cpuset.c 76.5 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6
/*
 *  kernel/cpuset.c
 *
 *  Processor and Memory placement constraints for sets of tasks.
 *
 *  Copyright (C) 2003 BULL SA.
P
Paul Jackson 已提交
7
 *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
8
 *  Copyright (C) 2006 Google, Inc
L
Linus Torvalds 已提交
9 10 11 12
 *
 *  Portions derived from Patrick Mochel's sysfs code.
 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
 *
13
 *  2003-10-10 Written by Simon Derr.
L
Linus Torvalds 已提交
14
 *  2003-10-22 Updates by Stephen Hemminger.
15
 *  2004 May-July Rework by Paul Jackson.
16
 *  2006 Rework by Paul Menage to use generic cgroups
17 18
 *  2008 Rework of the scheduler domains and CPU hotplug handling
 *       by Max Krasnyansky
L
Linus Torvalds 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
 *
 *  This file is subject to the terms and conditions of the GNU General Public
 *  License.  See the file COPYING in the main directory of the Linux
 *  distribution for more details.
 */

#include <linux/cpu.h>
#include <linux/cpumask.h>
#include <linux/cpuset.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/kmod.h>
#include <linux/list.h>
37
#include <linux/mempolicy.h>
L
Linus Torvalds 已提交
38
#include <linux/mm.h>
39
#include <linux/memory.h>
40
#include <linux/export.h>
L
Linus Torvalds 已提交
41 42 43 44
#include <linux/mount.h>
#include <linux/namei.h>
#include <linux/pagemap.h>
#include <linux/proc_fs.h>
45
#include <linux/rcupdate.h>
L
Linus Torvalds 已提交
46
#include <linux/sched.h>
47
#include <linux/sched/mm.h>
L
Linus Torvalds 已提交
48
#include <linux/seq_file.h>
49
#include <linux/security.h>
L
Linus Torvalds 已提交
50 51 52 53 54
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/stat.h>
#include <linux/string.h>
#include <linux/time.h>
55
#include <linux/time64.h>
L
Linus Torvalds 已提交
56 57 58
#include <linux/backing-dev.h>
#include <linux/sort.h>

59
#include <linux/uaccess.h>
A
Arun Sharma 已提交
60
#include <linux/atomic.h>
61
#include <linux/mutex.h>
62
#include <linux/cgroup.h>
63
#include <linux/wait.h>
L
Linus Torvalds 已提交
64

65
DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key);
66

67 68 69 70 71
/* See "Frequency meter" comments, below. */

struct fmeter {
	int cnt;		/* unprocessed events count */
	int val;		/* most recent output value */
72
	time64_t time;		/* clock (secs) when val computed */
73 74 75
	spinlock_t lock;	/* guards read or write of above */
};

L
Linus Torvalds 已提交
76
struct cpuset {
77 78
	struct cgroup_subsys_state css;

L
Linus Torvalds 已提交
79
	unsigned long flags;		/* "unsigned long" so bitops work */
80

81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
	/*
	 * On default hierarchy:
	 *
	 * The user-configured masks can only be changed by writing to
	 * cpuset.cpus and cpuset.mems, and won't be limited by the
	 * parent masks.
	 *
	 * The effective masks is the real masks that apply to the tasks
	 * in the cpuset. They may be changed if the configured masks are
	 * changed or hotplug happens.
	 *
	 * effective_mask == configured_mask & parent's effective_mask,
	 * and if it ends up empty, it will inherit the parent's mask.
	 *
	 *
	 * On legacy hierachy:
	 *
	 * The user-configured masks are always the same with effective masks.
	 */

101 102 103 104 105 106 107
	/* user-configured CPUs and Memory Nodes allow to tasks */
	cpumask_var_t cpus_allowed;
	nodemask_t mems_allowed;

	/* effective CPUs and Memory Nodes allow to tasks */
	cpumask_var_t effective_cpus;
	nodemask_t effective_mems;
L
Linus Torvalds 已提交
108

109 110 111 112 113 114 115 116 117 118 119 120
	/*
	 * This is old Memory Nodes tasks took on.
	 *
	 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
	 * - A new cpuset's old_mems_allowed is initialized when some
	 *   task is moved into it.
	 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
	 *   cpuset.mems_allowed and have tasks' nodemask updated, and
	 *   then old_mems_allowed is updated to mems_allowed.
	 */
	nodemask_t old_mems_allowed;

121
	struct fmeter fmeter;		/* memory_pressure filter */
P
Paul Jackson 已提交
122

123 124 125 126 127 128
	/*
	 * Tasks are being attached to this cpuset.  Used to prevent
	 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
	 */
	int attach_in_progress;

P
Paul Jackson 已提交
129 130
	/* partition number for rebuild_sched_domains() */
	int pn;
131

132 133
	/* for custom sched domain */
	int relax_domain_level;
L
Linus Torvalds 已提交
134 135
};

136
static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
137
{
138
	return css ? container_of(css, struct cpuset, css) : NULL;
139 140 141 142 143
}

/* Retrieve the cpuset for a task */
static inline struct cpuset *task_cs(struct task_struct *task)
{
144
	return css_cs(task_css(task, cpuset_cgrp_id));
145 146
}

147
static inline struct cpuset *parent_cs(struct cpuset *cs)
T
Tejun Heo 已提交
148
{
T
Tejun Heo 已提交
149
	return css_cs(cs->css.parent);
T
Tejun Heo 已提交
150 151
}

152 153 154 155 156 157 158 159 160 161 162 163 164
#ifdef CONFIG_NUMA
static inline bool task_has_mempolicy(struct task_struct *task)
{
	return task->mempolicy;
}
#else
static inline bool task_has_mempolicy(struct task_struct *task)
{
	return false;
}
#endif


L
Linus Torvalds 已提交
165 166
/* bits in struct cpuset flags field */
typedef enum {
T
Tejun Heo 已提交
167
	CS_ONLINE,
L
Linus Torvalds 已提交
168 169
	CS_CPU_EXCLUSIVE,
	CS_MEM_EXCLUSIVE,
170
	CS_MEM_HARDWALL,
171
	CS_MEMORY_MIGRATE,
P
Paul Jackson 已提交
172
	CS_SCHED_LOAD_BALANCE,
173 174
	CS_SPREAD_PAGE,
	CS_SPREAD_SLAB,
L
Linus Torvalds 已提交
175 176 177
} cpuset_flagbits_t;

/* convenient tests for these bits */
T
Tejun Heo 已提交
178 179 180 181 182
static inline bool is_cpuset_online(const struct cpuset *cs)
{
	return test_bit(CS_ONLINE, &cs->flags);
}

L
Linus Torvalds 已提交
183 184
static inline int is_cpu_exclusive(const struct cpuset *cs)
{
185
	return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
L
Linus Torvalds 已提交
186 187 188 189
}

static inline int is_mem_exclusive(const struct cpuset *cs)
{
190
	return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
L
Linus Torvalds 已提交
191 192
}

193 194 195 196 197
static inline int is_mem_hardwall(const struct cpuset *cs)
{
	return test_bit(CS_MEM_HARDWALL, &cs->flags);
}

P
Paul Jackson 已提交
198 199 200 201 202
static inline int is_sched_load_balance(const struct cpuset *cs)
{
	return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
}

203 204
static inline int is_memory_migrate(const struct cpuset *cs)
{
205
	return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
206 207
}

208 209 210 211 212 213 214 215 216 217
static inline int is_spread_page(const struct cpuset *cs)
{
	return test_bit(CS_SPREAD_PAGE, &cs->flags);
}

static inline int is_spread_slab(const struct cpuset *cs)
{
	return test_bit(CS_SPREAD_SLAB, &cs->flags);
}

L
Linus Torvalds 已提交
218
static struct cpuset top_cpuset = {
T
Tejun Heo 已提交
219 220
	.flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
		  (1 << CS_MEM_EXCLUSIVE)),
L
Linus Torvalds 已提交
221 222
};

223 224 225
/**
 * cpuset_for_each_child - traverse online children of a cpuset
 * @child_cs: loop cursor pointing to the current child
226
 * @pos_css: used for iteration
227 228 229 230 231
 * @parent_cs: target cpuset to walk children of
 *
 * Walk @child_cs through the online children of @parent_cs.  Must be used
 * with RCU read locked.
 */
232 233 234
#define cpuset_for_each_child(child_cs, pos_css, parent_cs)		\
	css_for_each_child((pos_css), &(parent_cs)->css)		\
		if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
235

236 237 238
/**
 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
 * @des_cs: loop cursor pointing to the current descendant
239
 * @pos_css: used for iteration
240 241 242
 * @root_cs: target cpuset to walk ancestor of
 *
 * Walk @des_cs through the online descendants of @root_cs.  Must be used
243
 * with RCU read locked.  The caller may modify @pos_css by calling
244 245
 * css_rightmost_descendant() to skip subtree.  @root_cs is included in the
 * iteration and the first node to be visited.
246
 */
247 248 249
#define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs)	\
	css_for_each_descendant_pre((pos_css), &(root_cs)->css)		\
		if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
250

L
Linus Torvalds 已提交
251
/*
252 253 254 255
 * There are two global locks guarding cpuset structures - cpuset_mutex and
 * callback_lock. We also require taking task_lock() when dereferencing a
 * task's cpuset pointer. See "The task_lock() exception", at the end of this
 * comment.
256
 *
257
 * A task must hold both locks to modify cpusets.  If a task holds
258
 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
259
 * is the only task able to also acquire callback_lock and be able to
260 261 262
 * modify cpusets.  It can perform various checks on the cpuset structure
 * first, knowing nothing will change.  It can also allocate memory while
 * just holding cpuset_mutex.  While it is performing these checks, various
263 264
 * callback routines can briefly acquire callback_lock to query cpusets.
 * Once it is ready to make the changes, it takes callback_lock, blocking
265
 * everyone else.
266 267
 *
 * Calls to the kernel memory allocator can not be made while holding
268
 * callback_lock, as that would risk double tripping on callback_lock
269 270 271
 * from one of the callbacks into the cpuset code from within
 * __alloc_pages().
 *
272
 * If a task is only holding callback_lock, then it has read-only
273 274
 * access to cpusets.
 *
275 276 277
 * Now, the task_struct fields mems_allowed and mempolicy may be changed
 * by other task, we use alloc_lock in the task_struct fields to protect
 * them.
278
 *
279
 * The cpuset_common_file_read() handlers only hold callback_lock across
280 281 282
 * small pieces of code, such as when reading out possibly multi-word
 * cpumasks and nodemasks.
 *
283 284
 * Accessing a task's cpuset should be done in accordance with the
 * guidelines for accessing subsystem state in kernel/cgroup.c
L
Linus Torvalds 已提交
285 286
 */

287
static DEFINE_MUTEX(cpuset_mutex);
288
static DEFINE_SPINLOCK(callback_lock);
289

290 291
static struct workqueue_struct *cpuset_migrate_mm_wq;

292 293 294 295 296 297
/*
 * CPU / memory hotplug is handled asynchronously.
 */
static void cpuset_hotplug_workfn(struct work_struct *work);
static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);

298 299
static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);

300 301
/*
 * This is ugly, but preserves the userspace API for existing cpuset
302
 * users. If someone tries to mount the "cpuset" filesystem, we
303 304
 * silently switch it to mount "cgroup" instead
 */
A
Al Viro 已提交
305 306
static struct dentry *cpuset_mount(struct file_system_type *fs_type,
			 int flags, const char *unused_dev_name, void *data)
L
Linus Torvalds 已提交
307
{
308
	struct file_system_type *cgroup_fs = get_fs_type("cgroup");
A
Al Viro 已提交
309
	struct dentry *ret = ERR_PTR(-ENODEV);
310 311 312 313
	if (cgroup_fs) {
		char mountopts[] =
			"cpuset,noprefix,"
			"release_agent=/sbin/cpuset_release_agent";
A
Al Viro 已提交
314 315
		ret = cgroup_fs->mount(cgroup_fs, flags,
					   unused_dev_name, mountopts);
316 317 318
		put_filesystem(cgroup_fs);
	}
	return ret;
L
Linus Torvalds 已提交
319 320 321 322
}

static struct file_system_type cpuset_fs_type = {
	.name = "cpuset",
A
Al Viro 已提交
323
	.mount = cpuset_mount,
L
Linus Torvalds 已提交
324 325 326
};

