update.c 27.4 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 * Read-Copy Update mechanism for mutual exclusion
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
15 16
 * along with this program; if not, you can access it online at
 * http://www.gnu.org/licenses/gpl-2.0.html.
L
Linus Torvalds 已提交
17
 *
18
 * Copyright IBM Corporation, 2001
L
Linus Torvalds 已提交
19 20 21
 *
 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
 *	    Manfred Spraul <manfred@colorfullife.com>
22
 *
L
Linus Torvalds 已提交
23 24 25 26 27 28 29
 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
 * Papers:
 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
 *
 * For detailed explanation of Read-Copy Update mechanism see -
30
 *		http://lse.sourceforge.net/locking/rcupdate.html
L
Linus Torvalds 已提交
31 32 33 34 35 36 37 38 39
 *
 */
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/smp.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
A
Arun Sharma 已提交
40
#include <linux/atomic.h>
L
Linus Torvalds 已提交
41 42 43 44
#include <linux/bitops.h>
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/cpu.h>
45
#include <linux/mutex.h>
46
#include <linux/export.h>
47
#include <linux/hardirq.h>
48
#include <linux/delay.h>
49
#include <linux/module.h>
P
Paul E. McKenney 已提交
50
#include <linux/kthread.h>
51
#include <linux/tick.h>
L
Linus Torvalds 已提交
52

53 54 55 56
#define CREATE_TRACE_POINTS

#include "rcu.h"

57 58 59 60 61 62
MODULE_ALIAS("rcupdate");
#ifdef MODULE_PARAM_PREFIX
#undef MODULE_PARAM_PREFIX
#endif
#define MODULE_PARAM_PREFIX "rcupdate."

63 64
module_param(rcu_expedited, int, 0);

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
#if defined(CONFIG_DEBUG_LOCK_ALLOC) && defined(CONFIG_PREEMPT_COUNT)
/**
 * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section?
 *
 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an
 * RCU-sched read-side critical section.  In absence of
 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
 * critical section unless it can prove otherwise.  Note that disabling
 * of preemption (including disabling irqs) counts as an RCU-sched
 * read-side critical section.  This is useful for debug checks in functions
 * that required that they be called within an RCU-sched read-side
 * critical section.
 *
 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot
 * and while lockdep is disabled.
 *
 * Note that if the CPU is in the idle loop from an RCU point of
 * view (ie: that we are in the section between rcu_idle_enter() and
 * rcu_idle_exit()) then rcu_read_lock_held() returns false even if the CPU
 * did an rcu_read_lock().  The reason for this is that RCU ignores CPUs
 * that are in such a section, considering these as in extended quiescent
 * state, so such a CPU is effectively never in an RCU read-side critical
 * section regardless of what RCU primitives it invokes.  This state of
 * affairs is required --- we need to keep an RCU-free window in idle
 * where the CPU may possibly enter into low power mode. This way we can
 * notice an extended quiescent state to other CPUs that started a grace
 * period. Otherwise we would delay any grace period as long as we run in
 * the idle task.
 *
 * Similarly, we avoid claiming an SRCU read lock held if the current
 * CPU is offline.
 */
int rcu_read_lock_sched_held(void)
{
	int lockdep_opinion = 0;

	if (!debug_lockdep_rcu_enabled())
		return 1;
	if (!rcu_is_watching())
		return 0;
	if (!rcu_lockdep_current_cpu_online())
		return 0;
	if (debug_locks)
		lockdep_opinion = lock_is_held(&rcu_sched_lock_map);
	return lockdep_opinion || preempt_count() != 0 || irqs_disabled();
}
EXPORT_SYMBOL(rcu_read_lock_sched_held);
#endif

114 115
#ifndef CONFIG_TINY_RCU

116 117
static atomic_t rcu_expedited_nesting =
	ATOMIC_INIT(IS_ENABLED(CONFIG_RCU_EXPEDITE_BOOT) ? 1 : 0);
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161

