update.c 20.1 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 * Read-Copy Update mechanism for mutual exclusion
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
15 16
 * along with this program; if not, you can access it online at
 * http://www.gnu.org/licenses/gpl-2.0.html.
L
Linus Torvalds 已提交
17
 *
18
 * Copyright IBM Corporation, 2001
L
Linus Torvalds 已提交
19 20 21
 *
 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
 *	    Manfred Spraul <manfred@colorfullife.com>
22
 *
L
Linus Torvalds 已提交
23 24 25 26 27 28 29
 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
 * Papers:
 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
 *
 * For detailed explanation of Read-Copy Update mechanism see -
30
 *		http://lse.sourceforge.net/locking/rcupdate.html
L
Linus Torvalds 已提交
31 32 33 34 35 36 37 38 39
 *
 */
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/smp.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
A
Arun Sharma 已提交
40
#include <linux/atomic.h>
L
Linus Torvalds 已提交
41 42 43 44
#include <linux/bitops.h>
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/cpu.h>
45
#include <linux/mutex.h>
46
#include <linux/export.h>
47
#include <linux/hardirq.h>
48
#include <linux/delay.h>
49
#include <linux/module.h>
P
Paul E. McKenney 已提交
50
#include <linux/kthread.h>
L
Linus Torvalds 已提交
51

52 53 54 55
#define CREATE_TRACE_POINTS

#include "rcu.h"

56 57 58 59 60 61
MODULE_ALIAS("rcupdate");
#ifdef MODULE_PARAM_PREFIX
#undef MODULE_PARAM_PREFIX
#endif
#define MODULE_PARAM_PREFIX "rcupdate."

62 63
module_param(rcu_expedited, int, 0);

64 65
#ifdef CONFIG_PREEMPT_RCU

66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
/*
 * Preemptible RCU implementation for rcu_read_lock().
 * Just increment ->rcu_read_lock_nesting, shared state will be updated
 * if we block.
 */
void __rcu_read_lock(void)
{
	current->rcu_read_lock_nesting++;
	barrier();  /* critical section after entry code. */
}
EXPORT_SYMBOL_GPL(__rcu_read_lock);

/*
 * Preemptible RCU implementation for rcu_read_unlock().
 * Decrement ->rcu_read_lock_nesting.  If the result is zero (outermost
 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
 * invoke rcu_read_unlock_special() to clean up after a context switch
 * in an RCU read-side critical section and other special cases.
 */
void __rcu_read_unlock(void)
{
	struct task_struct *t = current;

	if (t->rcu_read_lock_nesting != 1) {
		--t->rcu_read_lock_nesting;
	} else {
		barrier();  /* critical section before exit code. */
		t->rcu_read_lock_nesting = INT_MIN;
		barrier();  /* assign before ->rcu_read_unlock_special load */
		if (unlikely(ACCESS_ONCE(t->rcu_read_unlock_special)))
			rcu_read_unlock_special(t);
		barrier();  /* ->rcu_read_unlock_special load before assign */
		t->rcu_read_lock_nesting = 0;
	}
#ifdef CONFIG_PROVE_LOCKING
	{
		int rrln = ACCESS_ONCE(t->rcu_read_lock_nesting);

		WARN_ON_ONCE(rrln < 0 && rrln > INT_MIN / 2);
	}
#endif /* #ifdef CONFIG_PROVE_LOCKING */
}
EXPORT_SYMBOL_GPL(__rcu_read_unlock);

110
#endif /* #ifdef CONFIG_PREEMPT_RCU */
111

112 113 114 115 116
#ifdef CONFIG_DEBUG_LOCK_ALLOC
static struct lock_class_key rcu_lock_key;
struct lockdep_map rcu_lock_map =
	STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key);
EXPORT_SYMBOL_GPL(rcu_lock_map);
117 118 119 120 121 122 123 124 125 126

static struct lock_class_key rcu_bh_lock_key;
struct lockdep_map rcu_bh_lock_map =
	STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_bh", &rcu_bh_lock_key);
EXPORT_SYMBOL_GPL(rcu_bh_lock_map);

static struct lock_class_key rcu_sched_lock_key;
struct lockdep_map rcu_sched_lock_map =
	STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_sched", &rcu_sched_lock_key);
EXPORT_SYMBOL_GPL(rcu_sched_lock_map);
127

