linus Torvalds 已提交
5327 5328
	int i;

5329 5330
	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
		mddev->chunk_sectors / 2, mddev->layout);
5331
	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
L
Linus Torvalds 已提交
5332 5333 5334
	for (i = 0; i < conf->raid_disks; i++)
		seq_printf (seq, "%s",
			       conf->disks[i].rdev &&
5335
			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
L
Linus Torvalds 已提交
5336 5337 5338
	seq_printf (seq, "]");
}

5339
static void print_raid5_conf (struct r5conf *conf)
L
Linus Torvalds 已提交
5340 5341 5342 5343
{
	int i;
	struct disk_info *tmp;

5344
	printk(KERN_DEBUG "RAID conf printout:\n");
L
Linus Torvalds 已提交
5345 5346 5347 5348
	if (!conf) {
		printk("(conf==NULL)\n");
		return;
	}
5349 5350 5351
	printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
	       conf->raid_disks,
	       conf->raid_disks - conf->mddev->degraded);
L
Linus Torvalds 已提交
5352 5353 5354 5355 5356

	for (i = 0; i < conf->raid_disks; i++) {
		char b[BDEVNAME_SIZE];
		tmp = conf->disks + i;
		if (tmp->rdev)
5357 5358 5359
			printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
			       i, !test_bit(Faulty, &tmp->rdev->flags),
			       bdevname(tmp->rdev->bdev, b));
L
Linus Torvalds 已提交
5360 5361 5362
	}
}

5363
static int raid5_spare_active(struct mddev *mddev)
L
Linus Torvalds 已提交
5364 5365
{
	int i;
5366
	struct r5conf *conf = mddev->private;
L
Linus Torvalds 已提交
5367
	struct disk_info *tmp;
5368 5369
	int count = 0;
	unsigned long flags;
L
Linus Torvalds 已提交
5370 5371 5372

	for (i = 0; i < conf->raid_disks; i++) {
		tmp = conf->disks + i;
5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391
		if (tmp->replacement
		    && tmp->replacement->recovery_offset == MaxSector
		    && !test_bit(Faulty, &tmp->replacement->flags)
		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
			/* Replacement has just become active. */
			if (!tmp->rdev
			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
				count++;
			if (tmp->rdev) {
				/* Replaced device not technically faulty,
				 * but we need to be sure it gets removed
				 * and never re-added.
				 */
				set_bit(Faulty, &tmp->rdev->flags);
				sysfs_notify_dirent_safe(
					tmp->rdev->sysfs_state);
			}
			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
		} else if (tmp->rdev
5392
		    && tmp->rdev->recovery_offset == MaxSector
5393
		    && !test_bit(Faulty, &tmp->rdev->flags)
5394
		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5395
			count++;
5396
			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
L
Linus Torvalds 已提交
5397 5398
		}
	}
5399
	spin_lock_irqsave(&conf->device_lock, flags);
5400
	mddev->degraded = calc_degraded(conf);
5401
	spin_unlock_irqrestore(&conf->device_lock, flags);
L
Linus Torvalds 已提交
5402
	print_raid5_conf(conf);
5403
	return count;
L
Linus Torvalds 已提交
5404 5405
}

5406
static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
L
Linus Torvalds 已提交
5407
{
5408
	struct r5conf *conf = mddev->private;
L
Linus Torvalds 已提交
5409
	int err = 0;
5410
	int number = rdev->raid_disk;
5411
	struct md_rdev **rdevp;
L
Linus Torvalds 已提交
5412 5413 5414
	struct disk_info *p = conf->disks + number;

	print_raid5_conf(conf);
5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436
	if (rdev == p->rdev)
		rdevp = &p->rdev;
	else if (rdev == p->replacement)
		rdevp = &p->replacement;
	else
		return 0;

	if (number >= conf->raid_disks &&
	    conf->reshape_progress == MaxSector)
		clear_bit(In_sync, &rdev->flags);