/*
327
 * Return in pmask the portion of a cpusets's cpus_allowed that
L
Linus Torvalds 已提交
328
 * are online.  If none are online, walk up the cpuset hierarchy
329
 * until we find one that does have some online cpus.
L
Linus Torvalds 已提交
330 331
 *
 * One way or another, we guarantee to return some non-empty subset
332
 * of cpu_online_mask.
L
Linus Torvalds 已提交
333
 *
334
 * Call with callback_lock or cpuset_mutex held.
L
Linus Torvalds 已提交
335
 */
336
static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
L
Linus Torvalds 已提交
337
{
338
	while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask)) {
T
Tejun Heo 已提交
339
		cs = parent_cs(cs);
340 341 342 343 344 345 346 347 348 349 350 351
		if (unlikely(!cs)) {
			/*
			 * The top cpuset doesn't have any online cpu as a
			 * consequence of a race between cpuset_hotplug_work
			 * and cpu hotplug notifier.  But we know the top
			 * cpuset's effective_cpus is on its way to to be
			 * identical to cpu_online_mask.
			 */
			cpumask_copy(pmask, cpu_online_mask);
			return;
		}
	}
352
	cpumask_and(pmask, cs->effective_cpus, cpu_online_mask);
L
Linus Torvalds 已提交
353 354 355 356
}

/*
 * Return in *pmask the portion of a cpusets's mems_allowed that
357 358
 * are online, with memory.  If none are online with memory, walk
 * up the cpuset hierarchy until we find one that does have some
359
 * online mems.  The top cpuset always has some mems online.
L
Linus Torvalds 已提交
360 361
 *
 * One way or another, we guarantee to return some non-empty subset
362
 * of node_states[N_MEMORY].
L
Linus Torvalds 已提交
363
 *
364
 * Call with callback_lock or cpuset_mutex held.
L
Linus Torvalds 已提交
365
 */
366
static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
L
Linus Torvalds 已提交
367
{
368
	while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
T
Tejun Heo 已提交
369
		cs = parent_cs(cs);
370
	nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
L
Linus Torvalds 已提交
371 372
}

373 374 375
/*
 * update task's spread flag if cpuset's page/slab spread flag is set
 *
376
 * Call with callback_lock or cpuset_mutex held.
377 378 379 380 381
 */
static void cpuset_update_task_spread_flag(struct cpuset *cs,
					struct task_struct *tsk)
{
	if (is_spread_page(cs))
382
		task_set_spread_page(tsk);
383
	else
384 385
		task_clear_spread_page(tsk);

386
	if (is_spread_slab(cs))
387
		task_set_spread_slab(tsk);
388
	else
389
		task_clear_spread_slab(tsk);
390 391
}

L
Linus Torvalds 已提交
392 393 394 395 396
/*
 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
 *
 * One cpuset is a subset of another if all its allowed CPUs and
 * Memory Nodes are a subset of the other, and its exclusive flags
397
 * are only set if the other's are set.  Call holding cpuset_mutex.
L
Linus Torvalds 已提交
398 399 400 401
 */

static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
{
402
	return	cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
L
Linus Torvalds 已提交
403 404 405 406 407
		nodes_subset(p->mems_allowed, q->mems_allowed) &&
		is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
		is_mem_exclusive(p) <= is_mem_exclusive(q);
}

408 409 410 411
/**
 * alloc_trial_cpuset - allocate a trial cpuset
 * @cs: the cpuset that the trial cpuset duplicates
 */
412
static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
413
{
414 415 416 417 418 419
	struct cpuset *trial;

	trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
	if (!trial)
		return NULL;

420 421 422 423
	if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL))
		goto free_cs;
	if (!alloc_cpumask_var(&trial->effective_cpus, GFP_KERNEL))
		goto free_cpus;
424

425 426
	cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
	cpumask_copy(trial->effective_cpus, cs->effective_cpus);
427
	return trial;
428 429 430 431 432 433

free_cpus:
	free_cpumask_var(trial->cpus_allowed);
free_cs:
	kfree(trial);
	return NULL;
434 435 436 437 438 439 440 441
}

/**
 * free_trial_cpuset - free the trial cpuset
 * @trial: the trial cpuset to be freed
 */
static void free_trial_cpuset(struct cpuset *trial)
{
442
	free_cpumask_var(trial->effective_cpus);
443
	free_cpumask_var(trial->cpus_allowed);
444 445 446
	kfree(trial);
}

L
Linus Torvalds 已提交
447 448 449 450 451 452 453
/*
 * validate_change() - Used to validate that any proposed cpuset change
 *		       follows the structural rules for cpusets.
 *
 * If we replaced the flag and mask values of the current cpuset
 * (cur) with those values in the trial cpuset (trial), would
 * our various subset and exclusive rules still be valid?  Presumes
454
 * cpuset_mutex held.
L
Linus Torvalds 已提交
455 456 457 458 459 460 461 462 463 464 465 466
 *
 * 'cur' is the address of an actual, in-use cpuset.  Operations
 * such as list traversal that depend on the actual address of the
 * cpuset in the list must use cur below, not trial.
 *
 * 'trial' is the address of bulk structure copy of cur, with
 * perhaps one or more of the fields cpus_allowed, mems_allowed,
 * or flags changed to new, trial values.
 *
 * Return 0 if valid, -errno if not.
 */

467
static int validate_change(struct cpuset *cur, struct cpuset *trial)
L
Linus Torvalds 已提交
468
{
469
	struct cgroup_subsys_state *css;
L
Linus Torvalds 已提交
470
	struct cpuset *c, *par;
471 472 473
	int ret;

	rcu_read_lock();
L
Linus Torvalds 已提交
474 475

	/* Each of our child cpusets must be a subset of us */
476
	ret = -EBUSY;
477
	cpuset_for_each_child(c, css, cur)
478 479
		if (!is_cpuset_subset(c, trial))
			goto out;
L
Linus Torvalds 已提交
480 481

	/* Remaining checks don't apply to root cpuset */
482
	ret = 0;
483
	if (cur == &top_cpuset)
484
		goto out;
L
Linus Torvalds 已提交
485

T
Tejun Heo 已提交
486
	par = parent_cs(cur);
487

488
	/* On legacy hiearchy, we must be a subset of our parent cpuset. */
489
	ret = -EACCES;
490 491
	if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
	    !is_cpuset_subset(trial, par))
492
		goto out;
L
Linus Torvalds 已提交
493

494 495 496 497
	/*
	 * If either I or some sibling (!= me) is exclusive, we can't
	 * overlap
	 */
498
	ret = -EINVAL;
499
	cpuset_for_each_child(c, css, par) {
L
Linus Torvalds 已提交
500 501
		if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
		    c != cur &&
502
		    cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
503
			goto out;
L
Linus Torvalds 已提交
504 505 506
		if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
		    c != cur &&
		    nodes_intersects(trial->mems_allowed, c->mems_allowed))
507
			goto out;
L
Linus Torvalds 已提交
508 509
	}

510 511
	/*
	 * Cpusets with tasks - existing or newly being attached - can't
512
	 * be changed to have empty cpus_allowed or mems_allowed.
513
	 */
514
	ret = -ENOSPC;
515
	if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
516 517 518 519 520 521 522
		if (!cpumask_empty(cur->cpus_allowed) &&
		    cpumask_empty(trial->cpus_allowed))
			goto out;
		if (!nodes_empty(cur->mems_allowed) &&
		    nodes_empty(trial->mems_allowed))
			goto out;
	}
523

524 525 526 527 528 529 530 531 532 533
	/*
	 * We can't shrink if we won't have enough room for SCHED_DEADLINE
	 * tasks.
	 */
	ret = -EBUSY;
	if (is_cpu_exclusive(cur) &&
	    !cpuset_cpumask_can_shrink(cur->cpus_allowed,
				       trial->cpus_allowed))
		goto out;

534 535 536 537
	ret = 0;
out:
	rcu_read_unlock();
	return ret;
L
Linus Torvalds 已提交
538 539
}

540
#ifdef CONFIG_SMP
P
Paul Jackson 已提交
541
/*
542
 * Helper routine for generate_sched_domains().
543
 * Do cpusets a, b have overlapping effective cpus_allowed masks?
P
Paul Jackson 已提交
544 545 546
 */
static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
{
547
	return cpumask_intersects(a->effective_cpus, b->effective_cpus);
P
Paul Jackson 已提交
548 549
}

550 551 552 553 554 555 556 557
static void
update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
{
	if (dattr->relax_domain_level < c->relax_domain_level)
		dattr->relax_domain_level = c->relax_domain_level;
	return;
}

558 559
static void update_domain_attr_tree(struct sched_domain_attr *dattr,
				    struct cpuset *root_cs)
560
{
561
	struct cpuset *cp;
562
	struct cgroup_subsys_state *pos_css;
563

564
	rcu_read_lock();
565
	cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
566 567
		/* skip the whole subtree if @cp doesn't have any CPU */
		if (cpumask_empty(cp->cpus_allowed)) {
568
			pos_css = css_rightmost_descendant(pos_css);
569
			continue;
570
		}
571 572 573 574

		if (is_sched_load_balance(cp))
			update_domain_attr(dattr, cp);
	}
575
	rcu_read_unlock();
576 577
}

P
Paul Jackson 已提交
578
/*
579 580 581 582 583
 * generate_sched_domains()
 *
 * This function builds a partial partition of the systems CPUs
 * A 'partial partition' is a set of non-overlapping subsets whose
 * union is a subset of that set.
584
 * The output of this function needs to be passed to kernel/sched/core.c
585 586 587
 * partition_sched_domains() routine, which will rebuild the scheduler's
 * load balancing domains (sched domains) as specified by that partial
 * partition.
P
Paul Jackson 已提交
588
 *
L
Li Zefan 已提交
589
 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
P
Paul Jackson 已提交
590 591 592 593 594 595 596
 * for a background explanation of this.
 *
 * Does not return errors, on the theory that the callers of this
 * routine would rather not worry about failures to rebuild sched
 * domains when operating in the severe memory shortage situations
 * that could cause allocation failures below.
 *
597
 * Must be called with cpuset_mutex held.
P
Paul Jackson 已提交
598 599
 *
 * The three key local variables below are:
600
 *    q  - a linked-list queue of cpuset pointers, used to implement a
P
Paul Jackson 已提交
601 602 603 604 605 606 607 608 609 610 611 612
 *	   top-down scan of all cpusets.  This scan loads a pointer
 *	   to each cpuset marked is_sched_load_balance into the
 *	   array 'csa'.  For our purposes, rebuilding the schedulers
 *	   sched domains, we can ignore !is_sched_load_balance cpusets.
 *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
 *	   that need to be load balanced, for convenient iterative
 *	   access by the subsequent code that finds the best partition,
 *	   i.e the set of domains (subsets) of CPUs such that the
 *	   cpus_allowed of every cpuset marked is_sched_load_balance
 *	   is a subset of one of these domains, while there are as
 *	   many such domains as possible, each as small as possible.
 * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
613
 *	   the kernel/sched/core.c routine partition_sched_domains() in a
P
Paul Jackson 已提交
614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
 *	   convenient format, that can be easily compared to the prior
 *	   value to determine what partition elements (sched domains)
 *	   were changed (added or removed.)
 *
 * Finding the best partition (set of domains):
 *	The triple nested loops below over i, j, k scan over the
 *	load balanced cpusets (using the array of cpuset pointers in
 *	csa[]) looking for pairs of cpusets that have overlapping
 *	cpus_allowed, but which don't have the same 'pn' partition
 *	number and gives them in the same partition number.  It keeps
 *	looping on the 'restart' label until it can no longer find
 *	any such pairs.
 *
 *	The union of the cpus_allowed masks from the set of
 *	all cpusets having the same 'pn' value then form the one
 *	element of the partition (one sched domain) to be passed to
 *	partition_sched_domains().
 */
632
static int generate_sched_domains(cpumask_var_t **domains,
633
			struct sched_domain_attr **attributes)
P
Paul Jackson 已提交
634 635 636 637 638
{
	struct cpuset *cp;	/* scans q */
	struct cpuset **csa;	/* array of all cpuset ptrs */
	int csn;		/* how many cpuset ptrs in csa so far */
	int i, j, k;		/* indices for partition finding loops */
639
	cpumask_var_t *doms;	/* resulting partition; i.e. sched domains */
640
	cpumask_var_t non_isolated_cpus;  /* load balanced CPUs */
641
	struct sched_domain_attr *dattr;  /* attributes for custom domains */
642
	int ndoms = 0;		/* number of sched domains in result */
643
	int nslot;		/* next empty doms[] struct cpumask slot */
644
	struct cgroup_subsys_state *pos_css;
P
Paul Jackson 已提交
645 646

	doms = NULL;
647
	dattr = NULL;
648
	csa = NULL;
P
Paul Jackson 已提交
649

650 651 652 653
	if (!alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL))
		goto done;
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);

