ef10.c 171.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/****************************************************************************
 * Driver for Solarflare network controllers and boards
 * Copyright 2012-2013 Solarflare Communications Inc.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation, incorporated herein by reference.
 */

#include "net_driver.h"
#include "ef10_regs.h"
#include "io.h"
#include "mcdi.h"
#include "mcdi_pcol.h"
#include "nic.h"
#include "workarounds.h"
17
#include "selftest.h"
18
#include "ef10_sriov.h"
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
#include <linux/in.h>
#include <linux/jhash.h>
#include <linux/wait.h>
#include <linux/workqueue.h>

/* Hardware control for EF10 architecture including 'Huntington'. */

#define EFX_EF10_DRVGEN_EV		7
enum {
	EFX_EF10_TEST = 1,
	EFX_EF10_REFILL,
};

/* The reserved RSS context value */
#define EFX_EF10_RSS_CONTEXT_INVALID	0xffffffff
34 35 36
/* The maximum size of a shared RSS context */
/* TODO: this should really be from the mcdi protocol export */
#define EFX_EF10_MAX_SHARED_RSS_CONTEXT_SIZE 64UL
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

/* The filter table(s) are managed by firmware and we have write-only
 * access.  When removing filters we must identify them to the
 * firmware by a 64-bit handle, but this is too wide for Linux kernel
 * interfaces (32-bit for RX NFC, 16-bit for RFS).  Also, we need to
 * be able to tell in advance whether a requested insertion will
 * replace an existing filter.  Therefore we maintain a software hash
 * table, which should be at least as large as the hardware hash
 * table.
 *
 * Huntington has a single 8K filter table shared between all filter
 * types and both ports.
 */
#define HUNT_FILTER_TBL_ROWS 8192

52
#define EFX_EF10_FILTER_ID_INVALID 0xffff
53 54 55 56

#define EFX_EF10_FILTER_DEV_UC_MAX	32
#define EFX_EF10_FILTER_DEV_MC_MAX	256

57 58 59 60 61 62
/* VLAN list entry */
struct efx_ef10_vlan {
	struct list_head list;
	u16 vid;
};

63 64
/* Per-VLAN filters information */
struct efx_ef10_filter_vlan {
65
	struct list_head list;
66
	u16 vid;
67 68 69 70 71 72 73
	u16 uc[EFX_EF10_FILTER_DEV_UC_MAX];
	u16 mc[EFX_EF10_FILTER_DEV_MC_MAX];
	u16 ucdef;
	u16 bcast;
	u16 mcdef;
};

74 75 76 77
struct efx_ef10_dev_addr {
	u8 addr[ETH_ALEN];
};

78
struct efx_ef10_filter_table {
79 80
/* The MCDI match masks supported by this fw & hw, in order of priority */
	u32 rx_match_mcdi_flags[
81 82 83 84 85
		MC_CMD_GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES_MAXNUM];
	unsigned int rx_match_count;

	struct {
		unsigned long spec;	/* pointer to spec plus flag bits */
86 87
/* BUSY flag indicates that an update is in progress.  AUTO_OLD is
 * used to mark and sweep MAC filters for the device address lists.
88 89
 */
#define EFX_EF10_FILTER_FLAG_BUSY	1UL
90
#define EFX_EF10_FILTER_FLAG_AUTO_OLD	2UL
91 92 93 94 95
#define EFX_EF10_FILTER_FLAGS		3UL
		u64 handle;		/* firmware handle */
	} *entry;
	wait_queue_head_t waitq;
/* Shadow of net_device address lists, guarded by mac_lock */
96 97
	struct efx_ef10_dev_addr dev_uc_list[EFX_EF10_FILTER_DEV_UC_MAX];
	struct efx_ef10_dev_addr dev_mc_list[EFX_EF10_FILTER_DEV_MC_MAX];
98 99
	int dev_uc_count;
	int dev_mc_count;
100 101
	bool uc_promisc;
	bool mc_promisc;
102 103
/* Whether in multicast promiscuous mode when last changed */
	bool mc_promisc_last;
104
	bool vlan_filter;
105
	struct list_head vlan_list;
106 107 108 109 110 111 112
};

/* An arbitrary search limit for the software hash table */
#define EFX_EF10_FILTER_SEARCH_LIMIT 200

static void efx_ef10_rx_free_indir_table(struct efx_nic *efx);
static void efx_ef10_filter_table_remove(struct efx_nic *efx);
113 114 115 116
static int efx_ef10_filter_add_vlan(struct efx_nic *efx, u16 vid);
static void efx_ef10_filter_del_vlan_internal(struct efx_nic *efx,
					      struct efx_ef10_filter_vlan *vlan);
static void efx_ef10_filter_del_vlan(struct efx_nic *efx, u16 vid);
117 118 119 120 121 122 123 124 125 126 127 128

static int efx_ef10_get_warm_boot_count(struct efx_nic *efx)
{
	efx_dword_t reg;

	efx_readd(efx, &reg, ER_DZ_BIU_MC_SFT_STATUS);
	return EFX_DWORD_FIELD(reg, EFX_WORD_1) == 0xb007 ?
		EFX_DWORD_FIELD(reg, EFX_WORD_0) : -EIO;
}

static unsigned int efx_ef10_mem_map_size(struct efx_nic *efx)
{
129 130 131 132
	int bar;

	bar = efx->type->mem_bar;
	return resource_size(&efx->pci_dev->resource[bar]);
133 134
}

135 136 137 138 139
static bool efx_ef10_is_vf(struct efx_nic *efx)
{
	return efx->type->is_vf;
}

140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
static int efx_ef10_get_pf_index(struct efx_nic *efx)
{
	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_FUNCTION_INFO_OUT_LEN);
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
	size_t outlen;
	int rc;

	rc = efx_mcdi_rpc(efx, MC_CMD_GET_FUNCTION_INFO, NULL, 0, outbuf,
			  sizeof(outbuf), &outlen);
	if (rc)
		return rc;
	if (outlen < sizeof(outbuf))
		return -EIO;

	nic_data->pf_index = MCDI_DWORD(outbuf, GET_FUNCTION_INFO_OUT_PF);
	return 0;
}

158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
#ifdef CONFIG_SFC_SRIOV
static int efx_ef10_get_vf_index(struct efx_nic *efx)
{
	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_FUNCTION_INFO_OUT_LEN);
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
	size_t outlen;
	int rc;

	rc = efx_mcdi_rpc(efx, MC_CMD_GET_FUNCTION_INFO, NULL, 0, outbuf,
			  sizeof(outbuf), &outlen);
	if (rc)
		return rc;
	if (outlen < sizeof(outbuf))
		return -EIO;

	nic_data->vf_index = MCDI_DWORD(outbuf, GET_FUNCTION_INFO_OUT_VF);
	return 0;
}
#endif

178
static int efx_ef10_init_datapath_caps(struct efx_nic *efx)
179
{
180
	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CAPABILITIES_V2_OUT_LEN);
181 182 183 184 185 186 187 188 189 190
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
	size_t outlen;
	int rc;

	BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN != 0);

	rc = efx_mcdi_rpc(efx, MC_CMD_GET_CAPABILITIES, NULL, 0,
			  outbuf, sizeof(outbuf), &outlen);
	if (rc)
		return rc;
191
	if (outlen < MC_CMD_GET_CAPABILITIES_OUT_LEN) {
192 193 194 195 196 197 198
		netif_err(efx, drv, efx->net_dev,
			  "unable to read datapath firmware capabilities\n");
		return -EIO;
	}

	nic_data->datapath_caps =
		MCDI_DWORD(outbuf, GET_CAPABILITIES_OUT_FLAGS1);
199

200
	if (outlen >= MC_CMD_GET_CAPABILITIES_V2_OUT_LEN) {
201 202
		nic_data->datapath_caps2 = MCDI_DWORD(outbuf,
				GET_CAPABILITIES_V2_OUT_FLAGS2);
203 204 205
		nic_data->piobuf_size = MCDI_WORD(outbuf,
				GET_CAPABILITIES_V2_OUT_SIZE_PIO_BUFF);
	} else {
206
		nic_data->datapath_caps2 = 0;
207 208
		nic_data->piobuf_size = ER_DZ_TX_PIOBUF_SIZE;
	}
209

210 211 212 213 214 215 216
	/* record the DPCPU firmware IDs to determine VEB vswitching support.
	 */
	nic_data->rx_dpcpu_fw_id =
		MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_RX_DPCPU_FW_ID);
	nic_data->tx_dpcpu_fw_id =
		MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_TX_DPCPU_FW_ID);

217 218 219 220 221
	if (!(nic_data->datapath_caps &
	      (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_PREFIX_LEN_14_LBN))) {
		netif_err(efx, probe, efx->net_dev,
			  "current firmware does not support an RX prefix\n");
		return -ENODEV;
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
	}

	return 0;
}

static int efx_ef10_get_sysclk_freq(struct efx_nic *efx)
{
	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CLOCK_OUT_LEN);
	int rc;

	rc = efx_mcdi_rpc(efx, MC_CMD_GET_CLOCK, NULL, 0,
			  outbuf, sizeof(outbuf), NULL);
	if (rc)
		return rc;
	rc = MCDI_DWORD(outbuf, GET_CLOCK_OUT_SYS_FREQ);
	return rc > 0 ? rc : -ERANGE;
}

240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
static int efx_ef10_get_timer_workarounds(struct efx_nic *efx)
{
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
	unsigned int implemented;
	unsigned int enabled;
	int rc;

	nic_data->workaround_35388 = false;
	nic_data->workaround_61265 = false;

	rc = efx_mcdi_get_workarounds(efx, &implemented, &enabled);

	if (rc == -ENOSYS) {
		/* Firmware without GET_WORKAROUNDS - not a problem. */
		rc = 0;
	} else if (rc == 0) {
		/* Bug61265 workaround is always enabled if implemented. */
		if (enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG61265)
			nic_data->workaround_61265 = true;

		if (enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG35388) {
			nic_data->workaround_35388 = true;
		} else if (implemented & MC_CMD_GET_WORKAROUNDS_OUT_BUG35388) {
			/* Workaround is implemented but not enabled.
			 * Try to enable it.
			 */
			rc = efx_mcdi_set_workaround(efx,
						     MC_CMD_WORKAROUND_BUG35388,
						     true, NULL);
			if (rc == 0)
				nic_data->workaround_35388 = true;
			/* If we failed to set the workaround just carry on. */
			rc = 0;
		}
	}

	netif_dbg(efx, probe, efx->net_dev,
		  "workaround for bug 35388 is %sabled\n",
		  nic_data->workaround_35388 ? "en" : "dis");
	netif_dbg(efx, probe, efx->net_dev,
		  "workaround for bug 61265 is %sabled\n",
		  nic_data->workaround_61265 ? "en" : "dis");

	return rc;
}

static void efx_ef10_process_timer_config(struct efx_nic *efx,
					  const efx_dword_t *data)
{
	unsigned int max_count;

	if (EFX_EF10_WORKAROUND_61265(efx)) {
		efx->timer_quantum_ns = MCDI_DWORD(data,
			GET_EVQ_TMR_PROPERTIES_OUT_MCDI_TMR_STEP_NS);
		efx->timer_max_ns = MCDI_DWORD(data,
			GET_EVQ_TMR_PROPERTIES_OUT_MCDI_TMR_MAX_NS);
	} else if (EFX_EF10_WORKAROUND_35388(efx)) {
		efx->timer_quantum_ns = MCDI_DWORD(data,
			GET_EVQ_TMR_PROPERTIES_OUT_BUG35388_TMR_NS_PER_COUNT);
		max_count = MCDI_DWORD(data,
			GET_EVQ_TMR_PROPERTIES_OUT_BUG35388_TMR_MAX_COUNT);
		efx->timer_max_ns = max_count * efx->timer_quantum_ns;
	} else {
		efx->timer_quantum_ns = MCDI_DWORD(data,
			GET_EVQ_TMR_PROPERTIES_OUT_TMR_REG_NS_PER_COUNT);
		max_count = MCDI_DWORD(data,
			GET_EVQ_TMR_PROPERTIES_OUT_TMR_REG_MAX_COUNT);
		efx->timer_max_ns = max_count * efx->timer_quantum_ns;
	}

	netif_dbg(efx, probe, efx->net_dev,
		  "got timer properties from MC: quantum %u ns; max %u ns\n",
		  efx->timer_quantum_ns, efx->timer_max_ns);
}

static int efx_ef10_get_timer_config(struct efx_nic *efx)
{
	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_EVQ_TMR_PROPERTIES_OUT_LEN);
	int rc;

	rc = efx_ef10_get_timer_workarounds(efx);
	if (rc)
		return rc;

	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_GET_EVQ_TMR_PROPERTIES, NULL, 0,
				outbuf, sizeof(outbuf), NULL);

	if (rc == 0) {
		efx_ef10_process_timer_config(efx, outbuf);
	} else if (rc == -ENOSYS || rc == -EPERM) {
		/* Not available - fall back to Huntington defaults. */
		unsigned int quantum;

		rc = efx_ef10_get_sysclk_freq(efx);
		if (rc < 0)
			return rc;

		quantum = 1536000 / rc; /* 1536 cycles */
		efx->timer_quantum_ns = quantum;
		efx->timer_max_ns = efx->type->timer_period_max * quantum;
		rc = 0;
	} else {
		efx_mcdi_display_error(efx, MC_CMD_GET_EVQ_TMR_PROPERTIES,
				       MC_CMD_GET_EVQ_TMR_PROPERTIES_OUT_LEN,
				       NULL, 0, rc);
	}

	return rc;
}

350
static int efx_ef10_get_mac_address_pf(struct efx_nic *efx, u8 *mac_address)
351 352 353 354 355 356 357 358 359 360 361 362 363 364
{
	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_MAC_ADDRESSES_OUT_LEN);
	size_t outlen;
	int rc;

	BUILD_BUG_ON(MC_CMD_GET_MAC_ADDRESSES_IN_LEN != 0);

	rc = efx_mcdi_rpc(efx, MC_CMD_GET_MAC_ADDRESSES, NULL, 0,
			  outbuf, sizeof(outbuf), &outlen);
	if (rc)
		return rc;
	if (outlen < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN)
		return -EIO;

365 366
	ether_addr_copy(mac_address,
			MCDI_PTR(outbuf, GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE));
367 368 369
	return 0;
}

370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
static int efx_ef10_get_mac_address_vf(struct efx_nic *efx, u8 *mac_address)
{
	MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_IN_LEN);
	MCDI_DECLARE_BUF(outbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMAX);
	size_t outlen;
	int num_addrs, rc;

	MCDI_SET_DWORD(inbuf, VPORT_GET_MAC_ADDRESSES_IN_VPORT_ID,
		       EVB_PORT_ID_ASSIGNED);
	rc = efx_mcdi_rpc(efx, MC_CMD_VPORT_GET_MAC_ADDRESSES, inbuf,
			  sizeof(inbuf), outbuf, sizeof(outbuf), &outlen);

	if (rc)
		return rc;
	if (outlen < MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMIN)
		return -EIO;

	num_addrs = MCDI_DWORD(outbuf,
			       VPORT_GET_MAC_ADDRESSES_OUT_MACADDR_COUNT);

	WARN_ON(num_addrs != 1);

	ether_addr_copy(mac_address,
			MCDI_PTR(outbuf, VPORT_GET_MAC_ADDRESSES_OUT_MACADDR));

	return 0;
}

398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
static ssize_t efx_ef10_show_link_control_flag(struct device *dev,
					       struct device_attribute *attr,
					       char *buf)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));

	return sprintf(buf, "%d\n",
		       ((efx->mcdi->fn_flags) &
			(1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL))
		       ? 1 : 0);
}

static ssize_t efx_ef10_show_primary_flag(struct device *dev,
					  struct device_attribute *attr,
					  char *buf)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));

	return sprintf(buf, "%d\n",
		       ((efx->mcdi->fn_flags) &
			(1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY))
		       ? 1 : 0);
}

422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
static struct efx_ef10_vlan *efx_ef10_find_vlan(struct efx_nic *efx, u16 vid)
{
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
	struct efx_ef10_vlan *vlan;

	WARN_ON(!mutex_is_locked(&nic_data->vlan_lock));

	list_for_each_entry(vlan, &nic_data->vlan_list, list) {
		if (vlan->vid == vid)
			return vlan;
	}

	return NULL;
}

static int efx_ef10_add_vlan(struct efx_nic *efx, u16 vid)
{
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
	struct efx_ef10_vlan *vlan;
	int rc;

	mutex_lock(&nic_data->vlan_lock);

	vlan = efx_ef10_find_vlan(efx, vid);
	if (vlan) {
447 448 449 450 451
		/* We add VID 0 on init. 8021q adds it on module init
		 * for all interfaces with VLAN filtring feature.
		 */
		if (vid == 0)
			goto done_unlock;
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
		netif_warn(efx, drv, efx->net_dev,
			   "VLAN %u already added\n", vid);
		rc = -EALREADY;
		goto fail_exist;
	}

	rc = -ENOMEM;
	vlan = kzalloc(sizeof(*vlan), GFP_KERNEL);
	if (!vlan)
		goto fail_alloc;

	vlan->vid = vid;

	list_add_tail(&vlan->list, &nic_data->vlan_list);

	if (efx->filter_state) {
		mutex_lock(&efx->mac_lock);
		down_write(&efx->filter_sem);
		rc = efx_ef10_filter_add_vlan(efx, vlan->vid);
		up_write(&efx->filter_sem);
		mutex_unlock(&efx->mac_lock);
		if (rc)
			goto fail_filter_add_vlan;
	}

477
done_unlock:
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
	mutex_unlock(&nic_data->vlan_lock);
	return 0;

fail_filter_add_vlan:
	list_del(&vlan->list);
	kfree(vlan);
fail_alloc:
fail_exist:
	mutex_unlock(&nic_data->vlan_lock);
	return rc;
}

static void efx_ef10_del_vlan_internal(struct efx_nic *efx,
				       struct efx_ef10_vlan *vlan)
{
	struct efx_ef10_nic_data *nic_data = efx->nic_data;

	WARN_ON(!mutex_is_locked(&nic_data->vlan_lock));

	if (efx->filter_state) {
		down_write(&efx->filter_sem);
		efx_ef10_filter_del_vlan(efx, vlan->vid);
		up_write(&efx->filter_sem);
	}

	list_del(&vlan->list);
	kfree(vlan);
}

507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
static int efx_ef10_del_vlan(struct efx_nic *efx, u16 vid)
{
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
	struct efx_ef10_vlan *vlan;
	int rc = 0;

	/* 8021q removes VID 0 on module unload for all interfaces
	 * with VLAN filtering feature. We need to keep it to receive
	 * untagged traffic.
	 */
	if (vid == 0)
		return 0;

	mutex_lock(&nic_data->vlan_lock);

	vlan = efx_ef10_find_vlan(efx, vid);
	if (!vlan) {
		netif_err(efx, drv, efx->net_dev,
			  "VLAN %u to be deleted not found\n", vid);
		rc = -ENOENT;
	} else {
		efx_ef10_del_vlan_internal(efx, vlan);
	}

	mutex_unlock(&nic_data->vlan_lock);

	return rc;
}

536 537 538 539 540 541 542 543 544 545 546
static void efx_ef10_cleanup_vlans(struct efx_nic *efx)
{
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
	struct efx_ef10_vlan *vlan, *next_vlan;

	mutex_lock(&nic_data->vlan_lock);
	list_for_each_entry_safe(vlan, next_vlan, &nic_data->vlan_list, list)
		efx_ef10_del_vlan_internal(efx, vlan);
	mutex_unlock(&nic_data->vlan_lock);
}

547 548 549 550
static DEVICE_ATTR(link_control_flag, 0444, efx_ef10_show_link_control_flag,
		   NULL);
static DEVICE_ATTR(primary_flag, 0444, efx_ef10_show_primary_flag, NULL);

551 552 553 554 555
static int efx_ef10_probe(struct efx_nic *efx)
{
	struct efx_ef10_nic_data *nic_data;
	int i, rc;

556 557
	/* We can have one VI for each 8K region.  However, until we
	 * use TX option descriptors we need two TX queues per channel.
558
	 */
559 560 561 562 563
	efx->max_channels = min_t(unsigned int,
				  EFX_MAX_CHANNELS,
				  efx_ef10_mem_map_size(efx) /
				  (EFX_VI_PAGE_SIZE * EFX_TXQ_TYPES));
	efx->max_tx_channels = efx->max_channels;
564 565
	if (WARN_ON(efx->max_channels == 0))
		return -EIO;
566 567 568 569 570 571

	nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
	if (!nic_data)
		return -ENOMEM;
	efx->nic_data = nic_data;

E
Edward Cree 已提交
572 573 574
	/* we assume later that we can copy from this buffer in dwords */
	BUILD_BUG_ON(MCDI_CTL_SDU_LEN_MAX_V2 % 4);

575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
	rc = efx_nic_alloc_buffer(efx, &nic_data->mcdi_buf,
				  8 + MCDI_CTL_SDU_LEN_MAX_V2, GFP_KERNEL);
	if (rc)
		goto fail1;

	/* Get the MC's warm boot count.  In case it's rebooting right
	 * now, be prepared to retry.
	 */
	i = 0;
	for (;;) {
		rc = efx_ef10_get_warm_boot_count(efx);
		if (rc >= 0)
			break;
		if (++i == 5)
			goto fail2;
		ssleep(1);
	}
	nic_data->warm_boot_count = rc;

	nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;

596 597
	nic_data->vport_id = EVB_PORT_ID_ASSIGNED;

598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
	/* In case we're recovering from a crash (kexec), we want to
	 * cancel any outstanding request by the previous user of this
	 * function.  We send a special message using the least
	 * significant bits of the 'high' (doorbell) register.
	 */
	_efx_writed(efx, cpu_to_le32(1), ER_DZ_MC_DB_HWRD);

	rc = efx_mcdi_init(efx);
	if (rc)
		goto fail2;

	/* Reset (most) configuration for this function */
	rc = efx_mcdi_reset(efx, RESET_TYPE_ALL);
	if (rc)
		goto fail3;

	/* Enable event logging */
	rc = efx_mcdi_log_ctrl(efx, true, false, 0);
	if (rc)
		goto fail3;

619 620
	rc = device_create_file(&efx->pci_dev->dev,
				&dev_attr_link_control_flag);
621 622 623
	if (rc)
		goto fail3;

624 625 626 627 628 629 630 631
	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
	if (rc)
		goto fail4;

	rc = efx_ef10_get_pf_index(efx);
	if (rc)
		goto fail5;

632
	rc = efx_ef10_init_datapath_caps(efx);
633
	if (rc < 0)
634
		goto fail5;
635 636 637 638 639 640

	efx->rx_packet_len_offset =
		ES_DZ_RX_PREFIX_PKTLEN_OFST - ES_DZ_RX_PREFIX_SIZE;

	rc = efx_mcdi_port_get_number(efx);
	if (rc < 0)
641
		goto fail5;
642 643
	efx->port_num = rc;

644
	rc = efx->type->get_mac_address(efx, efx->net_dev->perm_addr);
645
	if (rc)
646
		goto fail5;
647

648
	rc = efx_ef10_get_timer_config(efx);
649
	if (rc < 0)
650
		goto fail5;
651 652

	rc = efx_mcdi_mon_probe(efx);
653
	if (rc && rc != -EPERM)
654
		goto fail5;
655

656 657
	efx_ptp_probe(efx, NULL);

658 659 660 661 662 663 664 665 666 667
#ifdef CONFIG_SFC_SRIOV
	if ((efx->pci_dev->physfn) && (!efx->pci_dev->is_physfn)) {
		struct pci_dev *pci_dev_pf = efx->pci_dev->physfn;
		struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);

		efx_pf->type->get_mac_address(efx_pf, nic_data->port_id);
	} else
#endif
		ether_addr_copy(nic_data->port_id, efx->net_dev->perm_addr);

668 669 670 671 672 673 674 675
	INIT_LIST_HEAD(&nic_data->vlan_list);
	mutex_init(&nic_data->vlan_lock);

	/* Add unspecified VID to support VLAN filtering being disabled */
	rc = efx_ef10_add_vlan(efx, EFX_FILTER_VID_UNSPEC);
	if (rc)
		goto fail_add_vid_unspec;

676 677 678 679 680 681 682 683
	/* If VLAN filtering is enabled, we need VID 0 to get untagged
	 * traffic.  It is added automatically if 8021q module is loaded,
	 * but we can't rely on it since module may be not loaded.
	 */
	rc = efx_ef10_add_vlan(efx, 0);
	if (rc)
		goto fail_add_vid_0;

684 685
	return 0;

686 687
fail_add_vid_0:
	efx_ef10_cleanup_vlans(efx);
688 689 690 691
fail_add_vid_unspec:
	mutex_destroy(&nic_data->vlan_lock);
	efx_ptp_remove(efx);
	efx_mcdi_mon_remove(efx);
692 693 694 695
fail5:
	device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
fail4:
	device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag);
696 697 698 699 700 701 702 703 704 705 706 707
fail3:
	efx_mcdi_fini(efx);
fail2:
	efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
fail1:
	kfree(nic_data);
	efx->nic_data = NULL;
	return rc;
}

static int efx_ef10_free_vis(struct efx_nic *efx)
{
708
	MCDI_DECLARE_BUF_ERR(outbuf);
E
Edward Cree 已提交
709 710 711
	size_t outlen;
	int rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FREE_VIS, NULL, 0,
				    outbuf, sizeof(outbuf), &outlen);
712 713 714 715

	/* -EALREADY means nothing to free, so ignore */
	if (rc == -EALREADY)
		rc = 0;
E
Edward Cree 已提交
716 717 718
	if (rc)
		efx_mcdi_display_error(efx, MC_CMD_FREE_VIS, 0, outbuf, outlen,
				       rc);
719 720 721
	return rc;
}

722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
#ifdef EFX_USE_PIO

static void efx_ef10_free_piobufs(struct efx_nic *efx)
{
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
	MCDI_DECLARE_BUF(inbuf, MC_CMD_FREE_PIOBUF_IN_LEN);
	unsigned int i;
	int rc;

	BUILD_BUG_ON(MC_CMD_FREE_PIOBUF_OUT_LEN != 0);

	for (i = 0; i < nic_data->n_piobufs; i++) {
		MCDI_SET_DWORD(inbuf, FREE_PIOBUF_IN_PIOBUF_HANDLE,
			       nic_data->piobuf_handle[i]);
		rc = efx_mcdi_rpc(efx, MC_CMD_FREE_PIOBUF, inbuf, sizeof(inbuf),
				  NULL, 0, NULL);
		WARN_ON(rc);
	}

	nic_data->n_piobufs = 0;
}

static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
{
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
	MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_PIOBUF_OUT_LEN);
	unsigned int i;
	size_t outlen;
	int rc = 0;

	BUILD_BUG_ON(MC_CMD_ALLOC_PIOBUF_IN_LEN != 0);

	for (i = 0; i < n; i++) {
755 756 757 758 759 760 761 762 763
		rc = efx_mcdi_rpc_quiet(efx, MC_CMD_ALLOC_PIOBUF, NULL, 0,
					outbuf, sizeof(outbuf), &outlen);
		if (rc) {
			/* Don't display the MC error if we didn't have space
			 * for a VF.
			 */
			if (!(efx_ef10_is_vf(efx) && rc == -ENOSPC))
				efx_mcdi_display_error(efx, MC_CMD_ALLOC_PIOBUF,
						       0, outbuf, outlen, rc);
764
			break;
765
		}
766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785
		if (outlen < MC_CMD_ALLOC_PIOBUF_OUT_LEN) {
			rc = -EIO;
			break;
		}
		nic_data->piobuf_handle[i] =
			MCDI_DWORD(outbuf, ALLOC_PIOBUF_OUT_PIOBUF_HANDLE);
		netif_dbg(efx, probe, efx->net_dev,
			  "allocated PIO buffer %u handle %x\n", i,
			  nic_data->piobuf_handle[i]);
	}

	nic_data->n_piobufs = i;
	if (rc)
		efx_ef10_free_piobufs(efx);
	return rc;
}

static int efx_ef10_link_piobufs(struct efx_nic *efx)
{
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
786 787 788
	_MCDI_DECLARE_BUF(inbuf,
			  max(MC_CMD_LINK_PIOBUF_IN_LEN,
			      MC_CMD_UNLINK_PIOBUF_IN_LEN));
789 790 791 792 793 794 795 796
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;
	unsigned int offset, index;
	int rc;

	BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_OUT_LEN != 0);
	BUILD_BUG_ON(MC_CMD_UNLINK_PIOBUF_OUT_LEN != 0);

797 798
	memset(inbuf, 0, sizeof(inbuf));

799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
	/* Link a buffer to each VI in the write-combining mapping */
	for (index = 0; index < nic_data->n_piobufs; ++index) {
		MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_PIOBUF_HANDLE,
			       nic_data->piobuf_handle[index]);
		MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_TXQ_INSTANCE,
			       nic_data->pio_write_vi_base + index);
		rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
				  inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
				  NULL, 0, NULL);
		if (rc) {
			netif_err(efx, drv, efx->net_dev,
				  "failed to link VI %u to PIO buffer %u (%d)\n",
				  nic_data->pio_write_vi_base + index, index,
				  rc);
			goto fail;
		}
		netif_dbg(efx, probe, efx->net_dev,
			  "linked VI %u to PIO buffer %u\n",
			  nic_data->pio_write_vi_base + index, index);
	}

	/* Link a buffer to each TX queue */
	efx_for_each_channel(channel, efx) {
		efx_for_each_channel_tx_queue(tx_queue, channel) {
			/* We assign the PIO buffers to queues in
			 * reverse order to allow for the following
			 * special case.
			 */
			offset = ((efx->tx_channel_offset + efx->n_tx_channels -
				   tx_queue->channel->channel - 1) *
				  efx_piobuf_size);
830 831
			index = offset / nic_data->piobuf_size;
			offset = offset % nic_data->piobuf_size;
832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887