	if (test_bit(In_sync, &rdev->flags) ||
	    atomic_read(&rdev->nr_pending)) {
		err = -EBUSY;
		goto abort;
	}
	/* Only remove non-faulty devices if recovery
	 * isn't possible.
	 */
	if (!test_bit(Faulty, &rdev->flags) &&
	    mddev->recovery_disabled != conf->recovery_disabled &&
	    !has_failed(conf) &&
5437
	    (!p->replacement || p->replacement == rdev) &&
5438 5439 5440 5441 5442 5443 5444 5445 5446 5447
	    number < conf->raid_disks) {
		err = -EBUSY;
		goto abort;
	}
	*rdevp = NULL;
	synchronize_rcu();
	if (atomic_read(&rdev->nr_pending)) {
		/* lost the race, try later */
		err = -EBUSY;
		*rdevp = rdev;
5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461
	} else if (p->replacement) {
		/* We must have just cleared 'rdev' */
		p->rdev = p->replacement;
		clear_bit(Replacement, &p->replacement->flags);
		smp_mb(); /* Make sure other CPUs may see both as identical
			   * but will never see neither - if they are careful
			   */
		p->replacement = NULL;
		clear_bit(WantReplacement, &rdev->flags);
	} else
		/* We might have just removed the Replacement as faulty-
		 * clear the bit just in case
		 */
		clear_bit(WantReplacement, &rdev->flags);
L
Linus Torvalds 已提交
5462 5463 5464 5465 5466 5467
abort:

	print_raid5_conf(conf);
	return err;
}

5468
static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
L
Linus Torvalds 已提交
5469
{
5470
	struct r5conf *conf = mddev->private;
5471
	int err = -EEXIST;
L
Linus Torvalds 已提交
5472 5473
	int disk;
	struct disk_info *p;
5474 5475
	int first = 0;
	int last = conf->raid_disks - 1;
L
Linus Torvalds 已提交
5476

5477 5478 5479
	if (mddev->recovery_disabled == conf->recovery_disabled)
		return -EBUSY;

N
NeilBrown 已提交
5480
	if (rdev->saved_raid_disk < 0 && has_failed(conf))
L
Linus Torvalds 已提交
5481
		/* no point adding a device */
5482
		return -EINVAL;
L
Linus Torvalds 已提交
5483

5484 5485
	if (rdev->raid_disk >= 0)
		first = last = rdev->raid_disk;
L
Linus Torvalds 已提交
5486 5487

	/*
5488 5489
	 * find the disk ... but prefer rdev->saved_raid_disk
	 * if possible.
L
Linus Torvalds 已提交
5490
	 */
5491
	if (rdev->saved_raid_disk >= 0 &&
5492
	    rdev->saved_raid_disk >= first &&
5493
	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
5494 5495 5496
		first = rdev->saved_raid_disk;

	for (disk = first; disk <= last; disk++) {
5497 5498
		p = conf->disks + disk;
		if (p->rdev == NULL) {
5499
			clear_bit(In_sync, &rdev->flags);
L
Linus Torvalds 已提交
5500
			rdev->raid_disk = disk;
5501
			err = 0;
5502 5503
			if (rdev->saved_raid_disk != disk)
				conf->fullsync = 1;
5504
			rcu_assign_pointer(p->rdev, rdev);
5505
			goto out;
L
Linus Torvalds 已提交
5506
		}
5507 5508 5509
	}
	for (disk = first; disk <= last; disk++) {
		p = conf->disks + disk;
5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520
		if (test_bit(WantReplacement, &p->rdev->flags) &&
		    p->replacement == NULL) {
			clear_bit(In_sync, &rdev->flags);
			set_bit(Replacement, &rdev->flags);
			rdev->raid_disk = disk;
			err = 0;
			conf->fullsync = 1;
			rcu_assign_pointer(p->replacement, rdev);
			break;
		}
	}
5521
out:
L
Linus Torvalds 已提交
5522
	print_raid5_conf(conf);
5523
	return err;
L
Linus Torvalds 已提交
5524 5525
}