P
Paul Jackson 已提交
654 655
	/* Special case for the 99% of systems with one, full, sched domain */
	if (is_sched_load_balance(&top_cpuset)) {
656 657
		ndoms = 1;
		doms = alloc_sched_domains(ndoms);
P
Paul Jackson 已提交
658
		if (!doms)
659 660
			goto done;

661 662 663
		dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
		if (dattr) {
			*dattr = SD_ATTR_INIT;
664
			update_domain_attr_tree(dattr, &top_cpuset);
665
		}
666 667
		cpumask_and(doms[0], top_cpuset.effective_cpus,
				     non_isolated_cpus);
668 669

		goto done;
P
Paul Jackson 已提交
670 671
	}

672
	csa = kmalloc(nr_cpusets() * sizeof(cp), GFP_KERNEL);
P
Paul Jackson 已提交
673 674 675 676
	if (!csa)
		goto done;
	csn = 0;

677
	rcu_read_lock();
678
	cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
679 680
		if (cp == &top_cpuset)
			continue;
681
		/*
682 683 684 685 686 687
		 * Continue traversing beyond @cp iff @cp has some CPUs and
		 * isn't load balancing.  The former is obvious.  The
		 * latter: All child cpusets contain a subset of the
		 * parent's cpus, so just skip them, and then we call
		 * update_domain_attr_tree() to calc relax_domain_level of
		 * the corresponding sched domain.
688
		 */
689
		if (!cpumask_empty(cp->cpus_allowed) &&
690 691
		    !(is_sched_load_balance(cp) &&
		      cpumask_intersects(cp->cpus_allowed, non_isolated_cpus)))
692
			continue;
693

694 695 696 697
		if (is_sched_load_balance(cp))
			csa[csn++] = cp;

		/* skip @cp's subtree */
698
		pos_css = css_rightmost_descendant(pos_css);
699 700
	}
	rcu_read_unlock();
P
Paul Jackson 已提交
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728

	for (i = 0; i < csn; i++)
		csa[i]->pn = i;
	ndoms = csn;

restart:
	/* Find the best partition (set of sched domains) */
	for (i = 0; i < csn; i++) {
		struct cpuset *a = csa[i];
		int apn = a->pn;

		for (j = 0; j < csn; j++) {
			struct cpuset *b = csa[j];
			int bpn = b->pn;

			if (apn != bpn && cpusets_overlap(a, b)) {
				for (k = 0; k < csn; k++) {
					struct cpuset *c = csa[k];

					if (c->pn == bpn)
						c->pn = apn;
				}
				ndoms--;	/* one less element */
				goto restart;
			}
		}
	}

729 730 731 732
	/*
	 * Now we know how many domains to create.
	 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
	 */
733
	doms = alloc_sched_domains(ndoms);
734
	if (!doms)
735 736 737 738 739 740
		goto done;

	/*
	 * The rest of the code, including the scheduler, can deal with
	 * dattr==NULL case. No need to abort if alloc fails.
	 */
741
	dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
P
Paul Jackson 已提交
742 743 744

	for (nslot = 0, i = 0; i < csn; i++) {
		struct cpuset *a = csa[i];
745
		struct cpumask *dp;
P
Paul Jackson 已提交
746 747
		int apn = a->pn;

748 749 750 751 752
		if (apn < 0) {
			/* Skip completed partitions */
			continue;
		}

753
		dp = doms[nslot];
754 755 756 757

		if (nslot == ndoms) {
			static int warnings = 10;
			if (warnings) {
758 759
				pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
					nslot, ndoms, csn, i, apn);
760
				warnings--;
P
Paul Jackson 已提交
761
			}
762 763
			continue;
		}
P
Paul Jackson 已提交
764

765
		cpumask_clear(dp);
766 767 768 769 770 771
		if (dattr)
			*(dattr + nslot) = SD_ATTR_INIT;
		for (j = i; j < csn; j++) {
			struct cpuset *b = csa[j];

			if (apn == b->pn) {
772
				cpumask_or(dp, dp, b->effective_cpus);
773
				cpumask_and(dp, dp, non_isolated_cpus);
774 775 776 777 778
				if (dattr)
					update_domain_attr_tree(dattr + nslot, b);

				/* Done with this partition */
				b->pn = -1;
P
Paul Jackson 已提交
779 780
			}
		}
781
		nslot++;
P
Paul Jackson 已提交
782 783 784
	}
	BUG_ON(nslot != ndoms);

785
done:
786
	free_cpumask_var(non_isolated_cpus);
787 788
	kfree(csa);

789 790 791 792 793 794 795
	/*
	 * Fallback to the default domain if kmalloc() failed.
	 * See comments in partition_sched_domains().
	 */
	if (doms == NULL)
		ndoms = 1;

796 797 798 799 800 801 802 803
	*domains    = doms;
	*attributes = dattr;
	return ndoms;
}

/*
 * Rebuild scheduler domains.
 *
804 805 806 807 808
 * If the flag 'sched_load_balance' of any cpuset with non-empty
 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
 * which has that flag enabled, or if any cpuset with a non-empty
 * 'cpus' is removed, then call this routine to rebuild the
 * scheduler's dynamic sched domains.
809
 *
810
 * Call with cpuset_mutex held.  Takes get_online_cpus().
811
 */
812
static void rebuild_sched_domains_locked(void)
813 814
{
	struct sched_domain_attr *attr;
815
	cpumask_var_t *doms;
816 817
	int ndoms;

818
	lockdep_assert_held(&cpuset_mutex);
819
	get_online_cpus();
820

821 822 823 824 825
	/*
	 * We have raced with CPU hotplug. Don't do anything to avoid
	 * passing doms with offlined cpu to partition_sched_domains().
	 * Anyways, hotplug work item will rebuild sched domains.
	 */
826
	if (!cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
827 828
		goto out;

829 830 831 832 833
	/* Generate domain masks and attrs */
	ndoms = generate_sched_domains(&doms, &attr);

	/* Have scheduler rebuild the domains */
	partition_sched_domains(ndoms, doms, attr);
834
out:
835
	put_online_cpus();
836
}
837
#else /* !CONFIG_SMP */
838
static void rebuild_sched_domains_locked(void)
839 840 841
{
}
#endif /* CONFIG_SMP */
P
Paul Jackson 已提交
842

843 844
void rebuild_sched_domains(void)
{
845
	mutex_lock(&cpuset_mutex);
846
	rebuild_sched_domains_locked();
847
	mutex_unlock(&cpuset_mutex);
P
Paul Jackson 已提交
848 849
}

850 851 852 853
/**
 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
 *
854 855 856
 * Iterate through each task of @cs updating its cpus_allowed to the
 * effective cpuset's.  As this function is called with cpuset_mutex held,
 * cpuset membership stays stable.
857
 */
858
static void update_tasks_cpumask(struct cpuset *cs)
859
{
860 861 862 863 864
	struct css_task_iter it;
	struct task_struct *task;

	css_task_iter_start(&cs->css, &it);
	while ((task = css_task_iter_next(&it)))
865
		set_cpus_allowed_ptr(task, cs->effective_cpus);
866
	css_task_iter_end(&it);
867 868
}

869
/*
870 871 872 873 874 875
 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
 * @cs: the cpuset to consider
 * @new_cpus: temp variable for calculating new effective_cpus
 *
 * When congifured cpumask is changed, the effective cpumasks of this cpuset
 * and all its descendants need to be updated.
876
 *
877
 * On legacy hierachy, effective_cpus will be the same with cpu_allowed.
878 879 880
 *
 * Called with cpuset_mutex held
 */
881
static void update_cpumasks_hier(struct cpuset *cs, struct cpumask *new_cpus)
882 883
{
	struct cpuset *cp;
884
	struct cgroup_subsys_state *pos_css;
885
	bool need_rebuild_sched_domains = false;
886 887

	rcu_read_lock();
888 889 890 891 892
	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
		struct cpuset *parent = parent_cs(cp);

		cpumask_and(new_cpus, cp->cpus_allowed, parent->effective_cpus);

893 894 895 896
		/*
		 * If it becomes empty, inherit the effective mask of the
		 * parent, which is guaranteed to have some CPUs.
		 */
897 898
		if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
		    cpumask_empty(new_cpus))
899 900
			cpumask_copy(new_cpus, parent->effective_cpus);

901 902 903 904
		/* Skip the whole subtree if the cpumask remains the same. */
		if (cpumask_equal(new_cpus, cp->effective_cpus)) {
			pos_css = css_rightmost_descendant(pos_css);
			continue;
905
		}
906

907
		if (!css_tryget_online(&cp->css))
908 909 910
			continue;
		rcu_read_unlock();

911
		spin_lock_irq(&callback_lock);
912
		cpumask_copy(cp->effective_cpus, new_cpus);
913
		spin_unlock_irq(&callback_lock);
914

915
		WARN_ON(!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
916 917
			!cpumask_equal(cp->cpus_allowed, cp->effective_cpus));

918
		update_tasks_cpumask(cp);
919

920 921 922 923 924 925 926 927
		/*
		 * If the effective cpumask of any non-empty cpuset is changed,
		 * we need to rebuild sched domains.
		 */
		if (!cpumask_empty(cp->cpus_allowed) &&
		    is_sched_load_balance(cp))
			need_rebuild_sched_domains = true;

928 929 930 931
		rcu_read_lock();
		css_put(&cp->css);
	}
	rcu_read_unlock();
932 933 934

	if (need_rebuild_sched_domains)
		rebuild_sched_domains_locked();
935 936
}

C
Cliff Wickman 已提交
937 938 939
/**
 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
 * @cs: the cpuset to consider
940
 * @trialcs: trial cpuset
C
Cliff Wickman 已提交
941 942
 * @buf: buffer of cpu numbers written to this cpuset
 */
943 944
static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
			  const char *buf)
L
Linus Torvalds 已提交
945
{
C
Cliff Wickman 已提交
946
	int retval;
L
Linus Torvalds 已提交
947

948
	/* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
949 950 951
	if (cs == &top_cpuset)
		return -EACCES;

952
	/*
953
	 * An empty cpus_allowed is ok only if the cpuset has no tasks.
954 955 956
	 * Since cpulist_parse() fails on an empty mask, we special case
	 * that parsing.  The validate_change() call ensures that cpusets
	 * with tasks have cpus.
957
	 */
958
	if (!*buf) {
959
		cpumask_clear(trialcs->cpus_allowed);
960
	} else {
961
		retval = cpulist_parse(buf, trialcs->cpus_allowed);
962 963
		if (retval < 0)
			return retval;
964

965 966
		if (!cpumask_subset(trialcs->cpus_allowed,
				    top_cpuset.cpus_allowed))
967
			return -EINVAL;
968
	}
P
Paul Jackson 已提交
969

P
Paul Menage 已提交
970
	/* Nothing to do if the cpus didn't change */
971
	if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
P
Paul Menage 已提交
972
		return 0;
C
Cliff Wickman 已提交
973

974 975 976 977
	retval = validate_change(cs, trialcs);
	if (retval < 0)
		return retval;

978
	spin_lock_irq(&callback_lock);
979
	cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
980
	spin_unlock_irq(&callback_lock);
P
Paul Jackson 已提交
981

982 983
	/* use trialcs->cpus_allowed as a temp variable */
	update_cpumasks_hier(cs, trialcs->cpus_allowed);
984
	return 0;
L
Linus Torvalds 已提交
985 986
}

987
/*
988 989 990 991 992
 * Migrate memory region from one set of nodes to another.  This is
 * performed asynchronously as it can be called from process migration path
 * holding locks involved in process management.  All mm migrations are
 * performed in the queued order and can be waited for by flushing
 * cpuset_migrate_mm_wq.
993 994
 */