/*
 * Should normal grace-period primitives be expedited?  Intended for
 * use within RCU.  Note that this function takes the rcu_expedited
 * sysfs/boot variable into account as well as the rcu_expedite_gp()
 * nesting.  So looping on rcu_unexpedite_gp() until rcu_gp_is_expedited()
 * returns false is a -really- bad idea.
 */
bool rcu_gp_is_expedited(void)
{
	return rcu_expedited || atomic_read(&rcu_expedited_nesting);
}
EXPORT_SYMBOL_GPL(rcu_gp_is_expedited);

/**
 * rcu_expedite_gp - Expedite future RCU grace periods
 *
 * After a call to this function, future calls to synchronize_rcu() and
 * friends act as the corresponding synchronize_rcu_expedited() function
 * had instead been called.
 */
void rcu_expedite_gp(void)
{
	atomic_inc(&rcu_expedited_nesting);
}
EXPORT_SYMBOL_GPL(rcu_expedite_gp);

/**
 * rcu_unexpedite_gp - Cancel prior rcu_expedite_gp() invocation
 *
 * Undo a prior call to rcu_expedite_gp().  If all prior calls to
 * rcu_expedite_gp() are undone by a subsequent call to rcu_unexpedite_gp(),
 * and if the rcu_expedited sysfs/boot parameter is not set, then all
 * subsequent calls to synchronize_rcu() and friends will return to
 * their normal non-expedited behavior.
 */
void rcu_unexpedite_gp(void)
{
	atomic_dec(&rcu_expedited_nesting);
}
EXPORT_SYMBOL_GPL(rcu_unexpedite_gp);

#endif /* #ifndef CONFIG_TINY_RCU */

162 163 164 165 166 167 168 169
/*
 * Inform RCU of the end of the in-kernel boot sequence.
 */
void rcu_end_inkernel_boot(void)
{
	if (IS_ENABLED(CONFIG_RCU_EXPEDITE_BOOT))
		rcu_unexpedite_gp();
}
170

171 172
#ifdef CONFIG_PREEMPT_RCU

173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
/*
 * Preemptible RCU implementation for rcu_read_lock().
 * Just increment ->rcu_read_lock_nesting, shared state will be updated
 * if we block.
 */
void __rcu_read_lock(void)
{
	current->rcu_read_lock_nesting++;
	barrier();  /* critical section after entry code. */
}
EXPORT_SYMBOL_GPL(__rcu_read_lock);

/*
 * Preemptible RCU implementation for rcu_read_unlock().
 * Decrement ->rcu_read_lock_nesting.  If the result is zero (outermost
 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
 * invoke rcu_read_unlock_special() to clean up after a context switch
 * in an RCU read-side critical section and other special cases.
 */
void __rcu_read_unlock(void)
{
	struct task_struct *t = current;

	if (t->rcu_read_lock_nesting != 1) {
		--t->rcu_read_lock_nesting;
	} else {
		barrier();  /* critical section before exit code. */
		t->rcu_read_lock_nesting = INT_MIN;
		barrier();  /* assign before ->rcu_read_unlock_special load */
202
		if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s)))
203 204 205 206 207 208
			rcu_read_unlock_special(t);
		barrier();  /* ->rcu_read_unlock_special load before assign */
		t->rcu_read_lock_nesting = 0;
	}
#ifdef CONFIG_PROVE_LOCKING
	{
209
		int rrln = READ_ONCE(t->rcu_read_lock_nesting);
210 211 212 213 214 215 216

		WARN_ON_ONCE(rrln < 0 && rrln > INT_MIN / 2);
	}
#endif /* #ifdef CONFIG_PROVE_LOCKING */
}
EXPORT_SYMBOL_GPL(__rcu_read_unlock);

217
#endif /* #ifdef CONFIG_PREEMPT_RCU */
218

219 220 221 222 223
#ifdef CONFIG_DEBUG_LOCK_ALLOC
static struct lock_class_key rcu_lock_key;
struct lockdep_map rcu_lock_map =
	STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key);
EXPORT_SYMBOL_GPL(rcu_lock_map);
224 225 226 227 228 229 230 231 232 233

static struct lock_class_key rcu_bh_lock_key;
struct lockdep_map rcu_bh_lock_map =
	STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_bh", &rcu_bh_lock_key);
EXPORT_SYMBOL_GPL(rcu_bh_lock_map);

static struct lock_class_key rcu_sched_lock_key;
struct lockdep_map rcu_sched_lock_map =
	STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_sched", &rcu_sched_lock_key);
EXPORT_SYMBOL_GPL(rcu_sched_lock_map);
234