5526
static int raid5_resize(struct mddev *mddev, sector_t sectors)
L
Linus Torvalds 已提交
5527 5528 5529 5530 5531 5532 5533 5534
{
	/* no resync is happening, and there is enough space
	 * on all devices, so we can resize.
	 * We need to make sure resync covers any new space.
	 * If the array is shrinking we should possibly wait until
	 * any io in the removed space completes, but it hardly seems
	 * worth it.
	 */
5535
	sector_t newsize;
5536
	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5537 5538 5539
	newsize = raid5_size(mddev, sectors, mddev->raid_disks);
	if (mddev->external_size &&
	    mddev->array_sectors > newsize)
D
Dan Williams 已提交
5540
		return -EINVAL;
5541 5542 5543 5544 5545 5546
	if (mddev->bitmap) {
		int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
		if (ret)
			return ret;
	}
	md_set_array_sectors(mddev, newsize);
5547
	set_capacity(mddev->gendisk, mddev->array_sectors);
5548
	revalidate_disk(mddev->gendisk);
5549 5550
	if (sectors > mddev->dev_sectors &&
	    mddev->recovery_cp > mddev->dev_sectors) {
A
Andre Noll 已提交
5551
		mddev->recovery_cp = mddev->dev_sectors;
L
Linus Torvalds 已提交
5552 5553
		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
	}
A
Andre Noll 已提交
5554
	mddev->dev_sectors = sectors;
5555
	mddev->resync_max_sectors = sectors;
L
Linus Torvalds 已提交
5556 5557 5558
	return 0;
}

5559
static int check_stripe_cache(struct mddev *mddev)
5560 5561 5562 5563 5564 5565 5566 5567 5568
{
	/* Can only proceed if there are plenty of stripe_heads.
	 * We need a minimum of one full stripe,, and for sensible progress
	 * it is best to have about 4 times that.
	 * If we require 4 times, then the default 256 4K stripe_heads will
	 * allow for chunk sizes up to 256K, which is probably OK.
	 * If the chunk size is greater, user-space should request more
	 * stripe_heads first.
	 */
5569
	struct r5conf *conf = mddev->private;
5570 5571 5572 5573
	if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
	    > conf->max_nr_stripes ||
	    ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
	    > conf->max_nr_stripes) {
5574 5575
		printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
		       mdname(mddev),
5576 5577 5578 5579 5580 5581 5582
		       ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
			/ STRIPE_SIZE)*4);
		return 0;
	}
	return 1;
}

5583
static int check_reshape(struct mddev *mddev)
5584
{
5585
	struct r5conf *conf = mddev->private;
5586

5587 5588
	if (mddev->delta_disks == 0 &&
	    mddev->new_layout == mddev->layout &&
5589
	    mddev->new_chunk_sectors == mddev->chunk_sectors)
5590
		return 0; /* nothing to do */
5591
	if (has_failed(conf))
5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604
		return -EINVAL;
	if (mddev->delta_disks < 0) {
		/* We might be able to shrink, but the devices must
		 * be made bigger first.
		 * For raid6, 4 is the minimum size.
		 * Otherwise 2 is the minimum
		 */
		int min = 2;
		if (mddev->level == 6)
			min = 4;
		if (mddev->raid_disks + mddev->delta_disks < min)
			return -EINVAL;
	}
5605

5606
	if (!check_stripe_cache(mddev))
5607 5608
		return -ENOSPC;

5609
	return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5610 5611
}

5612
static int raid5_start_reshape(struct mddev *mddev)
5613
{
5614
	struct r5conf *conf = mddev->private;
5615
	struct md_rdev *rdev;
5616
	int spares = 0;
5617
	unsigned long flags;
5618

5619
	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5620 5621
		return -EBUSY;

5622 5623 5624
	if (!check_stripe_cache(mddev))
		return -ENOSPC;

5625 5626 5627
	if (has_failed(conf))
		return -EINVAL;