			/* When the host page size is 4K, the first
			 * host page in the WC mapping may be within
			 * the same VI page as the last TX queue.  We
			 * can only link one buffer to each VI.
			 */
			if (tx_queue->queue == nic_data->pio_write_vi_base) {
				BUG_ON(index != 0);
				rc = 0;
			} else {
				MCDI_SET_DWORD(inbuf,
					       LINK_PIOBUF_IN_PIOBUF_HANDLE,
					       nic_data->piobuf_handle[index]);
				MCDI_SET_DWORD(inbuf,
					       LINK_PIOBUF_IN_TXQ_INSTANCE,
					       tx_queue->queue);
				rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
						  inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
						  NULL, 0, NULL);
			}

			if (rc) {
				/* This is non-fatal; the TX path just
				 * won't use PIO for this queue
				 */
				netif_err(efx, drv, efx->net_dev,
					  "failed to link VI %u to PIO buffer %u (%d)\n",
					  tx_queue->queue, index, rc);
				tx_queue->piobuf = NULL;
			} else {
				tx_queue->piobuf =
					nic_data->pio_write_base +
					index * EFX_VI_PAGE_SIZE + offset;
				tx_queue->piobuf_offset = offset;
				netif_dbg(efx, probe, efx->net_dev,
					  "linked VI %u to PIO buffer %u offset %x addr %p\n",
					  tx_queue->queue, index,
					  tx_queue->piobuf_offset,
					  tx_queue->piobuf);
			}
		}
	}

	return 0;

fail:
	while (index--) {
		MCDI_SET_DWORD(inbuf, UNLINK_PIOBUF_IN_TXQ_INSTANCE,
			       nic_data->pio_write_vi_base + index);
		efx_mcdi_rpc(efx, MC_CMD_UNLINK_PIOBUF,
			     inbuf, MC_CMD_UNLINK_PIOBUF_IN_LEN,
			     NULL, 0, NULL);
	}
	return rc;
}

888 889 890 891 892 893 894 895 896 897 898
static void efx_ef10_forget_old_piobufs(struct efx_nic *efx)
{
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;

	/* All our existing PIO buffers went away */
	efx_for_each_channel(channel, efx)
		efx_for_each_channel_tx_queue(tx_queue, channel)
			tx_queue->piobuf = NULL;
}

899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
#else /* !EFX_USE_PIO */

static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
{
	return n == 0 ? 0 : -ENOBUFS;
}

static int efx_ef10_link_piobufs(struct efx_nic *efx)
{
	return 0;
}

static void efx_ef10_free_piobufs(struct efx_nic *efx)
{
}

915 916 917 918
static void efx_ef10_forget_old_piobufs(struct efx_nic *efx)
{
}

919 920
#endif /* EFX_USE_PIO */

921 922 923 924 925
static void efx_ef10_remove(struct efx_nic *efx)
{
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
	int rc;

926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
#ifdef CONFIG_SFC_SRIOV
	struct efx_ef10_nic_data *nic_data_pf;
	struct pci_dev *pci_dev_pf;
	struct efx_nic *efx_pf;
	struct ef10_vf *vf;

	if (efx->pci_dev->is_virtfn) {
		pci_dev_pf = efx->pci_dev->physfn;
		if (pci_dev_pf) {
			efx_pf = pci_get_drvdata(pci_dev_pf);
			nic_data_pf = efx_pf->nic_data;
			vf = nic_data_pf->vf + nic_data->vf_index;
			vf->efx = NULL;
		} else
			netif_info(efx, drv, efx->net_dev,
				   "Could not get the PF id from VF\n");
	}
#endif

945 946 947
	efx_ef10_cleanup_vlans(efx);
	mutex_destroy(&nic_data->vlan_lock);

948 949
	efx_ptp_remove(efx);

950 951 952 953
	efx_mcdi_mon_remove(efx);

	efx_ef10_rx_free_indir_table(efx);

954 955 956
	if (nic_data->wc_membase)
		iounmap(nic_data->wc_membase);

957 958 959
	rc = efx_ef10_free_vis(efx);
	WARN_ON(rc != 0);

960 961 962
	if (!nic_data->must_restore_piobufs)
		efx_ef10_free_piobufs(efx);

963 964 965
	device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
	device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag);

966 967 968 969 970
	efx_mcdi_fini(efx);
	efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
	kfree(nic_data);
}

971 972 973 974 975
static int efx_ef10_probe_pf(struct efx_nic *efx)
{
	return efx_ef10_probe(efx);
}

976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
int efx_ef10_vadaptor_query(struct efx_nic *efx, unsigned int port_id,
			    u32 *port_flags, u32 *vadaptor_flags,
			    unsigned int *vlan_tags)
{
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
	MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_QUERY_IN_LEN);
	MCDI_DECLARE_BUF(outbuf, MC_CMD_VADAPTOR_QUERY_OUT_LEN);
	size_t outlen;
	int rc;

	if (nic_data->datapath_caps &
	    (1 << MC_CMD_GET_CAPABILITIES_OUT_VADAPTOR_QUERY_LBN)) {
		MCDI_SET_DWORD(inbuf, VADAPTOR_QUERY_IN_UPSTREAM_PORT_ID,
			       port_id);

		rc = efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_QUERY, inbuf, sizeof(inbuf),
				  outbuf, sizeof(outbuf), &outlen);
		if (rc)
			return rc;

		if (outlen < sizeof(outbuf)) {
			rc = -EIO;
			return rc;
		}
	}

	if (port_flags)
		*port_flags = MCDI_DWORD(outbuf, VADAPTOR_QUERY_OUT_PORT_FLAGS);
	if (vadaptor_flags)
		*vadaptor_flags =
			MCDI_DWORD(outbuf, VADAPTOR_QUERY_OUT_VADAPTOR_FLAGS);
	if (vlan_tags)
		*vlan_tags =
			MCDI_DWORD(outbuf,
				   VADAPTOR_QUERY_OUT_NUM_AVAILABLE_VLAN_TAGS);

	return 0;
}

1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
int efx_ef10_vadaptor_alloc(struct efx_nic *efx, unsigned int port_id)
{
	MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_ALLOC_IN_LEN);

	MCDI_SET_DWORD(inbuf, VADAPTOR_ALLOC_IN_UPSTREAM_PORT_ID, port_id);
	return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_ALLOC, inbuf, sizeof(inbuf),
			    NULL, 0, NULL);
}

int efx_ef10_vadaptor_free(struct efx_nic *efx, unsigned int port_id)
{
	MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_FREE_IN_LEN);

	MCDI_SET_DWORD(inbuf, VADAPTOR_FREE_IN_UPSTREAM_PORT_ID, port_id);
	return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_FREE, inbuf, sizeof(inbuf),
			    NULL, 0, NULL);
}

int efx_ef10_vport_add_mac(struct efx_nic *efx,
			   unsigned int port_id, u8 *mac)
{
	MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_ADD_MAC_ADDRESS_IN_LEN);

	MCDI_SET_DWORD(inbuf, VPORT_ADD_MAC_ADDRESS_IN_VPORT_ID, port_id);
	ether_addr_copy(MCDI_PTR(inbuf, VPORT_ADD_MAC_ADDRESS_IN_MACADDR), mac);

	return efx_mcdi_rpc(efx, MC_CMD_VPORT_ADD_MAC_ADDRESS, inbuf,
			    sizeof(inbuf), NULL, 0, NULL);
}

int efx_ef10_vport_del_mac(struct efx_nic *efx,
			   unsigned int port_id, u8 *mac)
{
	MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_DEL_MAC_ADDRESS_IN_LEN);

	MCDI_SET_DWORD(inbuf, VPORT_DEL_MAC_ADDRESS_IN_VPORT_ID, port_id);
	ether_addr_copy(MCDI_PTR(inbuf, VPORT_DEL_MAC_ADDRESS_IN_MACADDR), mac);

	return efx_mcdi_rpc(efx, MC_CMD_VPORT_DEL_MAC_ADDRESS, inbuf,
			    sizeof(inbuf), NULL, 0, NULL);
}

1057 1058 1059 1060
#ifdef CONFIG_SFC_SRIOV
static int efx_ef10_probe_vf(struct efx_nic *efx)
{
	int rc;
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
	struct pci_dev *pci_dev_pf;

	/* If the parent PF has no VF data structure, it doesn't know about this
	 * VF so fail probe.  The VF needs to be re-created.  This can happen
	 * if the PF driver is unloaded while the VF is assigned to a guest.
	 */
	pci_dev_pf = efx->pci_dev->physfn;
	if (pci_dev_pf) {
		struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
		struct efx_ef10_nic_data *nic_data_pf = efx_pf->nic_data;

		if (!nic_data_pf->vf) {
			netif_info(efx, drv, efx->net_dev,
				   "The VF cannot link to its parent PF; "
				   "please destroy and re-create the VF\n");
			return -EBUSY;
		}
	}
1079 1080 1081 1082 1083 1084 1085 1086 1087

	rc = efx_ef10_probe(efx);
	if (rc)
		return rc;

	rc = efx_ef10_get_vf_index(efx);
	if (rc)
		goto fail;

1088 1089 1090 1091 1092 1093 1094 1095
	if (efx->pci_dev->is_virtfn) {
		if (efx->pci_dev->physfn) {
			struct efx_nic *efx_pf =
				pci_get_drvdata(efx->pci_dev->physfn);
			struct efx_ef10_nic_data *nic_data_p = efx_pf->nic_data;
			struct efx_ef10_nic_data *nic_data = efx->nic_data;

			nic_data_p->vf[nic_data->vf_index].efx = efx;
1096 1097
			nic_data_p->vf[nic_data->vf_index].pci_dev =
				efx->pci_dev;
1098 1099 1100 1101 1102
		} else
			netif_info(efx, drv, efx->net_dev,
				   "Could not get the PF id from VF\n");
	}

1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
	return 0;

fail:
	efx_ef10_remove(efx);
	return rc;
}
#else
static int efx_ef10_probe_vf(struct efx_nic *efx __attribute__ ((unused)))
{
	return 0;
}
#endif

1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
static int efx_ef10_alloc_vis(struct efx_nic *efx,
			      unsigned int min_vis, unsigned int max_vis)
{
	MCDI_DECLARE_BUF(inbuf, MC_CMD_ALLOC_VIS_IN_LEN);
	MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_VIS_OUT_LEN);
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
	size_t outlen;
	int rc;

	MCDI_SET_DWORD(inbuf, ALLOC_VIS_IN_MIN_VI_COUNT, min_vis);
	MCDI_SET_DWORD(inbuf, ALLOC_VIS_IN_MAX_VI_COUNT, max_vis);
	rc = efx_mcdi_rpc(efx, MC_CMD_ALLOC_VIS, inbuf, sizeof(inbuf),
			  outbuf, sizeof(outbuf), &outlen);
	if (rc != 0)
		return rc;

	if (outlen < MC_CMD_ALLOC_VIS_OUT_LEN)
		return -EIO;

	netif_dbg(efx, drv, efx->net_dev, "base VI is A0x%03x\n",
		  MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_BASE));

	nic_data->vi_base = MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_BASE);
	nic_data->n_allocated_vis = MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_COUNT);
	return 0;
}

1143 1144 1145
/* Note that the failure path of this function does not free
 * resources, as this will be done by efx_ef10_remove().
 */
1146 1147
static int efx_ef10_dimension_resources(struct efx_nic *efx)
{
1148 1149
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
	unsigned int uc_mem_map_size, wc_mem_map_size;
1150 1151 1152
	unsigned int min_vis = max(EFX_TXQ_TYPES,
				   efx_separate_tx_channels ? 2 : 1);
	unsigned int channel_vis, pio_write_vi_base, max_vis;
1153 1154 1155
	void __iomem *membase;
	int rc;

1156
	channel_vis = max(efx->n_channels, efx->n_tx_channels * EFX_TXQ_TYPES);
1157

1158 1159 1160 1161 1162 1163 1164 1165
#ifdef EFX_USE_PIO
	/* Try to allocate PIO buffers if wanted and if the full
	 * number of PIO buffers would be sufficient to allocate one
	 * copy-buffer per TX channel.  Failure is non-fatal, as there
	 * are only a small number of PIO buffers shared between all
	 * functions of the controller.
	 */
	if (efx_piobuf_size != 0 &&
1166
	    nic_data->piobuf_size / efx_piobuf_size * EF10_TX_PIOBUF_COUNT >=
1167 1168 1169
	    efx->n_tx_channels) {
		unsigned int n_piobufs =
			DIV_ROUND_UP(efx->n_tx_channels,
1170
				     nic_data->piobuf_size / efx_piobuf_size);
1171 1172

		rc = efx_ef10_alloc_piobufs(efx, n_piobufs);
1173 1174 1175 1176 1177 1178 1179
		if (rc == -ENOSPC)
			netif_dbg(efx, probe, efx->net_dev,
				  "out of PIO buffers; cannot allocate more\n");
		else if (rc == -EPERM)
			netif_dbg(efx, probe, efx->net_dev,
				  "not permitted to allocate PIO buffers\n");
		else if (rc)
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
			netif_err(efx, probe, efx->net_dev,
				  "failed to allocate PIO buffers (%d)\n", rc);
		else
			netif_dbg(efx, probe, efx->net_dev,
				  "allocated %u PIO buffers\n", n_piobufs);
	}
#else
	nic_data->n_piobufs = 0;
#endif

	/* PIO buffers should be mapped with write-combining enabled,
	 * and we want to make single UC and WC mappings rather than
	 * several of each (in fact that's the only option if host
	 * page size is >4K).  So we may allocate some extra VIs just
	 * for writing PIO buffers through.
1195
	 *
1196
	 * The UC mapping contains (channel_vis - 1) complete VIs and the
1197 1198
	 * first half of the next VI.  Then the WC mapping begins with
	 * the second half of this last VI.
1199
	 */
1200
	uc_mem_map_size = PAGE_ALIGN((channel_vis - 1) * EFX_VI_PAGE_SIZE +
1201 1202
				     ER_DZ_TX_PIOBUF);
	if (nic_data->n_piobufs) {
1203 1204 1205
		/* pio_write_vi_base rounds down to give the number of complete
		 * VIs inside the UC mapping.
		 */
1206 1207 1208 1209 1210 1211 1212 1213 1214
		pio_write_vi_base = uc_mem_map_size / EFX_VI_PAGE_SIZE;
		wc_mem_map_size = (PAGE_ALIGN((pio_write_vi_base +
					       nic_data->n_piobufs) *
					      EFX_VI_PAGE_SIZE) -
				   uc_mem_map_size);
		max_vis = pio_write_vi_base + nic_data->n_piobufs;
	} else {
		pio_write_vi_base = 0;
		wc_mem_map_size = 0;
1215
		max_vis = channel_vis;
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
	}

	/* In case the last attached driver failed to free VIs, do it now */
	rc = efx_ef10_free_vis(efx);
	if (rc != 0)
		return rc;

	rc = efx_ef10_alloc_vis(efx, min_vis, max_vis);
	if (rc != 0)
		return rc;

1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
	if (nic_data->n_allocated_vis < channel_vis) {
		netif_info(efx, drv, efx->net_dev,
			   "Could not allocate enough VIs to satisfy RSS"
			   " requirements. Performance may not be optimal.\n");
		/* We didn't get the VIs to populate our channels.
		 * We could keep what we got but then we'd have more
		 * interrupts than we need.
		 * Instead calculate new max_channels and restart
		 */
		efx->max_channels = nic_data->n_allocated_vis;
		efx->max_tx_channels =
			nic_data->n_allocated_vis / EFX_TXQ_TYPES;

		efx_ef10_free_vis(efx);
		return -EAGAIN;
	}

1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
	/* If we didn't get enough VIs to map all the PIO buffers, free the
	 * PIO buffers
	 */
	if (nic_data->n_piobufs &&
	    nic_data->n_allocated_vis <
	    pio_write_vi_base + nic_data->n_piobufs) {
		netif_dbg(efx, probe, efx->net_dev,
			  "%u VIs are not sufficient to map %u PIO buffers\n",
			  nic_data->n_allocated_vis, nic_data->n_piobufs);
		efx_ef10_free_piobufs(efx);
	}

	/* Shrink the original UC mapping of the memory BAR */
	membase = ioremap_nocache(efx->membase_phys, uc_mem_map_size);
	if (!membase) {
		netif_err(efx, probe, efx->net_dev,
			  "could not shrink memory BAR to %x\n",
			  uc_mem_map_size);
		return -ENOMEM;
	}
	iounmap(efx->membase);
	efx->membase = membase;

	/* Set up the WC mapping if needed */
	if (wc_mem_map_size) {
		nic_data->wc_membase = ioremap_wc(efx->membase_phys +
						  uc_mem_map_size,
						  wc_mem_map_size);
		if (!nic_data->wc_membase) {
			netif_err(efx, probe, efx->net_dev,
				  "could not allocate WC mapping of size %x\n",
				  wc_mem_map_size);
			return -ENOMEM;
		}
		nic_data->pio_write_vi_base = pio_write_vi_base;
		nic_data->pio_write_base =
			nic_data->wc_membase +
			(pio_write_vi_base * EFX_VI_PAGE_SIZE + ER_DZ_TX_PIOBUF -
			 uc_mem_map_size);

		rc = efx_ef10_link_piobufs(efx);
		if (rc)
			efx_ef10_free_piobufs(efx);
	}

	netif_dbg(efx, probe, efx->net_dev,
		  "memory BAR at %pa (virtual %p+%x UC, %p+%x WC)\n",
		  &efx->membase_phys, efx->membase, uc_mem_map_size,
		  nic_data->wc_membase, wc_mem_map_size);

	return 0;
1295 1296 1297 1298 1299 1300 1301
}

static int efx_ef10_init_nic(struct efx_nic *efx)
{
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
	int rc;

1302 1303 1304 1305 1306 1307 1308
	if (nic_data->must_check_datapath_caps) {
		rc = efx_ef10_init_datapath_caps(efx);
		if (rc)
			return rc;
		nic_data->must_check_datapath_caps = false;
	}

1309 1310 1311 1312 1313 1314 1315 1316 1317
	if (nic_data->must_realloc_vis) {
		/* We cannot let the number of VIs change now */
		rc = efx_ef10_alloc_vis(efx, nic_data->n_allocated_vis,
					nic_data->n_allocated_vis);
		if (rc)
			return rc;
		nic_data->must_realloc_vis = false;
	}

1318 1319 1320 1321 1322 1323 1324 1325
	if (nic_data->must_restore_piobufs && nic_data->n_piobufs) {
		rc = efx_ef10_alloc_piobufs(efx, nic_data->n_piobufs);
		if (rc == 0) {
			rc = efx_ef10_link_piobufs(efx);
			if (rc)
				efx_ef10_free_piobufs(efx);
		}

1326 1327 1328 1329 1330 1331 1332 1333
		/* Log an error on failure, but this is non-fatal.
		 * Permission errors are less important - we've presumably
		 * had the PIO buffer licence removed.
		 */
		if (rc == -EPERM)
			netif_dbg(efx, drv, efx->net_dev,
				  "not permitted to restore PIO buffers\n");
		else if (rc)
1334 1335 1336 1337 1338
			netif_err(efx, drv, efx->net_dev,
				  "failed to restore PIO buffers (%d)\n", rc);
		nic_data->must_restore_piobufs = false;
	}

1339
	/* don't fail init if RSS setup doesn't work */
1340
	rc = efx->type->rx_push_rss_config(efx, false, efx->rx_indir_table, NULL);
1341
	efx->rss_active = (rc == 0);
1342

1343 1344 1345
	return 0;
}

1346 1347 1348
static void efx_ef10_reset_mc_allocations(struct efx_nic *efx)
{
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1349 1350 1351
#ifdef CONFIG_SFC_SRIOV
	unsigned int i;
#endif
1352 1353 1354 1355 1356

	/* All our allocations have been reset */
	nic_data->must_realloc_vis = true;
	nic_data->must_restore_filters = true;
	nic_data->must_restore_piobufs = true;
1357
	efx_ef10_forget_old_piobufs(efx);
1358
	nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
1359 1360 1361 1362 1363 1364 1365 1366 1367

	/* Driver-created vswitches and vports must be re-created */
	nic_data->must_probe_vswitching = true;
	nic_data->vport_id = EVB_PORT_ID_ASSIGNED;
#ifdef CONFIG_SFC_SRIOV
	if (nic_data->vf)
		for (i = 0; i < efx->vf_count; i++)
			nic_data->vf[i].vport_id = 0;
#endif
1368 1369
}

1370 1371 1372 1373 1374 1375 1376 1377
static enum reset_type efx_ef10_map_reset_reason(enum reset_type reason)
{
	if (reason == RESET_TYPE_MC_FAILURE)
		return RESET_TYPE_DATAPATH;

	return efx_mcdi_map_reset_reason(reason);
}

1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
static int efx_ef10_map_reset_flags(u32 *flags)
{
	enum {
		EF10_RESET_PORT = ((ETH_RESET_MAC | ETH_RESET_PHY) <<
				   ETH_RESET_SHARED_SHIFT),
		EF10_RESET_MC = ((ETH_RESET_DMA | ETH_RESET_FILTER |
				  ETH_RESET_OFFLOAD | ETH_RESET_MAC |
				  ETH_RESET_PHY | ETH_RESET_MGMT) <<
				 ETH_RESET_SHARED_SHIFT)
	};

	/* We assume for now that our PCI function is permitted to
	 * reset everything.
	 */

	if ((*flags & EF10_RESET_MC) == EF10_RESET_MC) {
		*flags &= ~EF10_RESET_MC;
		return RESET_TYPE_WORLD;
	}

	if ((*flags & EF10_RESET_PORT) == EF10_RESET_PORT) {
		*flags &= ~EF10_RESET_PORT;
		return RESET_TYPE_ALL;
	}

	/* no invisible reset implemented */

	return -EINVAL;
}

1408 1409 1410 1411
static int efx_ef10_reset(struct efx_nic *efx, enum reset_type reset_type)
{
	int rc = efx_mcdi_reset(efx, reset_type);

1412 1413 1414 1415 1416 1417
	/* Unprivileged functions return -EPERM, but need to return success
	 * here so that the datapath is brought back up.
	 */
	if (reset_type == RESET_TYPE_WORLD && rc == -EPERM)
		rc = 0;

1418 1419 1420
	/* If it was a port reset, trigger reallocation of MC resources.
	 * Note that on an MC reset nothing needs to be done now because we'll
	 * detect the MC reset later and handle it then.
1421 1422
	 * For an FLR, we never get an MC reset event, but the MC has reset all
	 * resources assigned to us, so we have to trigger reallocation now.
1423
	 */
1424 1425
	if ((reset_type == RESET_TYPE_ALL ||
	     reset_type == RESET_TYPE_MCDI_TIMEOUT) && !rc)
1426 1427 1428 1429
		efx_ef10_reset_mc_allocations(efx);
	return rc;
}

1430 1431 1432 1433 1434 1435 1436 1437
#define EF10_DMA_STAT(ext_name, mcdi_name)			\
	[EF10_STAT_ ## ext_name] =				\
	{ #ext_name, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
#define EF10_DMA_INVIS_STAT(int_name, mcdi_name)		\
	[EF10_STAT_ ## int_name] =				\
	{ NULL, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
#define EF10_OTHER_STAT(ext_name)				\
	[EF10_STAT_ ## ext_name] = { #ext_name, 0, 0 }
1438 1439
#define GENERIC_SW_STAT(ext_name)				\
	[GENERIC_STAT_ ## ext_name] = { #ext_name, 0, 0 }
1440 1441

static const struct efx_hw_stat_desc efx_ef10_stat_desc[EF10_STAT_COUNT] = {
1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
	EF10_DMA_STAT(port_tx_bytes, TX_BYTES),
	EF10_DMA_STAT(port_tx_packets, TX_PKTS),
	EF10_DMA_STAT(port_tx_pause, TX_PAUSE_PKTS),
	EF10_DMA_STAT(port_tx_control, TX_CONTROL_PKTS),
	EF10_DMA_STAT(port_tx_unicast, TX_UNICAST_PKTS),
	EF10_DMA_STAT(port_tx_multicast, TX_MULTICAST_PKTS),
	EF10_DMA_STAT(port_tx_broadcast, TX_BROADCAST_PKTS),
	EF10_DMA_STAT(port_tx_lt64, TX_LT64_PKTS),
	EF10_DMA_STAT(port_tx_64, TX_64_PKTS),
	EF10_DMA_STAT(port_tx_65_to_127, TX_65_TO_127_PKTS),
	EF10_DMA_STAT(port_tx_128_to_255, TX_128_TO_255_PKTS),
	EF10_DMA_STAT(port_tx_256_to_511, TX_256_TO_511_PKTS),
	EF10_DMA_STAT(port_tx_512_to_1023, TX_512_TO_1023_PKTS),
	EF10_DMA_STAT(port_tx_1024_to_15xx, TX_1024_TO_15XX_PKTS),
	EF10_DMA_STAT(port_tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS),
	EF10_DMA_STAT(port_rx_bytes, RX_BYTES),
	EF10_DMA_INVIS_STAT(port_rx_bytes_minus_good_bytes, RX_BAD_BYTES),
	EF10_OTHER_STAT(port_rx_good_bytes),
	EF10_OTHER_STAT(port_rx_bad_bytes),
	EF10_DMA_STAT(port_rx_packets, RX_PKTS),
	EF10_DMA_STAT(port_rx_good, RX_GOOD_PKTS),
	EF10_DMA_STAT(port_rx_bad, RX_BAD_FCS_PKTS),
	EF10_DMA_STAT(port_rx_pause, RX_PAUSE_PKTS),
	EF10_DMA_STAT(port_rx_control, RX_CONTROL_PKTS),
	EF10_DMA_STAT(port_rx_unicast, RX_UNICAST_PKTS),
	EF10_DMA_STAT(port_rx_multicast, RX_MULTICAST_PKTS),
	EF10_DMA_STAT(port_rx_broadcast, RX_BROADCAST_PKTS),
	EF10_DMA_STAT(port_rx_lt64, RX_UNDERSIZE_PKTS),
	EF10_DMA_STAT(port_rx_64, RX_64_PKTS),
	EF10_DMA_STAT(port_rx_65_to_127, RX_65_TO_127_PKTS),
	EF10_DMA_STAT(port_rx_128_to_255, RX_128_TO_255_PKTS),
	EF10_DMA_STAT(port_rx_256_to_511, RX_256_TO_511_PKTS),
	EF10_DMA_STAT(port_rx_512_to_1023, RX_512_TO_1023_PKTS),
	EF10_DMA_STAT(port_rx_1024_to_15xx, RX_1024_TO_15XX_PKTS),
	EF10_DMA_STAT(port_rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS),
	EF10_DMA_STAT(port_rx_gtjumbo, RX_GTJUMBO_PKTS),
	EF10_DMA_STAT(port_rx_bad_gtjumbo, RX_JABBER_PKTS),
	EF10_DMA_STAT(port_rx_overflow, RX_OVERFLOW_PKTS),
	EF10_DMA_STAT(port_rx_align_error, RX_ALIGN_ERROR_PKTS),
	EF10_DMA_STAT(port_rx_length_error, RX_LENGTH_ERROR_PKTS),
	EF10_DMA_STAT(port_rx_nodesc_drops, RX_NODESC_DROPS),
1483 1484
	GENERIC_SW_STAT(rx_nodesc_trunc),
	GENERIC_SW_STAT(rx_noskb_drops),
1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
	EF10_DMA_STAT(port_rx_pm_trunc_bb_overflow, PM_TRUNC_BB_OVERFLOW),
	EF10_DMA_STAT(port_rx_pm_discard_bb_overflow, PM_DISCARD_BB_OVERFLOW),
	EF10_DMA_STAT(port_rx_pm_trunc_vfifo_full, PM_TRUNC_VFIFO_FULL),
	EF10_DMA_STAT(port_rx_pm_discard_vfifo_full, PM_DISCARD_VFIFO_FULL),
	EF10_DMA_STAT(port_rx_pm_trunc_qbb, PM_TRUNC_QBB),
	EF10_DMA_STAT(port_rx_pm_discard_qbb, PM_DISCARD_QBB),
	EF10_DMA_STAT(port_rx_pm_discard_mapping, PM_DISCARD_MAPPING),
	EF10_DMA_STAT(port_rx_dp_q_disabled_packets, RXDP_Q_DISABLED_PKTS),
	EF10_DMA_STAT(port_rx_dp_di_dropped_packets, RXDP_DI_DROPPED_PKTS),
	EF10_DMA_STAT(port_rx_dp_streaming_packets, RXDP_STREAMING_PKTS),
	EF10_DMA_STAT(port_rx_dp_hlb_fetch, RXDP_HLB_FETCH_CONDITIONS),
	EF10_DMA_STAT(port_rx_dp_hlb_wait, RXDP_HLB_WAIT_CONDITIONS),
1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
	EF10_DMA_STAT(rx_unicast, VADAPTER_RX_UNICAST_PACKETS),
	EF10_DMA_STAT(rx_unicast_bytes, VADAPTER_RX_UNICAST_BYTES),
	EF10_DMA_STAT(rx_multicast, VADAPTER_RX_MULTICAST_PACKETS),
	EF10_DMA_STAT(rx_multicast_bytes, VADAPTER_RX_MULTICAST_BYTES),
	EF10_DMA_STAT(rx_broadcast, VADAPTER_RX_BROADCAST_PACKETS),
	EF10_DMA_STAT(rx_broadcast_bytes, VADAPTER_RX_BROADCAST_BYTES),
	EF10_DMA_STAT(rx_bad, VADAPTER_RX_BAD_PACKETS),
	EF10_DMA_STAT(rx_bad_bytes, VADAPTER_RX_BAD_BYTES),
	EF10_DMA_STAT(rx_overflow, VADAPTER_RX_OVERFLOW),
	EF10_DMA_STAT(tx_unicast, VADAPTER_TX_UNICAST_PACKETS),
	EF10_DMA_STAT(tx_unicast_bytes, VADAPTER_TX_UNICAST_BYTES),
	EF10_DMA_STAT(tx_multicast, VADAPTER_TX_MULTICAST_PACKETS),
	EF10_DMA_STAT(tx_multicast_bytes, VADAPTER_TX_MULTICAST_BYTES),
	EF10_DMA_STAT(tx_broadcast, VADAPTER_TX_BROADCAST_PACKETS),
	EF10_DMA_STAT(tx_broadcast_bytes, VADAPTER_TX_BROADCAST_BYTES),
	EF10_DMA_STAT(tx_bad, VADAPTER_TX_BAD_PACKETS),
	EF10_DMA_STAT(tx_bad_bytes, VADAPTER_TX_BAD_BYTES),
	EF10_DMA_STAT(tx_overflow, VADAPTER_TX_OVERFLOW),
1515 1516
};