995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
struct cpuset_migrate_mm_work {
	struct work_struct	work;
	struct mm_struct	*mm;
	nodemask_t		from;
	nodemask_t		to;
};

static void cpuset_migrate_mm_workfn(struct work_struct *work)
{
	struct cpuset_migrate_mm_work *mwork =
		container_of(work, struct cpuset_migrate_mm_work, work);

	/* on a wq worker, no need to worry about %current's mems_allowed */
	do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
	mmput(mwork->mm);
	kfree(mwork);
}

1013 1014 1015
static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
							const nodemask_t *to)
{
1016
	struct cpuset_migrate_mm_work *mwork;
1017

1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
	mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
	if (mwork) {
		mwork->mm = mm;
		mwork->from = *from;
		mwork->to = *to;
		INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
		queue_work(cpuset_migrate_mm_wq, &mwork->work);
	} else {
		mmput(mm);
	}
}
1029

1030
static void cpuset_post_attach(void)
1031 1032
{
	flush_workqueue(cpuset_migrate_mm_wq);
1033 1034
}

1035
/*
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
 * @tsk: the task to change
 * @newmems: new nodes that the task will be set
 *
 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
 * we structure updates as setting all new allowed nodes, then clearing newly
 * disallowed ones.
 */
static void cpuset_change_task_nodemask(struct task_struct *tsk,
					nodemask_t *newmems)
{
1047
	bool need_loop;
1048

1049
	task_lock(tsk);
1050 1051
	/*
	 * Determine if a loop is necessary if another thread is doing
1052
	 * read_mems_allowed_begin().  If at least one node remains unchanged and
1053 1054 1055 1056 1057
	 * tsk does not have a mempolicy, then an empty nodemask will not be
	 * possible when mems_allowed is larger than a word.
	 */
	need_loop = task_has_mempolicy(tsk) ||
			!nodes_intersects(*newmems, tsk->mems_allowed);
1058

1059 1060
	if (need_loop) {
		local_irq_disable();
1061
		write_seqcount_begin(&tsk->mems_allowed_seq);
1062
	}
1063

1064 1065
	nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
	mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
1066 1067

	mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
1068
	tsk->mems_allowed = *newmems;
1069

1070
	if (need_loop) {
1071
		write_seqcount_end(&tsk->mems_allowed_seq);
1072 1073
		local_irq_enable();
	}
1074

1075
	task_unlock(tsk);
1076 1077
}

1078 1079
static void *cpuset_being_rebound;

1080 1081 1082 1083
/**
 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
 *
1084 1085 1086
 * Iterate through each task of @cs updating its mems_allowed to the
 * effective cpuset's.  As this function is called with cpuset_mutex held,
 * cpuset membership stays stable.
1087
 */
1088
static void update_tasks_nodemask(struct cpuset *cs)
L
Linus Torvalds 已提交
1089
{
1090
	static nodemask_t newmems;	/* protected by cpuset_mutex */
1091 1092
	struct css_task_iter it;
	struct task_struct *task;
1093

1094
	cpuset_being_rebound = cs;		/* causes mpol_dup() rebind */
1095

1096
	guarantee_online_mems(cs, &newmems);
1097

1098
	/*
1099 1100 1101 1102
	 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
	 * take while holding tasklist_lock.  Forks can happen - the
	 * mpol_dup() cpuset_being_rebound check will catch such forks,
	 * and rebind their vma mempolicies too.  Because we still hold
1103
	 * the global cpuset_mutex, we know that no other rebind effort
1104
	 * will be contending for the global variable cpuset_being_rebound.
1105
	 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1106
	 * is idempotent.  Also migrate pages in each mm to new nodes.
1107
	 */
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
	css_task_iter_start(&cs->css, &it);
	while ((task = css_task_iter_next(&it))) {
		struct mm_struct *mm;
		bool migrate;

		cpuset_change_task_nodemask(task, &newmems);

		mm = get_task_mm(task);
		if (!mm)
			continue;

		migrate = is_memory_migrate(cs);

		mpol_rebind_mm(mm, &cs->mems_allowed);
		if (migrate)
			cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
1124 1125
		else
			mmput(mm);
1126 1127
	}
	css_task_iter_end(&it);
1128

1129 1130 1131 1132 1133 1134
	/*
	 * All the tasks' nodemasks have been updated, update
	 * cs->old_mems_allowed.
	 */
	cs->old_mems_allowed = newmems;

1135
	/* We're done rebinding vmas to this cpuset's new mems_allowed. */
1136
	cpuset_being_rebound = NULL;
L
Linus Torvalds 已提交
1137 1138
}

1139
/*
1140 1141 1142
 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
 * @cs: the cpuset to consider
 * @new_mems: a temp variable for calculating new effective_mems
1143
 *
1144 1145
 * When configured nodemask is changed, the effective nodemasks of this cpuset
 * and all its descendants need to be updated.
1146
 *
1147
 * On legacy hiearchy, effective_mems will be the same with mems_allowed.
1148 1149 1150
 *
 * Called with cpuset_mutex held
 */
1151
static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
1152 1153
{
	struct cpuset *cp;
1154
	struct cgroup_subsys_state *pos_css;
1155 1156

	rcu_read_lock();
1157 1158 1159 1160 1161
	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
		struct cpuset *parent = parent_cs(cp);

		nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);

1162 1163 1164 1165
		/*
		 * If it becomes empty, inherit the effective mask of the
		 * parent, which is guaranteed to have some MEMs.
		 */
1166 1167
		if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
		    nodes_empty(*new_mems))
1168 1169
			*new_mems = parent->effective_mems;

1170 1171 1172 1173
		/* Skip the whole subtree if the nodemask remains the same. */
		if (nodes_equal(*new_mems, cp->effective_mems)) {
			pos_css = css_rightmost_descendant(pos_css);
			continue;
1174
		}
1175

1176
		if (!css_tryget_online(&cp->css))
1177 1178 1179
			continue;
		rcu_read_unlock();

1180
		spin_lock_irq(&callback_lock);
1181
		cp->effective_mems = *new_mems;
1182
		spin_unlock_irq(&callback_lock);
1183

1184
		WARN_ON(!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
1185
			!nodes_equal(cp->mems_allowed, cp->effective_mems));
1186

1187
		update_tasks_nodemask(cp);
1188 1189 1190 1191 1192 1193 1194

		rcu_read_lock();
		css_put(&cp->css);
	}
	rcu_read_unlock();
}

1195 1196 1197
/*
 * Handle user request to change the 'mems' memory placement
 * of a cpuset.  Needs to validate the request, update the
1198 1199 1200 1201
 * cpusets mems_allowed, and for each task in the cpuset,
 * update mems_allowed and rebind task's mempolicy and any vma
 * mempolicies and if the cpuset is marked 'memory_migrate',
 * migrate the tasks pages to the new memory.
1202
 *
1203
 * Call with cpuset_mutex held. May take callback_lock during call.
1204 1205 1206 1207
 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
 * their mempolicies to the cpusets new mems_allowed.
 */
1208 1209
static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
			   const char *buf)
1210 1211 1212 1213
{
	int retval;

	/*
1214
	 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1215 1216
	 * it's read-only
	 */
1217 1218 1219 1220
	if (cs == &top_cpuset) {
		retval = -EACCES;
		goto done;
	}
1221 1222 1223 1224 1225 1226 1227 1228

	/*
	 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
	 * Since nodelist_parse() fails on an empty mask, we special case
	 * that parsing.  The validate_change() call ensures that cpusets
	 * with tasks have memory.
	 */
	if (!*buf) {
1229
		nodes_clear(trialcs->mems_allowed);
1230
	} else {
1231
		retval = nodelist_parse(buf, trialcs->mems_allowed);
1232 1233 1234
		if (retval < 0)
			goto done;

1235
		if (!nodes_subset(trialcs->mems_allowed,
1236 1237
				  top_cpuset.mems_allowed)) {
			retval = -EINVAL;
1238 1239
			goto done;
		}
1240
	}
1241 1242

	if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
1243 1244 1245
		retval = 0;		/* Too easy - nothing to do */
		goto done;
	}
1246
	retval = validate_change(cs, trialcs);
1247 1248 1249
	if (retval < 0)
		goto done;

1250
	spin_lock_irq(&callback_lock);
1251
	cs->mems_allowed = trialcs->mems_allowed;
1252
	spin_unlock_irq(&callback_lock);
1253

1254
	/* use trialcs->mems_allowed as a temp variable */
1255
	update_nodemasks_hier(cs, &trialcs->mems_allowed);
1256 1257 1258 1259
done:
	return retval;
}

1260 1261
int current_cpuset_is_being_rebound(void)
{
1262 1263 1264 1265 1266 1267 1268
	int ret;

	rcu_read_lock();
	ret = task_cs(current) == cpuset_being_rebound;
	rcu_read_unlock();

	return ret;
1269 1270
}

1271
static int update_relax_domain_level(struct cpuset *cs, s64 val)
1272
{
1273
#ifdef CONFIG_SMP
1274
	if (val < -1 || val >= sched_domain_level_max)
1275
		return -EINVAL;
1276
#endif
1277 1278 1279

	if (val != cs->relax_domain_level) {
		cs->relax_domain_level = val;
1280 1281
		if (!cpumask_empty(cs->cpus_allowed) &&
		    is_sched_load_balance(cs))
1282
			rebuild_sched_domains_locked();
1283 1284 1285 1286 1287
	}

	return 0;
}

1288
/**
1289 1290 1291
 * update_tasks_flags - update the spread flags of tasks in the cpuset.
 * @cs: the cpuset in which each task's spread flags needs to be changed
 *
1292 1293 1294
 * Iterate through each task of @cs updating its spread flags.  As this
 * function is called with cpuset_mutex held, cpuset membership stays
 * stable.
1295
 */
1296
static void update_tasks_flags(struct cpuset *cs)
1297
{
1298 1299 1300 1301 1302 1303 1304
	struct css_task_iter it;
	struct task_struct *task;

	css_task_iter_start(&cs->css, &it);
	while ((task = css_task_iter_next(&it)))
		cpuset_update_task_spread_flag(cs, task);
	css_task_iter_end(&it);
1305 1306
}

L
Linus Torvalds 已提交
1307 1308
/*
 * update_flag - read a 0 or a 1 in a file and update associated flag
1309 1310 1311
 * bit:		the bit to update (see cpuset_flagbits_t)
 * cs:		the cpuset to update
 * turning_on: 	whether the flag is being set or cleared
1312
 *
1313
 * Call with cpuset_mutex held.
L
Linus Torvalds 已提交
1314 1315
 */

1316 1317
static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
		       int turning_on)
L
Linus Torvalds 已提交
1318
{
1319
	struct cpuset *trialcs;
R
Rakib Mullick 已提交
1320
	int balance_flag_changed;
1321 1322
	int spread_flag_changed;
	int err;
L
Linus Torvalds 已提交
1323

1324 1325 1326 1327
	trialcs = alloc_trial_cpuset(cs);
	if (!trialcs)
		return -ENOMEM;

L
Linus Torvalds 已提交
1328
	if (turning_on)
1329
		set_bit(bit, &trialcs->flags);
L
Linus Torvalds 已提交
1330
	else
1331
		clear_bit(bit, &trialcs->flags);
L
Linus Torvalds 已提交
1332

1333
	err = validate_change(cs, trialcs);
1334
	if (err < 0)
1335
		goto out;
P
Paul Jackson 已提交
1336 1337

	balance_flag_changed = (is_sched_load_balance(cs) !=
1338
				is_sched_load_balance(trialcs));
P
Paul Jackson 已提交
1339

1340 1341 1342
	spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
			|| (is_spread_page(cs) != is_spread_page(trialcs)));

1343
	spin_lock_irq(&callback_lock);
1344
	cs->flags = trialcs->flags;
1345
	spin_unlock_irq(&callback_lock);
1346

1347
	if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1348
		rebuild_sched_domains_locked();
P
Paul Jackson 已提交
1349

1350
	if (spread_flag_changed)
1351
		update_tasks_flags(cs);
1352 1353 1354
out:
	free_trial_cpuset(trialcs);
	return err;
L
Linus Torvalds 已提交
1355 1356
}