5628
	rdev_for_each(rdev, mddev) {
5629 5630
		if (!test_bit(In_sync, &rdev->flags)
		    && !test_bit(Faulty, &rdev->flags))
5631
			spares++;
5632
	}
5633

5634
	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5635 5636 5637 5638 5639
		/* Not enough devices even to make a degraded array
		 * of that size
		 */
		return -EINVAL;

5640 5641 5642 5643 5644 5645
	/* Refuse to reduce size of the array.  Any reductions in
	 * array size must be through explicit setting of array_size
	 * attribute.
	 */
	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
	    < mddev->array_sectors) {
5646
		printk(KERN_ERR "md/raid:%s: array size must be reduced "
5647 5648 5649 5650
		       "before number of disks\n", mdname(mddev));
		return -EINVAL;
	}

5651
	atomic_set(&conf->reshape_stripes, 0);
5652 5653
	spin_lock_irq(&conf->device_lock);
	conf->previous_raid_disks = conf->raid_disks;
5654
	conf->raid_disks += mddev->delta_disks;
5655 5656
	conf->prev_chunk_sectors = conf->chunk_sectors;
	conf->chunk_sectors = mddev->new_chunk_sectors;
5657 5658
	conf->prev_algo = conf->algorithm;
	conf->algorithm = mddev->new_layout;
5659 5660 5661 5662 5663
	conf->generation++;
	/* Code that selects data_offset needs to see the generation update
	 * if reshape_progress has been set - so a memory barrier needed.
	 */
	smp_mb();
5664
	if (mddev->reshape_backwards)
5665 5666 5667 5668
		conf->reshape_progress = raid5_size(mddev, 0, 0);
	else
		conf->reshape_progress = 0;
	conf->reshape_safe = conf->reshape_progress;
5669 5670 5671 5672
	spin_unlock_irq(&conf->device_lock);

	/* Add some new drives, as many as will fit.
	 * We know there are enough to make the newly sized array work.
5673 5674 5675 5676
	 * Don't add devices if we are reducing the number of
	 * devices in the array.  This is because it is not possible
	 * to correctly record the "partially reconstructed" state of
	 * such devices during the reshape and confusion could result.
5677
	 */
5678
	if (mddev->delta_disks >= 0) {
N
NeilBrown 已提交
5679
		rdev_for_each(rdev, mddev)
5680 5681 5682 5683
			if (rdev->raid_disk < 0 &&
			    !test_bit(Faulty, &rdev->flags)) {
				if (raid5_add_disk(mddev, rdev) == 0) {
					if (rdev->raid_disk
5684
					    >= conf->previous_raid_disks)
5685
						set_bit(In_sync, &rdev->flags);
5686
					else
5687
						rdev->recovery_offset = 0;
5688 5689

					if (sysfs_link_rdev(mddev, rdev))
5690
						/* Failure here is OK */;
5691
				}
5692 5693 5694 5695 5696
			} else if (rdev->raid_disk >= conf->previous_raid_disks
				   && !test_bit(Faulty, &rdev->flags)) {
				/* This is a spare that was manually added */
				set_bit(In_sync, &rdev->flags);
			}
5697

5698 5699 5700 5701
		/* When a reshape changes the number of devices,
		 * ->degraded is measured against the larger of the
		 * pre and post number of devices.
		 */
5702
		spin_lock_irqsave(&conf->device_lock, flags);
5703
		mddev->degraded = calc_degraded(conf);
5704 5705
		spin_unlock_irqrestore(&conf->device_lock, flags);
	}
5706
	mddev->raid_disks = conf->raid_disks;
5707
	mddev->reshape_position = conf->reshape_progress;
5708
	set_bit(MD_CHANGE_DEVS, &mddev->flags);
5709