235 236 237 238 239
static struct lock_class_key rcu_callback_key;
struct lockdep_map rcu_callback_map =
	STATIC_LOCKDEP_MAP_INIT("rcu_callback", &rcu_callback_key);
EXPORT_SYMBOL_GPL(rcu_callback_map);

240
int notrace debug_lockdep_rcu_enabled(void)
241 242 243 244 245 246
{
	return rcu_scheduler_active && debug_locks &&
	       current->lockdep_recursion == 0;
}
EXPORT_SYMBOL_GPL(debug_lockdep_rcu_enabled);

247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
/**
 * rcu_read_lock_held() - might we be in RCU read-side critical section?
 *
 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU
 * read-side critical section.  In absence of CONFIG_DEBUG_LOCK_ALLOC,
 * this assumes we are in an RCU read-side critical section unless it can
 * prove otherwise.  This is useful for debug checks in functions that
 * require that they be called within an RCU read-side critical section.
 *
 * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot
 * and while lockdep is disabled.
 *
 * Note that rcu_read_lock() and the matching rcu_read_unlock() must
 * occur in the same context, for example, it is illegal to invoke
 * rcu_read_unlock() in process context if the matching rcu_read_lock()
 * was invoked from within an irq handler.
 *
 * Note that rcu_read_lock() is disallowed if the CPU is either idle or
 * offline from an RCU perspective, so check for those as well.
 */
int rcu_read_lock_held(void)
{
	if (!debug_lockdep_rcu_enabled())
		return 1;
	if (!rcu_is_watching())
		return 0;
	if (!rcu_lockdep_current_cpu_online())
		return 0;
	return lock_is_held(&rcu_lock_map);
}
EXPORT_SYMBOL_GPL(rcu_read_lock_held);

279
/**
280
 * rcu_read_lock_bh_held() - might we be in RCU-bh read-side critical section?
281 282 283 284
 *
 * Check for bottom half being disabled, which covers both the
 * CONFIG_PROVE_RCU and not cases.  Note that if someone uses
 * rcu_read_lock_bh(), but then later enables BH, lockdep (if enabled)
285 286 287
 * will show the situation.  This is useful for debug checks in functions
 * that require that they be called within an RCU read-side critical
 * section.
288 289
 *
 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot.
290 291 292
 *
 * Note that rcu_read_lock() is disallowed if the CPU is either idle or
 * offline from an RCU perspective, so check for those as well.
293 294 295 296 297
 */
int rcu_read_lock_bh_held(void)
{
	if (!debug_lockdep_rcu_enabled())
		return 1;
298
	if (!rcu_is_watching())
299
		return 0;
300 301
	if (!rcu_lockdep_current_cpu_online())
		return 0;
302
	return in_softirq() || irqs_disabled();
303 304 305 306 307
}
EXPORT_SYMBOL_GPL(rcu_read_lock_bh_held);

#endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */

308 309 310 311 312
/**
 * wakeme_after_rcu() - Callback function to awaken a task after grace period
 * @head: Pointer to rcu_head member within rcu_synchronize structure
 *
 * Awaken the corresponding task now that a grace period has elapsed.
P
Paul E. McKenney 已提交
313
 */
314
void wakeme_after_rcu(struct rcu_head *head)
D
Dipankar Sarma 已提交
315
{
316 317 318 319
	struct rcu_synchronize *rcu;

	rcu = container_of(head, struct rcu_synchronize, head);
	complete(&rcu->completion);
D
Dipankar Sarma 已提交
320
}
321
EXPORT_SYMBOL_GPL(wakeme_after_rcu);
322

323 324
void __wait_rcu_gp(bool checktiny, int n, call_rcu_func_t *crcu_array,
		   struct rcu_synchronize *rs_array)
325
{
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
	int i;