1357
/*
A
Adrian Bunk 已提交
1358
 * Frequency meter - How fast is some event occurring?
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
 *
 * These routines manage a digitally filtered, constant time based,
 * event frequency meter.  There are four routines:
 *   fmeter_init() - initialize a frequency meter.
 *   fmeter_markevent() - called each time the event happens.
 *   fmeter_getrate() - returns the recent rate of such events.
 *   fmeter_update() - internal routine used to update fmeter.
 *
 * A common data structure is passed to each of these routines,
 * which is used to keep track of the state required to manage the
 * frequency meter and its digital filter.
 *
 * The filter works on the number of events marked per unit time.
 * The filter is single-pole low-pass recursive (IIR).  The time unit
 * is 1 second.  Arithmetic is done using 32-bit integers scaled to
 * simulate 3 decimal digits of precision (multiplied by 1000).
 *
 * With an FM_COEF of 933, and a time base of 1 second, the filter
 * has a half-life of 10 seconds, meaning that if the events quit
 * happening, then the rate returned from the fmeter_getrate()
 * will be cut in half each 10 seconds, until it converges to zero.
 *
 * It is not worth doing a real infinitely recursive filter.  If more
 * than FM_MAXTICKS ticks have elapsed since the last filter event,
 * just compute FM_MAXTICKS ticks worth, by which point the level
 * will be stable.
 *
 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
 * arithmetic overflow in the fmeter_update() routine.
 *
 * Given the simple 32 bit integer arithmetic used, this meter works
 * best for reporting rates between one per millisecond (msec) and
 * one per 32 (approx) seconds.  At constant rates faster than one
 * per msec it maxes out at values just under 1,000,000.  At constant
 * rates between one per msec, and one per second it will stabilize
 * to a value N*1000, where N is the rate of events per second.
 * At constant rates between one per second and one per 32 seconds,
 * it will be choppy, moving up on the seconds that have an event,
 * and then decaying until the next event.  At rates slower than
 * about one in 32 seconds, it decays all the way back to zero between
 * each event.
 */

#define FM_COEF 933		/* coefficient for half-life of 10 secs */
1403
#define FM_MAXTICKS ((u32)99)   /* useless computing more ticks than this */
1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
#define FM_MAXCNT 1000000	/* limit cnt to avoid overflow */
#define FM_SCALE 1000		/* faux fixed point scale */

/* Initialize a frequency meter */
static void fmeter_init(struct fmeter *fmp)
{
	fmp->cnt = 0;
	fmp->val = 0;
	fmp->time = 0;
	spin_lock_init(&fmp->lock);
}

/* Internal meter update - process cnt events and update value */
static void fmeter_update(struct fmeter *fmp)
{
1419 1420 1421 1422 1423
	time64_t now;
	u32 ticks;

	now = ktime_get_seconds();
	ticks = now - fmp->time;
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457

	if (ticks == 0)
		return;

	ticks = min(FM_MAXTICKS, ticks);
	while (ticks-- > 0)
		fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
	fmp->time = now;

	fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
	fmp->cnt = 0;
}

/* Process any previous ticks, then bump cnt by one (times scale). */
static void fmeter_markevent(struct fmeter *fmp)
{
	spin_lock(&fmp->lock);
	fmeter_update(fmp);
	fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
	spin_unlock(&fmp->lock);
}

/* Process any previous ticks, then return current value. */
static int fmeter_getrate(struct fmeter *fmp)
{
	int val;

	spin_lock(&fmp->lock);
	fmeter_update(fmp);
	val = fmp->val;
	spin_unlock(&fmp->lock);
	return val;
}

1458 1459
static struct cpuset *cpuset_attach_old_cs;

1460
/* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
1461
static int cpuset_can_attach(struct cgroup_taskset *tset)
1462
{
1463 1464
	struct cgroup_subsys_state *css;
	struct cpuset *cs;
1465 1466
	struct task_struct *task;
	int ret;
L
Linus Torvalds 已提交
1467

1468
	/* used later by cpuset_attach() */
1469 1470
	cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
	cs = css_cs(css);
1471

1472 1473
	mutex_lock(&cpuset_mutex);

1474
	/* allow moving tasks into an empty cpuset if on default hierarchy */
1475
	ret = -ENOSPC;
1476
	if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
1477
	    (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
1478
		goto out_unlock;
1479

1480
	cgroup_taskset_for_each(task, css, tset) {
1481 1482
		ret = task_can_attach(task, cs->cpus_allowed);
		if (ret)
1483 1484 1485 1486
			goto out_unlock;
		ret = security_task_setscheduler(task);
		if (ret)
			goto out_unlock;
1487
	}
1488

1489 1490 1491 1492 1493
	/*
	 * Mark attach is in progress.  This makes validate_change() fail
	 * changes which zero cpus/mems_allowed.
	 */
	cs->attach_in_progress++;
1494 1495 1496 1497
	ret = 0;
out_unlock:
	mutex_unlock(&cpuset_mutex);
	return ret;
1498
}
1499

1500
static void cpuset_cancel_attach(struct cgroup_taskset *tset)
1501
{
1502 1503 1504 1505 1506 1507
	struct cgroup_subsys_state *css;
	struct cpuset *cs;

	cgroup_taskset_first(tset, &css);
	cs = css_cs(css);

1508
	mutex_lock(&cpuset_mutex);
1509
	css_cs(css)->attach_in_progress--;
1510
	mutex_unlock(&cpuset_mutex);
1511
}
L
Linus Torvalds 已提交
1512

1513
/*
1514
 * Protected by cpuset_mutex.  cpus_attach is used only by cpuset_attach()
1515 1516 1517 1518 1519
 * but we can't allocate it dynamically there.  Define it global and
 * allocate from cpuset_init().
 */
static cpumask_var_t cpus_attach;

1520
static void cpuset_attach(struct cgroup_taskset *tset)
1521
{
1522
	/* static buf protected by cpuset_mutex */
1523
	static nodemask_t cpuset_attach_nodemask_to;
1524
	struct task_struct *task;
1525
	struct task_struct *leader;
1526 1527
	struct cgroup_subsys_state *css;
	struct cpuset *cs;
1528
	struct cpuset *oldcs = cpuset_attach_old_cs;
1529

1530 1531 1532
	cgroup_taskset_first(tset, &css);
	cs = css_cs(css);

1533 1534
	mutex_lock(&cpuset_mutex);

1535 1536 1537 1538
	/* prepare for attach */
	if (cs == &top_cpuset)
		cpumask_copy(cpus_attach, cpu_possible_mask);
	else
1539
		guarantee_online_cpus(cs, cpus_attach);
1540

1541
	guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
1542

1543
	cgroup_taskset_for_each(task, css, tset) {
1544 1545 1546 1547 1548 1549 1550 1551 1552
		/*
		 * can_attach beforehand should guarantee that this doesn't
		 * fail.  TODO: have a better way to handle failure here
		 */
		WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));

		cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
		cpuset_update_task_spread_flag(cs, task);
	}
1553

1554
	/*
1555 1556
	 * Change mm for all threadgroup leaders. This is expensive and may
	 * sleep and should be moved outside migration path proper.
1557
	 */
1558
	cpuset_attach_nodemask_to = cs->effective_mems;
1559
	cgroup_taskset_for_each_leader(leader, css, tset) {
1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
		struct mm_struct *mm = get_task_mm(leader);

		if (mm) {
			mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);

			/*
			 * old_mems_allowed is the same with mems_allowed
			 * here, except if this task is being moved
			 * automatically due to hotplug.  In that case
			 * @mems_allowed has been updated and is empty, so
			 * @old_mems_allowed is the right nodesets that we
			 * migrate mm from.
			 */
1573
			if (is_memory_migrate(cs))
1574 1575
				cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
						  &cpuset_attach_nodemask_to);
1576 1577
			else
				mmput(mm);
1578
		}
1579
	}
1580

1581
	cs->old_mems_allowed = cpuset_attach_nodemask_to;
1582

1583
	cs->attach_in_progress--;
1584 1585
	if (!cs->attach_in_progress)
		wake_up(&cpuset_attach_wq);
1586 1587

	mutex_unlock(&cpuset_mutex);
L
Linus Torvalds 已提交
1588 1589 1590 1591 1592
}

/* The various types of files and directories in a cpuset file system */

typedef enum {
1593
	FILE_MEMORY_MIGRATE,
L
Linus Torvalds 已提交
1594 1595
	FILE_CPULIST,
	FILE_MEMLIST,
1596 1597
	FILE_EFFECTIVE_CPULIST,
	FILE_EFFECTIVE_MEMLIST,
L
Linus Torvalds 已提交
1598 1599
	FILE_CPU_EXCLUSIVE,
	FILE_MEM_EXCLUSIVE,
1600
	FILE_MEM_HARDWALL,
P
Paul Jackson 已提交
1601
	FILE_SCHED_LOAD_BALANCE,
1602
	FILE_SCHED_RELAX_DOMAIN_LEVEL,
1603 1604
	FILE_MEMORY_PRESSURE_ENABLED,
	FILE_MEMORY_PRESSURE,
1605 1606
	FILE_SPREAD_PAGE,
	FILE_SPREAD_SLAB,
L
Linus Torvalds 已提交
1607 1608
} cpuset_filetype_t;

1609 1610
static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
			    u64 val)
1611
{
1612
	struct cpuset *cs = css_cs(css);
1613
	cpuset_filetype_t type = cft->private;
1614
	int retval = 0;
1615

1616
	mutex_lock(&cpuset_mutex);
1617 1618
	if (!is_cpuset_online(cs)) {
		retval = -ENODEV;
1619
		goto out_unlock;
1620
	}
1621 1622

	switch (type) {
L
Linus Torvalds 已提交
1623
	case FILE_CPU_EXCLUSIVE:
1624
		retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
L
Linus Torvalds 已提交
1625 1626
		break;
	case FILE_MEM_EXCLUSIVE:
1627
		retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
L
Linus Torvalds 已提交
1628
		break;
1629 1630 1631
	case FILE_MEM_HARDWALL:
		retval = update_flag(CS_MEM_HARDWALL, cs, val);
		break;
P
Paul Jackson 已提交
1632
	case FILE_SCHED_LOAD_BALANCE:
1633
		retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1634
		break;
1635
	case FILE_MEMORY_MIGRATE:
1636
		retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
1637
		break;
1638
	case FILE_MEMORY_PRESSURE_ENABLED:
1639
		cpuset_memory_pressure_enabled = !!val;
1640
		break;
1641
	case FILE_SPREAD_PAGE:
1642
		retval = update_flag(CS_SPREAD_PAGE, cs, val);
1643 1644
		break;
	case FILE_SPREAD_SLAB:
1645
		retval = update_flag(CS_SPREAD_SLAB, cs, val);
1646
		break;
L
Linus Torvalds 已提交
1647 1648
	default:
		retval = -EINVAL;
1649
		break;
L
Linus Torvalds 已提交
1650
	}
1651 1652
out_unlock:
	mutex_unlock(&cpuset_mutex);
L
Linus Torvalds 已提交
1653 1654 1655
	return retval;
}

1656 1657
static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
			    s64 val)
1658
{
1659
	struct cpuset *cs = css_cs(css);
1660
	cpuset_filetype_t type = cft->private;
1661
	int retval = -ENODEV;
1662

1663 1664 1665
	mutex_lock(&cpuset_mutex);
	if (!is_cpuset_online(cs))
		goto out_unlock;
1666

1667 1668 1669 1670 1671 1672 1673 1674
	switch (type) {
	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
		retval = update_relax_domain_level(cs, val);
		break;
	default:
		retval = -EINVAL;
		break;
	}
1675 1676
out_unlock:
	mutex_unlock(&cpuset_mutex);
1677 1678 1679
	return retval;
}

1680 1681 1682
/*
 * Common handling for a write to a "cpus" or "mems" file.
 */
1683 1684
static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
				    char *buf, size_t nbytes, loff_t off)
1685
{
1686
	struct cpuset *cs = css_cs(of_css(of));
1687
	struct cpuset *trialcs;
1688
	int retval = -ENODEV;
1689

1690 1691
	buf = strstrip(buf);