5710 5711 5712 5713 5714
	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5715
						"reshape");
5716 5717 5718 5719
	if (!mddev->sync_thread) {
		mddev->recovery = 0;
		spin_lock_irq(&conf->device_lock);
		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5720 5721 5722
		rdev_for_each(rdev, mddev)
			rdev->new_data_offset = rdev->data_offset;
		smp_wmb();
5723
		conf->reshape_progress = MaxSector;
5724
		mddev->reshape_position = MaxSector;
5725 5726 5727
		spin_unlock_irq(&conf->device_lock);
		return -EAGAIN;
	}
5728
	conf->reshape_checkpoint = jiffies;
5729 5730 5731 5732 5733
	md_wakeup_thread(mddev->sync_thread);
	md_new_event(mddev);
	return 0;
}

5734 5735 5736
/* This is called from the reshape thread and should make any
 * changes needed in 'conf'
 */
5737
static void end_reshape(struct r5conf *conf)
5738 5739
{

5740
	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
5741
		struct md_rdev *rdev;
5742 5743

		spin_lock_irq(&conf->device_lock);
5744
		conf->previous_raid_disks = conf->raid_disks;
5745 5746 5747
		rdev_for_each(rdev, conf->mddev)
			rdev->data_offset = rdev->new_data_offset;
		smp_wmb();
5748
		conf->reshape_progress = MaxSector;
5749
		spin_unlock_irq(&conf->device_lock);
5750
		wake_up(&conf->wait_for_overlap);
5751 5752 5753 5754

		/* read-ahead size must cover two whole stripes, which is
		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
		 */
5755
		if (conf->mddev->queue) {
5756
			int data_disks = conf->raid_disks - conf->max_degraded;
5757
			int stripe = data_disks * ((conf->chunk_sectors << 9)
5758
						   / PAGE_SIZE);
5759 5760 5761
			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
		}
5762 5763 5764
	}
}

5765 5766 5767
/* This is called from the raid5d thread with mddev_lock held.
 * It makes config changes to the device.
 */
5768
static void raid5_finish_reshape(struct mddev *mddev)
5769
{
5770
	struct r5conf *conf = mddev->private;
5771 5772 5773

	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {

5774 5775 5776
		if (mddev->delta_disks > 0) {
			md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
			set_capacity(mddev->gendisk, mddev->array_sectors);
5777
			revalidate_disk(mddev->gendisk);
5778 5779
		} else {
			int d;
5780 5781 5782
			spin_lock_irq(&conf->device_lock);
			mddev->degraded = calc_degraded(conf);
			spin_unlock_irq(&conf->device_lock);
5783 5784
			for (d = conf->raid_disks ;
			     d < conf->raid_disks - mddev->delta_disks;
5785
			     d++) {
5786
				struct md_rdev *rdev = conf->disks[d].rdev;
5787 5788 5789 5790 5791
				if (rdev)
					clear_bit(In_sync, &rdev->flags);
				rdev = conf->disks[d].replacement;
				if (rdev)
					clear_bit(In_sync, &rdev->flags);
5792
			}
5793
		}
5794
		mddev->layout = conf->algorithm;
5795
		mddev->chunk_sectors = conf->chunk_sectors;
5796 5797
		mddev->reshape_position = MaxSector;
		mddev->delta_disks = 0;
5798
		mddev->reshape_backwards = 0;
5799 5800 5801
	}
}

5802
static void raid5_quiesce(struct mddev *mddev, int state)
5803
{
5804
	struct r5conf *conf = mddev->private;
5805 5806

	switch(state) {
5807 5808 5809 5810
	case 2: /* resume for a suspend */
		wake_up(&conf->wait_for_overlap);
		break;