1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
#define HUNT_COMMON_STAT_MASK ((1ULL << EF10_STAT_port_tx_bytes) |	\
			       (1ULL << EF10_STAT_port_tx_packets) |	\
			       (1ULL << EF10_STAT_port_tx_pause) |	\
			       (1ULL << EF10_STAT_port_tx_unicast) |	\
			       (1ULL << EF10_STAT_port_tx_multicast) |	\
			       (1ULL << EF10_STAT_port_tx_broadcast) |	\
			       (1ULL << EF10_STAT_port_rx_bytes) |	\
			       (1ULL <<                                 \
				EF10_STAT_port_rx_bytes_minus_good_bytes) | \
			       (1ULL << EF10_STAT_port_rx_good_bytes) |	\
			       (1ULL << EF10_STAT_port_rx_bad_bytes) |	\
			       (1ULL << EF10_STAT_port_rx_packets) |	\
			       (1ULL << EF10_STAT_port_rx_good) |	\
			       (1ULL << EF10_STAT_port_rx_bad) |	\
			       (1ULL << EF10_STAT_port_rx_pause) |	\
			       (1ULL << EF10_STAT_port_rx_control) |	\
			       (1ULL << EF10_STAT_port_rx_unicast) |	\
			       (1ULL << EF10_STAT_port_rx_multicast) |	\
			       (1ULL << EF10_STAT_port_rx_broadcast) |	\
			       (1ULL << EF10_STAT_port_rx_lt64) |	\
			       (1ULL << EF10_STAT_port_rx_64) |		\
			       (1ULL << EF10_STAT_port_rx_65_to_127) |	\
			       (1ULL << EF10_STAT_port_rx_128_to_255) |	\
			       (1ULL << EF10_STAT_port_rx_256_to_511) |	\
			       (1ULL << EF10_STAT_port_rx_512_to_1023) |\
			       (1ULL << EF10_STAT_port_rx_1024_to_15xx) |\
			       (1ULL << EF10_STAT_port_rx_15xx_to_jumbo) |\
			       (1ULL << EF10_STAT_port_rx_gtjumbo) |	\
			       (1ULL << EF10_STAT_port_rx_bad_gtjumbo) |\
			       (1ULL << EF10_STAT_port_rx_overflow) |	\
			       (1ULL << EF10_STAT_port_rx_nodesc_drops) |\
1548 1549
			       (1ULL << GENERIC_STAT_rx_nodesc_trunc) |	\
			       (1ULL << GENERIC_STAT_rx_noskb_drops))
1550

1551 1552 1553 1554
/* On 7000 series NICs, these statistics are only provided by the 10G MAC.
 * For a 10G/40G switchable port we do not expose these because they might
 * not include all the packets they should.
 * On 8000 series NICs these statistics are always provided.
1555
 */
1556 1557 1558 1559 1560 1561 1562 1563 1564
#define HUNT_10G_ONLY_STAT_MASK ((1ULL << EF10_STAT_port_tx_control) |	\
				 (1ULL << EF10_STAT_port_tx_lt64) |	\
				 (1ULL << EF10_STAT_port_tx_64) |	\
				 (1ULL << EF10_STAT_port_tx_65_to_127) |\
				 (1ULL << EF10_STAT_port_tx_128_to_255) |\
				 (1ULL << EF10_STAT_port_tx_256_to_511) |\
				 (1ULL << EF10_STAT_port_tx_512_to_1023) |\
				 (1ULL << EF10_STAT_port_tx_1024_to_15xx) |\
				 (1ULL << EF10_STAT_port_tx_15xx_to_jumbo))
1565 1566 1567 1568 1569

/* These statistics are only provided by the 40G MAC.  For a 10G/40G
 * switchable port we do expose these because the errors will otherwise
 * be silent.
 */
1570 1571
#define HUNT_40G_EXTRA_STAT_MASK ((1ULL << EF10_STAT_port_rx_align_error) |\
				  (1ULL << EF10_STAT_port_rx_length_error))
1572

1573 1574 1575 1576
/* These statistics are only provided if the firmware supports the
 * capability PM_AND_RXDP_COUNTERS.
 */
#define HUNT_PM_AND_RXDP_STAT_MASK (					\
1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588
	(1ULL << EF10_STAT_port_rx_pm_trunc_bb_overflow) |		\
	(1ULL << EF10_STAT_port_rx_pm_discard_bb_overflow) |		\
	(1ULL << EF10_STAT_port_rx_pm_trunc_vfifo_full) |		\
	(1ULL << EF10_STAT_port_rx_pm_discard_vfifo_full) |		\
	(1ULL << EF10_STAT_port_rx_pm_trunc_qbb) |			\
	(1ULL << EF10_STAT_port_rx_pm_discard_qbb) |			\
	(1ULL << EF10_STAT_port_rx_pm_discard_mapping) |		\
	(1ULL << EF10_STAT_port_rx_dp_q_disabled_packets) |		\
	(1ULL << EF10_STAT_port_rx_dp_di_dropped_packets) |		\
	(1ULL << EF10_STAT_port_rx_dp_streaming_packets) |		\
	(1ULL << EF10_STAT_port_rx_dp_hlb_fetch) |			\
	(1ULL << EF10_STAT_port_rx_dp_hlb_wait))
1589

1590
static u64 efx_ef10_raw_stat_mask(struct efx_nic *efx)
1591
{
1592
	u64 raw_mask = HUNT_COMMON_STAT_MASK;
1593
	u32 port_caps = efx_mcdi_phy_get_caps(efx);
1594
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1595

1596 1597 1598 1599
	if (!(efx->mcdi->fn_flags &
	      1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL))
		return 0;

1600
	if (port_caps & (1 << MC_CMD_PHY_CAP_40000FDX_LBN)) {
1601
		raw_mask |= HUNT_40G_EXTRA_STAT_MASK;
1602 1603 1604 1605 1606
		/* 8000 series have everything even at 40G */
		if (nic_data->datapath_caps2 &
		    (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_MAC_STATS_40G_TX_SIZE_BINS_LBN))
			raw_mask |= HUNT_10G_ONLY_STAT_MASK;
	} else {
1607
		raw_mask |= HUNT_10G_ONLY_STAT_MASK;
1608
	}
1609 1610 1611 1612 1613

	if (nic_data->datapath_caps &
	    (1 << MC_CMD_GET_CAPABILITIES_OUT_PM_AND_RXDP_COUNTERS_LBN))
		raw_mask |= HUNT_PM_AND_RXDP_STAT_MASK;

1614 1615 1616 1617 1618
	return raw_mask;
}

static void efx_ef10_get_stat_mask(struct efx_nic *efx, unsigned long *mask)
{
1619
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1620 1621 1622 1623
	u64 raw_mask[2];

	raw_mask[0] = efx_ef10_raw_stat_mask(efx);

1624 1625 1626 1627 1628 1629 1630 1631
	/* Only show vadaptor stats when EVB capability is present */
	if (nic_data->datapath_caps &
	    (1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN)) {
		raw_mask[0] |= ~((1ULL << EF10_STAT_rx_unicast) - 1);
		raw_mask[1] = (1ULL << (EF10_STAT_COUNT - 63)) - 1;
	} else {
		raw_mask[1] = 0;
	}
1632 1633

#if BITS_PER_LONG == 64
1634
	BUILD_BUG_ON(BITS_TO_LONGS(EF10_STAT_COUNT) != 2);
1635 1636
	mask[0] = raw_mask[0];
	mask[1] = raw_mask[1];
1637
#else
1638
	BUILD_BUG_ON(BITS_TO_LONGS(EF10_STAT_COUNT) != 3);
1639 1640 1641
	mask[0] = raw_mask[0] & 0xffffffff;
	mask[1] = raw_mask[0] >> 32;
	mask[2] = raw_mask[1] & 0xffffffff;
1642
#endif
1643 1644 1645 1646
}

static size_t efx_ef10_describe_stats(struct efx_nic *efx, u8 *names)
{
1647 1648 1649
	DECLARE_BITMAP(mask, EF10_STAT_COUNT);

	efx_ef10_get_stat_mask(efx, mask);
1650
	return efx_nic_describe_stats(efx_ef10_stat_desc, EF10_STAT_COUNT,
1651
				      mask, names);
1652 1653
}

1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
static size_t efx_ef10_update_stats_common(struct efx_nic *efx, u64 *full_stats,
					   struct rtnl_link_stats64 *core_stats)
{
	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
	u64 *stats = nic_data->stats;
	size_t stats_count = 0, index;

	efx_ef10_get_stat_mask(efx, mask);

	if (full_stats) {
		for_each_set_bit(index, mask, EF10_STAT_COUNT) {
			if (efx_ef10_stat_desc[index].name) {
				*full_stats++ = stats[index];
				++stats_count;
			}
		}
	}

1673 1674 1675 1676 1677 1678
	if (!core_stats)
		return stats_count;

	if (nic_data->datapath_caps &
			1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN) {
		/* Use vadaptor stats. */
1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691
		core_stats->rx_packets = stats[EF10_STAT_rx_unicast] +
					 stats[EF10_STAT_rx_multicast] +
					 stats[EF10_STAT_rx_broadcast];
		core_stats->tx_packets = stats[EF10_STAT_tx_unicast] +
					 stats[EF10_STAT_tx_multicast] +
					 stats[EF10_STAT_tx_broadcast];
		core_stats->rx_bytes = stats[EF10_STAT_rx_unicast_bytes] +
				       stats[EF10_STAT_rx_multicast_bytes] +
				       stats[EF10_STAT_rx_broadcast_bytes];
		core_stats->tx_bytes = stats[EF10_STAT_tx_unicast_bytes] +
				       stats[EF10_STAT_tx_multicast_bytes] +
				       stats[EF10_STAT_tx_broadcast_bytes];
		core_stats->rx_dropped = stats[GENERIC_STAT_rx_nodesc_trunc] +
1692
					 stats[GENERIC_STAT_rx_noskb_drops];
1693 1694 1695 1696 1697
		core_stats->multicast = stats[EF10_STAT_rx_multicast];
		core_stats->rx_crc_errors = stats[EF10_STAT_rx_bad];
		core_stats->rx_fifo_errors = stats[EF10_STAT_rx_overflow];
		core_stats->rx_errors = core_stats->rx_crc_errors;
		core_stats->tx_errors = stats[EF10_STAT_tx_bad];
1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
	} else {
		/* Use port stats. */
		core_stats->rx_packets = stats[EF10_STAT_port_rx_packets];
		core_stats->tx_packets = stats[EF10_STAT_port_tx_packets];
		core_stats->rx_bytes = stats[EF10_STAT_port_rx_bytes];
		core_stats->tx_bytes = stats[EF10_STAT_port_tx_bytes];
		core_stats->rx_dropped = stats[EF10_STAT_port_rx_nodesc_drops] +
					 stats[GENERIC_STAT_rx_nodesc_trunc] +
					 stats[GENERIC_STAT_rx_noskb_drops];
		core_stats->multicast = stats[EF10_STAT_port_rx_multicast];
		core_stats->rx_length_errors =
				stats[EF10_STAT_port_rx_gtjumbo] +
				stats[EF10_STAT_port_rx_length_error];
		core_stats->rx_crc_errors = stats[EF10_STAT_port_rx_bad];
		core_stats->rx_frame_errors =
				stats[EF10_STAT_port_rx_align_error];
		core_stats->rx_fifo_errors = stats[EF10_STAT_port_rx_overflow];
		core_stats->rx_errors = (core_stats->rx_length_errors +
					 core_stats->rx_crc_errors +
					 core_stats->rx_frame_errors);
1718 1719 1720 1721 1722 1723
	}

	return stats_count;
}

static int efx_ef10_try_update_nic_stats_pf(struct efx_nic *efx)
1724 1725
{
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1726
	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1727 1728 1729 1730
	__le64 generation_start, generation_end;
	u64 *stats = nic_data->stats;
	__le64 *dma_stats;

1731 1732
	efx_ef10_get_stat_mask(efx, mask);

1733 1734 1735 1736 1737 1738
	dma_stats = efx->stats_buffer.addr;

	generation_end = dma_stats[MC_CMD_MAC_GENERATION_END];
	if (generation_end == EFX_MC_STATS_GENERATION_INVALID)
		return 0;
	rmb();
1739
	efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask,
1740
			     stats, efx->stats_buffer.addr, false);
1741
	rmb();
1742 1743 1744 1745 1746
	generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
	if (generation_end != generation_start)
		return -EAGAIN;

	/* Update derived statistics */
1747 1748 1749 1750 1751 1752 1753
	efx_nic_fix_nodesc_drop_stat(efx,
				     &stats[EF10_STAT_port_rx_nodesc_drops]);
	stats[EF10_STAT_port_rx_good_bytes] =
		stats[EF10_STAT_port_rx_bytes] -
		stats[EF10_STAT_port_rx_bytes_minus_good_bytes];
	efx_update_diff_stat(&stats[EF10_STAT_port_rx_bad_bytes],
			     stats[EF10_STAT_port_rx_bytes_minus_good_bytes]);
1754
	efx_update_sw_stats(efx, stats);
1755 1756 1757 1758
	return 0;
}


1759 1760
static size_t efx_ef10_update_stats_pf(struct efx_nic *efx, u64 *full_stats,
				       struct rtnl_link_stats64 *core_stats)
1761 1762 1763 1764 1765 1766 1767
{
	int retry;

	/* If we're unlucky enough to read statistics during the DMA, wait
	 * up to 10ms for it to finish (typically takes <500us)
	 */
	for (retry = 0; retry < 100; ++retry) {
1768
		if (efx_ef10_try_update_nic_stats_pf(efx) == 0)
1769 1770 1771 1772
			break;
		udelay(100);
	}

1773 1774
	return efx_ef10_update_stats_common(efx, full_stats, core_stats);
}
1775

1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787
static int efx_ef10_try_update_nic_stats_vf(struct efx_nic *efx)
{
	MCDI_DECLARE_BUF(inbuf, MC_CMD_MAC_STATS_IN_LEN);
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
	__le64 generation_start, generation_end;
	u64 *stats = nic_data->stats;
	u32 dma_len = MC_CMD_MAC_NSTATS * sizeof(u64);
	struct efx_buffer stats_buf;
	__le64 *dma_stats;
	int rc;

1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798
	spin_unlock_bh(&efx->stats_lock);

	if (in_interrupt()) {
		/* If in atomic context, cannot update stats.  Just update the
		 * software stats and return so the caller can continue.
		 */
		spin_lock_bh(&efx->stats_lock);
		efx_update_sw_stats(efx, stats);
		return 0;
	}

1799 1800 1801
	efx_ef10_get_stat_mask(efx, mask);

	rc = efx_nic_alloc_buffer(efx, &stats_buf, dma_len, GFP_ATOMIC);
1802 1803
	if (rc) {
		spin_lock_bh(&efx->stats_lock);
1804
		return rc;
1805
	}
1806 1807 1808 1809 1810 1811

	dma_stats = stats_buf.addr;
	dma_stats[MC_CMD_MAC_GENERATION_END] = EFX_MC_STATS_GENERATION_INVALID;

	MCDI_SET_QWORD(inbuf, MAC_STATS_IN_DMA_ADDR, stats_buf.dma_addr);
	MCDI_POPULATE_DWORD_1(inbuf, MAC_STATS_IN_CMD,
1812
			      MAC_STATS_IN_DMA, 1);
1813 1814 1815
	MCDI_SET_DWORD(inbuf, MAC_STATS_IN_DMA_LEN, dma_len);
	MCDI_SET_DWORD(inbuf, MAC_STATS_IN_PORT_ID, EVB_PORT_ID_ASSIGNED);

1816 1817
	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_MAC_STATS, inbuf, sizeof(inbuf),
				NULL, 0, NULL);
1818
	spin_lock_bh(&efx->stats_lock);
1819 1820 1821 1822 1823
	if (rc) {
		/* Expect ENOENT if DMA queues have not been set up */
		if (rc != -ENOENT || atomic_read(&efx->active_queues))
			efx_mcdi_display_error(efx, MC_CMD_MAC_STATS,
					       sizeof(inbuf), NULL, 0, rc);
1824
		goto out;
1825
	}
1826 1827

	generation_end = dma_stats[MC_CMD_MAC_GENERATION_END];
1828 1829
	if (generation_end == EFX_MC_STATS_GENERATION_INVALID) {
		WARN_ON_ONCE(1);
1830
		goto out;
1831
	}
1832 1833 1834 1835 1836 1837 1838 1839
	rmb();
	efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask,
			     stats, stats_buf.addr, false);
	rmb();
	generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
	if (generation_end != generation_start) {
		rc = -EAGAIN;
		goto out;
1840 1841
	}

1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854
	efx_update_sw_stats(efx, stats);
out:
	efx_nic_free_buffer(efx, &stats_buf);
	return rc;
}

static size_t efx_ef10_update_stats_vf(struct efx_nic *efx, u64 *full_stats,
				       struct rtnl_link_stats64 *core_stats)
{
	if (efx_ef10_try_update_nic_stats_vf(efx))
		return 0;

	return efx_ef10_update_stats_common(efx, full_stats, core_stats);
1855 1856 1857 1858 1859
}

static void efx_ef10_push_irq_moderation(struct efx_channel *channel)
{
	struct efx_nic *efx = channel->efx;
1860
	unsigned int mode, usecs;
1861 1862
	efx_dword_t timer_cmd;

1863
	if (channel->irq_moderation_us) {
1864
		mode = 3;
1865
		usecs = channel->irq_moderation_us;
1866 1867
	} else {
		mode = 0;
1868
		usecs = 0;
1869 1870
	}

1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885
	if (EFX_EF10_WORKAROUND_61265(efx)) {
		MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_EVQ_TMR_IN_LEN);
		unsigned int ns = usecs * 1000;

		MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_INSTANCE,
			       channel->channel);
		MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_LOAD_REQ_NS, ns);
		MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_RELOAD_REQ_NS, ns);
		MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_MODE, mode);

		efx_mcdi_rpc_async(efx, MC_CMD_SET_EVQ_TMR,
				   inbuf, sizeof(inbuf), 0, NULL, 0);
	} else if (EFX_EF10_WORKAROUND_35388(efx)) {
		unsigned int ticks = efx_usecs_to_ticks(efx, usecs);

1886 1887 1888
		EFX_POPULATE_DWORD_3(timer_cmd, ERF_DD_EVQ_IND_TIMER_FLAGS,
				     EFE_DD_EVQ_IND_TIMER_FLAGS,
				     ERF_DD_EVQ_IND_TIMER_MODE, mode,
1889
				     ERF_DD_EVQ_IND_TIMER_VAL, ticks);
1890 1891 1892
		efx_writed_page(efx, &timer_cmd, ER_DD_EVQ_INDIRECT,
				channel->channel);
	} else {
1893 1894
		unsigned int ticks = efx_usecs_to_ticks(efx, usecs);

1895
		EFX_POPULATE_DWORD_2(timer_cmd, ERF_DZ_TC_TIMER_MODE, mode,
1896
				     ERF_DZ_TC_TIMER_VAL, ticks);
1897 1898 1899 1900 1901
		efx_writed_page(efx, &timer_cmd, ER_DZ_EVQ_TMR,
				channel->channel);
	}
}

1902 1903 1904 1905 1906 1907 1908 1909
static void efx_ef10_get_wol_vf(struct efx_nic *efx,
				struct ethtool_wolinfo *wol) {}

static int efx_ef10_set_wol_vf(struct efx_nic *efx, u32 type)
{
	return -EOPNOTSUPP;
}

1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
static void efx_ef10_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
{
	wol->supported = 0;
	wol->wolopts = 0;
	memset(&wol->sopass, 0, sizeof(wol->sopass));
}

static int efx_ef10_set_wol(struct efx_nic *efx, u32 type)
{
	if (type != 0)
		return -EINVAL;
	return 0;
}

static void efx_ef10_mcdi_request(struct efx_nic *efx,
				  const efx_dword_t *hdr, size_t hdr_len,
				  const efx_dword_t *sdu, size_t sdu_len)
{
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
	u8 *pdu = nic_data->mcdi_buf.addr;

	memcpy(pdu, hdr, hdr_len);
	memcpy(pdu + hdr_len, sdu, sdu_len);
	wmb();

	/* The hardware provides 'low' and 'high' (doorbell) registers
	 * for passing the 64-bit address of an MCDI request to
	 * firmware.  However the dwords are swapped by firmware.  The
	 * least significant bits of the doorbell are then 0 for all
	 * MCDI requests due to alignment.
	 */
	_efx_writed(efx, cpu_to_le32((u64)nic_data->mcdi_buf.dma_addr >> 32),
		    ER_DZ_MC_DB_LWRD);
	_efx_writed(efx, cpu_to_le32((u32)nic_data->mcdi_buf.dma_addr),
		    ER_DZ_MC_DB_HWRD);
}

static bool efx_ef10_mcdi_poll_response(struct efx_nic *efx)
{
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
	const efx_dword_t hdr = *(const efx_dword_t *)nic_data->mcdi_buf.addr;

	rmb();
	return EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE);
}

static void
efx_ef10_mcdi_read_response(struct efx_nic *efx, efx_dword_t *outbuf,
			    size_t offset, size_t outlen)
{
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
	const u8 *pdu = nic_data->mcdi_buf.addr;

	memcpy(outbuf, pdu + offset, outlen);
}

1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
static void efx_ef10_mcdi_reboot_detected(struct efx_nic *efx)
{
	struct efx_ef10_nic_data *nic_data = efx->nic_data;

	/* All our allocations have been reset */
	efx_ef10_reset_mc_allocations(efx);

	/* The datapath firmware might have been changed */
	nic_data->must_check_datapath_caps = true;

	/* MAC statistics have been cleared on the NIC; clear the local
	 * statistic that we update with efx_update_diff_stat().
	 */
	nic_data->stats[EF10_STAT_port_rx_bad_bytes] = 0;
}

1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
static int efx_ef10_mcdi_poll_reboot(struct efx_nic *efx)
{
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
	int rc;

	rc = efx_ef10_get_warm_boot_count(efx);
	if (rc < 0) {
		/* The firmware is presumably in the process of
		 * rebooting.  However, we are supposed to report each
		 * reboot just once, so we must only do that once we
		 * can read and store the updated warm boot count.
		 */
		return 0;
	}

	if (rc == nic_data->warm_boot_count)
		return 0;

	nic_data->warm_boot_count = rc;
2001
	efx_ef10_mcdi_reboot_detected(efx);
2002

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066
	return -EIO;
}

/* Handle an MSI interrupt
 *
 * Handle an MSI hardware interrupt.  This routine schedules event
 * queue processing.  No interrupt acknowledgement cycle is necessary.
 * Also, we never need to check that the interrupt is for us, since
 * MSI interrupts cannot be shared.
 */
static irqreturn_t efx_ef10_msi_interrupt(int irq, void *dev_id)
{
	struct efx_msi_context *context = dev_id;
	struct efx_nic *efx = context->efx;

	netif_vdbg(efx, intr, efx->net_dev,
		   "IRQ %d on CPU %d\n", irq, raw_smp_processor_id());

	if (likely(ACCESS_ONCE(efx->irq_soft_enabled))) {
		/* Note test interrupts */
		if (context->index == efx->irq_level)
			efx->last_irq_cpu = raw_smp_processor_id();

		/* Schedule processing of the channel */
		efx_schedule_channel_irq(efx->channel[context->index]);
	}

	return IRQ_HANDLED;
}

static irqreturn_t efx_ef10_legacy_interrupt(int irq, void *dev_id)
{
	struct efx_nic *efx = dev_id;
	bool soft_enabled = ACCESS_ONCE(efx->irq_soft_enabled);
	struct efx_channel *channel;
	efx_dword_t reg;
	u32 queues;

	/* Read the ISR which also ACKs the interrupts */
	efx_readd(efx, &reg, ER_DZ_BIU_INT_ISR);
	queues = EFX_DWORD_FIELD(reg, ERF_DZ_ISR_REG);

	if (queues == 0)
		return IRQ_NONE;

	if (likely(soft_enabled)) {
		/* Note test interrupts */
		if (queues & (1U << efx->irq_level))
			efx->last_irq_cpu = raw_smp_processor_id();

		efx_for_each_channel(channel, efx) {
			if (queues & 1)
				efx_schedule_channel_irq(channel);
			queues >>= 1;
		}
	}

	netif_vdbg(efx, intr, efx->net_dev,
		   "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
		   irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));

	return IRQ_HANDLED;
}

2067
static int efx_ef10_irq_test_generate(struct efx_nic *efx)
2068 2069 2070
{
	MCDI_DECLARE_BUF(inbuf, MC_CMD_TRIGGER_INTERRUPT_IN_LEN);

2071 2072 2073 2074
	if (efx_mcdi_set_workaround(efx, MC_CMD_WORKAROUND_BUG41750, true,
				    NULL) == 0)
		return -ENOTSUPP;

2075 2076 2077
	BUILD_BUG_ON(MC_CMD_TRIGGER_INTERRUPT_OUT_LEN != 0);

	MCDI_SET_DWORD(inbuf, TRIGGER_INTERRUPT_IN_INTR_LEVEL, efx->irq_level);
2078
	return efx_mcdi_rpc(efx, MC_CMD_TRIGGER_INTERRUPT,
2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103
			    inbuf, sizeof(inbuf), NULL, 0, NULL);
}

static int efx_ef10_tx_probe(struct efx_tx_queue *tx_queue)
{
	return efx_nic_alloc_buffer(tx_queue->efx, &tx_queue->txd.buf,
				    (tx_queue->ptr_mask + 1) *
				    sizeof(efx_qword_t),
				    GFP_KERNEL);
}

/* This writes to the TX_DESC_WPTR and also pushes data */
static inline void efx_ef10_push_tx_desc(struct efx_tx_queue *tx_queue,
					 const efx_qword_t *txd)
{
	unsigned int write_ptr;
	efx_oword_t reg;

	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
	EFX_POPULATE_OWORD_1(reg, ERF_DZ_TX_DESC_WPTR, write_ptr);
	reg.qword[0] = *txd;
	efx_writeo_page(tx_queue->efx, &reg,
			ER_DZ_TX_DESC_UPD, tx_queue->queue);
}

2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
/* Add Firmware-Assisted TSO v2 option descriptors to a queue.
 */
static int efx_ef10_tx_tso_desc(struct efx_tx_queue *tx_queue,
				struct sk_buff *skb,
				bool *data_mapped)
{
	struct efx_tx_buffer *buffer;
	struct tcphdr *tcp;
	struct iphdr *ip;

	u16 ipv4_id;
	u32 seqnum;
	u32 mss;

2118
	EFX_WARN_ON_ONCE_PARANOID(tx_queue->tso_version != 2);
2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175

	mss = skb_shinfo(skb)->gso_size;

	if (unlikely(mss < 4)) {
		WARN_ONCE(1, "MSS of %u is too small for TSO v2\n", mss);
		return -EINVAL;
	}

	ip = ip_hdr(skb);
	if (ip->version == 4) {
		/* Modify IPv4 header if needed. */
		ip->tot_len = 0;
		ip->check = 0;
		ipv4_id = ip->id;
	} else {
		/* Modify IPv6 header if needed. */
		struct ipv6hdr *ipv6 = ipv6_hdr(skb);

		ipv6->payload_len = 0;
		ipv4_id = 0;
	}

	tcp = tcp_hdr(skb);
	seqnum = ntohl(tcp->seq);

	buffer = efx_tx_queue_get_insert_buffer(tx_queue);

	buffer->flags = EFX_TX_BUF_OPTION;
	buffer->len = 0;
	buffer->unmap_len = 0;
	EFX_POPULATE_QWORD_5(buffer->option,
			ESF_DZ_TX_DESC_IS_OPT, 1,
			ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_TSO,
			ESF_DZ_TX_TSO_OPTION_TYPE,
			ESE_DZ_TX_TSO_OPTION_DESC_FATSO2A,
			ESF_DZ_TX_TSO_IP_ID, ipv4_id,
			ESF_DZ_TX_TSO_TCP_SEQNO, seqnum
			);
	++tx_queue->insert_count;

	buffer = efx_tx_queue_get_insert_buffer(tx_queue);

	buffer->flags = EFX_TX_BUF_OPTION;
	buffer->len = 0;
	buffer->unmap_len = 0;
	EFX_POPULATE_QWORD_4(buffer->option,
			ESF_DZ_TX_DESC_IS_OPT, 1,
			ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_TSO,
			ESF_DZ_TX_TSO_OPTION_TYPE,
			ESE_DZ_TX_TSO_OPTION_DESC_FATSO2B,
			ESF_DZ_TX_TSO_TCP_MSS, mss
			);
	++tx_queue->insert_count;

	return 0;
}

E
Edward Cree 已提交
2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189
static u32 efx_ef10_tso_versions(struct efx_nic *efx)
{
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
	u32 tso_versions = 0;

	if (nic_data->datapath_caps &
	    (1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN))
		tso_versions |= BIT(1);
	if (nic_data->datapath_caps2 &
	    (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_TX_TSO_V2_LBN))
		tso_versions |= BIT(2);
	return tso_versions;
}