	/* Initialize and register callbacks for each flavor specified. */
	for (i = 0; i < n; i++) {
		if (checktiny &&
		    (crcu_array[i] == call_rcu ||
		     crcu_array[i] == call_rcu_bh)) {
			might_sleep();
			continue;
		}
		init_rcu_head_on_stack(&rs_array[i].head);
		init_completion(&rs_array[i].completion);
		(crcu_array[i])(&rs_array[i].head, wakeme_after_rcu);
	}

	/* Wait for all callbacks to be invoked. */
	for (i = 0; i < n; i++) {
		if (checktiny &&
		    (crcu_array[i] == call_rcu ||
		     crcu_array[i] == call_rcu_bh))
			continue;
		wait_for_completion(&rs_array[i].completion);
		destroy_rcu_head_on_stack(&rs_array[i].head);
	}
350
}
351
EXPORT_SYMBOL_GPL(__wait_rcu_gp);
352

353
#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
354
void init_rcu_head(struct rcu_head *head)
355 356 357 358
{
	debug_object_init(head, &rcuhead_debug_descr);
}

359
void destroy_rcu_head(struct rcu_head *head)
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
{
	debug_object_free(head, &rcuhead_debug_descr);
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 * Activation is performed internally by call_rcu().
 */
static int rcuhead_fixup_activate(void *addr, enum debug_obj_state state)
{
	struct rcu_head *head = addr;

	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		/*
		 * This is not really a fixup. We just make sure that it is
		 * tracked in the object tracker.
		 */
		debug_object_init(head, &rcuhead_debug_descr);
		debug_object_activate(head, &rcuhead_debug_descr);
		return 0;
	default:
		return 1;
	}
}

/**
 * init_rcu_head_on_stack() - initialize on-stack rcu_head for debugobjects
 * @head: pointer to rcu_head structure to be initialized
 *
 * This function informs debugobjects of a new rcu_head structure that
 * has been allocated as an auto variable on the stack.  This function
 * is not required for rcu_head structures that are statically defined or
 * that are dynamically allocated on the heap.  This function has no
 * effect for !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
 */
void init_rcu_head_on_stack(struct rcu_head *head)
{
	debug_object_init_on_stack(head, &rcuhead_debug_descr);
}
EXPORT_SYMBOL_GPL(init_rcu_head_on_stack);

/**
 * destroy_rcu_head_on_stack() - destroy on-stack rcu_head for debugobjects
 * @head: pointer to rcu_head structure to be initialized
 *
 * This function informs debugobjects that an on-stack rcu_head structure
 * is about to go out of scope.  As with init_rcu_head_on_stack(), this
 * function is not required for rcu_head structures that are statically
 * defined or that are dynamically allocated on the heap.  Also as with
 * init_rcu_head_on_stack(), this function has no effect for
 * !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
 */
void destroy_rcu_head_on_stack(struct rcu_head *head)
{
	debug_object_free(head, &rcuhead_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_rcu_head_on_stack);

struct debug_obj_descr rcuhead_debug_descr = {
	.name = "rcu_head",
	.fixup_activate = rcuhead_fixup_activate,
};
EXPORT_SYMBOL_GPL(rcuhead_debug_descr);
#endif /* #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD */
428

429
#if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU) || defined(CONFIG_RCU_TRACE)
430
void do_trace_rcu_torture_read(const char *rcutorturename, struct rcu_head *rhp,
431 432
			       unsigned long secs,
			       unsigned long c_old, unsigned long c)
433
{
434
	trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c);
435 436 437
}
EXPORT_SYMBOL_GPL(do_trace_rcu_torture_read);
#else
438 439
#define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
	do { } while (0)
440
#endif
441 442 443 444 445 446 447 448 449 450

#ifdef CONFIG_RCU_STALL_COMMON

#ifdef CONFIG_PROVE_RCU
#define RCU_STALL_DELAY_DELTA	       (5 * HZ)
#else
#define RCU_STALL_DELAY_DELTA	       0
#endif

int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */
451
static int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;
452 453 454 455 456 457

module_param(rcu_cpu_stall_suppress, int, 0644);
module_param(rcu_cpu_stall_timeout, int, 0644);

int rcu_jiffies_till_stall_check(void)
{
458
	int till_stall_check = READ_ONCE(rcu_cpu_stall_timeout);
459 460 461 462 463 464