5811 5812
	case 1: /* stop all writes */
		spin_lock_irq(&conf->device_lock);
5813 5814 5815 5816
		/* '2' tells resync/reshape to pause so that all
		 * active stripes can drain
		 */
		conf->quiesce = 2;
5817
		wait_event_lock_irq(conf->wait_for_stripe,
5818 5819
				    atomic_read(&conf->active_stripes) == 0 &&
				    atomic_read(&conf->active_aligned_reads) == 0,
5820
				    conf->device_lock, /* nothing */);
5821
		conf->quiesce = 1;
5822
		spin_unlock_irq(&conf->device_lock);
5823 5824
		/* allow reshape to continue */
		wake_up(&conf->wait_for_overlap);
5825 5826 5827 5828 5829 5830
		break;

	case 0: /* re-enable writes */
		spin_lock_irq(&conf->device_lock);
		conf->quiesce = 0;
		wake_up(&conf->wait_for_stripe);
5831
		wake_up(&conf->wait_for_overlap);
5832 5833 5834 5835
		spin_unlock_irq(&conf->device_lock);
		break;
	}
}
5836

5837

5838
static void *raid45_takeover_raid0(struct mddev *mddev, int level)
5839
{
5840
	struct r0conf *raid0_conf = mddev->private;
5841
	sector_t sectors;
5842

D
Dan Williams 已提交
5843
	/* for raid0 takeover only one zone is supported */
5844
	if (raid0_conf->nr_strip_zones > 1) {
5845 5846
		printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
		       mdname(mddev));
D
Dan Williams 已提交
5847 5848 5849
		return ERR_PTR(-EINVAL);
	}

5850 5851
	sectors = raid0_conf->strip_zone[0].zone_end;
	sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
5852
	mddev->dev_sectors = sectors;
D
Dan Williams 已提交
5853
	mddev->new_level = level;
5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864
	mddev->new_layout = ALGORITHM_PARITY_N;
	mddev->new_chunk_sectors = mddev->chunk_sectors;
	mddev->raid_disks += 1;
	mddev->delta_disks = 1;
	/* make sure it will be not marked as dirty */
	mddev->recovery_cp = MaxSector;

	return setup_conf(mddev);
}


5865
static void *raid5_takeover_raid1(struct mddev *mddev)
5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886
{
	int chunksect;

	if (mddev->raid_disks != 2 ||
	    mddev->degraded > 1)
		return ERR_PTR(-EINVAL);

	/* Should check if there are write-behind devices? */

	chunksect = 64*2; /* 64K by default */

	/* The array must be an exact multiple of chunksize */
	while (chunksect && (mddev->array_sectors & (chunksect-1)))
		chunksect >>= 1;

	if ((chunksect<<9) < STRIPE_SIZE)
		/* array size does not allow a suitable chunk size */
		return ERR_PTR(-EINVAL);

	mddev->new_level = 5;
	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5887
	mddev->new_chunk_sectors = chunksect;
5888 5889 5890 5891

	return setup_conf(mddev);
}

5892
static void *raid5_takeover_raid6(struct mddev *mddev)
5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924
{
	int new_layout;

	switch (mddev->layout) {
	case ALGORITHM_LEFT_ASYMMETRIC_6:
		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
		break;
	case ALGORITHM_RIGHT_ASYMMETRIC_6:
		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
		break;
	case ALGORITHM_LEFT_SYMMETRIC_6:
		new_layout = ALGORITHM_LEFT_SYMMETRIC;
		break;
	case ALGORITHM_RIGHT_SYMMETRIC_6:
		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
		break;
	case ALGORITHM_PARITY_0_6:
		new_layout = ALGORITHM_PARITY_0;
		break;
	case ALGORITHM_PARITY_N:
		new_layout = ALGORITHM_PARITY_N;
		break;
	default:
		return ERR_PTR(-EINVAL);
	}
	mddev->new_level = 5;
	mddev->new_layout = new_layout;
	mddev->delta_disks = -1;
	mddev->raid_disks -= 1;
	return setup_conf(mddev);
}

5925

5926
static int raid5_check_reshape(struct mddev *mddev)
5927
{
5928 5929 5930 5931
	/* For a 2-drive array, the layout and chunk size can be changed
	 * immediately as not restriping is needed.
	 * For larger arrays we record the new value - after validation
	 * to be used by a reshape pass.
5932
	 */
5933
	struct r5conf *conf = mddev->private;
5934
	int new_chunk = mddev->new_chunk_sectors;
5935