1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
	/*
	 * CPU or memory hotunplug may leave @cs w/o any execution
	 * resources, in which case the hotplug code asynchronously updates
	 * configuration and transfers all tasks to the nearest ancestor
	 * which can execute.
	 *
	 * As writes to "cpus" or "mems" may restore @cs's execution
	 * resources, wait for the previously scheduled operations before
	 * proceeding, so that we don't end up keep removing tasks added
	 * after execution capability is restored.
1702 1703 1704 1705 1706 1707 1708 1709
	 *
	 * cpuset_hotplug_work calls back into cgroup core via
	 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
	 * operation like this one can lead to a deadlock through kernfs
	 * active_ref protection.  Let's break the protection.  Losing the
	 * protection is okay as we check whether @cs is online after
	 * grabbing cpuset_mutex anyway.  This only happens on the legacy
	 * hierarchies.
1710
	 */
1711 1712
	css_get(&cs->css);
	kernfs_break_active_protection(of->kn);
1713 1714
	flush_work(&cpuset_hotplug_work);

1715 1716 1717
	mutex_lock(&cpuset_mutex);
	if (!is_cpuset_online(cs))
		goto out_unlock;
1718

1719
	trialcs = alloc_trial_cpuset(cs);
1720 1721
	if (!trialcs) {
		retval = -ENOMEM;
1722
		goto out_unlock;
1723
	}
1724

1725
	switch (of_cft(of)->private) {
1726
	case FILE_CPULIST:
1727
		retval = update_cpumask(cs, trialcs, buf);
1728 1729
		break;
	case FILE_MEMLIST:
1730
		retval = update_nodemask(cs, trialcs, buf);
1731 1732 1733 1734 1735
		break;
	default:
		retval = -EINVAL;
		break;
	}
1736 1737

	free_trial_cpuset(trialcs);
1738 1739
out_unlock:
	mutex_unlock(&cpuset_mutex);
1740 1741
	kernfs_unbreak_active_protection(of->kn);
	css_put(&cs->css);
1742
	flush_workqueue(cpuset_migrate_mm_wq);
1743
	return retval ?: nbytes;
1744 1745
}

L
Linus Torvalds 已提交
1746 1747 1748 1749 1750 1751 1752 1753
/*
 * These ascii lists should be read in a single call, by using a user
 * buffer large enough to hold the entire map.  If read in smaller
 * chunks, there is no guarantee of atomicity.  Since the display format
 * used, list of ranges of sequential numbers, is variable length,
 * and since these maps can change value dynamically, one could read
 * gibberish by doing partial reads while a list was changing.
 */
1754
static int cpuset_common_seq_show(struct seq_file *sf, void *v)
L
Linus Torvalds 已提交
1755
{
1756 1757
	struct cpuset *cs = css_cs(seq_css(sf));
	cpuset_filetype_t type = seq_cft(sf)->private;
1758
	int ret = 0;
L
Linus Torvalds 已提交
1759

1760
	spin_lock_irq(&callback_lock);
L
Linus Torvalds 已提交
1761 1762 1763

	switch (type) {
	case FILE_CPULIST:
1764
		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
L
Linus Torvalds 已提交
1765 1766
		break;
	case FILE_MEMLIST:
1767
		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
L
Linus Torvalds 已提交
1768
		break;
1769
	case FILE_EFFECTIVE_CPULIST:
1770
		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
1771 1772
		break;
	case FILE_EFFECTIVE_MEMLIST:
1773
		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
1774
		break;
L
Linus Torvalds 已提交
1775
	default:
1776
		ret = -EINVAL;
L
Linus Torvalds 已提交
1777 1778
	}

1779
	spin_unlock_irq(&callback_lock);
1780
	return ret;
L
Linus Torvalds 已提交
1781 1782
}

1783
static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
1784
{
1785
	struct cpuset *cs = css_cs(css);
1786 1787 1788 1789 1790 1791
	cpuset_filetype_t type = cft->private;
	switch (type) {
	case FILE_CPU_EXCLUSIVE:
		return is_cpu_exclusive(cs);
	case FILE_MEM_EXCLUSIVE:
		return is_mem_exclusive(cs);
1792 1793
	case FILE_MEM_HARDWALL:
		return is_mem_hardwall(cs);
1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808
	case FILE_SCHED_LOAD_BALANCE:
		return is_sched_load_balance(cs);
	case FILE_MEMORY_MIGRATE:
		return is_memory_migrate(cs);
	case FILE_MEMORY_PRESSURE_ENABLED:
		return cpuset_memory_pressure_enabled;
	case FILE_MEMORY_PRESSURE:
		return fmeter_getrate(&cs->fmeter);
	case FILE_SPREAD_PAGE:
		return is_spread_page(cs);
	case FILE_SPREAD_SLAB:
		return is_spread_slab(cs);
	default:
		BUG();
	}
1809 1810 1811

	/* Unreachable but makes gcc happy */
	return 0;
1812
}
L
Linus Torvalds 已提交
1813

1814
static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
1815
{
1816
	struct cpuset *cs = css_cs(css);
1817 1818 1819 1820 1821 1822 1823
	cpuset_filetype_t type = cft->private;
	switch (type) {
	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
		return cs->relax_domain_level;
	default:
		BUG();
	}
1824 1825 1826

	/* Unrechable but makes gcc happy */
	return 0;
1827 1828
}

L
Linus Torvalds 已提交
1829 1830 1831 1832 1833

/*
 * for the common functions, 'private' gives the type of file
 */

1834 1835 1836
static struct cftype files[] = {
	{
		.name = "cpus",
1837
		.seq_show = cpuset_common_seq_show,
1838
		.write = cpuset_write_resmask,
1839
		.max_write_len = (100U + 6 * NR_CPUS),
1840 1841 1842 1843 1844
		.private = FILE_CPULIST,
	},

	{
		.name = "mems",
1845
		.seq_show = cpuset_common_seq_show,
1846
		.write = cpuset_write_resmask,
1847
		.max_write_len = (100U + 6 * MAX_NUMNODES),
1848 1849 1850
		.private = FILE_MEMLIST,
	},

1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862
	{
		.name = "effective_cpus",
		.seq_show = cpuset_common_seq_show,
		.private = FILE_EFFECTIVE_CPULIST,
	},

	{
		.name = "effective_mems",
		.seq_show = cpuset_common_seq_show,
		.private = FILE_EFFECTIVE_MEMLIST,
	},

1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876
	{
		.name = "cpu_exclusive",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_CPU_EXCLUSIVE,
	},

	{
		.name = "mem_exclusive",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEM_EXCLUSIVE,
	},

1877 1878 1879 1880 1881 1882 1883
	{
		.name = "mem_hardwall",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEM_HARDWALL,
	},

1884 1885 1886 1887 1888 1889 1890 1891 1892
	{
		.name = "sched_load_balance",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SCHED_LOAD_BALANCE,
	},

	{
		.name = "sched_relax_domain_level",
1893 1894
		.read_s64 = cpuset_read_s64,
		.write_s64 = cpuset_write_s64,
1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
		.private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
	},

	{
		.name = "memory_migrate",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEMORY_MIGRATE,
	},

	{
		.name = "memory_pressure",
		.read_u64 = cpuset_read_u64,
	},

	{
		.name = "memory_spread_page",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SPREAD_PAGE,
	},

	{
		.name = "memory_spread_slab",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SPREAD_SLAB,
	},
1923

1924 1925 1926 1927 1928 1929 1930
	{
		.name = "memory_pressure_enabled",
		.flags = CFTYPE_ONLY_ON_ROOT,
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEMORY_PRESSURE_ENABLED,
	},
L
Linus Torvalds 已提交
1931

1932 1933
	{ }	/* terminate */
};
L
Linus Torvalds 已提交
1934 1935

/*
1936
 *	cpuset_css_alloc - allocate a cpuset css
L
Li Zefan 已提交
1937
 *	cgrp:	control group that the new cpuset will be part of
L
Linus Torvalds 已提交
1938 1939
 */

1940 1941
static struct cgroup_subsys_state *
cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
L
Linus Torvalds 已提交
1942
{
T
Tejun Heo 已提交
1943
	struct cpuset *cs;
L
Linus Torvalds 已提交
1944

1945
	if (!parent_css)
1946
		return &top_cpuset.css;
1947

T
Tejun Heo 已提交
1948
	cs = kzalloc(sizeof(*cs), GFP_KERNEL);
L
Linus Torvalds 已提交
1949
	if (!cs)
1950
		return ERR_PTR(-ENOMEM);
1951 1952 1953 1954
	if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL))
		goto free_cs;
	if (!alloc_cpumask_var(&cs->effective_cpus, GFP_KERNEL))
		goto free_cpus;
L
Linus Torvalds 已提交
1955

P
Paul Jackson 已提交
1956
	set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1957
	cpumask_clear(cs->cpus_allowed);
1958
	nodes_clear(cs->mems_allowed);
1959 1960
	cpumask_clear(cs->effective_cpus);
	nodes_clear(cs->effective_mems);
1961
	fmeter_init(&cs->fmeter);
1962
	cs->relax_domain_level = -1;
L
Linus Torvalds 已提交
1963

T
Tejun Heo 已提交
1964
	return &cs->css;
1965 1966 1967 1968 1969 1970

free_cpus:
	free_cpumask_var(cs->cpus_allowed);
free_cs:
	kfree(cs);
	return ERR_PTR(-ENOMEM);
T
Tejun Heo 已提交
1971 1972
}

1973
static int cpuset_css_online(struct cgroup_subsys_state *css)
T
Tejun Heo 已提交
1974
{
1975
	struct cpuset *cs = css_cs(css);
T
Tejun Heo 已提交
1976
	struct cpuset *parent = parent_cs(cs);
1977
	struct cpuset *tmp_cs;
1978
	struct cgroup_subsys_state *pos_css;
T
Tejun Heo 已提交
1979 1980 1981 1982

	if (!parent)
		return 0;

1983 1984
	mutex_lock(&cpuset_mutex);

T
Tejun Heo 已提交
1985
	set_bit(CS_ONLINE, &cs->flags);
T
Tejun Heo 已提交
1986 1987 1988 1989
	if (is_spread_page(parent))
		set_bit(CS_SPREAD_PAGE, &cs->flags);
	if (is_spread_slab(parent))
		set_bit(CS_SPREAD_SLAB, &cs->flags);
L
Linus Torvalds 已提交
1990

1991
	cpuset_inc();
1992

1993
	spin_lock_irq(&callback_lock);
1994
	if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) {
1995 1996 1997
		cpumask_copy(cs->effective_cpus, parent->effective_cpus);
		cs->effective_mems = parent->effective_mems;
	}
1998
	spin_unlock_irq(&callback_lock);
1999

2000
	if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
2001
		goto out_unlock;
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

	/*
	 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
	 * set.  This flag handling is implemented in cgroup core for
	 * histrical reasons - the flag may be specified during mount.
	 *
	 * Currently, if any sibling cpusets have exclusive cpus or mem, we
	 * refuse to clone the configuration - thereby refusing the task to
	 * be entered, and as a result refusing the sys_unshare() or
	 * clone() which initiated it.  If this becomes a problem for some
	 * users who wish to allow that scenario, then this could be
	 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
	 * (and likewise for mems) to the new cgroup.
	 */
2016
	rcu_read_lock();
2017
	cpuset_for_each_child(tmp_cs, pos_css, parent) {
2018 2019
		if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
			rcu_read_unlock();
2020
			goto out_unlock;
2021
		}
2022
	}
2023
	rcu_read_unlock();
2024

2025
	spin_lock_irq(&callback_lock);
2026
	cs->mems_allowed = parent->mems_allowed;
2027
	cs->effective_mems = parent->mems_allowed;
2028
	cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
2029
	cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
D
Dan Carpenter 已提交
2030
	spin_unlock_irq(&callback_lock);
2031 2032
out_unlock:
	mutex_unlock(&cpuset_mutex);
T
Tejun Heo 已提交
2033 2034 2035
	return 0;
}

2036 2037 2038 2039 2040 2041
/*
 * If the cpuset being removed has its flag 'sched_load_balance'
 * enabled, then simulate turning sched_load_balance off, which
 * will call rebuild_sched_domains_locked().
 */

2042
static void cpuset_css_offline(struct cgroup_subsys_state *css)
T
Tejun Heo 已提交
2043
{
2044
	struct cpuset *cs = css_cs(css);
T
Tejun Heo 已提交
2045