	/*
	 * Limit check must be consistent with the Kconfig limits
	 * for CONFIG_RCU_CPU_STALL_TIMEOUT.
	 */
	if (till_stall_check < 3) {
465
		WRITE_ONCE(rcu_cpu_stall_timeout, 3);
466 467
		till_stall_check = 3;
	} else if (till_stall_check > 300) {
468
		WRITE_ONCE(rcu_cpu_stall_timeout, 300);
469 470 471 472 473
		till_stall_check = 300;
	}
	return till_stall_check * HZ + RCU_STALL_DELAY_DELTA;
}

474 475 476 477 478 479 480 481 482 483 484 485
void rcu_sysrq_start(void)
{
	if (!rcu_cpu_stall_suppress)
		rcu_cpu_stall_suppress = 2;
}

void rcu_sysrq_end(void)
{
	if (rcu_cpu_stall_suppress == 2)
		rcu_cpu_stall_suppress = 0;
}

486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
{
	rcu_cpu_stall_suppress = 1;
	return NOTIFY_DONE;
}

static struct notifier_block rcu_panic_block = {
	.notifier_call = rcu_panic,
};

static int __init check_cpu_stall_init(void)
{
	atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
	return 0;
}
early_initcall(check_cpu_stall_init);

#endif /* #ifdef CONFIG_RCU_STALL_COMMON */
P
Paul E. McKenney 已提交
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520

#ifdef CONFIG_TASKS_RCU

/*
 * Simple variant of RCU whose quiescent states are voluntary context switch,
 * user-space execution, and idle.  As such, grace periods can take one good
 * long time.  There are no read-side primitives similar to rcu_read_lock()
 * and rcu_read_unlock() because this implementation is intended to get
 * the system into a safe state for some of the manipulations involved in
 * tracing and the like.  Finally, this implementation does not support
 * high call_rcu_tasks() rates from multiple CPUs.  If this is required,
 * per-CPU callback lists will be needed.
 */

/* Global list of callbacks and associated lock. */
static struct rcu_head *rcu_tasks_cbs_head;
static struct rcu_head **rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
521
static DECLARE_WAIT_QUEUE_HEAD(rcu_tasks_cbs_wq);
P
Paul E. McKenney 已提交
522 523
static DEFINE_RAW_SPINLOCK(rcu_tasks_cbs_lock);

524 525 526 527
/* Track exiting tasks in order to allow them to be waited for. */
DEFINE_SRCU(tasks_rcu_exit_srcu);

/* Control stall timeouts.  Disable with <= 0, otherwise jiffies till stall. */
528
static int rcu_task_stall_timeout __read_mostly = HZ * 60 * 10;
529 530
module_param(rcu_task_stall_timeout, int, 0644);

531 532 533 534 535 536
static void rcu_spawn_tasks_kthread(void);

/*
 * Post an RCU-tasks callback.  First call must be from process context
 * after the scheduler if fully operational.
 */
537
void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func)
P
Paul E. McKenney 已提交
538 539
{
	unsigned long flags;
540
	bool needwake;
P
Paul E. McKenney 已提交
541 542 543 544

	rhp->next = NULL;
	rhp->func = func;
	raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
545
	needwake = !rcu_tasks_cbs_head;
P
Paul E. McKenney 已提交
546 547 548
	*rcu_tasks_cbs_tail = rhp;
	rcu_tasks_cbs_tail = &rhp->next;
	raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
549 550
	if (needwake) {
		rcu_spawn_tasks_kthread();
551
		wake_up(&rcu_tasks_cbs_wq);
552
	}
P
Paul E. McKenney 已提交
553 554 555
}
EXPORT_SYMBOL_GPL(call_rcu_tasks);