5936
	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
5937 5938
		return -EINVAL;
	if (new_chunk > 0) {
5939
		if (!is_power_of_2(new_chunk))
5940
			return -EINVAL;
5941
		if (new_chunk < (PAGE_SIZE>>9))
5942
			return -EINVAL;
5943
		if (mddev->array_sectors & (new_chunk-1))
5944 5945 5946 5947 5948 5949
			/* not factor of array size */
			return -EINVAL;
	}

	/* They look valid */

5950
	if (mddev->raid_disks == 2) {
5951 5952 5953 5954
		/* can make the change immediately */
		if (mddev->new_layout >= 0) {
			conf->algorithm = mddev->new_layout;
			mddev->layout = mddev->new_layout;
5955 5956
		}
		if (new_chunk > 0) {
5957 5958
			conf->chunk_sectors = new_chunk ;
			mddev->chunk_sectors = new_chunk;
5959 5960 5961
		}
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
		md_wakeup_thread(mddev->thread);
5962
	}
5963
	return check_reshape(mddev);
5964 5965
}

5966
static int raid6_check_reshape(struct mddev *mddev)
5967
{
5968
	int new_chunk = mddev->new_chunk_sectors;
5969

5970
	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
5971
		return -EINVAL;
5972
	if (new_chunk > 0) {
5973
		if (!is_power_of_2(new_chunk))
5974
			return -EINVAL;
5975
		if (new_chunk < (PAGE_SIZE >> 9))
5976
			return -EINVAL;
5977
		if (mddev->array_sectors & (new_chunk-1))
5978 5979
			/* not factor of array size */
			return -EINVAL;
5980
	}
5981 5982

	/* They look valid */
5983
	return check_reshape(mddev);
5984 5985
}

5986
static void *raid5_takeover(struct mddev *mddev)
5987 5988
{
	/* raid5 can take over:
D
Dan Williams 已提交
5989
	 *  raid0 - if there is only one strip zone - make it a raid4 layout
5990 5991 5992 5993
	 *  raid1 - if there are two drives.  We need to know the chunk size
	 *  raid4 - trivial - just use a raid4 layout.
	 *  raid6 - Providing it is a *_6 layout
	 */
D
Dan Williams 已提交
5994 5995
	if (mddev->level == 0)
		return raid45_takeover_raid0(mddev, 5);
5996 5997
	if (mddev->level == 1)
		return raid5_takeover_raid1(mddev);
5998 5999 6000 6001 6002
	if (mddev->level == 4) {
		mddev->new_layout = ALGORITHM_PARITY_N;
		mddev->new_level = 5;
		return setup_conf(mddev);
	}
6003 6004
	if (mddev->level == 6)
		return raid5_takeover_raid6(mddev);
6005 6006 6007 6008

	return ERR_PTR(-EINVAL);
}

6009
static void *raid4_takeover(struct mddev *mddev)
6010
{
D
Dan Williams 已提交
6011 6012 6013
	/* raid4 can take over:
	 *  raid0 - if there is only one strip zone
	 *  raid5 - if layout is right
6014
	 */
D
Dan Williams 已提交
6015 6016
	if (mddev->level == 0)
		return raid45_takeover_raid0(mddev, 4);
6017 6018 6019 6020 6021 6022 6023 6024
	if (mddev->level == 5 &&
	    mddev->layout == ALGORITHM_PARITY_N) {
		mddev->new_layout = 0;
		mddev->new_level = 4;
		return setup_conf(mddev);
	}
	return ERR_PTR(-EINVAL);
}
6025