2190 2191 2192 2193 2194 2195 2196 2197
static void efx_ef10_tx_init(struct efx_tx_queue *tx_queue)
{
	MCDI_DECLARE_BUF(inbuf, MC_CMD_INIT_TXQ_IN_LEN(EFX_MAX_DMAQ_SIZE * 8 /
						       EFX_BUF_SIZE));
	bool csum_offload = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
	size_t entries = tx_queue->txd.buf.len / EFX_BUF_SIZE;
	struct efx_channel *channel = tx_queue->channel;
	struct efx_nic *efx = tx_queue->efx;
2198
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2199
	bool tso_v2 = false;
2200
	size_t inlen;
2201 2202 2203 2204
	dma_addr_t dma_addr;
	efx_qword_t *txd;
	int rc;
	int i;
2205
	BUILD_BUG_ON(MC_CMD_INIT_TXQ_OUT_LEN != 0);
2206

2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217
	/* TSOv2 is a limited resource that can only be configured on a limited
	 * number of queues. TSO without checksum offload is not really a thing,
	 * so we only enable it for those queues.
	 */
	if (csum_offload && (nic_data->datapath_caps2 &
			(1 << MC_CMD_GET_CAPABILITIES_V2_OUT_TX_TSO_V2_LBN))) {
		tso_v2 = true;
		netif_dbg(efx, hw, efx->net_dev, "Using TSOv2 for channel %u\n",
				channel->channel);
	}

2218 2219 2220 2221 2222
	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_SIZE, tx_queue->ptr_mask + 1);
	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_TARGET_EVQ, channel->channel);
	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_LABEL, tx_queue->queue);
	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_INSTANCE, tx_queue->queue);
	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_OWNER_ID, 0);
2223
	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_PORT_ID, nic_data->vport_id);
2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236

	dma_addr = tx_queue->txd.buf.dma_addr;

	netif_dbg(efx, hw, efx->net_dev, "pushing TXQ %d. %zu entries (%llx)\n",
		  tx_queue->queue, entries, (u64)dma_addr);

	for (i = 0; i < entries; ++i) {
		MCDI_SET_ARRAY_QWORD(inbuf, INIT_TXQ_IN_DMA_ADDR, i, dma_addr);
		dma_addr += EFX_BUF_SIZE;
	}

	inlen = MC_CMD_INIT_TXQ_IN_LEN(entries);

2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260
	do {
		MCDI_POPULATE_DWORD_3(inbuf, INIT_TXQ_IN_FLAGS,
				/* This flag was removed from mcdi_pcol.h for
				 * the non-_EXT version of INIT_TXQ.  However,
				 * firmware still honours it.
				 */
				INIT_TXQ_EXT_IN_FLAG_TSOV2_EN, tso_v2,
				INIT_TXQ_IN_FLAG_IP_CSUM_DIS, !csum_offload,
				INIT_TXQ_IN_FLAG_TCP_CSUM_DIS, !csum_offload);

		rc = efx_mcdi_rpc_quiet(efx, MC_CMD_INIT_TXQ, inbuf, inlen,
					NULL, 0, NULL);
		if (rc == -ENOSPC && tso_v2) {
			/* Retry without TSOv2 if we're short on contexts. */
			tso_v2 = false;
			netif_warn(efx, probe, efx->net_dev,
				   "TSOv2 context not available to segment in hardware. TCP performance may be reduced.\n");
		} else if (rc) {
			efx_mcdi_display_error(efx, MC_CMD_INIT_TXQ,
					       MC_CMD_INIT_TXQ_EXT_IN_LEN,
					       NULL, 0, rc);
			goto fail;
		}
	} while (rc);
2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277

	/* A previous user of this TX queue might have set us up the
	 * bomb by writing a descriptor to the TX push collector but
	 * not the doorbell.  (Each collector belongs to a port, not a
	 * queue or function, so cannot easily be reset.)  We must
	 * attempt to push a no-op descriptor in its place.
	 */
	tx_queue->buffer[0].flags = EFX_TX_BUF_OPTION;
	tx_queue->insert_count = 1;
	txd = efx_tx_desc(tx_queue, 0);
	EFX_POPULATE_QWORD_4(*txd,
			     ESF_DZ_TX_DESC_IS_OPT, true,
			     ESF_DZ_TX_OPTION_TYPE,
			     ESE_DZ_TX_OPTION_DESC_CRC_CSUM,
			     ESF_DZ_TX_OPTION_UDP_TCP_CSUM, csum_offload,
			     ESF_DZ_TX_OPTION_IP_CSUM, csum_offload);
	tx_queue->write_count = 1;
2278

2279 2280 2281 2282 2283
	if (tso_v2) {
		tx_queue->handle_tso = efx_ef10_tx_tso_desc;
		tx_queue->tso_version = 2;
	} else if (nic_data->datapath_caps &
			(1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN)) {
2284 2285 2286
		tx_queue->tso_version = 1;
	}

2287 2288 2289 2290 2291 2292
	wmb();
	efx_ef10_push_tx_desc(tx_queue, txd);

	return;

fail:
2293 2294
	netdev_WARN(efx->net_dev, "failed to initialise TXQ %d\n",
		    tx_queue->queue);
2295 2296 2297 2298 2299
}

static void efx_ef10_tx_fini(struct efx_tx_queue *tx_queue)
{
	MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_TXQ_IN_LEN);
2300
	MCDI_DECLARE_BUF_ERR(outbuf);
2301 2302 2303 2304 2305 2306 2307
	struct efx_nic *efx = tx_queue->efx;
	size_t outlen;
	int rc;

	MCDI_SET_DWORD(inbuf, FINI_TXQ_IN_INSTANCE,
		       tx_queue->queue);

E
Edward Cree 已提交
2308
	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_TXQ, inbuf, sizeof(inbuf),
2309 2310 2311 2312 2313 2314 2315 2316
			  outbuf, sizeof(outbuf), &outlen);

	if (rc && rc != -EALREADY)
		goto fail;

	return;

fail:
E
Edward Cree 已提交
2317 2318
	efx_mcdi_display_error(efx, MC_CMD_FINI_TXQ, MC_CMD_FINI_TXQ_IN_LEN,
			       outbuf, outlen, rc);
2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337
}

static void efx_ef10_tx_remove(struct efx_tx_queue *tx_queue)
{
	efx_nic_free_buffer(tx_queue->efx, &tx_queue->txd.buf);
}

/* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
static inline void efx_ef10_notify_tx_desc(struct efx_tx_queue *tx_queue)
{
	unsigned int write_ptr;
	efx_dword_t reg;

	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
	EFX_POPULATE_DWORD_1(reg, ERF_DZ_TX_DESC_WPTR_DWORD, write_ptr);
	efx_writed_page(tx_queue->efx, &reg,
			ER_DZ_TX_DESC_UPD_DWORD, tx_queue->queue);
}

2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356
#define EFX_EF10_MAX_TX_DESCRIPTOR_LEN 0x3fff

static unsigned int efx_ef10_tx_limit_len(struct efx_tx_queue *tx_queue,
					  dma_addr_t dma_addr, unsigned int len)
{
	if (len > EFX_EF10_MAX_TX_DESCRIPTOR_LEN) {
		/* If we need to break across multiple descriptors we should
		 * stop at a page boundary. This assumes the length limit is
		 * greater than the page size.
		 */
		dma_addr_t end = dma_addr + EFX_EF10_MAX_TX_DESCRIPTOR_LEN;

		BUILD_BUG_ON(EFX_EF10_MAX_TX_DESCRIPTOR_LEN < EFX_PAGE_SIZE);
		len = (end & (~(EFX_PAGE_SIZE - 1))) - dma_addr;
	}

	return len;
}

2357 2358 2359 2360 2361 2362 2363
static void efx_ef10_tx_write(struct efx_tx_queue *tx_queue)
{
	unsigned int old_write_count = tx_queue->write_count;
	struct efx_tx_buffer *buffer;
	unsigned int write_ptr;
	efx_qword_t *txd;

2364 2365 2366
	tx_queue->xmit_more_available = false;
	if (unlikely(tx_queue->write_count == tx_queue->insert_count))
		return;
2367 2368 2369 2370 2371 2372 2373 2374 2375 2376

	do {
		write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
		buffer = &tx_queue->buffer[write_ptr];
		txd = efx_tx_desc(tx_queue, write_ptr);
		++tx_queue->write_count;

		/* Create TX descriptor ring entry */
		if (buffer->flags & EFX_TX_BUF_OPTION) {
			*txd = buffer->option;
E
Edward Cree 已提交
2377 2378 2379
			if (EFX_QWORD_FIELD(*txd, ESF_DZ_TX_OPTION_TYPE) == 1)
				/* PIO descriptor */
				tx_queue->packet_write_count = tx_queue->write_count;
2380
		} else {
E
Edward Cree 已提交
2381
			tx_queue->packet_write_count = tx_queue->write_count;
2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403
			BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
			EFX_POPULATE_QWORD_3(
				*txd,
				ESF_DZ_TX_KER_CONT,
				buffer->flags & EFX_TX_BUF_CONT,
				ESF_DZ_TX_KER_BYTE_CNT, buffer->len,
				ESF_DZ_TX_KER_BUF_ADDR, buffer->dma_addr);
		}
	} while (tx_queue->write_count != tx_queue->insert_count);

	wmb(); /* Ensure descriptors are written before they are fetched */

	if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
		txd = efx_tx_desc(tx_queue,
				  old_write_count & tx_queue->ptr_mask);
		efx_ef10_push_tx_desc(tx_queue, txd);
		++tx_queue->pushes;
	} else {
		efx_ef10_notify_tx_desc(tx_queue);
	}
}

2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477
#define RSS_MODE_HASH_ADDRS	(1 << RSS_MODE_HASH_SRC_ADDR_LBN |\
				 1 << RSS_MODE_HASH_DST_ADDR_LBN)
#define RSS_MODE_HASH_PORTS	(1 << RSS_MODE_HASH_SRC_PORT_LBN |\
				 1 << RSS_MODE_HASH_DST_PORT_LBN)
#define RSS_CONTEXT_FLAGS_DEFAULT	(1 << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TOEPLITZ_IPV4_EN_LBN |\
					 1 << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TOEPLITZ_TCPV4_EN_LBN |\
					 1 << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TOEPLITZ_IPV6_EN_LBN |\
					 1 << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TOEPLITZ_TCPV6_EN_LBN |\
					 (RSS_MODE_HASH_ADDRS | RSS_MODE_HASH_PORTS) << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TCP_IPV4_RSS_MODE_LBN |\
					 RSS_MODE_HASH_ADDRS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_UDP_IPV4_RSS_MODE_LBN |\
					 RSS_MODE_HASH_ADDRS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_OTHER_IPV4_RSS_MODE_LBN |\
					 (RSS_MODE_HASH_ADDRS | RSS_MODE_HASH_PORTS) << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TCP_IPV6_RSS_MODE_LBN |\
					 RSS_MODE_HASH_ADDRS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_UDP_IPV6_RSS_MODE_LBN |\
					 RSS_MODE_HASH_ADDRS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_OTHER_IPV6_RSS_MODE_LBN)

static int efx_ef10_get_rss_flags(struct efx_nic *efx, u32 context, u32 *flags)
{
	/* Firmware had a bug (sfc bug 61952) where it would not actually
	 * fill in the flags field in the response to MC_CMD_RSS_CONTEXT_GET_FLAGS.
	 * This meant that it would always contain whatever was previously
	 * in the MCDI buffer.  Fortunately, all firmware versions with
	 * this bug have the same default flags value for a newly-allocated
	 * RSS context, and the only time we want to get the flags is just
	 * after allocating.  Moreover, the response has a 32-bit hole
	 * where the context ID would be in the request, so we can use an
	 * overlength buffer in the request and pre-fill the flags field
	 * with what we believe the default to be.  Thus if the firmware
	 * has the bug, it will leave our pre-filled value in the flags
	 * field of the response, and we will get the right answer.
	 *
	 * However, this does mean that this function should NOT be used if
	 * the RSS context flags might not be their defaults - it is ONLY
	 * reliably correct for a newly-allocated RSS context.
	 */
	MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_LEN);
	MCDI_DECLARE_BUF(outbuf, MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_LEN);
	size_t outlen;
	int rc;

	/* Check we have a hole for the context ID */
	BUILD_BUG_ON(MC_CMD_RSS_CONTEXT_GET_FLAGS_IN_LEN != MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_FLAGS_OFST);
	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_GET_FLAGS_IN_RSS_CONTEXT_ID, context);
	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_GET_FLAGS_OUT_FLAGS,
		       RSS_CONTEXT_FLAGS_DEFAULT);
	rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_GET_FLAGS, inbuf,
			  sizeof(inbuf), outbuf, sizeof(outbuf), &outlen);
	if (rc == 0) {
		if (outlen < MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_LEN)
			rc = -EIO;
		else
			*flags = MCDI_DWORD(outbuf, RSS_CONTEXT_GET_FLAGS_OUT_FLAGS);
	}
	return rc;
}

/* Attempt to enable 4-tuple UDP hashing on the specified RSS context.
 * If we fail, we just leave the RSS context at its default hash settings,
 * which is safe but may slightly reduce performance.
 * Defaults are 4-tuple for TCP and 2-tuple for UDP and other-IP, so we
 * just need to set the UDP ports flags (for both IP versions).
 */
static void efx_ef10_set_rss_flags(struct efx_nic *efx, u32 context)
{
	MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_SET_FLAGS_IN_LEN);
	u32 flags;

	BUILD_BUG_ON(MC_CMD_RSS_CONTEXT_SET_FLAGS_OUT_LEN != 0);

	if (efx_ef10_get_rss_flags(efx, context, &flags) != 0)
		return;
	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_SET_FLAGS_IN_RSS_CONTEXT_ID, context);
	flags |= RSS_MODE_HASH_PORTS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_UDP_IPV4_RSS_MODE_LBN;
	flags |= RSS_MODE_HASH_PORTS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_UDP_IPV6_RSS_MODE_LBN;
	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_SET_FLAGS_IN_FLAGS, flags);
2478 2479 2480 2481
	if (!efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_FLAGS, inbuf, sizeof(inbuf),
			  NULL, 0, NULL))
		/* Succeeded, so UDP 4-tuple is now enabled */
		efx->rx_hash_udp_4tuple = true;
2482 2483
}

2484 2485
static int efx_ef10_alloc_rss_context(struct efx_nic *efx, u32 *context,
				      bool exclusive, unsigned *context_size)
2486 2487 2488
{
	MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_ALLOC_IN_LEN);
	MCDI_DECLARE_BUF(outbuf, MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN);
2489
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2490 2491
	size_t outlen;
	int rc;
2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505
	u32 alloc_type = exclusive ?
				MC_CMD_RSS_CONTEXT_ALLOC_IN_TYPE_EXCLUSIVE :
				MC_CMD_RSS_CONTEXT_ALLOC_IN_TYPE_SHARED;
	unsigned rss_spread = exclusive ?
				efx->rss_spread :
				min(rounddown_pow_of_two(efx->rss_spread),
				    EFX_EF10_MAX_SHARED_RSS_CONTEXT_SIZE);

	if (!exclusive && rss_spread == 1) {
		*context = EFX_EF10_RSS_CONTEXT_INVALID;
		if (context_size)
			*context_size = 1;
		return 0;
	}
2506

J
Jon Cooper 已提交
2507 2508 2509 2510
	if (nic_data->datapath_caps &
	    1 << MC_CMD_GET_CAPABILITIES_OUT_RX_RSS_LIMITED_LBN)
		return -EOPNOTSUPP;

2511
	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_UPSTREAM_PORT_ID,
2512
		       nic_data->vport_id);
2513 2514
	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_TYPE, alloc_type);
	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_NUM_QUEUES, rss_spread);
2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525

	rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_ALLOC, inbuf, sizeof(inbuf),
		outbuf, sizeof(outbuf), &outlen);
	if (rc != 0)
		return rc;

	if (outlen < MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN)
		return -EIO;

	*context = MCDI_DWORD(outbuf, RSS_CONTEXT_ALLOC_OUT_RSS_CONTEXT_ID);

2526 2527 2528
	if (context_size)
		*context_size = rss_spread;

2529 2530 2531 2532
	if (nic_data->datapath_caps &
	    1 << MC_CMD_GET_CAPABILITIES_OUT_ADDITIONAL_RSS_MODES_LBN)
		efx_ef10_set_rss_flags(efx, *context);

2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548
	return 0;
}

static void efx_ef10_free_rss_context(struct efx_nic *efx, u32 context)
{
	MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_FREE_IN_LEN);
	int rc;

	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_FREE_IN_RSS_CONTEXT_ID,
		       context);

	rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_FREE, inbuf, sizeof(inbuf),
			    NULL, 0, NULL);
	WARN_ON(rc != 0);
}

2549
static int efx_ef10_populate_rss_table(struct efx_nic *efx, u32 context,
2550
				       const u32 *rx_indir_table, const u8 *key)
2551 2552 2553 2554 2555 2556 2557 2558 2559 2560
{
	MCDI_DECLARE_BUF(tablebuf, MC_CMD_RSS_CONTEXT_SET_TABLE_IN_LEN);
	MCDI_DECLARE_BUF(keybuf, MC_CMD_RSS_CONTEXT_SET_KEY_IN_LEN);
	int i, rc;

	MCDI_SET_DWORD(tablebuf, RSS_CONTEXT_SET_TABLE_IN_RSS_CONTEXT_ID,
		       context);
	BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
		     MC_CMD_RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE_LEN);

2561 2562 2563 2564 2565
	/* This iterates over the length of efx->rx_indir_table, but copies
	 * bytes from rx_indir_table.  That's because the latter is a pointer
	 * rather than an array, but should have the same length.
	 * The efx->rx_hash_key loop below is similar.
	 */
2566 2567 2568
	for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); ++i)
		MCDI_PTR(tablebuf,
			 RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE)[i] =
2569
				(u8) rx_indir_table[i];
2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580

	rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_TABLE, tablebuf,
			  sizeof(tablebuf), NULL, 0, NULL);
	if (rc != 0)
		return rc;

	MCDI_SET_DWORD(keybuf, RSS_CONTEXT_SET_KEY_IN_RSS_CONTEXT_ID,
		       context);
	BUILD_BUG_ON(ARRAY_SIZE(efx->rx_hash_key) !=
		     MC_CMD_RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY_LEN);
	for (i = 0; i < ARRAY_SIZE(efx->rx_hash_key); ++i)
2581
		MCDI_PTR(keybuf, RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY)[i] = key[i];
2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595

	return efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_KEY, keybuf,
			    sizeof(keybuf), NULL, 0, NULL);
}

static void efx_ef10_rx_free_indir_table(struct efx_nic *efx)
{
	struct efx_ef10_nic_data *nic_data = efx->nic_data;

	if (nic_data->rx_rss_context != EFX_EF10_RSS_CONTEXT_INVALID)
		efx_ef10_free_rss_context(efx, nic_data->rx_rss_context);
	nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
}

2596 2597
static int efx_ef10_rx_push_shared_rss_config(struct efx_nic *efx,
					      unsigned *context_size)
2598
{
2599
	u32 new_rx_rss_context;
2600
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2601 2602 2603 2604 2605
	int rc = efx_ef10_alloc_rss_context(efx, &new_rx_rss_context,
					    false, context_size);

	if (rc != 0)
		return rc;
2606

2607 2608 2609 2610 2611
	nic_data->rx_rss_context = new_rx_rss_context;
	nic_data->rx_rss_context_exclusive = false;
	efx_set_default_rx_indir_table(efx);
	return 0;
}
2612

2613
static int efx_ef10_rx_push_exclusive_rss_config(struct efx_nic *efx,
2614 2615
						 const u32 *rx_indir_table,
						 const u8 *key)
2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630
{
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
	int rc;
	u32 new_rx_rss_context;

	if (nic_data->rx_rss_context == EFX_EF10_RSS_CONTEXT_INVALID ||
	    !nic_data->rx_rss_context_exclusive) {
		rc = efx_ef10_alloc_rss_context(efx, &new_rx_rss_context,
						true, NULL);
		if (rc == -EOPNOTSUPP)
			return rc;
		else if (rc != 0)
			goto fail1;
	} else {
		new_rx_rss_context = nic_data->rx_rss_context;
2631 2632
	}

2633
	rc = efx_ef10_populate_rss_table(efx, new_rx_rss_context,
2634
					 rx_indir_table, key);
2635
	if (rc != 0)
2636
		goto fail2;
2637

2638 2639 2640 2641 2642 2643 2644
	if (nic_data->rx_rss_context != new_rx_rss_context)
		efx_ef10_rx_free_indir_table(efx);
	nic_data->rx_rss_context = new_rx_rss_context;
	nic_data->rx_rss_context_exclusive = true;
	if (rx_indir_table != efx->rx_indir_table)
		memcpy(efx->rx_indir_table, rx_indir_table,
		       sizeof(efx->rx_indir_table));
2645 2646 2647
	if (key != efx->rx_hash_key)
		memcpy(efx->rx_hash_key, key, efx->type->rx_hash_key_size);

2648
	return 0;
2649

2650 2651 2652 2653
fail2:
	if (new_rx_rss_context != nic_data->rx_rss_context)
		efx_ef10_free_rss_context(efx, new_rx_rss_context);
fail1:
2654
	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
2655 2656 2657
	return rc;
}

2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707
static int efx_ef10_rx_pull_rss_config(struct efx_nic *efx)
{
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
	MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_GET_TABLE_IN_LEN);
	MCDI_DECLARE_BUF(tablebuf, MC_CMD_RSS_CONTEXT_GET_TABLE_OUT_LEN);
	MCDI_DECLARE_BUF(keybuf, MC_CMD_RSS_CONTEXT_GET_KEY_OUT_LEN);
	size_t outlen;
	int rc, i;

	BUILD_BUG_ON(MC_CMD_RSS_CONTEXT_GET_TABLE_IN_LEN !=
		     MC_CMD_RSS_CONTEXT_GET_KEY_IN_LEN);

	if (nic_data->rx_rss_context == EFX_EF10_RSS_CONTEXT_INVALID)
		return -ENOENT;

	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_GET_TABLE_IN_RSS_CONTEXT_ID,
		       nic_data->rx_rss_context);
	BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
		     MC_CMD_RSS_CONTEXT_GET_TABLE_OUT_INDIRECTION_TABLE_LEN);
	rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_GET_TABLE, inbuf, sizeof(inbuf),
			  tablebuf, sizeof(tablebuf), &outlen);
	if (rc != 0)
		return rc;

	if (WARN_ON(outlen != MC_CMD_RSS_CONTEXT_GET_TABLE_OUT_LEN))
		return -EIO;

	for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
		efx->rx_indir_table[i] = MCDI_PTR(tablebuf,
				RSS_CONTEXT_GET_TABLE_OUT_INDIRECTION_TABLE)[i];

	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_GET_KEY_IN_RSS_CONTEXT_ID,
		       nic_data->rx_rss_context);
	BUILD_BUG_ON(ARRAY_SIZE(efx->rx_hash_key) !=
		     MC_CMD_RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY_LEN);
	rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_GET_KEY, inbuf, sizeof(inbuf),
			  keybuf, sizeof(keybuf), &outlen);
	if (rc != 0)
		return rc;

	if (WARN_ON(outlen != MC_CMD_RSS_CONTEXT_GET_KEY_OUT_LEN))
		return -EIO;

	for (i = 0; i < ARRAY_SIZE(efx->rx_hash_key); ++i)
		efx->rx_hash_key[i] = MCDI_PTR(
				keybuf, RSS_CONTEXT_GET_KEY_OUT_TOEPLITZ_KEY)[i];

	return 0;
}

2708
static int efx_ef10_pf_rx_push_rss_config(struct efx_nic *efx, bool user,
2709 2710
					  const u32 *rx_indir_table,
					  const u8 *key)
2711 2712 2713 2714 2715 2716
{
	int rc;

	if (efx->rss_spread == 1)
		return 0;

2717 2718 2719 2720
	if (!key)
		key = efx->rx_hash_key;

	rc = efx_ef10_rx_push_exclusive_rss_config(efx, rx_indir_table, key);
2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757

	if (rc == -ENOBUFS && !user) {
		unsigned context_size;
		bool mismatch = false;
		size_t i;

		for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table) && !mismatch;
		     i++)
			mismatch = rx_indir_table[i] !=
				ethtool_rxfh_indir_default(i, efx->rss_spread);

		rc = efx_ef10_rx_push_shared_rss_config(efx, &context_size);
		if (rc == 0) {
			if (context_size != efx->rss_spread)
				netif_warn(efx, probe, efx->net_dev,
					   "Could not allocate an exclusive RSS"
					   " context; allocated a shared one of"
					   " different size."
					   " Wanted %u, got %u.\n",
					   efx->rss_spread, context_size);
			else if (mismatch)
				netif_warn(efx, probe, efx->net_dev,
					   "Could not allocate an exclusive RSS"
					   " context; allocated a shared one but"
					   " could not apply custom"
					   " indirection.\n");
			else
				netif_info(efx, probe, efx->net_dev,
					   "Could not allocate an exclusive RSS"
					   " context; allocated a shared one.\n");
		}
	}
	return rc;
}

static int efx_ef10_vf_rx_push_rss_config(struct efx_nic *efx, bool user,
					  const u32 *rx_indir_table
2758 2759
					  __attribute__ ((unused)),
					  const u8 *key
2760 2761 2762 2763 2764 2765 2766 2767 2768
					  __attribute__ ((unused)))
{
	struct efx_ef10_nic_data *nic_data = efx->nic_data;

	if (user)
		return -EOPNOTSUPP;
	if (nic_data->rx_rss_context != EFX_EF10_RSS_CONTEXT_INVALID)
		return 0;
	return efx_ef10_rx_push_shared_rss_config(efx, NULL);
2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786
}

static int efx_ef10_rx_probe(struct efx_rx_queue *rx_queue)
{
	return efx_nic_alloc_buffer(rx_queue->efx, &rx_queue->rxd.buf,
				    (rx_queue->ptr_mask + 1) *
				    sizeof(efx_qword_t),
				    GFP_KERNEL);
}

static void efx_ef10_rx_init(struct efx_rx_queue *rx_queue)
{
	MCDI_DECLARE_BUF(inbuf,
			 MC_CMD_INIT_RXQ_IN_LEN(EFX_MAX_DMAQ_SIZE * 8 /
						EFX_BUF_SIZE));
	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
	size_t entries = rx_queue->rxd.buf.len / EFX_BUF_SIZE;
	struct efx_nic *efx = rx_queue->efx;
2787
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2788
	size_t inlen;
2789 2790 2791
	dma_addr_t dma_addr;
	int rc;
	int i;
2792
	BUILD_BUG_ON(MC_CMD_INIT_RXQ_OUT_LEN != 0);
2793 2794 2795 2796 2797 2798 2799 2800 2801

	rx_queue->scatter_n = 0;
	rx_queue->scatter_len = 0;

	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_SIZE, rx_queue->ptr_mask + 1);
	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_TARGET_EVQ, channel->channel);
	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_LABEL, efx_rx_queue_index(rx_queue));
	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_INSTANCE,
		       efx_rx_queue_index(rx_queue));
2802 2803 2804
	MCDI_POPULATE_DWORD_2(inbuf, INIT_RXQ_IN_FLAGS,
			      INIT_RXQ_IN_FLAG_PREFIX, 1,
			      INIT_RXQ_IN_FLAG_TIMESTAMP, 1);
2805
	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_OWNER_ID, 0);
2806
	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_PORT_ID, nic_data->vport_id);
2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820

	dma_addr = rx_queue->rxd.buf.dma_addr;

	netif_dbg(efx, hw, efx->net_dev, "pushing RXQ %d. %zu entries (%llx)\n",
		  efx_rx_queue_index(rx_queue), entries, (u64)dma_addr);

	for (i = 0; i < entries; ++i) {
		MCDI_SET_ARRAY_QWORD(inbuf, INIT_RXQ_IN_DMA_ADDR, i, dma_addr);
		dma_addr += EFX_BUF_SIZE;
	}

	inlen = MC_CMD_INIT_RXQ_IN_LEN(entries);

	rc = efx_mcdi_rpc(efx, MC_CMD_INIT_RXQ, inbuf, inlen,
2821
			  NULL, 0, NULL);
2822 2823 2824
	if (rc)
		netdev_WARN(efx->net_dev, "failed to initialise RXQ %d\n",
			    efx_rx_queue_index(rx_queue));
2825 2826 2827 2828 2829
}

static void efx_ef10_rx_fini(struct efx_rx_queue *rx_queue)
{
	MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_RXQ_IN_LEN);
2830
	MCDI_DECLARE_BUF_ERR(outbuf);
2831 2832 2833 2834 2835 2836 2837
	struct efx_nic *efx = rx_queue->efx;
	size_t outlen;
	int rc;

	MCDI_SET_DWORD(inbuf, FINI_RXQ_IN_INSTANCE,
		       efx_rx_queue_index(rx_queue));

E
Edward Cree 已提交
2838
	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_RXQ, inbuf, sizeof(inbuf),
2839 2840 2841 2842 2843 2844 2845 2846
			  outbuf, sizeof(outbuf), &outlen);

	if (rc && rc != -EALREADY)
		goto fail;

	return;

fail:
E
Edward Cree 已提交
2847 2848
	efx_mcdi_display_error(efx, MC_CMD_FINI_RXQ, MC_CMD_FINI_RXQ_IN_LEN,
			       outbuf, outlen, rc);
2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934
}

static void efx_ef10_rx_remove(struct efx_rx_queue *rx_queue)
{
	efx_nic_free_buffer(rx_queue->efx, &rx_queue->rxd.buf);
}