556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
/**
 * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu-tasks
 * grace period has elapsed, in other words after all currently
 * executing rcu-tasks read-side critical sections have elapsed.  These
 * read-side critical sections are delimited by calls to schedule(),
 * cond_resched_rcu_qs(), idle execution, userspace execution, calls
 * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched().
 *
 * This is a very specialized primitive, intended only for a few uses in
 * tracing and other situations requiring manipulation of function
 * preambles and profiling hooks.  The synchronize_rcu_tasks() function
 * is not (yet) intended for heavy use from multiple CPUs.
 *
 * Note that this guarantee implies further memory-ordering guarantees.
 * On systems with more than one CPU, when synchronize_rcu_tasks() returns,
 * each CPU is guaranteed to have executed a full memory barrier since the
 * end of its last RCU-tasks read-side critical section whose beginning
 * preceded the call to synchronize_rcu_tasks().  In addition, each CPU
 * having an RCU-tasks read-side critical section that extends beyond
 * the return from synchronize_rcu_tasks() is guaranteed to have executed
 * a full memory barrier after the beginning of synchronize_rcu_tasks()
 * and before the beginning of that RCU-tasks read-side critical section.
 * Note that these guarantees include CPUs that are offline, idle, or
 * executing in user mode, as well as CPUs that are executing in the kernel.
 *
 * Furthermore, if CPU A invoked synchronize_rcu_tasks(), which returned
 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
 * to have executed a full memory barrier during the execution of
 * synchronize_rcu_tasks() -- even if CPU A and CPU B are the same CPU
 * (but again only if the system has more than one CPU).
 */
void synchronize_rcu_tasks(void)
{
	/* Complain if the scheduler has not started.  */
592
	RCU_LOCKDEP_WARN(!rcu_scheduler_active,
593
			 "synchronize_rcu_tasks called too soon");
594 595 596 597

	/* Wait for the grace period. */
	wait_rcu_gp(call_rcu_tasks);
}
598
EXPORT_SYMBOL_GPL(synchronize_rcu_tasks);
599 600 601 602 603 604 605 606 607 608 609 610

/**
 * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks.
 *
 * Although the current implementation is guaranteed to wait, it is not
 * obligated to, for example, if there are no pending callbacks.
 */
void rcu_barrier_tasks(void)
{
	/* There is only one callback queue, so this is easy.  ;-) */
	synchronize_rcu_tasks();
}
611
EXPORT_SYMBOL_GPL(rcu_barrier_tasks);
612

613 614 615
/* See if tasks are still holding out, complain if so. */
static void check_holdout_task(struct task_struct *t,
			       bool needreport, bool *firstreport)
P
Paul E. McKenney 已提交
616
{
617 618
	int cpu;

619 620 621
	if (!READ_ONCE(t->rcu_tasks_holdout) ||
	    t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) ||
	    !READ_ONCE(t->on_rq) ||
622 623
	    (IS_ENABLED(CONFIG_NO_HZ_FULL) &&
	     !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) {
624
		WRITE_ONCE(t->rcu_tasks_holdout, false);
625
		list_del_init(&t->rcu_tasks_holdout_list);
P
Paul E. McKenney 已提交
626
		put_task_struct(t);
627
		return;
P
Paul E. McKenney 已提交
628
	}
629 630 631 632 633 634
	if (!needreport)
		return;
	if (*firstreport) {
		pr_err("INFO: rcu_tasks detected stalls on tasks:\n");
		*firstreport = false;
	}
635 636 637 638 639 640
	cpu = task_cpu(t);
	pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n",
		 t, ".I"[is_idle_task(t)],
		 "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)],
		 t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout,
		 t->rcu_tasks_idle_cpu, cpu);
641
	sched_show_task(t);
P
Paul E. McKenney 已提交
642 643 644 645 646 647 648
}

/* RCU-tasks kthread that detects grace periods and invokes callbacks. */
static int __noreturn rcu_tasks_kthread(void *arg)
{
	unsigned long flags;
	struct task_struct *g, *t;
649
	unsigned long lastreport;
P
Paul E. McKenney 已提交
650 651 652 653
	struct rcu_head *list;
	struct rcu_head *next;
	LIST_HEAD(rcu_tasks_holdouts);

654 655
	/* Run on housekeeping CPUs by default.  Sysadm can move if desired. */
	housekeeping_affine(current);
P
Paul E. McKenney 已提交
656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673

	/*
	 * Each pass through the following loop makes one check for
	 * newly arrived callbacks, and, if there are some, waits for
	 * one RCU-tasks grace period and then invokes the callbacks.
	 * This loop is terminated by the system going down.  ;-)
	 */
	for (;;) {