6026
static struct md_personality raid5_personality;
6027

6028
static void *raid6_takeover(struct mddev *mddev)
6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074
{
	/* Currently can only take over a raid5.  We map the
	 * personality to an equivalent raid6 personality
	 * with the Q block at the end.
	 */
	int new_layout;

	if (mddev->pers != &raid5_personality)
		return ERR_PTR(-EINVAL);
	if (mddev->degraded > 1)
		return ERR_PTR(-EINVAL);
	if (mddev->raid_disks > 253)
		return ERR_PTR(-EINVAL);
	if (mddev->raid_disks < 3)
		return ERR_PTR(-EINVAL);

	switch (mddev->layout) {
	case ALGORITHM_LEFT_ASYMMETRIC:
		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
		break;
	case ALGORITHM_RIGHT_ASYMMETRIC:
		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
		break;
	case ALGORITHM_LEFT_SYMMETRIC:
		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
		break;
	case ALGORITHM_RIGHT_SYMMETRIC:
		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
		break;
	case ALGORITHM_PARITY_0:
		new_layout = ALGORITHM_PARITY_0_6;
		break;
	case ALGORITHM_PARITY_N:
		new_layout = ALGORITHM_PARITY_N;
		break;
	default:
		return ERR_PTR(-EINVAL);
	}
	mddev->new_level = 6;
	mddev->new_layout = new_layout;
	mddev->delta_disks = 1;
	mddev->raid_disks += 1;
	return setup_conf(mddev);
}


6075
static struct md_personality raid6_personality =
6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089
{
	.name		= "raid6",
	.level		= 6,
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
6090
	.size		= raid5_size,
6091
	.check_reshape	= raid6_check_reshape,
6092
	.start_reshape  = raid5_start_reshape,
6093
	.finish_reshape = raid5_finish_reshape,
6094
	.quiesce	= raid5_quiesce,
6095
	.takeover	= raid6_takeover,
6096
};
6097
static struct md_personality raid5_personality =
L
Linus Torvalds 已提交
6098 6099
{
	.name		= "raid5",
6100
	.level		= 5,
L
Linus Torvalds 已提交
6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
6112
	.size		= raid5_size,
6113 6114
	.check_reshape	= raid5_check_reshape,
	.start_reshape  = raid5_start_reshape,
6115
	.finish_reshape = raid5_finish_reshape,
6116
	.quiesce	= raid5_quiesce,
6117
	.takeover	= raid5_takeover,
L
Linus Torvalds 已提交
6118 6119
};

6120
static struct md_personality raid4_personality =
L
Linus Torvalds 已提交
6121
{
6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134
	.name		= "raid4",
	.level		= 4,
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
6135
	.size		= raid5_size,
6136 6137
	.check_reshape	= raid5_check_reshape,
	.start_reshape  = raid5_start_reshape,
6138
	.finish_reshape = raid5_finish_reshape,
6139
	.quiesce	= raid5_quiesce,
6140
	.takeover	= raid4_takeover,
6141 6142 6143 6144
};

static int __init raid5_init(void)
{
6145
	register_md_personality(&raid6_personality);
6146 6147 6148
	register_md_personality(&raid5_personality);
	register_md_personality(&raid4_personality);
	return 0;
L
Linus Torvalds 已提交
6149 6150
}

6151
static void raid5_exit(void)
L
Linus Torvalds 已提交
6152
{
6153
	unregister_md_personality(&raid6_personality);
6154 6155
	unregister_md_personality(&raid5_personality);
	unregister_md_personality(&raid4_personality);
L
Linus Torvalds 已提交
6156 6157 6158 6159 6160
}

module_init(raid5_init);
module_exit(raid5_exit);
MODULE_LICENSE("GPL");
6161
MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
L
Linus Torvalds 已提交
6162
MODULE_ALIAS("md-personality-4"); /* RAID5 */
6163 6164
MODULE_ALIAS("md-raid5");
MODULE_ALIAS("md-raid4");
6165 6166
MODULE_ALIAS("md-level-5");
MODULE_ALIAS("md-level-4");
6167 6168 6169 6170 6171 6172 6173
MODULE_ALIAS("md-personality-8"); /* RAID6 */
MODULE_ALIAS("md-raid6");
MODULE_ALIAS("md-level-6");

/* This used to be two separate modules, they were: */
MODULE_ALIAS("raid5");
MODULE_ALIAS("raid6");