/* This creates an entry in the RX descriptor queue */
static inline void
efx_ef10_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
{
	struct efx_rx_buffer *rx_buf;
	efx_qword_t *rxd;

	rxd = efx_rx_desc(rx_queue, index);
	rx_buf = efx_rx_buffer(rx_queue, index);
	EFX_POPULATE_QWORD_2(*rxd,
			     ESF_DZ_RX_KER_BYTE_CNT, rx_buf->len,
			     ESF_DZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
}

static void efx_ef10_rx_write(struct efx_rx_queue *rx_queue)
{
	struct efx_nic *efx = rx_queue->efx;
	unsigned int write_count;
	efx_dword_t reg;

	/* Firmware requires that RX_DESC_WPTR be a multiple of 8 */
	write_count = rx_queue->added_count & ~7;
	if (rx_queue->notified_count == write_count)
		return;

	do
		efx_ef10_build_rx_desc(
			rx_queue,
			rx_queue->notified_count & rx_queue->ptr_mask);
	while (++rx_queue->notified_count != write_count);

	wmb();
	EFX_POPULATE_DWORD_1(reg, ERF_DZ_RX_DESC_WPTR,
			     write_count & rx_queue->ptr_mask);
	efx_writed_page(efx, &reg, ER_DZ_RX_DESC_UPD,
			efx_rx_queue_index(rx_queue));
}

static efx_mcdi_async_completer efx_ef10_rx_defer_refill_complete;

static void efx_ef10_rx_defer_refill(struct efx_rx_queue *rx_queue)
{
	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
	MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
	efx_qword_t event;

	EFX_POPULATE_QWORD_2(event,
			     ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
			     ESF_DZ_EV_DATA, EFX_EF10_REFILL);

	MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);

	/* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
	 * already swapped the data to little-endian order.
	 */
	memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
	       sizeof(efx_qword_t));

	efx_mcdi_rpc_async(channel->efx, MC_CMD_DRIVER_EVENT,
			   inbuf, sizeof(inbuf), 0,
			   efx_ef10_rx_defer_refill_complete, 0);
}

static void
efx_ef10_rx_defer_refill_complete(struct efx_nic *efx, unsigned long cookie,
				  int rc, efx_dword_t *outbuf,
				  size_t outlen_actual)
{
	/* nothing to do */
}

static int efx_ef10_ev_probe(struct efx_channel *channel)
{
	return efx_nic_alloc_buffer(channel->efx, &channel->eventq.buf,
				    (channel->eventq_mask + 1) *
				    sizeof(efx_qword_t),
				    GFP_KERNEL);
}

2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957
static void efx_ef10_ev_fini(struct efx_channel *channel)
{
	MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_EVQ_IN_LEN);
	MCDI_DECLARE_BUF_ERR(outbuf);
	struct efx_nic *efx = channel->efx;
	size_t outlen;
	int rc;

	MCDI_SET_DWORD(inbuf, FINI_EVQ_IN_INSTANCE, channel->channel);

	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_EVQ, inbuf, sizeof(inbuf),
			  outbuf, sizeof(outbuf), &outlen);

	if (rc && rc != -EALREADY)
		goto fail;

	return;

fail:
	efx_mcdi_display_error(efx, MC_CMD_FINI_EVQ, MC_CMD_FINI_EVQ_IN_LEN,
			       outbuf, outlen, rc);
}

2958 2959 2960
static int efx_ef10_ev_init(struct efx_channel *channel)
{
	MCDI_DECLARE_BUF(inbuf,
2961 2962 2963
			 MC_CMD_INIT_EVQ_V2_IN_LEN(EFX_MAX_EVQ_SIZE * 8 /
						   EFX_BUF_SIZE));
	MCDI_DECLARE_BUF(outbuf, MC_CMD_INIT_EVQ_V2_OUT_LEN);
2964 2965 2966 2967
	size_t entries = channel->eventq.buf.len / EFX_BUF_SIZE;
	struct efx_nic *efx = channel->efx;
	struct efx_ef10_nic_data *nic_data;
	size_t inlen, outlen;
2968
	unsigned int enabled, implemented;
2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989
	dma_addr_t dma_addr;
	int rc;
	int i;

	nic_data = efx->nic_data;

	/* Fill event queue with all ones (i.e. empty events) */
	memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len);

	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_SIZE, channel->eventq_mask + 1);
	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_INSTANCE, channel->channel);
	/* INIT_EVQ expects index in vector table, not absolute */
	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_IRQ_NUM, channel->channel);
	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_MODE,
		       MC_CMD_INIT_EVQ_IN_TMR_MODE_DIS);
	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_LOAD, 0);
	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_RELOAD, 0);
	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_COUNT_MODE,
		       MC_CMD_INIT_EVQ_IN_COUNT_MODE_DIS);
	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_COUNT_THRSHLD, 0);

2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010
	if (nic_data->datapath_caps2 &
	    1 << MC_CMD_GET_CAPABILITIES_V2_OUT_INIT_EVQ_V2_LBN) {
		/* Use the new generic approach to specifying event queue
		 * configuration, requesting lower latency or higher throughput.
		 * The options that actually get used appear in the output.
		 */
		MCDI_POPULATE_DWORD_2(inbuf, INIT_EVQ_V2_IN_FLAGS,
				      INIT_EVQ_V2_IN_FLAG_INTERRUPTING, 1,
				      INIT_EVQ_V2_IN_FLAG_TYPE,
				      MC_CMD_INIT_EVQ_V2_IN_FLAG_TYPE_AUTO);
	} else {
		bool cut_thru = !(nic_data->datapath_caps &
			1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN);

		MCDI_POPULATE_DWORD_4(inbuf, INIT_EVQ_IN_FLAGS,
				      INIT_EVQ_IN_FLAG_INTERRUPTING, 1,
				      INIT_EVQ_IN_FLAG_RX_MERGE, 1,
				      INIT_EVQ_IN_FLAG_TX_MERGE, 1,
				      INIT_EVQ_IN_FLAG_CUT_THRU, cut_thru);
	}

3011 3012 3013 3014 3015 3016 3017 3018 3019 3020
	dma_addr = channel->eventq.buf.dma_addr;
	for (i = 0; i < entries; ++i) {
		MCDI_SET_ARRAY_QWORD(inbuf, INIT_EVQ_IN_DMA_ADDR, i, dma_addr);
		dma_addr += EFX_BUF_SIZE;
	}

	inlen = MC_CMD_INIT_EVQ_IN_LEN(entries);

	rc = efx_mcdi_rpc(efx, MC_CMD_INIT_EVQ, inbuf, inlen,
			  outbuf, sizeof(outbuf), &outlen);
3021 3022 3023 3024 3025 3026 3027

	if (outlen >= MC_CMD_INIT_EVQ_V2_OUT_LEN)
		netif_dbg(efx, drv, efx->net_dev,
			  "Channel %d using event queue flags %08x\n",
			  channel->channel,
			  MCDI_DWORD(outbuf, INIT_EVQ_V2_OUT_FLAGS));

3028
	/* IRQ return is ignored */
3029 3030
	if (channel->channel || rc)
		return rc;
3031

3032 3033
	/* Successfully created event queue on channel 0 */
	rc = efx_mcdi_get_workarounds(efx, &implemented, &enabled);
3034
	if (rc == -ENOSYS) {
3035 3036
		/* GET_WORKAROUNDS was implemented before this workaround,
		 * thus it must be unavailable in this firmware.
3037 3038 3039 3040
		 */
		nic_data->workaround_26807 = false;
		rc = 0;
	} else if (rc) {
3041
		goto fail;
3042 3043 3044 3045 3046 3047
	} else {
		nic_data->workaround_26807 =
			!!(enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807);

		if (implemented & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807 &&
		    !nic_data->workaround_26807) {
3048 3049
			unsigned int flags;

3050 3051
			rc = efx_mcdi_set_workaround(efx,
						     MC_CMD_WORKAROUND_BUG26807,
3052 3053 3054 3055 3056 3057 3058
						     true, &flags);

			if (!rc) {
				if (flags &
				    1 << MC_CMD_WORKAROUND_EXT_OUT_FLR_DONE_LBN) {
					netif_info(efx, drv, efx->net_dev,
						   "other functions on NIC have been reset\n");
3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071

					/* With MCFW v4.6.x and earlier, the
					 * boot count will have incremented,
					 * so re-read the warm_boot_count
					 * value now to ensure this function
					 * doesn't think it has changed next
					 * time it checks.
					 */
					rc = efx_ef10_get_warm_boot_count(efx);
					if (rc >= 0) {
						nic_data->warm_boot_count = rc;
						rc = 0;
					}
3072
				}
3073
				nic_data->workaround_26807 = true;
3074
			} else if (rc == -EPERM) {
3075
				rc = 0;
3076
			}
3077
		}
3078 3079 3080 3081
	}

	if (!rc)
		return 0;
3082 3083

fail:
3084 3085
	efx_ef10_ev_fini(channel);
	return rc;
3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158
}

static void efx_ef10_ev_remove(struct efx_channel *channel)
{
	efx_nic_free_buffer(channel->efx, &channel->eventq.buf);
}

static void efx_ef10_handle_rx_wrong_queue(struct efx_rx_queue *rx_queue,
					   unsigned int rx_queue_label)
{
	struct efx_nic *efx = rx_queue->efx;

	netif_info(efx, hw, efx->net_dev,
		   "rx event arrived on queue %d labeled as queue %u\n",
		   efx_rx_queue_index(rx_queue), rx_queue_label);

	efx_schedule_reset(efx, RESET_TYPE_DISABLE);
}

static void
efx_ef10_handle_rx_bad_lbits(struct efx_rx_queue *rx_queue,
			     unsigned int actual, unsigned int expected)
{
	unsigned int dropped = (actual - expected) & rx_queue->ptr_mask;
	struct efx_nic *efx = rx_queue->efx;

	netif_info(efx, hw, efx->net_dev,
		   "dropped %d events (index=%d expected=%d)\n",
		   dropped, actual, expected);

	efx_schedule_reset(efx, RESET_TYPE_DISABLE);
}

/* partially received RX was aborted. clean up. */
static void efx_ef10_handle_rx_abort(struct efx_rx_queue *rx_queue)
{
	unsigned int rx_desc_ptr;

	netif_dbg(rx_queue->efx, hw, rx_queue->efx->net_dev,
		  "scattered RX aborted (dropping %u buffers)\n",
		  rx_queue->scatter_n);

	rx_desc_ptr = rx_queue->removed_count & rx_queue->ptr_mask;

	efx_rx_packet(rx_queue, rx_desc_ptr, rx_queue->scatter_n,
		      0, EFX_RX_PKT_DISCARD);

	rx_queue->removed_count += rx_queue->scatter_n;
	rx_queue->scatter_n = 0;
	rx_queue->scatter_len = 0;
	++efx_rx_queue_channel(rx_queue)->n_rx_nodesc_trunc;
}

static int efx_ef10_handle_rx_event(struct efx_channel *channel,
				    const efx_qword_t *event)
{
	unsigned int rx_bytes, next_ptr_lbits, rx_queue_label, rx_l4_class;
	unsigned int n_descs, n_packets, i;
	struct efx_nic *efx = channel->efx;
	struct efx_rx_queue *rx_queue;
	bool rx_cont;
	u16 flags = 0;

	if (unlikely(ACCESS_ONCE(efx->reset_pending)))
		return 0;

	/* Basic packet information */
	rx_bytes = EFX_QWORD_FIELD(*event, ESF_DZ_RX_BYTES);
	next_ptr_lbits = EFX_QWORD_FIELD(*event, ESF_DZ_RX_DSC_PTR_LBITS);
	rx_queue_label = EFX_QWORD_FIELD(*event, ESF_DZ_RX_QLABEL);
	rx_l4_class = EFX_QWORD_FIELD(*event, ESF_DZ_RX_L4_CLASS);
	rx_cont = EFX_QWORD_FIELD(*event, ESF_DZ_RX_CONT);

3159 3160 3161 3162
	if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_DROP_EVENT))
		netdev_WARN(efx->net_dev, "saw RX_DROP_EVENT: event="
			    EFX_QWORD_FMT "\n",
			    EFX_QWORD_VAL(*event));
3163 3164 3165 3166 3167 3168 3169 3170 3171 3172

	rx_queue = efx_channel_get_rx_queue(channel);

	if (unlikely(rx_queue_label != efx_rx_queue_index(rx_queue)))
		efx_ef10_handle_rx_wrong_queue(rx_queue, rx_queue_label);

	n_descs = ((next_ptr_lbits - rx_queue->removed_count) &
		   ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));

	if (n_descs != rx_queue->scatter_n + 1) {
3173 3174
		struct efx_ef10_nic_data *nic_data = efx->nic_data;

3175 3176
		/* detect rx abort */
		if (unlikely(n_descs == rx_queue->scatter_n)) {
3177 3178 3179 3180 3181 3182
			if (rx_queue->scatter_n == 0 || rx_bytes != 0)
				netdev_WARN(efx->net_dev,
					    "invalid RX abort: scatter_n=%u event="
					    EFX_QWORD_FMT "\n",
					    rx_queue->scatter_n,
					    EFX_QWORD_VAL(*event));
3183 3184 3185 3186
			efx_ef10_handle_rx_abort(rx_queue);
			return 0;
		}

3187 3188 3189 3190 3191 3192 3193
		/* Check that RX completion merging is valid, i.e.
		 * the current firmware supports it and this is a
		 * non-scattered packet.
		 */
		if (!(nic_data->datapath_caps &
		      (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN)) ||
		    rx_queue->scatter_n != 0 || rx_cont) {
3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318
			efx_ef10_handle_rx_bad_lbits(
				rx_queue, next_ptr_lbits,
				(rx_queue->removed_count +
				 rx_queue->scatter_n + 1) &
				((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
			return 0;
		}

		/* Merged completion for multiple non-scattered packets */
		rx_queue->scatter_n = 1;
		rx_queue->scatter_len = 0;
		n_packets = n_descs;
		++channel->n_rx_merge_events;
		channel->n_rx_merge_packets += n_packets;
		flags |= EFX_RX_PKT_PREFIX_LEN;
	} else {
		++rx_queue->scatter_n;
		rx_queue->scatter_len += rx_bytes;
		if (rx_cont)
			return 0;
		n_packets = 1;
	}

	if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_RX_ECRC_ERR)))
		flags |= EFX_RX_PKT_DISCARD;

	if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_RX_IPCKSUM_ERR))) {
		channel->n_rx_ip_hdr_chksum_err += n_packets;
	} else if (unlikely(EFX_QWORD_FIELD(*event,
					    ESF_DZ_RX_TCPUDP_CKSUM_ERR))) {
		channel->n_rx_tcp_udp_chksum_err += n_packets;
	} else if (rx_l4_class == ESE_DZ_L4_CLASS_TCP ||
		   rx_l4_class == ESE_DZ_L4_CLASS_UDP) {
		flags |= EFX_RX_PKT_CSUMMED;
	}

	if (rx_l4_class == ESE_DZ_L4_CLASS_TCP)
		flags |= EFX_RX_PKT_TCP;

	channel->irq_mod_score += 2 * n_packets;

	/* Handle received packet(s) */
	for (i = 0; i < n_packets; i++) {
		efx_rx_packet(rx_queue,
			      rx_queue->removed_count & rx_queue->ptr_mask,
			      rx_queue->scatter_n, rx_queue->scatter_len,
			      flags);
		rx_queue->removed_count += rx_queue->scatter_n;
	}

	rx_queue->scatter_n = 0;
	rx_queue->scatter_len = 0;

	return n_packets;
}

static int
efx_ef10_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
{
	struct efx_nic *efx = channel->efx;
	struct efx_tx_queue *tx_queue;
	unsigned int tx_ev_desc_ptr;
	unsigned int tx_ev_q_label;
	int tx_descs = 0;

	if (unlikely(ACCESS_ONCE(efx->reset_pending)))
		return 0;

	if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_TX_DROP_EVENT)))
		return 0;

	/* Transmit completion */
	tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, ESF_DZ_TX_DESCR_INDX);
	tx_ev_q_label = EFX_QWORD_FIELD(*event, ESF_DZ_TX_QLABEL);
	tx_queue = efx_channel_get_tx_queue(channel,
					    tx_ev_q_label % EFX_TXQ_TYPES);
	tx_descs = ((tx_ev_desc_ptr + 1 - tx_queue->read_count) &
		    tx_queue->ptr_mask);
	efx_xmit_done(tx_queue, tx_ev_desc_ptr & tx_queue->ptr_mask);

	return tx_descs;
}

static void
efx_ef10_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
{
	struct efx_nic *efx = channel->efx;
	int subcode;

	subcode = EFX_QWORD_FIELD(*event, ESF_DZ_DRV_SUB_CODE);

	switch (subcode) {
	case ESE_DZ_DRV_TIMER_EV:
	case ESE_DZ_DRV_WAKE_UP_EV:
		break;
	case ESE_DZ_DRV_START_UP_EV:
		/* event queue init complete. ok. */
		break;
	default:
		netif_err(efx, hw, efx->net_dev,
			  "channel %d unknown driver event type %d"
			  " (data " EFX_QWORD_FMT ")\n",
			  channel->channel, subcode,
			  EFX_QWORD_VAL(*event));

	}
}

static void efx_ef10_handle_driver_generated_event(struct efx_channel *channel,
						   efx_qword_t *event)
{
	struct efx_nic *efx = channel->efx;
	u32 subcode;

	subcode = EFX_QWORD_FIELD(*event, EFX_DWORD_0);

	switch (subcode) {
	case EFX_EF10_TEST:
		channel->event_test_cpu = raw_smp_processor_id();
		break;
	case EFX_EF10_REFILL:
		/* The queue must be empty, so we won't receive any rx
		 * events, so efx_process_channel() won't refill the
		 * queue. Refill it here
		 */
3319
		efx_fast_push_rx_descriptors(&channel->rx_queue, true);
3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338
		break;
	default:
		netif_err(efx, hw, efx->net_dev,
			  "channel %d unknown driver event type %u"
			  " (data " EFX_QWORD_FMT ")\n",
			  channel->channel, (unsigned) subcode,
			  EFX_QWORD_VAL(*event));
	}
}

static int efx_ef10_ev_process(struct efx_channel *channel, int quota)
{
	struct efx_nic *efx = channel->efx;
	efx_qword_t event, *p_event;
	unsigned int read_ptr;
	int ev_code;
	int tx_descs = 0;
	int spent = 0;

3339 3340 3341
	if (quota <= 0)
		return spent;

3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517
	read_ptr = channel->eventq_read_ptr;

	for (;;) {
		p_event = efx_event(channel, read_ptr);
		event = *p_event;

		if (!efx_event_present(&event))
			break;

		EFX_SET_QWORD(*p_event);

		++read_ptr;

		ev_code = EFX_QWORD_FIELD(event, ESF_DZ_EV_CODE);

		netif_vdbg(efx, drv, efx->net_dev,
			   "processing event on %d " EFX_QWORD_FMT "\n",
			   channel->channel, EFX_QWORD_VAL(event));

		switch (ev_code) {
		case ESE_DZ_EV_CODE_MCDI_EV:
			efx_mcdi_process_event(channel, &event);
			break;
		case ESE_DZ_EV_CODE_RX_EV:
			spent += efx_ef10_handle_rx_event(channel, &event);
			if (spent >= quota) {
				/* XXX can we split a merged event to
				 * avoid going over-quota?
				 */
				spent = quota;
				goto out;
			}
			break;
		case ESE_DZ_EV_CODE_TX_EV:
			tx_descs += efx_ef10_handle_tx_event(channel, &event);
			if (tx_descs > efx->txq_entries) {
				spent = quota;
				goto out;
			} else if (++spent == quota) {
				goto out;
			}
			break;
		case ESE_DZ_EV_CODE_DRIVER_EV:
			efx_ef10_handle_driver_event(channel, &event);
			if (++spent == quota)
				goto out;
			break;
		case EFX_EF10_DRVGEN_EV:
			efx_ef10_handle_driver_generated_event(channel, &event);
			break;
		default:
			netif_err(efx, hw, efx->net_dev,
				  "channel %d unknown event type %d"
				  " (data " EFX_QWORD_FMT ")\n",
				  channel->channel, ev_code,
				  EFX_QWORD_VAL(event));
		}
	}

out:
	channel->eventq_read_ptr = read_ptr;
	return spent;
}

static void efx_ef10_ev_read_ack(struct efx_channel *channel)
{
	struct efx_nic *efx = channel->efx;
	efx_dword_t rptr;

	if (EFX_EF10_WORKAROUND_35388(efx)) {
		BUILD_BUG_ON(EFX_MIN_EVQ_SIZE <
			     (1 << ERF_DD_EVQ_IND_RPTR_WIDTH));
		BUILD_BUG_ON(EFX_MAX_EVQ_SIZE >
			     (1 << 2 * ERF_DD_EVQ_IND_RPTR_WIDTH));

		EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
				     EFE_DD_EVQ_IND_RPTR_FLAGS_HIGH,
				     ERF_DD_EVQ_IND_RPTR,
				     (channel->eventq_read_ptr &
				      channel->eventq_mask) >>
				     ERF_DD_EVQ_IND_RPTR_WIDTH);
		efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
				channel->channel);
		EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
				     EFE_DD_EVQ_IND_RPTR_FLAGS_LOW,
				     ERF_DD_EVQ_IND_RPTR,
				     channel->eventq_read_ptr &
				     ((1 << ERF_DD_EVQ_IND_RPTR_WIDTH) - 1));
		efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
				channel->channel);
	} else {
		EFX_POPULATE_DWORD_1(rptr, ERF_DZ_EVQ_RPTR,
				     channel->eventq_read_ptr &
				     channel->eventq_mask);
		efx_writed_page(efx, &rptr, ER_DZ_EVQ_RPTR, channel->channel);
	}
}

static void efx_ef10_ev_test_generate(struct efx_channel *channel)
{
	MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
	struct efx_nic *efx = channel->efx;
	efx_qword_t event;
	int rc;

	EFX_POPULATE_QWORD_2(event,
			     ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
			     ESF_DZ_EV_DATA, EFX_EF10_TEST);

	MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);

	/* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
	 * already swapped the data to little-endian order.
	 */
	memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
	       sizeof(efx_qword_t));

	rc = efx_mcdi_rpc(efx, MC_CMD_DRIVER_EVENT, inbuf, sizeof(inbuf),
			  NULL, 0, NULL);
	if (rc != 0)
		goto fail;

	return;

fail:
	WARN_ON(true);
	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
}

void efx_ef10_handle_drain_event(struct efx_nic *efx)
{
	if (atomic_dec_and_test(&efx->active_queues))
		wake_up(&efx->flush_wq);

	WARN_ON(atomic_read(&efx->active_queues) < 0);
}

static int efx_ef10_fini_dmaq(struct efx_nic *efx)
{
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
	int pending;

	/* If the MC has just rebooted, the TX/RX queues will have already been
	 * torn down, but efx->active_queues needs to be set to zero.
	 */
	if (nic_data->must_realloc_vis) {
		atomic_set(&efx->active_queues, 0);
		return 0;
	}

	/* Do not attempt to write to the NIC during EEH recovery */
	if (efx->state != STATE_RECOVERY) {
		efx_for_each_channel(channel, efx) {
			efx_for_each_channel_rx_queue(rx_queue, channel)
				efx_ef10_rx_fini(rx_queue);
			efx_for_each_channel_tx_queue(tx_queue, channel)
				efx_ef10_tx_fini(tx_queue);
		}

		wait_event_timeout(efx->flush_wq,
				   atomic_read(&efx->active_queues) == 0,
				   msecs_to_jiffies(EFX_MAX_FLUSH_TIME));
		pending = atomic_read(&efx->active_queues);
		if (pending) {
			netif_err(efx, hw, efx->net_dev, "failed to flush %d queues\n",
				  pending);
			return -ETIMEDOUT;
		}
	}

	return 0;
}

3518 3519 3520 3521 3522
static void efx_ef10_prepare_flr(struct efx_nic *efx)
{
	atomic_set(&efx->active_queues, 0);
}

3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600
static bool efx_ef10_filter_equal(const struct efx_filter_spec *left,
				  const struct efx_filter_spec *right)
{
	if ((left->match_flags ^ right->match_flags) |
	    ((left->flags ^ right->flags) &
	     (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)))
		return false;

	return memcmp(&left->outer_vid, &right->outer_vid,
		      sizeof(struct efx_filter_spec) -
		      offsetof(struct efx_filter_spec, outer_vid)) == 0;
}

static unsigned int efx_ef10_filter_hash(const struct efx_filter_spec *spec)
{
	BUILD_BUG_ON(offsetof(struct efx_filter_spec, outer_vid) & 3);
	return jhash2((const u32 *)&spec->outer_vid,
		      (sizeof(struct efx_filter_spec) -
		       offsetof(struct efx_filter_spec, outer_vid)) / 4,
		      0);
	/* XXX should we randomise the initval? */
}

/* Decide whether a filter should be exclusive or else should allow
 * delivery to additional recipients.  Currently we decide that
 * filters for specific local unicast MAC and IP addresses are
 * exclusive.
 */
static bool efx_ef10_filter_is_exclusive(const struct efx_filter_spec *spec)
{
	if (spec->match_flags & EFX_FILTER_MATCH_LOC_MAC &&
	    !is_multicast_ether_addr(spec->loc_mac))
		return true;

	if ((spec->match_flags &
	     (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) ==
	    (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) {
		if (spec->ether_type == htons(ETH_P_IP) &&
		    !ipv4_is_multicast(spec->loc_host[0]))
			return true;
		if (spec->ether_type == htons(ETH_P_IPV6) &&
		    ((const u8 *)spec->loc_host)[0] != 0xff)
			return true;
	}

	return false;
}

static struct efx_filter_spec *
efx_ef10_filter_entry_spec(const struct efx_ef10_filter_table *table,
			   unsigned int filter_idx)
{
	return (struct efx_filter_spec *)(table->entry[filter_idx].spec &
					  ~EFX_EF10_FILTER_FLAGS);
}

static unsigned int
efx_ef10_filter_entry_flags(const struct efx_ef10_filter_table *table,
			   unsigned int filter_idx)
{
	return table->entry[filter_idx].spec & EFX_EF10_FILTER_FLAGS;
}

static void
efx_ef10_filter_set_entry(struct efx_ef10_filter_table *table,
			  unsigned int filter_idx,
			  const struct efx_filter_spec *spec,
			  unsigned int flags)
{
	table->entry[filter_idx].spec =	(unsigned long)spec | flags;
}

static void efx_ef10_filter_push_prep(struct efx_nic *efx,
				      const struct efx_filter_spec *spec,
				      efx_dword_t *inbuf, u64 handle,
				      bool replacing)
{
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
J
Jon Cooper 已提交
3601
	u32 flags = spec->flags;
3602 3603 3604

	memset(inbuf, 0, MC_CMD_FILTER_OP_IN_LEN);

J
Jon Cooper 已提交
3605 3606 3607 3608 3609 3610
	/* Remove RSS flag if we don't have an RSS context. */
	if (flags & EFX_FILTER_FLAG_RX_RSS &&
	    spec->rss_context == EFX_FILTER_RSS_CONTEXT_DEFAULT &&
	    nic_data->rx_rss_context == EFX_EF10_RSS_CONTEXT_INVALID)
		flags &= ~EFX_FILTER_FLAG_RX_RSS;

3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657
	if (replacing) {
		MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
			       MC_CMD_FILTER_OP_IN_OP_REPLACE);
		MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE, handle);
	} else {
		u32 match_fields = 0;

		MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
			       efx_ef10_filter_is_exclusive(spec) ?
			       MC_CMD_FILTER_OP_IN_OP_INSERT :
			       MC_CMD_FILTER_OP_IN_OP_SUBSCRIBE);

		/* Convert match flags and values.  Unlike almost
		 * everything else in MCDI, these fields are in
		 * network byte order.
		 */
		if (spec->match_flags & EFX_FILTER_MATCH_LOC_MAC_IG)
			match_fields |=
				is_multicast_ether_addr(spec->loc_mac) ?
				1 << MC_CMD_FILTER_OP_IN_MATCH_UNKNOWN_MCAST_DST_LBN :
				1 << MC_CMD_FILTER_OP_IN_MATCH_UNKNOWN_UCAST_DST_LBN;
#define COPY_FIELD(gen_flag, gen_field, mcdi_field)			     \
		if (spec->match_flags & EFX_FILTER_MATCH_ ## gen_flag) {     \
			match_fields |=					     \
				1 << MC_CMD_FILTER_OP_IN_MATCH_ ##	     \
				mcdi_field ## _LBN;			     \
			BUILD_BUG_ON(					     \
				MC_CMD_FILTER_OP_IN_ ## mcdi_field ## _LEN < \
				sizeof(spec->gen_field));		     \
			memcpy(MCDI_PTR(inbuf, FILTER_OP_IN_ ##	mcdi_field), \
			       &spec->gen_field, sizeof(spec->gen_field));   \
		}
		COPY_FIELD(REM_HOST, rem_host, SRC_IP);
		COPY_FIELD(LOC_HOST, loc_host, DST_IP);
		COPY_FIELD(REM_MAC, rem_mac, SRC_MAC);
		COPY_FIELD(REM_PORT, rem_port, SRC_PORT);
		COPY_FIELD(LOC_MAC, loc_mac, DST_MAC);
		COPY_FIELD(LOC_PORT, loc_port, DST_PORT);
		COPY_FIELD(ETHER_TYPE, ether_type, ETHER_TYPE);
		COPY_FIELD(INNER_VID, inner_vid, INNER_VLAN);
		COPY_FIELD(OUTER_VID, outer_vid, OUTER_VLAN);
		COPY_FIELD(IP_PROTO, ip_proto, IP_PROTO);
#undef COPY_FIELD
		MCDI_SET_DWORD(inbuf, FILTER_OP_IN_MATCH_FIELDS,
			       match_fields);
	}