		/* Pick up any new callbacks. */
		raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
		list = rcu_tasks_cbs_head;
		rcu_tasks_cbs_head = NULL;
		rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
		raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);

		/* If there were none, wait a bit and start over. */
		if (!list) {
674 675 676 677 678 679
			wait_event_interruptible(rcu_tasks_cbs_wq,
						 rcu_tasks_cbs_head);
			if (!rcu_tasks_cbs_head) {
				WARN_ON(signal_pending(current));
				schedule_timeout_interruptible(HZ/10);
			}
P
Paul E. McKenney 已提交
680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
			continue;
		}

		/*
		 * Wait for all pre-existing t->on_rq and t->nvcsw
		 * transitions to complete.  Invoking synchronize_sched()
		 * suffices because all these transitions occur with
		 * interrupts disabled.  Without this synchronize_sched(),
		 * a read-side critical section that started before the
		 * grace period might be incorrectly seen as having started
		 * after the grace period.
		 *
		 * This synchronize_sched() also dispenses with the
		 * need for a memory barrier on the first store to
		 * ->rcu_tasks_holdout, as it forces the store to happen
		 * after the beginning of the grace period.
		 */
		synchronize_sched();

		/*
		 * There were callbacks, so we need to wait for an
		 * RCU-tasks grace period.  Start off by scanning
		 * the task list for tasks that are not already
		 * voluntarily blocked.  Mark these tasks and make
		 * a list of them in rcu_tasks_holdouts.
		 */
		rcu_read_lock();
		for_each_process_thread(g, t) {
708
			if (t != current && READ_ONCE(t->on_rq) &&
P
Paul E. McKenney 已提交
709 710
			    !is_idle_task(t)) {
				get_task_struct(t);
711 712
				t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw);
				WRITE_ONCE(t->rcu_tasks_holdout, true);
P
Paul E. McKenney 已提交
713 714 715 716 717 718
				list_add(&t->rcu_tasks_holdout_list,
					 &rcu_tasks_holdouts);
			}
		}
		rcu_read_unlock();

719 720 721 722 723 724 725 726 727
		/*
		 * Wait for tasks that are in the process of exiting.
		 * This does only part of the job, ensuring that all
		 * tasks that were previously exiting reach the point
		 * where they have disabled preemption, allowing the
		 * later synchronize_sched() to finish the job.
		 */
		synchronize_srcu(&tasks_rcu_exit_srcu);

P
Paul E. McKenney 已提交
728 729 730 731 732
		/*
		 * Each pass through the following loop scans the list
		 * of holdout tasks, removing any that are no longer
		 * holdouts.  When the list is empty, we are done.
		 */
733
		lastreport = jiffies;
P
Paul E. McKenney 已提交
734
		while (!list_empty(&rcu_tasks_holdouts)) {
735 736 737
			bool firstreport;
			bool needreport;
			int rtst;
738
			struct task_struct *t1;
739

P
Paul E. McKenney 已提交
740
			schedule_timeout_interruptible(HZ);
741
			rtst = READ_ONCE(rcu_task_stall_timeout);
742 743 744 745 746
			needreport = rtst > 0 &&
				     time_after(jiffies, lastreport + rtst);
			if (needreport)
				lastreport = jiffies;
			firstreport = true;
P
Paul E. McKenney 已提交
747
			WARN_ON(signal_pending(current));
748 749
			list_for_each_entry_safe(t, t1, &rcu_tasks_holdouts,
						rcu_tasks_holdout_list) {
750
				check_holdout_task(t, needreport, &firstreport);
751 752
				cond_resched();
			}
P
Paul E. McKenney 已提交
753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
		}

		/*
		 * Because ->on_rq and ->nvcsw are not guaranteed
		 * to have a full memory barriers prior to them in the
		 * schedule() path, memory reordering on other CPUs could
		 * cause their RCU-tasks read-side critical sections to
		 * extend past the end of the grace period.  However,
		 * because these ->nvcsw updates are carried out with
		 * interrupts disabled, we can use synchronize_sched()
		 * to force the needed ordering on all such CPUs.
		 *
		 * This synchronize_sched() also confines all
		 * ->rcu_tasks_holdout accesses to be within the grace
		 * period, avoiding the need for memory barriers for
		 * ->rcu_tasks_holdout accesses.
769 770 771 772 773
		 *
		 * In addition, this synchronize_sched() waits for exiting
		 * tasks to complete their final preempt_disable() region
		 * of execution, cleaning up after the synchronize_srcu()
		 * above.
P
Paul E. McKenney 已提交
774 775 776 777 778 779 780 781 782 783 784 785
		 */
		synchronize_sched();