2046
	mutex_lock(&cpuset_mutex);
T
Tejun Heo 已提交
2047 2048 2049 2050

	if (is_sched_load_balance(cs))
		update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);

2051
	cpuset_dec();
T
Tejun Heo 已提交
2052
	clear_bit(CS_ONLINE, &cs->flags);
T
Tejun Heo 已提交
2053

2054
	mutex_unlock(&cpuset_mutex);
L
Linus Torvalds 已提交
2055 2056
}

2057
static void cpuset_css_free(struct cgroup_subsys_state *css)
L
Linus Torvalds 已提交
2058
{
2059
	struct cpuset *cs = css_cs(css);
L
Linus Torvalds 已提交
2060

2061
	free_cpumask_var(cs->effective_cpus);
2062
	free_cpumask_var(cs->cpus_allowed);
2063
	kfree(cs);
L
Linus Torvalds 已提交
2064 2065
}

2066 2067 2068
static void cpuset_bind(struct cgroup_subsys_state *root_css)
{
	mutex_lock(&cpuset_mutex);
2069
	spin_lock_irq(&callback_lock);
2070

2071
	if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) {
2072 2073 2074 2075 2076 2077 2078 2079
		cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
		top_cpuset.mems_allowed = node_possible_map;
	} else {
		cpumask_copy(top_cpuset.cpus_allowed,
			     top_cpuset.effective_cpus);
		top_cpuset.mems_allowed = top_cpuset.effective_mems;
	}

2080
	spin_unlock_irq(&callback_lock);
2081 2082 2083
	mutex_unlock(&cpuset_mutex);
}

2084 2085 2086 2087 2088
/*
 * Make sure the new task conform to the current state of its parent,
 * which could have been changed by cpuset just after it inherits the
 * state from the parent and before it sits on the cgroup's task list.
 */
2089
static void cpuset_fork(struct task_struct *task)
2090 2091 2092 2093 2094 2095 2096 2097
{
	if (task_css_is_root(task, cpuset_cgrp_id))
		return;

	set_cpus_allowed_ptr(task, &current->cpus_allowed);
	task->mems_allowed = current->mems_allowed;
}

2098
struct cgroup_subsys cpuset_cgrp_subsys = {
2099 2100 2101 2102 2103 2104 2105
	.css_alloc	= cpuset_css_alloc,
	.css_online	= cpuset_css_online,
	.css_offline	= cpuset_css_offline,
	.css_free	= cpuset_css_free,
	.can_attach	= cpuset_can_attach,
	.cancel_attach	= cpuset_cancel_attach,
	.attach		= cpuset_attach,
2106
	.post_attach	= cpuset_post_attach,
2107
	.bind		= cpuset_bind,
2108
	.fork		= cpuset_fork,
2109
	.legacy_cftypes	= files,
2110
	.early_init	= true,
2111 2112
};

L
Linus Torvalds 已提交
2113 2114 2115 2116 2117 2118 2119 2120
/**
 * cpuset_init - initialize cpusets at system boot
 *
 * Description: Initialize top_cpuset and the cpuset internal file system,
 **/

int __init cpuset_init(void)
{
2121
	int err = 0;
L
Linus Torvalds 已提交
2122

2123 2124
	if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
		BUG();
2125 2126
	if (!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL))
		BUG();
2127

2128
	cpumask_setall(top_cpuset.cpus_allowed);
2129
	nodes_setall(top_cpuset.mems_allowed);
2130 2131
	cpumask_setall(top_cpuset.effective_cpus);
	nodes_setall(top_cpuset.effective_mems);
L
Linus Torvalds 已提交
2132

2133
	fmeter_init(&top_cpuset.fmeter);
P
Paul Jackson 已提交
2134
	set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
2135
	top_cpuset.relax_domain_level = -1;
L
Linus Torvalds 已提交
2136 2137 2138

	err = register_filesystem(&cpuset_fs_type);
	if (err < 0)
2139 2140
		return err;

2141 2142 2143
	if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
		BUG();

2144
	return 0;
L
Linus Torvalds 已提交
2145 2146
}

2147
/*
2148
 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2149 2150
 * or memory nodes, we need to walk over the cpuset hierarchy,
 * removing that CPU or node from all cpusets.  If this removes the
2151 2152
 * last CPU or node from a cpuset, then move the tasks in the empty
 * cpuset to its next-highest non-empty parent.
2153
 */
2154 2155 2156 2157 2158 2159 2160 2161
static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
{
	struct cpuset *parent;

	/*
	 * Find its next-highest non-empty parent, (top cpuset
	 * has online cpus, so can't be empty).
	 */
T
Tejun Heo 已提交
2162
	parent = parent_cs(cs);
2163
	while (cpumask_empty(parent->cpus_allowed) ||
2164
			nodes_empty(parent->mems_allowed))
T
Tejun Heo 已提交
2165
		parent = parent_cs(parent);
2166

2167
	if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
2168
		pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
T
Tejun Heo 已提交
2169 2170
		pr_cont_cgroup_name(cs->css.cgroup);
		pr_cont("\n");
2171
	}
2172 2173
}

2174 2175 2176 2177
static void
hotplug_update_tasks_legacy(struct cpuset *cs,
			    struct cpumask *new_cpus, nodemask_t *new_mems,
			    bool cpus_updated, bool mems_updated)
2178 2179 2180
{
	bool is_empty;

2181
	spin_lock_irq(&callback_lock);
2182 2183 2184 2185
	cpumask_copy(cs->cpus_allowed, new_cpus);
	cpumask_copy(cs->effective_cpus, new_cpus);
	cs->mems_allowed = *new_mems;
	cs->effective_mems = *new_mems;
2186
	spin_unlock_irq(&callback_lock);
2187 2188 2189 2190 2191

	/*
	 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
	 * as the tasks will be migratecd to an ancestor.
	 */
2192
	if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
2193
		update_tasks_cpumask(cs);
2194
	if (mems_updated && !nodes_empty(cs->mems_allowed))
2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212
		update_tasks_nodemask(cs);

	is_empty = cpumask_empty(cs->cpus_allowed) ||
		   nodes_empty(cs->mems_allowed);

	mutex_unlock(&cpuset_mutex);

	/*
	 * Move tasks to the nearest ancestor with execution resources,
	 * This is full cgroup operation which will also call back into
	 * cpuset. Should be done outside any lock.
	 */
	if (is_empty)
		remove_tasks_in_empty_cpuset(cs);

	mutex_lock(&cpuset_mutex);
}

2213 2214 2215 2216
static void
hotplug_update_tasks(struct cpuset *cs,
		     struct cpumask *new_cpus, nodemask_t *new_mems,
		     bool cpus_updated, bool mems_updated)
2217
{
2218 2219 2220 2221 2222
	if (cpumask_empty(new_cpus))
		cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
	if (nodes_empty(*new_mems))
		*new_mems = parent_cs(cs)->effective_mems;

2223
	spin_lock_irq(&callback_lock);
2224 2225
	cpumask_copy(cs->effective_cpus, new_cpus);
	cs->effective_mems = *new_mems;
2226
	spin_unlock_irq(&callback_lock);
2227

2228
	if (cpus_updated)
2229
		update_tasks_cpumask(cs);
2230
	if (mems_updated)
2231 2232 2233
		update_tasks_nodemask(cs);
}

2234
/**
2235
 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
2236
 * @cs: cpuset in interest
2237
 *
2238 2239 2240
 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
 * offline, update @cs accordingly.  If @cs ends up with no CPU or memory,
 * all its tasks are moved to the nearest ancestor with both resources.
2241
 */
2242
static void cpuset_hotplug_update_tasks(struct cpuset *cs)
2243
{
2244 2245 2246 2247
	static cpumask_t new_cpus;
	static nodemask_t new_mems;
	bool cpus_updated;
	bool mems_updated;
2248 2249
retry:
	wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
2250

2251
	mutex_lock(&cpuset_mutex);
2252

2253 2254 2255 2256 2257 2258 2259 2260 2261
	/*
	 * We have raced with task attaching. We wait until attaching
	 * is finished, so we won't attach a task to an empty cpuset.
	 */
	if (cs->attach_in_progress) {
		mutex_unlock(&cpuset_mutex);
		goto retry;
	}

2262 2263
	cpumask_and(&new_cpus, cs->cpus_allowed, parent_cs(cs)->effective_cpus);
	nodes_and(new_mems, cs->mems_allowed, parent_cs(cs)->effective_mems);
2264

2265 2266
	cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
	mems_updated = !nodes_equal(new_mems, cs->effective_mems);
2267

2268
	if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys))
2269 2270
		hotplug_update_tasks(cs, &new_cpus, &new_mems,
				     cpus_updated, mems_updated);
2271
	else
2272 2273
		hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
					    cpus_updated, mems_updated);
2274

2275
	mutex_unlock(&cpuset_mutex);
2276 2277
}

2278
/**
2279
 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
2280
 *
2281 2282 2283 2284 2285
 * This function is called after either CPU or memory configuration has
 * changed and updates cpuset accordingly.  The top_cpuset is always
 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
 * order to make cpusets transparent (of no affect) on systems that are
 * actively using CPU hotplug but making no active use of cpusets.
2286
 *
2287
 * Non-root cpusets are only affected by offlining.  If any CPUs or memory
2288 2289
 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
 * all descendants.
2290
 *
2291 2292
 * Note that CPU offlining during suspend is ignored.  We don't modify
 * cpusets across suspend/resume cycles at all.
2293
 */
2294
static void cpuset_hotplug_workfn(struct work_struct *work)
2295
{
2296 2297
	static cpumask_t new_cpus;
	static nodemask_t new_mems;
2298
	bool cpus_updated, mems_updated;
2299
	bool on_dfl = cgroup_subsys_on_dfl(cpuset_cgrp_subsys);
2300

2301
	mutex_lock(&cpuset_mutex);
2302

2303 2304 2305
	/* fetch the available cpus/mems and find out which changed how */
	cpumask_copy(&new_cpus, cpu_active_mask);
	new_mems = node_states[N_MEMORY];
2306

2307 2308
	cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
	mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
2309

2310 2311
	/* synchronize cpus_allowed to cpu_active_mask */
	if (cpus_updated) {
2312
		spin_lock_irq(&callback_lock);
2313 2314
		if (!on_dfl)
			cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
2315
		cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
2316
		spin_unlock_irq(&callback_lock);
2317 2318
		/* we don't mess with cpumasks of tasks in top_cpuset */
	}
2319

2320 2321
	/* synchronize mems_allowed to N_MEMORY */
	if (mems_updated) {
2322
		spin_lock_irq(&callback_lock);
2323 2324
		if (!on_dfl)
			top_cpuset.mems_allowed = new_mems;
2325
		top_cpuset.effective_mems = new_mems;
2326
		spin_unlock_irq(&callback_lock);
2327
		update_tasks_nodemask(&top_cpuset);
2328
	}
2329

2330 2331
	mutex_unlock(&cpuset_mutex);

2332 2333
	/* if cpus or mems changed, we need to propagate to descendants */
	if (cpus_updated || mems_updated) {
2334
		struct cpuset *cs;
2335
		struct cgroup_subsys_state *pos_css;
2336

2337
		rcu_read_lock();
2338
		cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
2339
			if (cs == &top_cpuset || !css_tryget_online(&cs->css))
2340 2341
				continue;
			rcu_read_unlock();
2342

2343
			cpuset_hotplug_update_tasks(cs);
2344

2345 2346 2347 2348 2349
			rcu_read_lock();
			css_put(&cs->css);
		}
		rcu_read_unlock();
	}
2350

2351
	/* rebuild sched domains if cpus_allowed has changed */
2352 2353
	if (cpus_updated)
		rebuild_sched_domains();
2354 2355
}

2356
void cpuset_update_active_cpus(bool cpu_online)
2357
{
2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369
	/*
	 * We're inside cpu hotplug critical region which usually nests
	 * inside cgroup synchronization.  Bounce actual hotplug processing
	 * to a work item to avoid reverse locking order.
	 *
	 * We still need to do partition_sched_domains() synchronously;
	 * otherwise, the scheduler will get confused and put tasks to the
	 * dead CPU.  Fall back to the default single domain.
	 * cpuset_hotplug_workfn() will rebuild it as necessary.
	 */
	partition_sched_domains(1, NULL, NULL);
	schedule_work(&cpuset_hotplug_work);
2370 2371
}