3658
	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_PORT_ID, nic_data->vport_id);
3659 3660 3661 3662
	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_DEST,
		       spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP ?
		       MC_CMD_FILTER_OP_IN_RX_DEST_DROP :
		       MC_CMD_FILTER_OP_IN_RX_DEST_HOST);
3663
	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_TX_DOMAIN, 0);
3664 3665
	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_TX_DEST,
		       MC_CMD_FILTER_OP_IN_TX_DEST_DEFAULT);
B
Ben Hutchings 已提交
3666 3667 3668
	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_QUEUE,
		       spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP ?
		       0 : spec->dmaq_id);
3669
	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_MODE,
J
Jon Cooper 已提交
3670
		       (flags & EFX_FILTER_FLAG_RX_RSS) ?
3671 3672
		       MC_CMD_FILTER_OP_IN_RX_MODE_RSS :
		       MC_CMD_FILTER_OP_IN_RX_MODE_SIMPLE);
J
Jon Cooper 已提交
3673
	if (flags & EFX_FILTER_FLAG_RX_RSS)
3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692
		MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_CONTEXT,
			       spec->rss_context !=
			       EFX_FILTER_RSS_CONTEXT_DEFAULT ?
			       spec->rss_context : nic_data->rx_rss_context);
}

static int efx_ef10_filter_push(struct efx_nic *efx,
				const struct efx_filter_spec *spec,
				u64 *handle, bool replacing)
{
	MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
	MCDI_DECLARE_BUF(outbuf, MC_CMD_FILTER_OP_OUT_LEN);
	int rc;

	efx_ef10_filter_push_prep(efx, spec, inbuf, *handle, replacing);
	rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf),
			  outbuf, sizeof(outbuf), NULL);
	if (rc == 0)
		*handle = MCDI_QWORD(outbuf, FILTER_OP_OUT_HANDLE);
3693 3694
	if (rc == -ENOSPC)
		rc = -EBUSY; /* to match efx_farch_filter_insert() */
3695 3696 3697
	return rc;
}

3698
static u32 efx_ef10_filter_mcdi_flags_from_spec(const struct efx_filter_spec *spec)
3699
{
3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740
	unsigned int match_flags = spec->match_flags;
	u32 mcdi_flags = 0;

	if (match_flags & EFX_FILTER_MATCH_LOC_MAC_IG) {
		match_flags &= ~EFX_FILTER_MATCH_LOC_MAC_IG;
		mcdi_flags |=
			is_multicast_ether_addr(spec->loc_mac) ?
			(1 << MC_CMD_FILTER_OP_IN_MATCH_UNKNOWN_MCAST_DST_LBN) :
			(1 << MC_CMD_FILTER_OP_IN_MATCH_UNKNOWN_UCAST_DST_LBN);
	}

#define MAP_FILTER_TO_MCDI_FLAG(gen_flag, mcdi_field) {			\
		unsigned int old_match_flags = match_flags;		\
		match_flags &= ~EFX_FILTER_MATCH_ ## gen_flag;		\
		if (match_flags != old_match_flags)			\
			mcdi_flags |=					\
				(1 << MC_CMD_FILTER_OP_IN_MATCH_ ##	\
				 mcdi_field ## _LBN);			\
	}
	MAP_FILTER_TO_MCDI_FLAG(REM_HOST, SRC_IP);
	MAP_FILTER_TO_MCDI_FLAG(LOC_HOST, DST_IP);
	MAP_FILTER_TO_MCDI_FLAG(REM_MAC, SRC_MAC);
	MAP_FILTER_TO_MCDI_FLAG(REM_PORT, SRC_PORT);
	MAP_FILTER_TO_MCDI_FLAG(LOC_MAC, DST_MAC);
	MAP_FILTER_TO_MCDI_FLAG(LOC_PORT, DST_PORT);
	MAP_FILTER_TO_MCDI_FLAG(ETHER_TYPE, ETHER_TYPE);
	MAP_FILTER_TO_MCDI_FLAG(INNER_VID, INNER_VLAN);
	MAP_FILTER_TO_MCDI_FLAG(OUTER_VID, OUTER_VLAN);
	MAP_FILTER_TO_MCDI_FLAG(IP_PROTO, IP_PROTO);
#undef MAP_FILTER_TO_MCDI_FLAG

	/* Did we map them all? */
	WARN_ON_ONCE(match_flags);

	return mcdi_flags;
}

static int efx_ef10_filter_pri(struct efx_ef10_filter_table *table,
			       const struct efx_filter_spec *spec)
{
	u32 mcdi_flags = efx_ef10_filter_mcdi_flags_from_spec(spec);
3741 3742 3743 3744 3745
	unsigned int match_pri;

	for (match_pri = 0;
	     match_pri < table->rx_match_count;
	     match_pri++)
3746
		if (table->rx_match_mcdi_flags[match_pri] == mcdi_flags)
3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771
			return match_pri;

	return -EPROTONOSUPPORT;
}

static s32 efx_ef10_filter_insert(struct efx_nic *efx,
				  struct efx_filter_spec *spec,
				  bool replace_equal)
{
	struct efx_ef10_filter_table *table = efx->filter_state;
	DECLARE_BITMAP(mc_rem_map, EFX_EF10_FILTER_SEARCH_LIMIT);
	struct efx_filter_spec *saved_spec;
	unsigned int match_pri, hash;
	unsigned int priv_flags;
	bool replacing = false;
	int ins_index = -1;
	DEFINE_WAIT(wait);
	bool is_mc_recip;
	s32 rc;

	/* For now, only support RX filters */
	if ((spec->flags & (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)) !=
	    EFX_FILTER_FLAG_RX)
		return -EINVAL;

3772
	rc = efx_ef10_filter_pri(table, spec);
3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803
	if (rc < 0)
		return rc;
	match_pri = rc;

	hash = efx_ef10_filter_hash(spec);
	is_mc_recip = efx_filter_is_mc_recipient(spec);
	if (is_mc_recip)
		bitmap_zero(mc_rem_map, EFX_EF10_FILTER_SEARCH_LIMIT);

	/* Find any existing filters with the same match tuple or
	 * else a free slot to insert at.  If any of them are busy,
	 * we have to wait and retry.
	 */
	for (;;) {
		unsigned int depth = 1;
		unsigned int i;

		spin_lock_bh(&efx->filter_lock);

		for (;;) {
			i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
			saved_spec = efx_ef10_filter_entry_spec(table, i);

			if (!saved_spec) {
				if (ins_index < 0)
					ins_index = i;
			} else if (efx_ef10_filter_equal(spec, saved_spec)) {
				if (table->entry[i].spec &
				    EFX_EF10_FILTER_FLAG_BUSY)
					break;
				if (spec->priority < saved_spec->priority &&
3804
				    spec->priority != EFX_FILTER_PRI_AUTO) {
3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857
					rc = -EPERM;
					goto out_unlock;
				}
				if (!is_mc_recip) {
					/* This is the only one */
					if (spec->priority ==
					    saved_spec->priority &&
					    !replace_equal) {
						rc = -EEXIST;
						goto out_unlock;
					}
					ins_index = i;
					goto found;
				} else if (spec->priority >
					   saved_spec->priority ||
					   (spec->priority ==
					    saved_spec->priority &&
					    replace_equal)) {
					if (ins_index < 0)
						ins_index = i;
					else
						__set_bit(depth, mc_rem_map);
				}
			}

			/* Once we reach the maximum search depth, use
			 * the first suitable slot or return -EBUSY if
			 * there was none
			 */
			if (depth == EFX_EF10_FILTER_SEARCH_LIMIT) {
				if (ins_index < 0) {
					rc = -EBUSY;
					goto out_unlock;
				}
				goto found;
			}

			++depth;
		}

		prepare_to_wait(&table->waitq, &wait, TASK_UNINTERRUPTIBLE);
		spin_unlock_bh(&efx->filter_lock);
		schedule();
	}

found:
	/* Create a software table entry if necessary, and mark it
	 * busy.  We might yet fail to insert, but any attempt to
	 * insert a conflicting filter while we're waiting for the
	 * firmware must find the busy entry.
	 */
	saved_spec = efx_ef10_filter_entry_spec(table, ins_index);
	if (saved_spec) {
3858 3859
		if (spec->priority == EFX_FILTER_PRI_AUTO &&
		    saved_spec->priority >= EFX_FILTER_PRI_AUTO) {
3860
			/* Just make sure it won't be removed */
3861 3862
			if (saved_spec->priority > EFX_FILTER_PRI_AUTO)
				saved_spec->flags |= EFX_FILTER_FLAG_RX_OVER_AUTO;
3863
			table->entry[ins_index].spec &=
3864
				~EFX_EF10_FILTER_FLAG_AUTO_OLD;
3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903
			rc = ins_index;
			goto out_unlock;
		}
		replacing = true;
		priv_flags = efx_ef10_filter_entry_flags(table, ins_index);
	} else {
		saved_spec = kmalloc(sizeof(*spec), GFP_ATOMIC);
		if (!saved_spec) {
			rc = -ENOMEM;
			goto out_unlock;
		}
		*saved_spec = *spec;
		priv_flags = 0;
	}
	efx_ef10_filter_set_entry(table, ins_index, saved_spec,
				  priv_flags | EFX_EF10_FILTER_FLAG_BUSY);

	/* Mark lower-priority multicast recipients busy prior to removal */
	if (is_mc_recip) {
		unsigned int depth, i;

		for (depth = 0; depth < EFX_EF10_FILTER_SEARCH_LIMIT; depth++) {
			i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
			if (test_bit(depth, mc_rem_map))
				table->entry[i].spec |=
					EFX_EF10_FILTER_FLAG_BUSY;
		}
	}

	spin_unlock_bh(&efx->filter_lock);

	rc = efx_ef10_filter_push(efx, spec, &table->entry[ins_index].handle,
				  replacing);

	/* Finalise the software table entry */
	spin_lock_bh(&efx->filter_lock);
	if (rc == 0) {
		if (replacing) {
			/* Update the fields that may differ */
3904 3905 3906
			if (saved_spec->priority == EFX_FILTER_PRI_AUTO)
				saved_spec->flags |=
					EFX_FILTER_FLAG_RX_OVER_AUTO;
3907
			saved_spec->priority = spec->priority;
3908
			saved_spec->flags &= EFX_FILTER_FLAG_RX_OVER_AUTO;
3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970
			saved_spec->flags |= spec->flags;
			saved_spec->rss_context = spec->rss_context;
			saved_spec->dmaq_id = spec->dmaq_id;
		}
	} else if (!replacing) {
		kfree(saved_spec);
		saved_spec = NULL;
	}
	efx_ef10_filter_set_entry(table, ins_index, saved_spec, priv_flags);

	/* Remove and finalise entries for lower-priority multicast
	 * recipients
	 */
	if (is_mc_recip) {
		MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
		unsigned int depth, i;

		memset(inbuf, 0, sizeof(inbuf));

		for (depth = 0; depth < EFX_EF10_FILTER_SEARCH_LIMIT; depth++) {
			if (!test_bit(depth, mc_rem_map))
				continue;

			i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
			saved_spec = efx_ef10_filter_entry_spec(table, i);
			priv_flags = efx_ef10_filter_entry_flags(table, i);

			if (rc == 0) {
				spin_unlock_bh(&efx->filter_lock);
				MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
					       MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
				MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
					       table->entry[i].handle);
				rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP,
						  inbuf, sizeof(inbuf),
						  NULL, 0, NULL);
				spin_lock_bh(&efx->filter_lock);
			}

			if (rc == 0) {
				kfree(saved_spec);
				saved_spec = NULL;
				priv_flags = 0;
			} else {
				priv_flags &= ~EFX_EF10_FILTER_FLAG_BUSY;
			}
			efx_ef10_filter_set_entry(table, i, saved_spec,
						  priv_flags);
		}
	}

	/* If successful, return the inserted filter ID */
	if (rc == 0)
		rc = match_pri * HUNT_FILTER_TBL_ROWS + ins_index;

	wake_up_all(&table->waitq);
out_unlock:
	spin_unlock_bh(&efx->filter_lock);
	finish_wait(&table->waitq, &wait);
	return rc;
}

3971
static void efx_ef10_filter_update_rx_scatter(struct efx_nic *efx)
3972 3973 3974 3975 3976
{
	/* no need to do anything here on EF10 */
}

/* Remove a filter.
3977 3978
 * If !by_index, remove by ID
 * If by_index, remove by index
3979 3980 3981
 * Filter ID may come from userland and must be range-checked.
 */
static int efx_ef10_filter_remove_internal(struct efx_nic *efx,
3982
					   unsigned int priority_mask,
3983
					   u32 filter_id, bool by_index)
3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006
{
	unsigned int filter_idx = filter_id % HUNT_FILTER_TBL_ROWS;
	struct efx_ef10_filter_table *table = efx->filter_state;
	MCDI_DECLARE_BUF(inbuf,
			 MC_CMD_FILTER_OP_IN_HANDLE_OFST +
			 MC_CMD_FILTER_OP_IN_HANDLE_LEN);
	struct efx_filter_spec *spec;
	DEFINE_WAIT(wait);
	int rc;

	/* Find the software table entry and mark it busy.  Don't
	 * remove it yet; any attempt to update while we're waiting
	 * for the firmware must find the busy entry.
	 */
	for (;;) {
		spin_lock_bh(&efx->filter_lock);
		if (!(table->entry[filter_idx].spec &
		      EFX_EF10_FILTER_FLAG_BUSY))
			break;
		prepare_to_wait(&table->waitq, &wait, TASK_UNINTERRUPTIBLE);
		spin_unlock_bh(&efx->filter_lock);
		schedule();
	}
4007

4008
	spec = efx_ef10_filter_entry_spec(table, filter_idx);
4009
	if (!spec ||
4010
	    (!by_index &&
4011
	     efx_ef10_filter_pri(table, spec) !=
4012 4013 4014 4015
	     filter_id / HUNT_FILTER_TBL_ROWS)) {
		rc = -ENOENT;
		goto out_unlock;
	}
4016 4017

	if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO &&
4018
	    priority_mask == (1U << EFX_FILTER_PRI_AUTO)) {
4019 4020
		/* Just remove flags */
		spec->flags &= ~EFX_FILTER_FLAG_RX_OVER_AUTO;
4021
		table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_AUTO_OLD;
4022 4023 4024 4025
		rc = 0;
		goto out_unlock;
	}

4026
	if (!(priority_mask & (1U << spec->priority))) {
4027 4028 4029 4030
		rc = -ENOENT;
		goto out_unlock;
	}

4031 4032 4033
	table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
	spin_unlock_bh(&efx->filter_lock);

4034
	if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO) {
4035
		/* Reset to an automatic filter */
4036 4037 4038

		struct efx_filter_spec new_spec = *spec;

4039
		new_spec.priority = EFX_FILTER_PRI_AUTO;
4040
		new_spec.flags = (EFX_FILTER_FLAG_RX |
4041 4042
				  (efx_rss_enabled(efx) ?
				   EFX_FILTER_FLAG_RX_RSS : 0));
4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069
		new_spec.dmaq_id = 0;
		new_spec.rss_context = EFX_FILTER_RSS_CONTEXT_DEFAULT;
		rc = efx_ef10_filter_push(efx, &new_spec,
					  &table->entry[filter_idx].handle,
					  true);

		spin_lock_bh(&efx->filter_lock);
		if (rc == 0)
			*spec = new_spec;
	} else {
		/* Really remove the filter */

		MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
			       efx_ef10_filter_is_exclusive(spec) ?
			       MC_CMD_FILTER_OP_IN_OP_REMOVE :
			       MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
		MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
			       table->entry[filter_idx].handle);
		rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP,
				  inbuf, sizeof(inbuf), NULL, 0, NULL);

		spin_lock_bh(&efx->filter_lock);
		if (rc == 0) {
			kfree(spec);
			efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
		}
	}
4070

4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082
	table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_BUSY;
	wake_up_all(&table->waitq);
out_unlock:
	spin_unlock_bh(&efx->filter_lock);
	finish_wait(&table->waitq, &wait);
	return rc;
}

static int efx_ef10_filter_remove_safe(struct efx_nic *efx,
				       enum efx_filter_priority priority,
				       u32 filter_id)
{
4083 4084
	return efx_ef10_filter_remove_internal(efx, 1U << priority,
					       filter_id, false);
4085 4086
}

4087 4088 4089 4090 4091
static u32 efx_ef10_filter_get_unsafe_id(struct efx_nic *efx, u32 filter_id)
{
	return filter_id % HUNT_FILTER_TBL_ROWS;
}

4092 4093 4094
static void efx_ef10_filter_remove_unsafe(struct efx_nic *efx,
					  enum efx_filter_priority priority,
					  u32 filter_id)
4095
{
4096 4097 4098
	if (filter_id == EFX_EF10_FILTER_ID_INVALID)
		return;
	efx_ef10_filter_remove_internal(efx, 1U << priority, filter_id, true);
4099 4100
}

4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112
static int efx_ef10_filter_get_safe(struct efx_nic *efx,
				    enum efx_filter_priority priority,
				    u32 filter_id, struct efx_filter_spec *spec)
{
	unsigned int filter_idx = filter_id % HUNT_FILTER_TBL_ROWS;
	struct efx_ef10_filter_table *table = efx->filter_state;
	const struct efx_filter_spec *saved_spec;
	int rc;

	spin_lock_bh(&efx->filter_lock);
	saved_spec = efx_ef10_filter_entry_spec(table, filter_idx);
	if (saved_spec && saved_spec->priority == priority &&
4113
	    efx_ef10_filter_pri(table, saved_spec) ==
4114 4115 4116 4117 4118 4119 4120 4121 4122 4123
	    filter_id / HUNT_FILTER_TBL_ROWS) {
		*spec = *saved_spec;
		rc = 0;
	} else {
		rc = -ENOENT;
	}
	spin_unlock_bh(&efx->filter_lock);
	return rc;
}

4124
static int efx_ef10_filter_clear_rx(struct efx_nic *efx,
4125 4126
				     enum efx_filter_priority priority)
{
4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141
	unsigned int priority_mask;
	unsigned int i;
	int rc;

	priority_mask = (((1U << (priority + 1)) - 1) &
			 ~(1U << EFX_FILTER_PRI_AUTO));

	for (i = 0; i < HUNT_FILTER_TBL_ROWS; i++) {
		rc = efx_ef10_filter_remove_internal(efx, priority_mask,
						     i, true);
		if (rc && rc != -ENOENT)
			return rc;
	}

	return 0;
4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185
}

static u32 efx_ef10_filter_count_rx_used(struct efx_nic *efx,
					 enum efx_filter_priority priority)
{
	struct efx_ef10_filter_table *table = efx->filter_state;
	unsigned int filter_idx;
	s32 count = 0;

	spin_lock_bh(&efx->filter_lock);
	for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
		if (table->entry[filter_idx].spec &&
		    efx_ef10_filter_entry_spec(table, filter_idx)->priority ==
		    priority)
			++count;
	}
	spin_unlock_bh(&efx->filter_lock);
	return count;
}

static u32 efx_ef10_filter_get_rx_id_limit(struct efx_nic *efx)
{
	struct efx_ef10_filter_table *table = efx->filter_state;

	return table->rx_match_count * HUNT_FILTER_TBL_ROWS;
}

static s32 efx_ef10_filter_get_rx_ids(struct efx_nic *efx,
				      enum efx_filter_priority priority,
				      u32 *buf, u32 size)
{
	struct efx_ef10_filter_table *table = efx->filter_state;
	struct efx_filter_spec *spec;
	unsigned int filter_idx;
	s32 count = 0;

	spin_lock_bh(&efx->filter_lock);
	for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
		spec = efx_ef10_filter_entry_spec(table, filter_idx);
		if (spec && spec->priority == priority) {
			if (count == size) {
				count = -EMSGSIZE;
				break;
			}
4186
			buf[count++] = (efx_ef10_filter_pri(table, spec) *
4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421
					HUNT_FILTER_TBL_ROWS +
					filter_idx);
		}
	}
	spin_unlock_bh(&efx->filter_lock);
	return count;
}

#ifdef CONFIG_RFS_ACCEL

static efx_mcdi_async_completer efx_ef10_filter_rfs_insert_complete;

static s32 efx_ef10_filter_rfs_insert(struct efx_nic *efx,
				      struct efx_filter_spec *spec)
{
	struct efx_ef10_filter_table *table = efx->filter_state;
	MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
	struct efx_filter_spec *saved_spec;
	unsigned int hash, i, depth = 1;
	bool replacing = false;
	int ins_index = -1;
	u64 cookie;
	s32 rc;

	/* Must be an RX filter without RSS and not for a multicast
	 * destination address (RFS only works for connected sockets).
	 * These restrictions allow us to pass only a tiny amount of
	 * data through to the completion function.
	 */
	EFX_WARN_ON_PARANOID(spec->flags !=
			     (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_RX_SCATTER));
	EFX_WARN_ON_PARANOID(spec->priority != EFX_FILTER_PRI_HINT);
	EFX_WARN_ON_PARANOID(efx_filter_is_mc_recipient(spec));

	hash = efx_ef10_filter_hash(spec);

	spin_lock_bh(&efx->filter_lock);

	/* Find any existing filter with the same match tuple or else
	 * a free slot to insert at.  If an existing filter is busy,
	 * we have to give up.
	 */
	for (;;) {
		i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
		saved_spec = efx_ef10_filter_entry_spec(table, i);

		if (!saved_spec) {
			if (ins_index < 0)
				ins_index = i;
		} else if (efx_ef10_filter_equal(spec, saved_spec)) {
			if (table->entry[i].spec & EFX_EF10_FILTER_FLAG_BUSY) {
				rc = -EBUSY;
				goto fail_unlock;
			}
			if (spec->priority < saved_spec->priority) {
				rc = -EPERM;
				goto fail_unlock;
			}
			ins_index = i;
			break;
		}

		/* Once we reach the maximum search depth, use the
		 * first suitable slot or return -EBUSY if there was
		 * none
		 */
		if (depth == EFX_EF10_FILTER_SEARCH_LIMIT) {
			if (ins_index < 0) {
				rc = -EBUSY;
				goto fail_unlock;
			}
			break;
		}

		++depth;
	}

	/* Create a software table entry if necessary, and mark it
	 * busy.  We might yet fail to insert, but any attempt to
	 * insert a conflicting filter while we're waiting for the
	 * firmware must find the busy entry.
	 */
	saved_spec = efx_ef10_filter_entry_spec(table, ins_index);
	if (saved_spec) {
		replacing = true;
	} else {
		saved_spec = kmalloc(sizeof(*spec), GFP_ATOMIC);
		if (!saved_spec) {
			rc = -ENOMEM;
			goto fail_unlock;
		}
		*saved_spec = *spec;
	}
	efx_ef10_filter_set_entry(table, ins_index, saved_spec,
				  EFX_EF10_FILTER_FLAG_BUSY);

	spin_unlock_bh(&efx->filter_lock);

	/* Pack up the variables needed on completion */
	cookie = replacing << 31 | ins_index << 16 | spec->dmaq_id;

	efx_ef10_filter_push_prep(efx, spec, inbuf,
				  table->entry[ins_index].handle, replacing);
	efx_mcdi_rpc_async(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf),
			   MC_CMD_FILTER_OP_OUT_LEN,
			   efx_ef10_filter_rfs_insert_complete, cookie);

	return ins_index;

fail_unlock:
	spin_unlock_bh(&efx->filter_lock);
	return rc;
}

static void
efx_ef10_filter_rfs_insert_complete(struct efx_nic *efx, unsigned long cookie,
				    int rc, efx_dword_t *outbuf,
				    size_t outlen_actual)
{
	struct efx_ef10_filter_table *table = efx->filter_state;
	unsigned int ins_index, dmaq_id;
	struct efx_filter_spec *spec;
	bool replacing;

	/* Unpack the cookie */
	replacing = cookie >> 31;
	ins_index = (cookie >> 16) & (HUNT_FILTER_TBL_ROWS - 1);
	dmaq_id = cookie & 0xffff;

	spin_lock_bh(&efx->filter_lock);
	spec = efx_ef10_filter_entry_spec(table, ins_index);
	if (rc == 0) {
		table->entry[ins_index].handle =
			MCDI_QWORD(outbuf, FILTER_OP_OUT_HANDLE);
		if (replacing)
			spec->dmaq_id = dmaq_id;
	} else if (!replacing) {
		kfree(spec);
		spec = NULL;
	}
	efx_ef10_filter_set_entry(table, ins_index, spec, 0);
	spin_unlock_bh(&efx->filter_lock);

	wake_up_all(&table->waitq);
}

static void
efx_ef10_filter_rfs_expire_complete(struct efx_nic *efx,
				    unsigned long filter_idx,
				    int rc, efx_dword_t *outbuf,
				    size_t outlen_actual);

static bool efx_ef10_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
					   unsigned int filter_idx)
{
	struct efx_ef10_filter_table *table = efx->filter_state;
	struct efx_filter_spec *spec =
		efx_ef10_filter_entry_spec(table, filter_idx);
	MCDI_DECLARE_BUF(inbuf,
			 MC_CMD_FILTER_OP_IN_HANDLE_OFST +
			 MC_CMD_FILTER_OP_IN_HANDLE_LEN);

	if (!spec ||
	    (table->entry[filter_idx].spec & EFX_EF10_FILTER_FLAG_BUSY) ||
	    spec->priority != EFX_FILTER_PRI_HINT ||
	    !rps_may_expire_flow(efx->net_dev, spec->dmaq_id,
				 flow_id, filter_idx))
		return false;

	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
		       MC_CMD_FILTER_OP_IN_OP_REMOVE);
	MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
		       table->entry[filter_idx].handle);
	if (efx_mcdi_rpc_async(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf), 0,
			       efx_ef10_filter_rfs_expire_complete, filter_idx))
		return false;

	table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
	return true;
}

static void
efx_ef10_filter_rfs_expire_complete(struct efx_nic *efx,
				    unsigned long filter_idx,
				    int rc, efx_dword_t *outbuf,
				    size_t outlen_actual)
{
	struct efx_ef10_filter_table *table = efx->filter_state;
	struct efx_filter_spec *spec =
		efx_ef10_filter_entry_spec(table, filter_idx);

	spin_lock_bh(&efx->filter_lock);
	if (rc == 0) {
		kfree(spec);
		efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
	}
	table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_BUSY;
	wake_up_all(&table->waitq);
	spin_unlock_bh(&efx->filter_lock);
}

#endif /* CONFIG_RFS_ACCEL */

static int efx_ef10_filter_match_flags_from_mcdi(u32 mcdi_flags)
{
	int match_flags = 0;

#define MAP_FLAG(gen_flag, mcdi_field) {				\
		u32 old_mcdi_flags = mcdi_flags;			\
		mcdi_flags &= ~(1 << MC_CMD_FILTER_OP_IN_MATCH_ ##	\
				mcdi_field ## _LBN);			\
		if (mcdi_flags != old_mcdi_flags)			\
			match_flags |= EFX_FILTER_MATCH_ ## gen_flag;	\
	}
	MAP_FLAG(LOC_MAC_IG, UNKNOWN_UCAST_DST);
	MAP_FLAG(LOC_MAC_IG, UNKNOWN_MCAST_DST);
	MAP_FLAG(REM_HOST, SRC_IP);
	MAP_FLAG(LOC_HOST, DST_IP);
	MAP_FLAG(REM_MAC, SRC_MAC);
	MAP_FLAG(REM_PORT, SRC_PORT);
	MAP_FLAG(LOC_MAC, DST_MAC);
	MAP_FLAG(LOC_PORT, DST_PORT);
	MAP_FLAG(ETHER_TYPE, ETHER_TYPE);
	MAP_FLAG(INNER_VID, INNER_VLAN);
	MAP_FLAG(OUTER_VID, OUTER_VLAN);
	MAP_FLAG(IP_PROTO, IP_PROTO);
#undef MAP_FLAG

	/* Did we map them all? */
	if (mcdi_flags)
		return -EINVAL;

	return match_flags;
}

4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437
static void efx_ef10_filter_cleanup_vlans(struct efx_nic *efx)
{
	struct efx_ef10_filter_table *table = efx->filter_state;
	struct efx_ef10_filter_vlan *vlan, *next_vlan;

	/* See comment in efx_ef10_filter_table_remove() */
	if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
		return;

	if (!table)
		return;

	list_for_each_entry_safe(vlan, next_vlan, &table->vlan_list, list)
		efx_ef10_filter_del_vlan_internal(efx, vlan);
}

4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455
static bool efx_ef10_filter_match_supported(struct efx_ef10_filter_table *table,
					    enum efx_filter_match_flags match_flags)
{
	unsigned int match_pri;
	int mf;

	for (match_pri = 0;
	     match_pri < table->rx_match_count;
	     match_pri++) {
		mf = efx_ef10_filter_match_flags_from_mcdi(
				table->rx_match_mcdi_flags[match_pri]);
		if (mf == match_flags)
			return true;
	}

	return false;
}

4456 4457 4458 4459
static int efx_ef10_filter_table_probe(struct efx_nic *efx)
{
	MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_PARSER_DISP_INFO_IN_LEN);
	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_PARSER_DISP_INFO_OUT_LENMAX);
4460
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
4461
	struct net_device *net_dev = efx->net_dev;
4462 4463
	unsigned int pd_match_pri, pd_match_count;
	struct efx_ef10_filter_table *table;
4464
	struct efx_ef10_vlan *vlan;
4465 4466 4467
	size_t outlen;
	int rc;

4468 4469 4470 4471 4472 4473
	if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
		return -EINVAL;

	if (efx->filter_state) /* already probed */
		return 0;

4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505
	table = kzalloc(sizeof(*table), GFP_KERNEL);
	if (!table)
		return -ENOMEM;