		/* Invoke the callbacks. */
		while (list) {
			next = list->next;
			local_bh_disable();
			list->func(list);
			local_bh_enable();
			list = next;
			cond_resched();
		}
786
		schedule_timeout_uninterruptible(HZ/10);
P
Paul E. McKenney 已提交
787 788 789
	}
}

790 791
/* Spawn rcu_tasks_kthread() at first call to call_rcu_tasks(). */
static void rcu_spawn_tasks_kthread(void)
P
Paul E. McKenney 已提交
792
{
793 794 795
	static DEFINE_MUTEX(rcu_tasks_kthread_mutex);
	static struct task_struct *rcu_tasks_kthread_ptr;
	struct task_struct *t;
P
Paul E. McKenney 已提交
796

797
	if (READ_ONCE(rcu_tasks_kthread_ptr)) {
798 799 800 801 802 803 804 805
		smp_mb(); /* Ensure caller sees full kthread. */
		return;
	}
	mutex_lock(&rcu_tasks_kthread_mutex);
	if (rcu_tasks_kthread_ptr) {
		mutex_unlock(&rcu_tasks_kthread_mutex);
		return;
	}
P
Paul E. McKenney 已提交
806 807
	t = kthread_run(rcu_tasks_kthread, NULL, "rcu_tasks_kthread");
	BUG_ON(IS_ERR(t));
808
	smp_mb(); /* Ensure others see full kthread. */
809
	WRITE_ONCE(rcu_tasks_kthread_ptr, t);
810
	mutex_unlock(&rcu_tasks_kthread_mutex);
P
Paul E. McKenney 已提交
811 812 813
}

#endif /* #ifdef CONFIG_TASKS_RCU */
814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897

#ifdef CONFIG_PROVE_RCU

/*
 * Early boot self test parameters, one for each flavor
 */
static bool rcu_self_test;
static bool rcu_self_test_bh;
static bool rcu_self_test_sched;

module_param(rcu_self_test, bool, 0444);
module_param(rcu_self_test_bh, bool, 0444);
module_param(rcu_self_test_sched, bool, 0444);

static int rcu_self_test_counter;

static void test_callback(struct rcu_head *r)
{
	rcu_self_test_counter++;
	pr_info("RCU test callback executed %d\n", rcu_self_test_counter);
}

static void early_boot_test_call_rcu(void)
{
	static struct rcu_head head;

	call_rcu(&head, test_callback);
}

static void early_boot_test_call_rcu_bh(void)
{
	static struct rcu_head head;

	call_rcu_bh(&head, test_callback);
}

static void early_boot_test_call_rcu_sched(void)
{
	static struct rcu_head head;

	call_rcu_sched(&head, test_callback);
}

void rcu_early_boot_tests(void)
{
	pr_info("Running RCU self tests\n");

	if (rcu_self_test)
		early_boot_test_call_rcu();
	if (rcu_self_test_bh)
		early_boot_test_call_rcu_bh();
	if (rcu_self_test_sched)
		early_boot_test_call_rcu_sched();
}

static int rcu_verify_early_boot_tests(void)
{
	int ret = 0;
	int early_boot_test_counter = 0;

	if (rcu_self_test) {
		early_boot_test_counter++;
		rcu_barrier();
	}
	if (rcu_self_test_bh) {
		early_boot_test_counter++;
		rcu_barrier_bh();
	}
	if (rcu_self_test_sched) {
		early_boot_test_counter++;
		rcu_barrier_sched();
	}

	if (rcu_self_test_counter != early_boot_test_counter) {
		WARN_ON(1);
		ret = -1;
	}

	return ret;
}
late_initcall(rcu_verify_early_boot_tests);
#else
void rcu_early_boot_tests(void) {}
#endif /* CONFIG_PROVE_RCU */