128 129 130 131 132
static struct lock_class_key rcu_callback_key;
struct lockdep_map rcu_callback_map =
	STATIC_LOCKDEP_MAP_INIT("rcu_callback", &rcu_callback_key);
EXPORT_SYMBOL_GPL(rcu_callback_map);

133
int notrace debug_lockdep_rcu_enabled(void)
134 135 136 137 138 139
{
	return rcu_scheduler_active && debug_locks &&
	       current->lockdep_recursion == 0;
}
EXPORT_SYMBOL_GPL(debug_lockdep_rcu_enabled);

140
/**
141
 * rcu_read_lock_bh_held() - might we be in RCU-bh read-side critical section?
142 143 144 145
 *
 * Check for bottom half being disabled, which covers both the
 * CONFIG_PROVE_RCU and not cases.  Note that if someone uses
 * rcu_read_lock_bh(), but then later enables BH, lockdep (if enabled)
146 147 148
 * will show the situation.  This is useful for debug checks in functions
 * that require that they be called within an RCU read-side critical
 * section.
149 150
 *
 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot.
151 152 153
 *
 * Note that rcu_read_lock() is disallowed if the CPU is either idle or
 * offline from an RCU perspective, so check for those as well.
154 155 156 157 158
 */
int rcu_read_lock_bh_held(void)
{
	if (!debug_lockdep_rcu_enabled())
		return 1;
159
	if (!rcu_is_watching())
160
		return 0;
161 162
	if (!rcu_lockdep_current_cpu_online())
		return 0;
163
	return in_softirq() || irqs_disabled();
164 165 166 167 168
}
EXPORT_SYMBOL_GPL(rcu_read_lock_bh_held);

#endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */

169 170 171 172 173
struct rcu_synchronize {
	struct rcu_head head;
	struct completion completion;
};

P
Paul E. McKenney 已提交
174 175 176 177
/*
 * Awaken the corresponding synchronize_rcu() instance now that a
 * grace period has elapsed.
 */
178
static void wakeme_after_rcu(struct rcu_head  *head)
D
Dipankar Sarma 已提交
179
{
180 181 182 183
	struct rcu_synchronize *rcu;

	rcu = container_of(head, struct rcu_synchronize, head);
	complete(&rcu->completion);
D
Dipankar Sarma 已提交
184
}
185

186 187 188 189 190 191 192 193 194 195 196 197 198 199
void wait_rcu_gp(call_rcu_func_t crf)
{
	struct rcu_synchronize rcu;

	init_rcu_head_on_stack(&rcu.head);
	init_completion(&rcu.completion);
	/* Will wake me after RCU finished. */
	crf(&rcu.head, wakeme_after_rcu);
	/* Wait for it. */
	wait_for_completion(&rcu.completion);
	destroy_rcu_head_on_stack(&rcu.head);
}
EXPORT_SYMBOL_GPL(wait_rcu_gp);

200
#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
201
void init_rcu_head(struct rcu_head *head)
202 203 204 205
{
	debug_object_init(head, &rcuhead_debug_descr);
}

206
void destroy_rcu_head(struct rcu_head *head)
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
{
	debug_object_free(head, &rcuhead_debug_descr);
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 * Activation is performed internally by call_rcu().
 */
static int rcuhead_fixup_activate(void *addr, enum debug_obj_state state)
{
	struct rcu_head *head = addr;

	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		/*
		 * This is not really a fixup. We just make sure that it is
		 * tracked in the object tracker.
		 */
		debug_object_init(head, &rcuhead_debug_descr);
		debug_object_activate(head, &rcuhead_debug_descr);
		return 0;
	default:
		return 1;
	}
}

/**
 * init_rcu_head_on_stack() - initialize on-stack rcu_head for debugobjects
 * @head: pointer to rcu_head structure to be initialized
 *
 * This function informs debugobjects of a new rcu_head structure that
 * has been allocated as an auto variable on the stack.  This function
 * is not required for rcu_head structures that are statically defined or
 * that are dynamically allocated on the heap.  This function has no
 * effect for !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
 */
void init_rcu_head_on_stack(struct rcu_head *head)
{
	debug_object_init_on_stack(head, &rcuhead_debug_descr);
}
EXPORT_SYMBOL_GPL(init_rcu_head_on_stack);