	/* Find out which RX filter types are supported, and their priorities */
	MCDI_SET_DWORD(inbuf, GET_PARSER_DISP_INFO_IN_OP,
		       MC_CMD_GET_PARSER_DISP_INFO_IN_OP_GET_SUPPORTED_RX_MATCHES);
	rc = efx_mcdi_rpc(efx, MC_CMD_GET_PARSER_DISP_INFO,
			  inbuf, sizeof(inbuf), outbuf, sizeof(outbuf),
			  &outlen);
	if (rc)
		goto fail;
	pd_match_count = MCDI_VAR_ARRAY_LEN(
		outlen, GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES);
	table->rx_match_count = 0;

	for (pd_match_pri = 0; pd_match_pri < pd_match_count; pd_match_pri++) {
		u32 mcdi_flags =
			MCDI_ARRAY_DWORD(
				outbuf,
				GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES,
				pd_match_pri);
		rc = efx_ef10_filter_match_flags_from_mcdi(mcdi_flags);
		if (rc < 0) {
			netif_dbg(efx, probe, efx->net_dev,
				  "%s: fw flags %#x pri %u not supported in driver\n",
				  __func__, mcdi_flags, pd_match_pri);
		} else {
			netif_dbg(efx, probe, efx->net_dev,
				  "%s: fw flags %#x pri %u supported as driver flags %#x pri %u\n",
				  __func__, mcdi_flags, pd_match_pri,
				  rc, table->rx_match_count);
4506 4507
			table->rx_match_mcdi_flags[table->rx_match_count] = mcdi_flags;
			table->rx_match_count++;
4508 4509 4510
		}
	}

4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522
	if ((efx_supported_features(efx) & NETIF_F_HW_VLAN_CTAG_FILTER) &&
	    !(efx_ef10_filter_match_supported(table,
		(EFX_FILTER_MATCH_OUTER_VID | EFX_FILTER_MATCH_LOC_MAC)) &&
	      efx_ef10_filter_match_supported(table,
		(EFX_FILTER_MATCH_OUTER_VID | EFX_FILTER_MATCH_LOC_MAC_IG)))) {
		netif_info(efx, probe, net_dev,
			   "VLAN filters are not supported in this firmware variant\n");
		net_dev->features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
		efx->fixed_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
		net_dev->hw_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
	}

4523 4524 4525 4526 4527 4528
	table->entry = vzalloc(HUNT_FILTER_TBL_ROWS * sizeof(*table->entry));
	if (!table->entry) {
		rc = -ENOMEM;
		goto fail;
	}

4529
	table->mc_promisc_last = false;
4530 4531
	table->vlan_filter =
		!!(efx->net_dev->features & NETIF_F_HW_VLAN_CTAG_FILTER);
4532
	INIT_LIST_HEAD(&table->vlan_list);
4533

4534 4535
	efx->filter_state = table;
	init_waitqueue_head(&table->waitq);
4536 4537 4538 4539 4540 4541 4542

	list_for_each_entry(vlan, &nic_data->vlan_list, list) {
		rc = efx_ef10_filter_add_vlan(efx, vlan->vid);
		if (rc)
			goto fail_add_vlan;
	}

4543 4544
	return 0;

4545 4546 4547
fail_add_vlan:
	efx_ef10_filter_cleanup_vlans(efx);
	efx->filter_state = NULL;
4548 4549 4550 4551 4552
fail:
	kfree(table);
	return rc;
}

4553 4554 4555
/* Caller must hold efx->filter_sem for read if race against
 * efx_ef10_filter_table_remove() is possible
 */
4556 4557 4558 4559 4560 4561 4562 4563 4564
static void efx_ef10_filter_table_restore(struct efx_nic *efx)
{
	struct efx_ef10_filter_table *table = efx->filter_state;
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
	struct efx_filter_spec *spec;
	unsigned int filter_idx;
	bool failed = false;
	int rc;

4565 4566
	WARN_ON(!rwsem_is_locked(&efx->filter_sem));

4567 4568 4569
	if (!nic_data->must_restore_filters)
		return;

4570 4571 4572
	if (!table)
		return;

4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615
	spin_lock_bh(&efx->filter_lock);

	for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
		spec = efx_ef10_filter_entry_spec(table, filter_idx);
		if (!spec)
			continue;

		table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
		spin_unlock_bh(&efx->filter_lock);

		rc = efx_ef10_filter_push(efx, spec,
					  &table->entry[filter_idx].handle,
					  false);
		if (rc)
			failed = true;

		spin_lock_bh(&efx->filter_lock);
		if (rc) {
			kfree(spec);
			efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
		} else {
			table->entry[filter_idx].spec &=
				~EFX_EF10_FILTER_FLAG_BUSY;
		}
	}

	spin_unlock_bh(&efx->filter_lock);

	if (failed)
		netif_err(efx, hw, efx->net_dev,
			  "unable to restore all filters\n");
	else
		nic_data->must_restore_filters = false;
}

static void efx_ef10_filter_table_remove(struct efx_nic *efx)
{
	struct efx_ef10_filter_table *table = efx->filter_state;
	MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
	struct efx_filter_spec *spec;
	unsigned int filter_idx;
	int rc;

4616
	efx_ef10_filter_cleanup_vlans(efx);
4617
	efx->filter_state = NULL;
4618 4619 4620 4621 4622 4623 4624 4625 4626
	/* If we were called without locking, then it's not safe to free
	 * the table as others might be using it.  So we just WARN, leak
	 * the memory, and potentially get an inconsistent filter table
	 * state.
	 * This should never actually happen.
	 */
	if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
		return;

4627 4628 4629
	if (!table)
		return;

4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640
	for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
		spec = efx_ef10_filter_entry_spec(table, filter_idx);
		if (!spec)
			continue;

		MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
			       efx_ef10_filter_is_exclusive(spec) ?
			       MC_CMD_FILTER_OP_IN_OP_REMOVE :
			       MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
		MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
			       table->entry[filter_idx].handle);
4641 4642
		rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FILTER_OP, inbuf,
					sizeof(inbuf), NULL, 0, NULL);
4643
		if (rc)
4644 4645 4646
			netif_info(efx, drv, efx->net_dev,
				   "%s: filter %04x remove failed\n",
				   __func__, filter_idx);
4647 4648 4649 4650 4651 4652 4653
		kfree(spec);
	}

	vfree(table->entry);
	kfree(table);
}

4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666
static void efx_ef10_filter_mark_one_old(struct efx_nic *efx, uint16_t *id)
{
	struct efx_ef10_filter_table *table = efx->filter_state;
	unsigned int filter_idx;

	if (*id != EFX_EF10_FILTER_ID_INVALID) {
		filter_idx = efx_ef10_filter_get_unsafe_id(efx, *id);
		if (!table->entry[filter_idx].spec)
			netif_dbg(efx, drv, efx->net_dev,
				  "marked null spec old %04x:%04x\n", *id,
				  filter_idx);
		table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_AUTO_OLD;
		*id = EFX_EF10_FILTER_ID_INVALID;
4667
	}
4668 4669
}

4670 4671 4672
/* Mark old per-VLAN filters that may need to be removed */
static void _efx_ef10_filter_vlan_mark_old(struct efx_nic *efx,
					   struct efx_ef10_filter_vlan *vlan)
4673 4674
{
	struct efx_ef10_filter_table *table = efx->filter_state;
4675
	unsigned int i;
4676

4677
	for (i = 0; i < table->dev_uc_count; i++)
4678
		efx_ef10_filter_mark_one_old(efx, &vlan->uc[i]);
4679
	for (i = 0; i < table->dev_mc_count; i++)
4680 4681 4682 4683
		efx_ef10_filter_mark_one_old(efx, &vlan->mc[i]);
	efx_ef10_filter_mark_one_old(efx, &vlan->ucdef);
	efx_ef10_filter_mark_one_old(efx, &vlan->bcast);
	efx_ef10_filter_mark_one_old(efx, &vlan->mcdef);
4684 4685
}

4686 4687 4688 4689
/* Mark old filters that may need to be removed.
 * Caller must hold efx->filter_sem for read if race against
 * efx_ef10_filter_table_remove() is possible
 */
4690 4691 4692
static void efx_ef10_filter_mark_old(struct efx_nic *efx)
{
	struct efx_ef10_filter_table *table = efx->filter_state;
4693
	struct efx_ef10_filter_vlan *vlan;
4694 4695

	spin_lock_bh(&efx->filter_lock);
4696 4697
	list_for_each_entry(vlan, &table->vlan_list, list)
		_efx_ef10_filter_vlan_mark_old(efx, vlan);
4698
	spin_unlock_bh(&efx->filter_lock);
4699 4700
}

4701
static void efx_ef10_filter_uc_addr_list(struct efx_nic *efx)
4702 4703 4704 4705
{
	struct efx_ef10_filter_table *table = efx->filter_state;
	struct net_device *net_dev = efx->net_dev;
	struct netdev_hw_addr *uc;
4706
	int addr_count;
4707
	unsigned int i;
4708

4709
	addr_count = netdev_uc_count(net_dev);
4710
	table->uc_promisc = !!(net_dev->flags & IFF_PROMISC);
4711
	table->dev_uc_count = 1 + addr_count;
4712 4713 4714
	ether_addr_copy(table->dev_uc_list[0].addr, net_dev->dev_addr);
	i = 1;
	netdev_for_each_uc_addr(uc, net_dev) {
4715
		if (i >= EFX_EF10_FILTER_DEV_UC_MAX) {
4716
			table->uc_promisc = true;
4717 4718
			break;
		}
4719 4720 4721 4722 4723
		ether_addr_copy(table->dev_uc_list[i].addr, uc->addr);
		i++;
	}
}

4724
static void efx_ef10_filter_mc_addr_list(struct efx_nic *efx)
4725 4726 4727 4728
{
	struct efx_ef10_filter_table *table = efx->filter_state;
	struct net_device *net_dev = efx->net_dev;
	struct netdev_hw_addr *mc;
4729
	unsigned int i, addr_count;
4730

4731
	table->mc_promisc = !!(net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI));
4732

4733 4734
	addr_count = netdev_mc_count(net_dev);
	i = 0;
4735
	netdev_for_each_mc_addr(mc, net_dev) {
4736
		if (i >= EFX_EF10_FILTER_DEV_MC_MAX) {
4737
			table->mc_promisc = true;
4738 4739
			break;
		}
4740 4741
		ether_addr_copy(table->dev_mc_list[i].addr, mc->addr);
		i++;
4742
	}
4743 4744

	table->dev_mc_count = i;
4745
}
4746

4747
static int efx_ef10_filter_insert_addr_list(struct efx_nic *efx,
4748 4749
					    struct efx_ef10_filter_vlan *vlan,
					    bool multicast, bool rollback)
4750 4751 4752
{
	struct efx_ef10_filter_table *table = efx->filter_state;
	struct efx_ef10_dev_addr *addr_list;
4753
	enum efx_filter_flags filter_flags;
4754
	struct efx_filter_spec spec;
4755 4756 4757
	u8 baddr[ETH_ALEN];
	unsigned int i, j;
	int addr_count;
4758
	u16 *ids;
4759 4760 4761 4762
	int rc;

	if (multicast) {
		addr_list = table->dev_mc_list;
4763
		addr_count = table->dev_mc_count;
4764
		ids = vlan->mc;
4765 4766
	} else {
		addr_list = table->dev_uc_list;
4767
		addr_count = table->dev_uc_count;
4768
		ids = vlan->uc;
4769 4770
	}

4771 4772
	filter_flags = efx_rss_enabled(efx) ? EFX_FILTER_FLAG_RX_RSS : 0;

4773
	/* Insert/renew filters */
4774
	for (i = 0; i < addr_count; i++) {
4775
		efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO, filter_flags, 0);
4776
		efx_filter_set_eth_local(&spec, vlan->vid, addr_list[i].addr);
4777 4778
		rc = efx_ef10_filter_insert(efx, &spec, true);
		if (rc < 0) {
4779 4780 4781 4782 4783 4784 4785 4786
			if (rollback) {
				netif_info(efx, drv, efx->net_dev,
					   "efx_ef10_filter_insert failed rc=%d\n",
					   rc);
				/* Fall back to promiscuous */
				for (j = 0; j < i; j++) {
					efx_ef10_filter_remove_unsafe(
						efx, EFX_FILTER_PRI_AUTO,
4787 4788
						ids[j]);
					ids[j] = EFX_EF10_FILTER_ID_INVALID;
4789 4790 4791 4792 4793
				}
				return rc;
			} else {
				/* mark as not inserted, and carry on */
				rc = EFX_EF10_FILTER_ID_INVALID;
4794
			}
4795
		}
4796
		ids[i] = efx_ef10_filter_get_unsafe_id(efx, rc);
4797
	}
4798

4799 4800
	if (multicast && rollback) {
		/* Also need an Ethernet broadcast filter */
4801
		efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO, filter_flags, 0);
4802
		eth_broadcast_addr(baddr);
4803
		efx_filter_set_eth_local(&spec, vlan->vid, baddr);
4804
		rc = efx_ef10_filter_insert(efx, &spec, true);
4805
		if (rc < 0) {
4806
			netif_warn(efx, drv, efx->net_dev,
4807 4808 4809 4810 4811
				   "Broadcast filter insert failed rc=%d\n", rc);
			/* Fall back to promiscuous */
			for (j = 0; j < i; j++) {
				efx_ef10_filter_remove_unsafe(
					efx, EFX_FILTER_PRI_AUTO,
4812 4813
					ids[j]);
				ids[j] = EFX_EF10_FILTER_ID_INVALID;
4814 4815 4816
			}
			return rc;
		} else {
4817
			EFX_WARN_ON_PARANOID(vlan->bcast !=
4818
					     EFX_EF10_FILTER_ID_INVALID);
4819
			vlan->bcast = efx_ef10_filter_get_unsafe_id(efx, rc);
4820
		}
4821
	}
4822 4823 4824 4825

	return 0;
}

4826 4827 4828
static int efx_ef10_filter_insert_def(struct efx_nic *efx,
				      struct efx_ef10_filter_vlan *vlan,
				      bool multicast, bool rollback)
4829 4830
{
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
4831
	enum efx_filter_flags filter_flags;
4832 4833 4834 4835
	struct efx_filter_spec spec;
	u8 baddr[ETH_ALEN];
	int rc;

4836 4837 4838
	filter_flags = efx_rss_enabled(efx) ? EFX_FILTER_FLAG_RX_RSS : 0;

	efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO, filter_flags, 0);
4839 4840 4841 4842 4843 4844

	if (multicast)
		efx_filter_set_mc_def(&spec);
	else
		efx_filter_set_uc_def(&spec);

4845 4846 4847
	if (vlan->vid != EFX_FILTER_VID_UNSPEC)
		efx_filter_set_eth_local(&spec, vlan->vid, NULL);

4848 4849
	rc = efx_ef10_filter_insert(efx, &spec, true);
	if (rc < 0) {
4850 4851 4852 4853
		netif_printk(efx, drv, rc == -EPERM ? KERN_DEBUG : KERN_WARNING,
			     efx->net_dev,
			     "%scast mismatch filter insert failed rc=%d\n",
			     multicast ? "Multi" : "Uni", rc);
4854
	} else if (multicast) {
4855 4856
		EFX_WARN_ON_PARANOID(vlan->mcdef != EFX_EF10_FILTER_ID_INVALID);
		vlan->mcdef = efx_ef10_filter_get_unsafe_id(efx, rc);
4857 4858 4859
		if (!nic_data->workaround_26807) {
			/* Also need an Ethernet broadcast filter */
			efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO,
4860
					   filter_flags, 0);
4861
			eth_broadcast_addr(baddr);
4862
			efx_filter_set_eth_local(&spec, vlan->vid, baddr);
4863 4864 4865 4866 4867 4868 4869 4870 4871
			rc = efx_ef10_filter_insert(efx, &spec, true);
			if (rc < 0) {
				netif_warn(efx, drv, efx->net_dev,
					   "Broadcast filter insert failed rc=%d\n",
					   rc);
				if (rollback) {
					/* Roll back the mc_def filter */
					efx_ef10_filter_remove_unsafe(
							efx, EFX_FILTER_PRI_AUTO,
4872 4873
							vlan->mcdef);
					vlan->mcdef = EFX_EF10_FILTER_ID_INVALID;
4874 4875 4876
					return rc;
				}
			} else {
4877
				EFX_WARN_ON_PARANOID(vlan->bcast !=
4878
						     EFX_EF10_FILTER_ID_INVALID);
4879
				vlan->bcast = efx_ef10_filter_get_unsafe_id(efx, rc);
4880 4881 4882 4883
			}
		}
		rc = 0;
	} else {
4884 4885
		EFX_WARN_ON_PARANOID(vlan->ucdef != EFX_EF10_FILTER_ID_INVALID);
		vlan->ucdef = rc;
4886 4887 4888
		rc = 0;
	}
	return rc;
4889 4890 4891 4892 4893 4894 4895 4896 4897
}

/* Remove filters that weren't renewed.  Since nothing else changes the AUTO_OLD
 * flag or removes these filters, we don't need to hold the filter_lock while
 * scanning for these filters.
 */
static void efx_ef10_filter_remove_old(struct efx_nic *efx)
{
	struct efx_ef10_filter_table *table = efx->filter_state;
4898 4899 4900
	int remove_failed = 0;
	int remove_noent = 0;
	int rc;
4901
	int i;
4902 4903 4904

	for (i = 0; i < HUNT_FILTER_TBL_ROWS; i++) {
		if (ACCESS_ONCE(table->entry[i].spec) &
4905
		    EFX_EF10_FILTER_FLAG_AUTO_OLD) {
4906 4907 4908 4909 4910 4911
			rc = efx_ef10_filter_remove_internal(efx,
					1U << EFX_FILTER_PRI_AUTO, i, true);
			if (rc == -ENOENT)
				remove_noent++;
			else if (rc)
				remove_failed++;
4912 4913
		}
	}
4914 4915 4916 4917 4918 4919 4920 4921 4922

	if (remove_failed)
		netif_info(efx, drv, efx->net_dev,
			   "%s: failed to remove %d filters\n",
			   __func__, remove_failed);
	if (remove_noent)
		netif_info(efx, drv, efx->net_dev,
			   "%s: failed to remove %d non-existent filters\n",
			   __func__, remove_noent);
4923 4924
}

4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990
static int efx_ef10_vport_set_mac_address(struct efx_nic *efx)
{
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
	u8 mac_old[ETH_ALEN];
	int rc, rc2;

	/* Only reconfigure a PF-created vport */
	if (is_zero_ether_addr(nic_data->vport_mac))
		return 0;

	efx_device_detach_sync(efx);
	efx_net_stop(efx->net_dev);
	down_write(&efx->filter_sem);
	efx_ef10_filter_table_remove(efx);
	up_write(&efx->filter_sem);

	rc = efx_ef10_vadaptor_free(efx, nic_data->vport_id);
	if (rc)
		goto restore_filters;

	ether_addr_copy(mac_old, nic_data->vport_mac);
	rc = efx_ef10_vport_del_mac(efx, nic_data->vport_id,
				    nic_data->vport_mac);
	if (rc)
		goto restore_vadaptor;

	rc = efx_ef10_vport_add_mac(efx, nic_data->vport_id,
				    efx->net_dev->dev_addr);
	if (!rc) {
		ether_addr_copy(nic_data->vport_mac, efx->net_dev->dev_addr);
	} else {
		rc2 = efx_ef10_vport_add_mac(efx, nic_data->vport_id, mac_old);
		if (rc2) {
			/* Failed to add original MAC, so clear vport_mac */
			eth_zero_addr(nic_data->vport_mac);
			goto reset_nic;
		}
	}

restore_vadaptor:
	rc2 = efx_ef10_vadaptor_alloc(efx, nic_data->vport_id);
	if (rc2)
		goto reset_nic;
restore_filters:
	down_write(&efx->filter_sem);
	rc2 = efx_ef10_filter_table_probe(efx);
	up_write(&efx->filter_sem);
	if (rc2)
		goto reset_nic;

	rc2 = efx_net_open(efx->net_dev);
	if (rc2)
		goto reset_nic;

	netif_device_attach(efx->net_dev);

	return rc;

reset_nic:
	netif_err(efx, drv, efx->net_dev,
		  "Failed to restore when changing MAC address - scheduling reset\n");
	efx_schedule_reset(efx, RESET_TYPE_DATAPATH);

	return rc ? rc : rc2;
}

4991 4992 4993
/* Caller must hold efx->filter_sem for read if race against
 * efx_ef10_filter_table_remove() is possible
 */
4994 4995
static void efx_ef10_filter_vlan_sync_rx_mode(struct efx_nic *efx,
					      struct efx_ef10_filter_vlan *vlan)
4996 4997
{
	struct efx_ef10_filter_table *table = efx->filter_state;
4998
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
4999

5000 5001 5002 5003 5004 5005
	/* Do not install unspecified VID if VLAN filtering is enabled.
	 * Do not install all specified VIDs if VLAN filtering is disabled.
	 */
	if ((vlan->vid == EFX_FILTER_VID_UNSPEC) == table->vlan_filter)
		return;

5006
	/* Insert/renew unicast filters */
5007
	if (table->uc_promisc) {
5008 5009
		efx_ef10_filter_insert_def(efx, vlan, false, false);
		efx_ef10_filter_insert_addr_list(efx, vlan, false, false);
5010 5011 5012 5013 5014
	} else {
		/* If any of the filters failed to insert, fall back to
		 * promiscuous mode - add in the uc_def filter.  But keep
		 * our individual unicast filters.
		 */
5015 5016
		if (efx_ef10_filter_insert_addr_list(efx, vlan, false, false))
			efx_ef10_filter_insert_def(efx, vlan, false, false);
5017
	}
5018

5019
	/* Insert/renew multicast filters */
5020 5021 5022
	/* If changing promiscuous state with cascaded multicast filters, remove
	 * old filters first, so that packets are dropped rather than duplicated
	 */
5023 5024
	if (nic_data->workaround_26807 &&
	    table->mc_promisc_last != table->mc_promisc)
5025
		efx_ef10_filter_remove_old(efx);
5026
	if (table->mc_promisc) {
5027 5028 5029 5030
		if (nic_data->workaround_26807) {
			/* If we failed to insert promiscuous filters, rollback
			 * and fall back to individual multicast filters
			 */
5031
			if (efx_ef10_filter_insert_def(efx, vlan, true, true)) {
5032 5033
				/* Changing promisc state, so remove old filters */
				efx_ef10_filter_remove_old(efx);
5034 5035
				efx_ef10_filter_insert_addr_list(efx, vlan,
								 true, false);
5036 5037 5038 5039 5040
			}
		} else {
			/* If we failed to insert promiscuous filters, don't
			 * rollback.  Regardless, also insert the mc_list
			 */
5041 5042
			efx_ef10_filter_insert_def(efx, vlan, true, false);
			efx_ef10_filter_insert_addr_list(efx, vlan, true, false);
5043 5044 5045 5046 5047 5048 5049
		}
	} else {
		/* If any filters failed to insert, rollback and fall back to
		 * promiscuous mode - mc_def filter and maybe broadcast.  If
		 * that fails, roll back again and insert as many of our
		 * individual multicast filters as we can.
		 */
5050
		if (efx_ef10_filter_insert_addr_list(efx, vlan, true, true)) {
5051 5052 5053
			/* Changing promisc state, so remove old filters */
			if (nic_data->workaround_26807)
				efx_ef10_filter_remove_old(efx);
5054 5055 5056
			if (efx_ef10_filter_insert_def(efx, vlan, true, true))
				efx_ef10_filter_insert_addr_list(efx, vlan,
								 true, false);
5057 5058
		}
	}
5059 5060 5061 5062 5063 5064 5065 5066 5067 5068
}

/* Caller must hold efx->filter_sem for read if race against
 * efx_ef10_filter_table_remove() is possible
 */
static void efx_ef10_filter_sync_rx_mode(struct efx_nic *efx)
{
	struct efx_ef10_filter_table *table = efx->filter_state;
	struct net_device *net_dev = efx->net_dev;
	struct efx_ef10_filter_vlan *vlan;
5069
	bool vlan_filter;
5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086

	if (!efx_dev_registered(efx))
		return;

	if (!table)
		return;

	efx_ef10_filter_mark_old(efx);

	/* Copy/convert the address lists; add the primary station
	 * address and broadcast address
	 */
	netif_addr_lock_bh(net_dev);
	efx_ef10_filter_uc_addr_list(efx);
	efx_ef10_filter_mc_addr_list(efx);
	netif_addr_unlock_bh(net_dev);

5087 5088 5089 5090 5091 5092 5093 5094 5095 5096
	/* If VLAN filtering changes, all old filters are finally removed.
	 * Do it in advance to avoid conflicts for unicast untagged and
	 * VLAN 0 tagged filters.
	 */
	vlan_filter = !!(net_dev->features & NETIF_F_HW_VLAN_CTAG_FILTER);
	if (table->vlan_filter != vlan_filter) {
		table->vlan_filter = vlan_filter;
		efx_ef10_filter_remove_old(efx);
	}

5097 5098
	list_for_each_entry(vlan, &table->vlan_list, list)
		efx_ef10_filter_vlan_sync_rx_mode(efx, vlan);
5099 5100

	efx_ef10_filter_remove_old(efx);
5101
	table->mc_promisc_last = table->mc_promisc;
5102 5103
}

5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167
static struct efx_ef10_filter_vlan *efx_ef10_filter_find_vlan(struct efx_nic *efx, u16 vid)
{
	struct efx_ef10_filter_table *table = efx->filter_state;
	struct efx_ef10_filter_vlan *vlan;

	WARN_ON(!rwsem_is_locked(&efx->filter_sem));

	list_for_each_entry(vlan, &table->vlan_list, list) {
		if (vlan->vid == vid)
			return vlan;
	}

	return NULL;
}

static int efx_ef10_filter_add_vlan(struct efx_nic *efx, u16 vid)
{
	struct efx_ef10_filter_table *table = efx->filter_state;
	struct efx_ef10_filter_vlan *vlan;
	unsigned int i;

	if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
		return -EINVAL;

	vlan = efx_ef10_filter_find_vlan(efx, vid);
	if (WARN_ON(vlan)) {
		netif_err(efx, drv, efx->net_dev,
			  "VLAN %u already added\n", vid);
		return -EALREADY;
	}

	vlan = kzalloc(sizeof(*vlan), GFP_KERNEL);
	if (!vlan)
		return -ENOMEM;

	vlan->vid = vid;

	for (i = 0; i < ARRAY_SIZE(vlan->uc); i++)
		vlan->uc[i] = EFX_EF10_FILTER_ID_INVALID;
	for (i = 0; i < ARRAY_SIZE(vlan->mc); i++)
		vlan->mc[i] = EFX_EF10_FILTER_ID_INVALID;
	vlan->ucdef = EFX_EF10_FILTER_ID_INVALID;
	vlan->bcast = EFX_EF10_FILTER_ID_INVALID;
	vlan->mcdef = EFX_EF10_FILTER_ID_INVALID;

	list_add_tail(&vlan->list, &table->vlan_list);

	if (efx_dev_registered(efx))
		efx_ef10_filter_vlan_sync_rx_mode(efx, vlan);

	return 0;
}

static void efx_ef10_filter_del_vlan_internal(struct efx_nic *efx,
					      struct efx_ef10_filter_vlan *vlan)
{
	unsigned int i;

	/* See comment in efx_ef10_filter_table_remove() */
	if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
		return;

	list_del(&vlan->list);

5168
	for (i = 0; i < ARRAY_SIZE(vlan->uc); i++)
5169
		efx_ef10_filter_remove_unsafe(efx, EFX_FILTER_PRI_AUTO,
5170 5171
					      vlan->uc[i]);
	for (i = 0; i < ARRAY_SIZE(vlan->mc); i++)
5172
		efx_ef10_filter_remove_unsafe(efx, EFX_FILTER_PRI_AUTO,
5173 5174 5175 5176
					      vlan->mc[i]);
	efx_ef10_filter_remove_unsafe(efx, EFX_FILTER_PRI_AUTO, vlan->ucdef);
	efx_ef10_filter_remove_unsafe(efx, EFX_FILTER_PRI_AUTO, vlan->bcast);
	efx_ef10_filter_remove_unsafe(efx, EFX_FILTER_PRI_AUTO, vlan->mcdef);
5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198

	kfree(vlan);
}

static void efx_ef10_filter_del_vlan(struct efx_nic *efx, u16 vid)
{
	struct efx_ef10_filter_vlan *vlan;

	/* See comment in efx_ef10_filter_table_remove() */
	if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
		return;

	vlan = efx_ef10_filter_find_vlan(efx, vid);
	if (!vlan) {
		netif_err(efx, drv, efx->net_dev,
			  "VLAN %u not found in filter state\n", vid);
		return;
	}

	efx_ef10_filter_del_vlan_internal(efx, vlan);
}

5199 5200 5201 5202 5203 5204 5205 5206 5207
static int efx_ef10_set_mac_address(struct efx_nic *efx)
{
	MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_SET_MAC_IN_LEN);
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
	bool was_enabled = efx->port_enabled;
	int rc;

	efx_device_detach_sync(efx);
	efx_net_stop(efx->net_dev);
5208 5209

	mutex_lock(&efx->mac_lock);
5210 5211 5212 5213 5214 5215 5216
	down_write(&efx->filter_sem);
	efx_ef10_filter_table_remove(efx);

	ether_addr_copy(MCDI_PTR(inbuf, VADAPTOR_SET_MAC_IN_MACADDR),
			efx->net_dev->dev_addr);
	MCDI_SET_DWORD(inbuf, VADAPTOR_SET_MAC_IN_UPSTREAM_PORT_ID,
		       nic_data->vport_id);
5217 5218
	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_VADAPTOR_SET_MAC, inbuf,
				sizeof(inbuf), NULL, 0, NULL);
5219 5220 5221

	efx_ef10_filter_table_probe(efx);
	up_write(&efx->filter_sem);
5222 5223
	mutex_unlock(&efx->mac_lock);