/**
 * destroy_rcu_head_on_stack() - destroy on-stack rcu_head for debugobjects
 * @head: pointer to rcu_head structure to be initialized
 *
 * This function informs debugobjects that an on-stack rcu_head structure
 * is about to go out of scope.  As with init_rcu_head_on_stack(), this
 * function is not required for rcu_head structures that are statically
 * defined or that are dynamically allocated on the heap.  Also as with
 * init_rcu_head_on_stack(), this function has no effect for
 * !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
 */
void destroy_rcu_head_on_stack(struct rcu_head *head)
{
	debug_object_free(head, &rcuhead_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_rcu_head_on_stack);

struct debug_obj_descr rcuhead_debug_descr = {
	.name = "rcu_head",
	.fixup_activate = rcuhead_fixup_activate,
};
EXPORT_SYMBOL_GPL(rcuhead_debug_descr);
#endif /* #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD */
275 276

#if defined(CONFIG_TREE_RCU) || defined(CONFIG_TREE_PREEMPT_RCU) || defined(CONFIG_RCU_TRACE)
277
void do_trace_rcu_torture_read(const char *rcutorturename, struct rcu_head *rhp,
278 279
			       unsigned long secs,
			       unsigned long c_old, unsigned long c)
280
{
281
	trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c);
282 283 284
}
EXPORT_SYMBOL_GPL(do_trace_rcu_torture_read);
#else
285 286
#define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
	do { } while (0)
287
#endif
288 289 290 291 292 293 294 295 296 297

#ifdef CONFIG_RCU_STALL_COMMON

#ifdef CONFIG_PROVE_RCU
#define RCU_STALL_DELAY_DELTA	       (5 * HZ)
#else
#define RCU_STALL_DELAY_DELTA	       0
#endif

int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */
298
static int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320

module_param(rcu_cpu_stall_suppress, int, 0644);
module_param(rcu_cpu_stall_timeout, int, 0644);

int rcu_jiffies_till_stall_check(void)
{
	int till_stall_check = ACCESS_ONCE(rcu_cpu_stall_timeout);

	/*
	 * Limit check must be consistent with the Kconfig limits
	 * for CONFIG_RCU_CPU_STALL_TIMEOUT.
	 */
	if (till_stall_check < 3) {
		ACCESS_ONCE(rcu_cpu_stall_timeout) = 3;
		till_stall_check = 3;
	} else if (till_stall_check > 300) {
		ACCESS_ONCE(rcu_cpu_stall_timeout) = 300;
		till_stall_check = 300;
	}
	return till_stall_check * HZ + RCU_STALL_DELAY_DELTA;
}

321 322 323 324 325 326 327 328 329 330 331 332
void rcu_sysrq_start(void)
{
	if (!rcu_cpu_stall_suppress)
		rcu_cpu_stall_suppress = 2;
}

void rcu_sysrq_end(void)
{
	if (rcu_cpu_stall_suppress == 2)
		rcu_cpu_stall_suppress = 0;
}

333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
{
	rcu_cpu_stall_suppress = 1;
	return NOTIFY_DONE;
}

static struct notifier_block rcu_panic_block = {
	.notifier_call = rcu_panic,
};

static int __init check_cpu_stall_init(void)
{
	atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
	return 0;
}
early_initcall(check_cpu_stall_init);

#endif /* #ifdef CONFIG_RCU_STALL_COMMON */
P
Paul E. McKenney 已提交
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367

#ifdef CONFIG_TASKS_RCU

/*
 * Simple variant of RCU whose quiescent states are voluntary context switch,
 * user-space execution, and idle.  As such, grace periods can take one good
 * long time.  There are no read-side primitives similar to rcu_read_lock()
 * and rcu_read_unlock() because this implementation is intended to get
 * the system into a safe state for some of the manipulations involved in
 * tracing and the like.  Finally, this implementation does not support
 * high call_rcu_tasks() rates from multiple CPUs.  If this is required,
 * per-CPU callback lists will be needed.
 */

/* Global list of callbacks and associated lock. */
static struct rcu_head *rcu_tasks_cbs_head;
static struct rcu_head **rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
368
static DECLARE_WAIT_QUEUE_HEAD(rcu_tasks_cbs_wq);
P
Paul E. McKenney 已提交
369 370
static DEFINE_RAW_SPINLOCK(rcu_tasks_cbs_lock);

371 372 373 374
/* Track exiting tasks in order to allow them to be waited for. */
DEFINE_SRCU(tasks_rcu_exit_srcu);

/* Control stall timeouts.  Disable with <= 0, otherwise jiffies till stall. */
375
static int rcu_task_stall_timeout __read_mostly = HZ * 60 * 10;
376 377
module_param(rcu_task_stall_timeout, int, 0644);

378 379 380 381 382 383
static void rcu_spawn_tasks_kthread(void);

/*
 * Post an RCU-tasks callback.  First call must be from process context
 * after the scheduler if fully operational.
 */
P
Paul E. McKenney 已提交
384 385 386
void call_rcu_tasks(struct rcu_head *rhp, void (*func)(struct rcu_head *rhp))
{
	unsigned long flags;
387
	bool needwake;
P
Paul E. McKenney 已提交
388 389 390 391

	rhp->next = NULL;
	rhp->func = func;
	raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
392
	needwake = !rcu_tasks_cbs_head;
P
Paul E. McKenney 已提交
393 394 395
	*rcu_tasks_cbs_tail = rhp;
	rcu_tasks_cbs_tail = &rhp->next;
	raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
396 397
	if (needwake) {
		rcu_spawn_tasks_kthread();
398
		wake_up(&rcu_tasks_cbs_wq);
399
	}
P
Paul E. McKenney 已提交
400 401 402
}
EXPORT_SYMBOL_GPL(call_rcu_tasks);

403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
/**
 * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu-tasks
 * grace period has elapsed, in other words after all currently
 * executing rcu-tasks read-side critical sections have elapsed.  These
 * read-side critical sections are delimited by calls to schedule(),
 * cond_resched_rcu_qs(), idle execution, userspace execution, calls
 * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched().
 *
 * This is a very specialized primitive, intended only for a few uses in
 * tracing and other situations requiring manipulation of function
 * preambles and profiling hooks.  The synchronize_rcu_tasks() function
 * is not (yet) intended for heavy use from multiple CPUs.
 *
 * Note that this guarantee implies further memory-ordering guarantees.
 * On systems with more than one CPU, when synchronize_rcu_tasks() returns,
 * each CPU is guaranteed to have executed a full memory barrier since the
 * end of its last RCU-tasks read-side critical section whose beginning
 * preceded the call to synchronize_rcu_tasks().  In addition, each CPU
 * having an RCU-tasks read-side critical section that extends beyond
 * the return from synchronize_rcu_tasks() is guaranteed to have executed
 * a full memory barrier after the beginning of synchronize_rcu_tasks()
 * and before the beginning of that RCU-tasks read-side critical section.
 * Note that these guarantees include CPUs that are offline, idle, or
 * executing in user mode, as well as CPUs that are executing in the kernel.
 *
 * Furthermore, if CPU A invoked synchronize_rcu_tasks(), which returned
 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
 * to have executed a full memory barrier during the execution of
 * synchronize_rcu_tasks() -- even if CPU A and CPU B are the same CPU
 * (but again only if the system has more than one CPU).
 */
void synchronize_rcu_tasks(void)
{
	/* Complain if the scheduler has not started.  */
	rcu_lockdep_assert(!rcu_scheduler_active,
			   "synchronize_rcu_tasks called too soon");

	/* Wait for the grace period. */
	wait_rcu_gp(call_rcu_tasks);
}
445
EXPORT_SYMBOL_GPL(synchronize_rcu_tasks);
446 447 448 449 450 451 452 453 454 455 456 457