5224 5225 5226 5227
	if (was_enabled)
		efx_net_open(efx->net_dev);
	netif_device_attach(efx->net_dev);

5228 5229
#ifdef CONFIG_SFC_SRIOV
	if (efx->pci_dev->is_virtfn && efx->pci_dev->physfn) {
5230 5231
		struct pci_dev *pci_dev_pf = efx->pci_dev->physfn;

5232 5233
		if (rc == -EPERM) {
			struct efx_nic *efx_pf;
5234

5235 5236
			/* Switch to PF and change MAC address on vport */
			efx_pf = pci_get_drvdata(pci_dev_pf);
5237

5238 5239 5240 5241
			rc = efx_ef10_sriov_set_vf_mac(efx_pf,
						       nic_data->vf_index,
						       efx->net_dev->dev_addr);
		} else if (!rc) {
5242 5243 5244 5245
			struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
			struct efx_ef10_nic_data *nic_data = efx_pf->nic_data;
			unsigned int i;

5246 5247 5248
			/* MAC address successfully changed by VF (with MAC
			 * spoofing) so update the parent PF if possible.
			 */
5249 5250 5251 5252 5253 5254 5255 5256 5257 5258
			for (i = 0; i < efx_pf->vf_count; ++i) {
				struct ef10_vf *vf = nic_data->vf + i;

				if (vf->efx == efx) {
					ether_addr_copy(vf->mac,
							efx->net_dev->dev_addr);
					return 0;
				}
			}
		}
5259
	} else
5260
#endif
5261 5262 5263 5264
	if (rc == -EPERM) {
		netif_err(efx, drv, efx->net_dev,
			  "Cannot change MAC address; use sfboot to enable"
			  " mac-spoofing on this interface\n");
5265 5266 5267 5268 5269 5270 5271
	} else if (rc == -ENOSYS && !efx_ef10_is_vf(efx)) {
		/* If the active MCFW does not support MC_CMD_VADAPTOR_SET_MAC
		 * fall-back to the method of changing the MAC address on the
		 * vport.  This only applies to PFs because such versions of
		 * MCFW do not support VFs.
		 */
		rc = efx_ef10_vport_set_mac_address(efx);
5272 5273 5274
	} else {
		efx_mcdi_display_error(efx, MC_CMD_VADAPTOR_SET_MAC,
				       sizeof(inbuf), NULL, 0, rc);
5275 5276
	}

5277 5278 5279
	return rc;
}

5280 5281 5282 5283 5284 5285 5286
static int efx_ef10_mac_reconfigure(struct efx_nic *efx)
{
	efx_ef10_filter_sync_rx_mode(efx);

	return efx_mcdi_set_mac(efx);
}

5287 5288 5289 5290 5291 5292 5293
static int efx_ef10_mac_reconfigure_vf(struct efx_nic *efx)
{
	efx_ef10_filter_sync_rx_mode(efx);

	return 0;
}

5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370
static int efx_ef10_start_bist(struct efx_nic *efx, u32 bist_type)
{
	MCDI_DECLARE_BUF(inbuf, MC_CMD_START_BIST_IN_LEN);

	MCDI_SET_DWORD(inbuf, START_BIST_IN_TYPE, bist_type);
	return efx_mcdi_rpc(efx, MC_CMD_START_BIST, inbuf, sizeof(inbuf),
			    NULL, 0, NULL);
}

/* MC BISTs follow a different poll mechanism to phy BISTs.
 * The BIST is done in the poll handler on the MC, and the MCDI command
 * will block until the BIST is done.
 */
static int efx_ef10_poll_bist(struct efx_nic *efx)
{
	int rc;
	MCDI_DECLARE_BUF(outbuf, MC_CMD_POLL_BIST_OUT_LEN);
	size_t outlen;
	u32 result;

	rc = efx_mcdi_rpc(efx, MC_CMD_POLL_BIST, NULL, 0,
			   outbuf, sizeof(outbuf), &outlen);
	if (rc != 0)
		return rc;

	if (outlen < MC_CMD_POLL_BIST_OUT_LEN)
		return -EIO;

	result = MCDI_DWORD(outbuf, POLL_BIST_OUT_RESULT);
	switch (result) {
	case MC_CMD_POLL_BIST_PASSED:
		netif_dbg(efx, hw, efx->net_dev, "BIST passed.\n");
		return 0;
	case MC_CMD_POLL_BIST_TIMEOUT:
		netif_err(efx, hw, efx->net_dev, "BIST timed out\n");
		return -EIO;
	case MC_CMD_POLL_BIST_FAILED:
		netif_err(efx, hw, efx->net_dev, "BIST failed.\n");
		return -EIO;
	default:
		netif_err(efx, hw, efx->net_dev,
			  "BIST returned unknown result %u", result);
		return -EIO;
	}
}

static int efx_ef10_run_bist(struct efx_nic *efx, u32 bist_type)
{
	int rc;

	netif_dbg(efx, drv, efx->net_dev, "starting BIST type %u\n", bist_type);

	rc = efx_ef10_start_bist(efx, bist_type);
	if (rc != 0)
		return rc;

	return efx_ef10_poll_bist(efx);
}

static int
efx_ef10_test_chip(struct efx_nic *efx, struct efx_self_tests *tests)
{
	int rc, rc2;

	efx_reset_down(efx, RESET_TYPE_WORLD);

	rc = efx_mcdi_rpc(efx, MC_CMD_ENABLE_OFFLINE_BIST,
			  NULL, 0, NULL, 0, NULL);
	if (rc != 0)
		goto out;

	tests->memory = efx_ef10_run_bist(efx, MC_CMD_MC_MEM_BIST) ? -1 : 1;
	tests->registers = efx_ef10_run_bist(efx, MC_CMD_REG_BIST) ? -1 : 1;

	rc = efx_mcdi_reset(efx, RESET_TYPE_WORLD);

out:
5371 5372
	if (rc == -EPERM)
		rc = 0;
5373 5374 5375 5376
	rc2 = efx_reset_up(efx, RESET_TYPE_WORLD, rc == 0);
	return rc ? rc : rc2;
}

5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394
#ifdef CONFIG_SFC_MTD

struct efx_ef10_nvram_type_info {
	u16 type, type_mask;
	u8 port;
	const char *name;
};

static const struct efx_ef10_nvram_type_info efx_ef10_nvram_types[] = {
	{ NVRAM_PARTITION_TYPE_MC_FIRMWARE,	   0,    0, "sfc_mcfw" },
	{ NVRAM_PARTITION_TYPE_MC_FIRMWARE_BACKUP, 0,    0, "sfc_mcfw_backup" },
	{ NVRAM_PARTITION_TYPE_EXPANSION_ROM,	   0,    0, "sfc_exp_rom" },
	{ NVRAM_PARTITION_TYPE_STATIC_CONFIG,	   0,    0, "sfc_static_cfg" },
	{ NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG,	   0,    0, "sfc_dynamic_cfg" },
	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT0, 0,   0, "sfc_exp_rom_cfg" },
	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT1, 0,   1, "sfc_exp_rom_cfg" },
	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT2, 0,   2, "sfc_exp_rom_cfg" },
	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT3, 0,   3, "sfc_exp_rom_cfg" },
5395
	{ NVRAM_PARTITION_TYPE_LICENSE,		   0,    0, "sfc_license" },
5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502
	{ NVRAM_PARTITION_TYPE_PHY_MIN,		   0xff, 0, "sfc_phy_fw" },
};

static int efx_ef10_mtd_probe_partition(struct efx_nic *efx,
					struct efx_mcdi_mtd_partition *part,
					unsigned int type)
{
	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_METADATA_IN_LEN);
	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_METADATA_OUT_LENMAX);
	const struct efx_ef10_nvram_type_info *info;
	size_t size, erase_size, outlen;
	bool protected;
	int rc;

	for (info = efx_ef10_nvram_types; ; info++) {
		if (info ==
		    efx_ef10_nvram_types + ARRAY_SIZE(efx_ef10_nvram_types))
			return -ENODEV;
		if ((type & ~info->type_mask) == info->type)
			break;
	}
	if (info->port != efx_port_num(efx))
		return -ENODEV;

	rc = efx_mcdi_nvram_info(efx, type, &size, &erase_size, &protected);
	if (rc)
		return rc;
	if (protected)
		return -ENODEV; /* hide it */

	part->nvram_type = type;

	MCDI_SET_DWORD(inbuf, NVRAM_METADATA_IN_TYPE, type);
	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_METADATA, inbuf, sizeof(inbuf),
			  outbuf, sizeof(outbuf), &outlen);
	if (rc)
		return rc;
	if (outlen < MC_CMD_NVRAM_METADATA_OUT_LENMIN)
		return -EIO;
	if (MCDI_DWORD(outbuf, NVRAM_METADATA_OUT_FLAGS) &
	    (1 << MC_CMD_NVRAM_METADATA_OUT_SUBTYPE_VALID_LBN))
		part->fw_subtype = MCDI_DWORD(outbuf,
					      NVRAM_METADATA_OUT_SUBTYPE);

	part->common.dev_type_name = "EF10 NVRAM manager";
	part->common.type_name = info->name;

	part->common.mtd.type = MTD_NORFLASH;
	part->common.mtd.flags = MTD_CAP_NORFLASH;
	part->common.mtd.size = size;
	part->common.mtd.erasesize = erase_size;

	return 0;
}

static int efx_ef10_mtd_probe(struct efx_nic *efx)
{
	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX);
	struct efx_mcdi_mtd_partition *parts;
	size_t outlen, n_parts_total, i, n_parts;
	unsigned int type;
	int rc;

	ASSERT_RTNL();

	BUILD_BUG_ON(MC_CMD_NVRAM_PARTITIONS_IN_LEN != 0);
	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_PARTITIONS, NULL, 0,
			  outbuf, sizeof(outbuf), &outlen);
	if (rc)
		return rc;
	if (outlen < MC_CMD_NVRAM_PARTITIONS_OUT_LENMIN)
		return -EIO;

	n_parts_total = MCDI_DWORD(outbuf, NVRAM_PARTITIONS_OUT_NUM_PARTITIONS);
	if (n_parts_total >
	    MCDI_VAR_ARRAY_LEN(outlen, NVRAM_PARTITIONS_OUT_TYPE_ID))
		return -EIO;

	parts = kcalloc(n_parts_total, sizeof(*parts), GFP_KERNEL);
	if (!parts)
		return -ENOMEM;

	n_parts = 0;
	for (i = 0; i < n_parts_total; i++) {
		type = MCDI_ARRAY_DWORD(outbuf, NVRAM_PARTITIONS_OUT_TYPE_ID,
					i);
		rc = efx_ef10_mtd_probe_partition(efx, &parts[n_parts], type);
		if (rc == 0)
			n_parts++;
		else if (rc != -ENODEV)
			goto fail;
	}

	rc = efx_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts));
fail:
	if (rc)
		kfree(parts);
	return rc;
}

#endif /* CONFIG_SFC_MTD */

static void efx_ef10_ptp_write_host_time(struct efx_nic *efx, u32 host_time)
{
	_efx_writed(efx, cpu_to_le32(host_time), ER_DZ_MC_DB_LWRD);
}

5503 5504 5505
static void efx_ef10_ptp_write_host_time_vf(struct efx_nic *efx,
					    u32 host_time) {}

5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582
static int efx_ef10_rx_enable_timestamping(struct efx_channel *channel,
					   bool temp)
{
	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_SUBSCRIBE_LEN);
	int rc;

	if (channel->sync_events_state == SYNC_EVENTS_REQUESTED ||
	    channel->sync_events_state == SYNC_EVENTS_VALID ||
	    (temp && channel->sync_events_state == SYNC_EVENTS_DISABLED))
		return 0;
	channel->sync_events_state = SYNC_EVENTS_REQUESTED;

	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_SUBSCRIBE);
	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
	MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_SUBSCRIBE_QUEUE,
		       channel->channel);

	rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
			  inbuf, sizeof(inbuf), NULL, 0, NULL);

	if (rc != 0)
		channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
						    SYNC_EVENTS_DISABLED;

	return rc;
}

static int efx_ef10_rx_disable_timestamping(struct efx_channel *channel,
					    bool temp)
{
	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_LEN);
	int rc;

	if (channel->sync_events_state == SYNC_EVENTS_DISABLED ||
	    (temp && channel->sync_events_state == SYNC_EVENTS_QUIESCENT))
		return 0;
	if (channel->sync_events_state == SYNC_EVENTS_QUIESCENT) {
		channel->sync_events_state = SYNC_EVENTS_DISABLED;
		return 0;
	}
	channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
					    SYNC_EVENTS_DISABLED;

	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_UNSUBSCRIBE);
	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
	MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_CONTROL,
		       MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_SINGLE);
	MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_QUEUE,
		       channel->channel);

	rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
			  inbuf, sizeof(inbuf), NULL, 0, NULL);

	return rc;
}

static int efx_ef10_ptp_set_ts_sync_events(struct efx_nic *efx, bool en,
					   bool temp)
{
	int (*set)(struct efx_channel *channel, bool temp);
	struct efx_channel *channel;

	set = en ?
	      efx_ef10_rx_enable_timestamping :
	      efx_ef10_rx_disable_timestamping;

	efx_for_each_channel(channel, efx) {
		int rc = set(channel, temp);
		if (en && rc != 0) {
			efx_ef10_ptp_set_ts_sync_events(efx, false, temp);
			return rc;
		}
	}

	return 0;
}

5583 5584 5585 5586 5587 5588
static int efx_ef10_ptp_set_ts_config_vf(struct efx_nic *efx,
					 struct hwtstamp_config *init)
{
	return -EOPNOTSUPP;
}

5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624
static int efx_ef10_ptp_set_ts_config(struct efx_nic *efx,
				      struct hwtstamp_config *init)
{
	int rc;

	switch (init->rx_filter) {
	case HWTSTAMP_FILTER_NONE:
		efx_ef10_ptp_set_ts_sync_events(efx, false, false);
		/* if TX timestamping is still requested then leave PTP on */
		return efx_ptp_change_mode(efx,
					   init->tx_type != HWTSTAMP_TX_OFF, 0);
	case HWTSTAMP_FILTER_ALL:
	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
	case HWTSTAMP_FILTER_PTP_V2_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
		init->rx_filter = HWTSTAMP_FILTER_ALL;
		rc = efx_ptp_change_mode(efx, true, 0);
		if (!rc)
			rc = efx_ef10_ptp_set_ts_sync_events(efx, true, false);
		if (rc)
			efx_ptp_change_mode(efx, false, 0);
		return rc;
	default:
		return -ERANGE;
	}
}

5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638
static int efx_ef10_get_phys_port_id(struct efx_nic *efx,
				     struct netdev_phys_item_id *ppid)
{
	struct efx_ef10_nic_data *nic_data = efx->nic_data;

	if (!is_valid_ether_addr(nic_data->port_id))
		return -EOPNOTSUPP;

	ppid->id_len = ETH_ALEN;
	memcpy(ppid->id, nic_data->port_id, ppid->id_len);

	return 0;
}

5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654
static int efx_ef10_vlan_rx_add_vid(struct efx_nic *efx, __be16 proto, u16 vid)
{
	if (proto != htons(ETH_P_8021Q))
		return -EINVAL;

	return efx_ef10_add_vlan(efx, vid);
}

static int efx_ef10_vlan_rx_kill_vid(struct efx_nic *efx, __be16 proto, u16 vid)
{
	if (proto != htons(ETH_P_8021Q))
		return -EINVAL;

	return efx_ef10_del_vlan(efx, vid);
}

5655 5656
#define EF10_OFFLOAD_FEATURES		\
	(NETIF_F_IP_CSUM |		\
5657
	 NETIF_F_HW_VLAN_CTAG_FILTER |	\
5658 5659 5660 5661
	 NETIF_F_IPV6_CSUM |		\
	 NETIF_F_RXHASH |		\
	 NETIF_F_NTUPLE)

5662
const struct efx_nic_type efx_hunt_a0_vf_nic_type = {
5663
	.is_vf = true,
5664 5665 5666 5667 5668 5669 5670
	.mem_bar = EFX_MEM_VF_BAR,
	.mem_map_size = efx_ef10_mem_map_size,
	.probe = efx_ef10_probe_vf,
	.remove = efx_ef10_remove,
	.dimension_resources = efx_ef10_dimension_resources,
	.init = efx_ef10_init_nic,
	.fini = efx_port_dummy_op_void,
5671
	.map_reset_reason = efx_ef10_map_reset_reason,
5672 5673 5674 5675 5676 5677 5678 5679
	.map_reset_flags = efx_ef10_map_reset_flags,
	.reset = efx_ef10_reset,
	.probe_port = efx_mcdi_port_probe,
	.remove_port = efx_mcdi_port_remove,
	.fini_dmaq = efx_ef10_fini_dmaq,
	.prepare_flr = efx_ef10_prepare_flr,
	.finish_flr = efx_port_dummy_op_void,
	.describe_stats = efx_ef10_describe_stats,
5680
	.update_stats = efx_ef10_update_stats_vf,
5681 5682 5683 5684 5685
	.start_stats = efx_port_dummy_op_void,
	.pull_stats = efx_port_dummy_op_void,
	.stop_stats = efx_port_dummy_op_void,
	.set_id_led = efx_mcdi_set_id_led,
	.push_irq_moderation = efx_ef10_push_irq_moderation,
5686
	.reconfigure_mac = efx_ef10_mac_reconfigure_vf,
5687 5688 5689 5690 5691 5692 5693 5694 5695
	.check_mac_fault = efx_mcdi_mac_check_fault,
	.reconfigure_port = efx_mcdi_port_reconfigure,
	.get_wol = efx_ef10_get_wol_vf,
	.set_wol = efx_ef10_set_wol_vf,
	.resume_wol = efx_port_dummy_op_void,
	.mcdi_request = efx_ef10_mcdi_request,
	.mcdi_poll_response = efx_ef10_mcdi_poll_response,
	.mcdi_read_response = efx_ef10_mcdi_read_response,
	.mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
5696
	.mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected,
5697 5698 5699 5700 5701 5702 5703 5704 5705
	.irq_enable_master = efx_port_dummy_op_void,
	.irq_test_generate = efx_ef10_irq_test_generate,
	.irq_disable_non_ev = efx_port_dummy_op_void,
	.irq_handle_msi = efx_ef10_msi_interrupt,
	.irq_handle_legacy = efx_ef10_legacy_interrupt,
	.tx_probe = efx_ef10_tx_probe,
	.tx_init = efx_ef10_tx_init,
	.tx_remove = efx_ef10_tx_remove,
	.tx_write = efx_ef10_tx_write,
5706
	.tx_limit_len = efx_ef10_tx_limit_len,
5707
	.rx_push_rss_config = efx_ef10_vf_rx_push_rss_config,
5708
	.rx_pull_rss_config = efx_ef10_rx_pull_rss_config,
5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740
	.rx_probe = efx_ef10_rx_probe,
	.rx_init = efx_ef10_rx_init,
	.rx_remove = efx_ef10_rx_remove,
	.rx_write = efx_ef10_rx_write,
	.rx_defer_refill = efx_ef10_rx_defer_refill,
	.ev_probe = efx_ef10_ev_probe,
	.ev_init = efx_ef10_ev_init,
	.ev_fini = efx_ef10_ev_fini,
	.ev_remove = efx_ef10_ev_remove,
	.ev_process = efx_ef10_ev_process,
	.ev_read_ack = efx_ef10_ev_read_ack,
	.ev_test_generate = efx_ef10_ev_test_generate,
	.filter_table_probe = efx_ef10_filter_table_probe,
	.filter_table_restore = efx_ef10_filter_table_restore,
	.filter_table_remove = efx_ef10_filter_table_remove,
	.filter_update_rx_scatter = efx_ef10_filter_update_rx_scatter,
	.filter_insert = efx_ef10_filter_insert,
	.filter_remove_safe = efx_ef10_filter_remove_safe,
	.filter_get_safe = efx_ef10_filter_get_safe,
	.filter_clear_rx = efx_ef10_filter_clear_rx,
	.filter_count_rx_used = efx_ef10_filter_count_rx_used,
	.filter_get_rx_id_limit = efx_ef10_filter_get_rx_id_limit,
	.filter_get_rx_ids = efx_ef10_filter_get_rx_ids,
#ifdef CONFIG_RFS_ACCEL
	.filter_rfs_insert = efx_ef10_filter_rfs_insert,
	.filter_rfs_expire_one = efx_ef10_filter_rfs_expire_one,
#endif
#ifdef CONFIG_SFC_MTD
	.mtd_probe = efx_port_dummy_op_int,
#endif
	.ptp_write_host_time = efx_ef10_ptp_write_host_time_vf,
	.ptp_set_ts_config = efx_ef10_ptp_set_ts_config_vf,
5741 5742
	.vlan_rx_add_vid = efx_ef10_vlan_rx_add_vid,
	.vlan_rx_kill_vid = efx_ef10_vlan_rx_kill_vid,
5743
#ifdef CONFIG_SFC_SRIOV
5744 5745 5746
	.vswitching_probe = efx_ef10_vswitching_probe_vf,
	.vswitching_restore = efx_ef10_vswitching_restore_vf,
	.vswitching_remove = efx_ef10_vswitching_remove_vf,
5747
#endif
5748
	.get_mac_address = efx_ef10_get_mac_address_vf,
5749
	.set_mac_address = efx_ef10_set_mac_address,
5750

5751
	.get_phys_port_id = efx_ef10_get_phys_port_id,
5752 5753 5754 5755 5756 5757 5758 5759 5760
	.revision = EFX_REV_HUNT_A0,
	.max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
	.rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
	.rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
	.rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
	.can_rx_scatter = true,
	.always_rx_scatter = true,
	.max_interrupt_mode = EFX_INT_MODE_MSIX,
	.timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
5761
	.offload_features = EF10_OFFLOAD_FEATURES,
5762 5763 5764 5765
	.mcdi_max_ver = 2,
	.max_rx_ip_filters = HUNT_FILTER_TBL_ROWS,
	.hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
			    1 << HWTSTAMP_FILTER_ALL,
5766
	.rx_hash_key_size = 40,
5767 5768
};

5769
const struct efx_nic_type efx_hunt_a0_nic_type = {
5770
	.is_vf = false,
5771
	.mem_bar = EFX_MEM_BAR,
5772
	.mem_map_size = efx_ef10_mem_map_size,
5773
	.probe = efx_ef10_probe_pf,
5774 5775 5776 5777
	.remove = efx_ef10_remove,
	.dimension_resources = efx_ef10_dimension_resources,
	.init = efx_ef10_init_nic,
	.fini = efx_port_dummy_op_void,
5778
	.map_reset_reason = efx_ef10_map_reset_reason,
5779
	.map_reset_flags = efx_ef10_map_reset_flags,
5780
	.reset = efx_ef10_reset,
5781 5782 5783
	.probe_port = efx_mcdi_port_probe,
	.remove_port = efx_mcdi_port_remove,
	.fini_dmaq = efx_ef10_fini_dmaq,
5784 5785
	.prepare_flr = efx_ef10_prepare_flr,
	.finish_flr = efx_port_dummy_op_void,
5786
	.describe_stats = efx_ef10_describe_stats,
5787
	.update_stats = efx_ef10_update_stats_pf,
5788
	.start_stats = efx_mcdi_mac_start_stats,
5789
	.pull_stats = efx_mcdi_mac_pull_stats,
5790 5791 5792 5793 5794 5795 5796 5797 5798
	.stop_stats = efx_mcdi_mac_stop_stats,
	.set_id_led = efx_mcdi_set_id_led,
	.push_irq_moderation = efx_ef10_push_irq_moderation,
	.reconfigure_mac = efx_ef10_mac_reconfigure,
	.check_mac_fault = efx_mcdi_mac_check_fault,
	.reconfigure_port = efx_mcdi_port_reconfigure,
	.get_wol = efx_ef10_get_wol,
	.set_wol = efx_ef10_set_wol,
	.resume_wol = efx_port_dummy_op_void,
5799
	.test_chip = efx_ef10_test_chip,
5800 5801 5802 5803 5804
	.test_nvram = efx_mcdi_nvram_test_all,
	.mcdi_request = efx_ef10_mcdi_request,
	.mcdi_poll_response = efx_ef10_mcdi_poll_response,
	.mcdi_read_response = efx_ef10_mcdi_read_response,
	.mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
5805
	.mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected,
5806 5807 5808 5809 5810 5811 5812 5813 5814
	.irq_enable_master = efx_port_dummy_op_void,
	.irq_test_generate = efx_ef10_irq_test_generate,
	.irq_disable_non_ev = efx_port_dummy_op_void,
	.irq_handle_msi = efx_ef10_msi_interrupt,
	.irq_handle_legacy = efx_ef10_legacy_interrupt,
	.tx_probe = efx_ef10_tx_probe,
	.tx_init = efx_ef10_tx_init,
	.tx_remove = efx_ef10_tx_remove,
	.tx_write = efx_ef10_tx_write,
5815
	.tx_limit_len = efx_ef10_tx_limit_len,
5816
	.rx_push_rss_config = efx_ef10_pf_rx_push_rss_config,
5817
	.rx_pull_rss_config = efx_ef10_rx_pull_rss_config,
5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853
	.rx_probe = efx_ef10_rx_probe,
	.rx_init = efx_ef10_rx_init,
	.rx_remove = efx_ef10_rx_remove,
	.rx_write = efx_ef10_rx_write,
	.rx_defer_refill = efx_ef10_rx_defer_refill,
	.ev_probe = efx_ef10_ev_probe,
	.ev_init = efx_ef10_ev_init,
	.ev_fini = efx_ef10_ev_fini,
	.ev_remove = efx_ef10_ev_remove,
	.ev_process = efx_ef10_ev_process,
	.ev_read_ack = efx_ef10_ev_read_ack,
	.ev_test_generate = efx_ef10_ev_test_generate,
	.filter_table_probe = efx_ef10_filter_table_probe,
	.filter_table_restore = efx_ef10_filter_table_restore,
	.filter_table_remove = efx_ef10_filter_table_remove,
	.filter_update_rx_scatter = efx_ef10_filter_update_rx_scatter,
	.filter_insert = efx_ef10_filter_insert,
	.filter_remove_safe = efx_ef10_filter_remove_safe,
	.filter_get_safe = efx_ef10_filter_get_safe,
	.filter_clear_rx = efx_ef10_filter_clear_rx,
	.filter_count_rx_used = efx_ef10_filter_count_rx_used,
	.filter_get_rx_id_limit = efx_ef10_filter_get_rx_id_limit,
	.filter_get_rx_ids = efx_ef10_filter_get_rx_ids,
#ifdef CONFIG_RFS_ACCEL
	.filter_rfs_insert = efx_ef10_filter_rfs_insert,
	.filter_rfs_expire_one = efx_ef10_filter_rfs_expire_one,
#endif
#ifdef CONFIG_SFC_MTD
	.mtd_probe = efx_ef10_mtd_probe,
	.mtd_rename = efx_mcdi_mtd_rename,
	.mtd_read = efx_mcdi_mtd_read,
	.mtd_erase = efx_mcdi_mtd_erase,
	.mtd_write = efx_mcdi_mtd_write,
	.mtd_sync = efx_mcdi_mtd_sync,
#endif
	.ptp_write_host_time = efx_ef10_ptp_write_host_time,
5854 5855
	.ptp_set_ts_sync_events = efx_ef10_ptp_set_ts_sync_events,
	.ptp_set_ts_config = efx_ef10_ptp_set_ts_config,
5856 5857
	.vlan_rx_add_vid = efx_ef10_vlan_rx_add_vid,
	.vlan_rx_kill_vid = efx_ef10_vlan_rx_kill_vid,
5858
#ifdef CONFIG_SFC_SRIOV
5859
	.sriov_configure = efx_ef10_sriov_configure,
5860 5861 5862 5863
	.sriov_init = efx_ef10_sriov_init,
	.sriov_fini = efx_ef10_sriov_fini,
	.sriov_wanted = efx_ef10_sriov_wanted,
	.sriov_reset = efx_ef10_sriov_reset,
5864 5865 5866 5867 5868
	.sriov_flr = efx_ef10_sriov_flr,
	.sriov_set_vf_mac = efx_ef10_sriov_set_vf_mac,
	.sriov_set_vf_vlan = efx_ef10_sriov_set_vf_vlan,
	.sriov_set_vf_spoofchk = efx_ef10_sriov_set_vf_spoofchk,
	.sriov_get_vf_config = efx_ef10_sriov_get_vf_config,
5869
	.sriov_set_vf_link_state = efx_ef10_sriov_set_vf_link_state,
5870 5871 5872
	.vswitching_probe = efx_ef10_vswitching_probe_pf,
	.vswitching_restore = efx_ef10_vswitching_restore_pf,
	.vswitching_remove = efx_ef10_vswitching_remove_pf,
5873
#endif
5874
	.get_mac_address = efx_ef10_get_mac_address_pf,
5875
	.set_mac_address = efx_ef10_set_mac_address,
E
Edward Cree 已提交
5876
	.tso_versions = efx_ef10_tso_versions,
5877

5878
	.get_phys_port_id = efx_ef10_get_phys_port_id,
5879 5880 5881 5882
	.revision = EFX_REV_HUNT_A0,
	.max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
	.rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
	.rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
5883
	.rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
5884 5885
	.can_rx_scatter = true,
	.always_rx_scatter = true,
E
Edward Cree 已提交
5886
	.option_descriptors = true,
5887 5888
	.max_interrupt_mode = EFX_INT_MODE_MSIX,
	.timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
5889
	.offload_features = EF10_OFFLOAD_FEATURES,
5890 5891
	.mcdi_max_ver = 2,
	.max_rx_ip_filters = HUNT_FILTER_TBL_ROWS,
5892 5893
	.hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
			    1 << HWTSTAMP_FILTER_ALL,
5894
	.rx_hash_key_size = 40,
5895
};