/**
 * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks.
 *
 * Although the current implementation is guaranteed to wait, it is not
 * obligated to, for example, if there are no pending callbacks.
 */
void rcu_barrier_tasks(void)
{
	/* There is only one callback queue, so this is easy.  ;-) */
	synchronize_rcu_tasks();
}
458
EXPORT_SYMBOL_GPL(rcu_barrier_tasks);
459

460 461 462
/* See if tasks are still holding out, complain if so. */
static void check_holdout_task(struct task_struct *t,
			       bool needreport, bool *firstreport)
P
Paul E. McKenney 已提交
463 464 465 466 467 468 469
{
	if (!ACCESS_ONCE(t->rcu_tasks_holdout) ||
	    t->rcu_tasks_nvcsw != ACCESS_ONCE(t->nvcsw) ||
	    !ACCESS_ONCE(t->on_rq)) {
		ACCESS_ONCE(t->rcu_tasks_holdout) = false;
		list_del_rcu(&t->rcu_tasks_holdout_list);
		put_task_struct(t);
470
		return;
P
Paul E. McKenney 已提交
471
	}
472 473 474 475 476 477 478
	if (!needreport)
		return;
	if (*firstreport) {
		pr_err("INFO: rcu_tasks detected stalls on tasks:\n");
		*firstreport = false;
	}
	sched_show_task(t);
P
Paul E. McKenney 已提交
479 480 481 482 483 484 485
}

/* RCU-tasks kthread that detects grace periods and invokes callbacks. */
static int __noreturn rcu_tasks_kthread(void *arg)
{
	unsigned long flags;
	struct task_struct *g, *t;
486
	unsigned long lastreport;
P
Paul E. McKenney 已提交
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
	struct rcu_head *list;
	struct rcu_head *next;
	LIST_HEAD(rcu_tasks_holdouts);

	/* FIXME: Add housekeeping affinity. */

	/*
	 * Each pass through the following loop makes one check for
	 * newly arrived callbacks, and, if there are some, waits for
	 * one RCU-tasks grace period and then invokes the callbacks.
	 * This loop is terminated by the system going down.  ;-)
	 */
	for (;;) {

		/* Pick up any new callbacks. */
		raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
		list = rcu_tasks_cbs_head;
		rcu_tasks_cbs_head = NULL;
		rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
		raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);

		/* If there were none, wait a bit and start over. */
		if (!list) {
510 511 512 513 514 515
			wait_event_interruptible(rcu_tasks_cbs_wq,
						 rcu_tasks_cbs_head);
			if (!rcu_tasks_cbs_head) {
				WARN_ON(signal_pending(current));
				schedule_timeout_interruptible(HZ/10);
			}
P
Paul E. McKenney 已提交
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
			continue;
		}

		/*
		 * Wait for all pre-existing t->on_rq and t->nvcsw
		 * transitions to complete.  Invoking synchronize_sched()
		 * suffices because all these transitions occur with
		 * interrupts disabled.  Without this synchronize_sched(),
		 * a read-side critical section that started before the
		 * grace period might be incorrectly seen as having started
		 * after the grace period.
		 *
		 * This synchronize_sched() also dispenses with the
		 * need for a memory barrier on the first store to
		 * ->rcu_tasks_holdout, as it forces the store to happen
		 * after the beginning of the grace period.
		 */
		synchronize_sched();

		/*
		 * There were callbacks, so we need to wait for an
		 * RCU-tasks grace period.  Start off by scanning
		 * the task list for tasks that are not already
		 * voluntarily blocked.  Mark these tasks and make
		 * a list of them in rcu_tasks_holdouts.
		 */
		rcu_read_lock();
		for_each_process_thread(g, t) {
			if (t != current && ACCESS_ONCE(t->on_rq) &&
			    !is_idle_task(t)) {
				get_task_struct(t);
				t->rcu_tasks_nvcsw = ACCESS_ONCE(t->nvcsw);
				ACCESS_ONCE(t->rcu_tasks_holdout) = true;
				list_add(&t->rcu_tasks_holdout_list,
					 &rcu_tasks_holdouts);
			}
		}
		rcu_read_unlock();

555 556 557 558 559 560 561 562 563
		/*
		 * Wait for tasks that are in the process of exiting.
		 * This does only part of the job, ensuring that all
		 * tasks that were previously exiting reach the point
		 * where they have disabled preemption, allowing the
		 * later synchronize_sched() to finish the job.
		 */
		synchronize_srcu(&tasks_rcu_exit_srcu);

P
Paul E. McKenney 已提交
564 565 566 567 568
		/*
		 * Each pass through the following loop scans the list
		 * of holdout tasks, removing any that are no longer
		 * holdouts.  When the list is empty, we are done.
		 */
569
		lastreport = jiffies;
P
Paul E. McKenney 已提交
570
		while (!list_empty(&rcu_tasks_holdouts)) {
571 572 573 574
			bool firstreport;
			bool needreport;
			int rtst;

P
Paul E. McKenney 已提交
575
			schedule_timeout_interruptible(HZ);
576 577 578 579 580 581
			rtst = ACCESS_ONCE(rcu_task_stall_timeout);
			needreport = rtst > 0 &&
				     time_after(jiffies, lastreport + rtst);
			if (needreport)
				lastreport = jiffies;
			firstreport = true;
P
Paul E. McKenney 已提交
582 583 584 585
			WARN_ON(signal_pending(current));
			rcu_read_lock();
			list_for_each_entry_rcu(t, &rcu_tasks_holdouts,
						rcu_tasks_holdout_list)
586
				check_holdout_task(t, needreport, &firstreport);
P
Paul E. McKenney 已提交
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
			rcu_read_unlock();
		}

		/*
		 * Because ->on_rq and ->nvcsw are not guaranteed
		 * to have a full memory barriers prior to them in the
		 * schedule() path, memory reordering on other CPUs could
		 * cause their RCU-tasks read-side critical sections to
		 * extend past the end of the grace period.  However,
		 * because these ->nvcsw updates are carried out with
		 * interrupts disabled, we can use synchronize_sched()
		 * to force the needed ordering on all such CPUs.
		 *
		 * This synchronize_sched() also confines all
		 * ->rcu_tasks_holdout accesses to be within the grace
		 * period, avoiding the need for memory barriers for
		 * ->rcu_tasks_holdout accesses.
604 605 606 607 608
		 *
		 * In addition, this synchronize_sched() waits for exiting
		 * tasks to complete their final preempt_disable() region
		 * of execution, cleaning up after the synchronize_srcu()
		 * above.
P
Paul E. McKenney 已提交
609 610 611 612 613 614 615 616 617 618 619 620
		 */
		synchronize_sched();

		/* Invoke the callbacks. */
		while (list) {
			next = list->next;
			local_bh_disable();
			list->func(list);
			local_bh_enable();
			list = next;
			cond_resched();
		}
621
		schedule_timeout_uninterruptible(HZ/10);
P
Paul E. McKenney 已提交
622 623 624
	}
}

625 626
/* Spawn rcu_tasks_kthread() at first call to call_rcu_tasks(). */
static void rcu_spawn_tasks_kthread(void)
P
Paul E. McKenney 已提交
627
{
628 629 630
	static DEFINE_MUTEX(rcu_tasks_kthread_mutex);
	static struct task_struct *rcu_tasks_kthread_ptr;
	struct task_struct *t;
P
Paul E. McKenney 已提交
631

632 633 634 635 636 637 638 639 640
	if (ACCESS_ONCE(rcu_tasks_kthread_ptr)) {
		smp_mb(); /* Ensure caller sees full kthread. */
		return;
	}
	mutex_lock(&rcu_tasks_kthread_mutex);
	if (rcu_tasks_kthread_ptr) {
		mutex_unlock(&rcu_tasks_kthread_mutex);
		return;
	}
P
Paul E. McKenney 已提交
641 642
	t = kthread_run(rcu_tasks_kthread, NULL, "rcu_tasks_kthread");
	BUG_ON(IS_ERR(t));
643 644 645
	smp_mb(); /* Ensure others see full kthread. */
	ACCESS_ONCE(rcu_tasks_kthread_ptr) = t;
	mutex_unlock(&rcu_tasks_kthread_mutex);
P
Paul E. McKenney 已提交
646 647 648
}

#endif /* #ifdef CONFIG_TASKS_RCU */