2372
/*
2373 2374
 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
 * Call this routine anytime after node_states[N_MEMORY] changes.
2375
 * See cpuset_update_active_cpus() for CPU hotplug handling.
2376
 */
2377 2378
static int cpuset_track_online_nodes(struct notifier_block *self,
				unsigned long action, void *arg)
2379
{
2380
	schedule_work(&cpuset_hotplug_work);
2381
	return NOTIFY_OK;
2382
}
2383 2384 2385 2386 2387

static struct notifier_block cpuset_track_online_nodes_nb = {
	.notifier_call = cpuset_track_online_nodes,
	.priority = 10,		/* ??! */
};
2388

L
Linus Torvalds 已提交
2389 2390 2391 2392
/**
 * cpuset_init_smp - initialize cpus_allowed
 *
 * Description: Finish top cpuset after cpu, node maps are initialized
2393
 */
L
Linus Torvalds 已提交
2394 2395
void __init cpuset_init_smp(void)
{
2396
	cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
2397
	top_cpuset.mems_allowed = node_states[N_MEMORY];
2398
	top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
2399

2400 2401 2402
	cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
	top_cpuset.effective_mems = node_states[N_MEMORY];

2403
	register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
2404 2405 2406

	cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
	BUG_ON(!cpuset_migrate_mm_wq);
L
Linus Torvalds 已提交
2407 2408 2409 2410 2411
}

/**
 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2412
 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
L
Linus Torvalds 已提交
2413
 *
2414
 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
L
Linus Torvalds 已提交
2415
 * attached to the specified @tsk.  Guaranteed to return some non-empty
2416
 * subset of cpu_online_mask, even if this means going outside the
L
Linus Torvalds 已提交
2417 2418 2419
 * tasks cpuset.
 **/

2420
void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
L
Linus Torvalds 已提交
2421
{
2422 2423 2424
	unsigned long flags;

	spin_lock_irqsave(&callback_lock, flags);
2425
	rcu_read_lock();
2426
	guarantee_online_cpus(task_cs(tsk), pmask);
2427
	rcu_read_unlock();
2428
	spin_unlock_irqrestore(&callback_lock, flags);
L
Linus Torvalds 已提交
2429 2430
}

2431
void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
2432 2433
{
	rcu_read_lock();
2434
	do_set_cpus_allowed(tsk, task_cs(tsk)->effective_cpus);
2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449
	rcu_read_unlock();

	/*
	 * We own tsk->cpus_allowed, nobody can change it under us.
	 *
	 * But we used cs && cs->cpus_allowed lockless and thus can
	 * race with cgroup_attach_task() or update_cpumask() and get
	 * the wrong tsk->cpus_allowed. However, both cases imply the
	 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
	 * which takes task_rq_lock().
	 *
	 * If we are called after it dropped the lock we must see all
	 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
	 * set any mask even if it is not right from task_cs() pov,
	 * the pending set_cpus_allowed_ptr() will fix things.
2450 2451 2452
	 *
	 * select_fallback_rq() will fix things ups and set cpu_possible_mask
	 * if required.
2453 2454 2455
	 */
}

2456
void __init cpuset_init_current_mems_allowed(void)
L
Linus Torvalds 已提交
2457
{
2458
	nodes_setall(current->mems_allowed);
L
Linus Torvalds 已提交
2459 2460
}

2461 2462 2463 2464 2465 2466
/**
 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
 *
 * Description: Returns the nodemask_t mems_allowed of the cpuset
 * attached to the specified @tsk.  Guaranteed to return some non-empty
2467
 * subset of node_states[N_MEMORY], even if this means going outside the
2468 2469 2470 2471 2472 2473
 * tasks cpuset.
 **/

nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
{
	nodemask_t mask;
2474
	unsigned long flags;
2475

2476
	spin_lock_irqsave(&callback_lock, flags);
2477
	rcu_read_lock();
2478
	guarantee_online_mems(task_cs(tsk), &mask);
2479
	rcu_read_unlock();
2480
	spin_unlock_irqrestore(&callback_lock, flags);
2481 2482 2483 2484

	return mask;
}

2485
/**
2486 2487
 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
 * @nodemask: the nodemask to be checked
2488
 *
2489
 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
L
Linus Torvalds 已提交
2490
 */
2491
int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
L
Linus Torvalds 已提交
2492
{
2493
	return nodes_intersects(*nodemask, current->mems_allowed);
L
Linus Torvalds 已提交
2494 2495
}

2496
/*
2497 2498
 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
 * mem_hardwall ancestor to the specified cpuset.  Call holding
2499
 * callback_lock.  If no ancestor is mem_exclusive or mem_hardwall
2500
 * (an unusual configuration), then returns the root cpuset.
2501
 */
2502
static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
2503
{
T
Tejun Heo 已提交
2504 2505
	while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
		cs = parent_cs(cs);
2506 2507 2508
	return cs;
}

2509
/**
2510
 * cpuset_node_allowed - Can we allocate on a memory node?
2511
 * @node: is this an allowed node?
2512
 * @gfp_mask: memory allocation flags
2513
 *
2514 2515 2516 2517
 * If we're in interrupt, yes, we can always allocate.  If @node is set in
 * current's mems_allowed, yes.  If it's not a __GFP_HARDWALL request and this
 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
 * yes.  If current has access to memory reserves due to TIF_MEMDIE, yes.
2518 2519 2520
 * Otherwise, no.
 *
 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2521 2522
 * and do not allow allocations outside the current tasks cpuset
 * unless the task has been OOM killed as is marked TIF_MEMDIE.
2523
 * GFP_KERNEL allocations are not so marked, so can escape to the
2524
 * nearest enclosing hardwalled ancestor cpuset.
2525
 *
2526
 * Scanning up parent cpusets requires callback_lock.  The
2527 2528 2529 2530
 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
 * current tasks mems_allowed came up empty on the first pass over
 * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the
2531
 * cpuset are short of memory, might require taking the callback_lock.
2532
 *
2533
 * The first call here from mm/page_alloc:get_page_from_freelist()
2534 2535 2536
 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
 * so no allocation on a node outside the cpuset is allowed (unless
 * in interrupt, of course).
2537 2538 2539 2540 2541 2542
 *
 * The second pass through get_page_from_freelist() doesn't even call
 * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages()
 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
 * in alloc_flags.  That logic and the checks below have the combined
 * affect that:
2543 2544
 *	in_interrupt - any node ok (current task context irrelevant)
 *	GFP_ATOMIC   - any node ok
2545
 *	TIF_MEMDIE   - any node ok
2546
 *	GFP_KERNEL   - any node in enclosing hardwalled cpuset ok
2547
 *	GFP_USER     - only nodes in current tasks mems allowed ok.
2548
 */
2549
bool __cpuset_node_allowed(int node, gfp_t gfp_mask)
L
Linus Torvalds 已提交
2550
{
2551
	struct cpuset *cs;		/* current cpuset ancestors */
2552
	int allowed;			/* is allocation in zone z allowed? */
2553
	unsigned long flags;
2554

2555
	if (in_interrupt())
2556
		return true;
2557
	if (node_isset(node, current->mems_allowed))
2558
		return true;
2559 2560 2561 2562 2563
	/*
	 * Allow tasks that have access to memory reserves because they have
	 * been OOM killed to get memory anywhere.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)))
2564
		return true;
2565
	if (gfp_mask & __GFP_HARDWALL)	/* If hardwall request, stop here */
2566
		return false;
2567

2568
	if (current->flags & PF_EXITING) /* Let dying task have memory */
2569
		return true;
2570

2571
	/* Not hardwall and node outside mems_allowed: scan up cpusets */
2572
	spin_lock_irqsave(&callback_lock, flags);
2573

2574
	rcu_read_lock();
2575
	cs = nearest_hardwall_ancestor(task_cs(current));
2576
	allowed = node_isset(node, cs->mems_allowed);
2577
	rcu_read_unlock();
2578

2579
	spin_unlock_irqrestore(&callback_lock, flags);
2580
	return allowed;
L
Linus Torvalds 已提交
2581 2582
}

2583
/**
2584 2585
 * cpuset_mem_spread_node() - On which node to begin search for a file page
 * cpuset_slab_spread_node() - On which node to begin search for a slab page
2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609
 *
 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
 * tasks in a cpuset with is_spread_page or is_spread_slab set),
 * and if the memory allocation used cpuset_mem_spread_node()
 * to determine on which node to start looking, as it will for
 * certain page cache or slab cache pages such as used for file
 * system buffers and inode caches, then instead of starting on the
 * local node to look for a free page, rather spread the starting
 * node around the tasks mems_allowed nodes.
 *
 * We don't have to worry about the returned node being offline
 * because "it can't happen", and even if it did, it would be ok.
 *
 * The routines calling guarantee_online_mems() are careful to
 * only set nodes in task->mems_allowed that are online.  So it
 * should not be possible for the following code to return an
 * offline node.  But if it did, that would be ok, as this routine
 * is not returning the node where the allocation must be, only
 * the node where the search should start.  The zonelist passed to
 * __alloc_pages() will include all nodes.  If the slab allocator
 * is passed an offline node, it will fall back to the local node.
 * See kmem_cache_alloc_node().
 */

2610
static int cpuset_spread_node(int *rotor)
2611
{
2612
	return *rotor = next_node_in(*rotor, current->mems_allowed);
2613
}
2614 2615 2616

int cpuset_mem_spread_node(void)
{
2617 2618 2619 2620
	if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
		current->cpuset_mem_spread_rotor =
			node_random(&current->mems_allowed);

2621 2622 2623 2624 2625
	return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
}

int cpuset_slab_spread_node(void)
{
2626 2627 2628 2629
	if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
		current->cpuset_slab_spread_rotor =
			node_random(&current->mems_allowed);

2630 2631 2632
	return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
}

2633 2634
EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);

2635
/**
2636 2637 2638 2639 2640 2641 2642 2643
 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
 * @tsk1: pointer to task_struct of some task.
 * @tsk2: pointer to task_struct of some other task.
 *
 * Description: Return true if @tsk1's mems_allowed intersects the
 * mems_allowed of @tsk2.  Used by the OOM killer to determine if
 * one of the task's memory usage might impact the memory available
 * to the other.
2644 2645
 **/

2646 2647
int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
				   const struct task_struct *tsk2)
2648
{
2649
	return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
2650 2651
}

2652
/**
2653
 * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
2654
 *
2655
 * Description: Prints current's name, cpuset name, and cached copy of its
2656
 * mems_allowed to the kernel log.
2657
 */
2658
void cpuset_print_current_mems_allowed(void)
2659
{
2660
	struct cgroup *cgrp;
2661

2662
	rcu_read_lock();
2663

2664 2665
	cgrp = task_cs(current)->css.cgroup;
	pr_info("%s cpuset=", current->comm);
T
Tejun Heo 已提交
2666
	pr_cont_cgroup_name(cgrp);
2667 2668
	pr_cont(" mems_allowed=%*pbl\n",
		nodemask_pr_args(&current->mems_allowed));
2669

2670
	rcu_read_unlock();
2671 2672
}

2673 2674 2675 2676 2677 2678
/*
 * Collection of memory_pressure is suppressed unless
 * this flag is enabled by writing "1" to the special
 * cpuset file 'memory_pressure_enabled' in the root cpuset.
 */

2679
int cpuset_memory_pressure_enabled __read_mostly;
2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700

/**
 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
 *
 * Keep a running average of the rate of synchronous (direct)
 * page reclaim efforts initiated by tasks in each cpuset.
 *
 * This represents the rate at which some task in the cpuset
 * ran low on memory on all nodes it was allowed to use, and
 * had to enter the kernels page reclaim code in an effort to
 * create more free memory by tossing clean pages or swapping
 * or writing dirty pages.
 *
 * Display to user space in the per-cpuset read-only file
 * "memory_pressure".  Value displayed is an integer
 * representing the recent rate of entry into the synchronous
 * (direct) page reclaim by any task attached to the cpuset.
 **/

void __cpuset_memory_pressure_bump(void)
{
2701
	rcu_read_lock();
2702
	fmeter_markevent(&task_cs(current)->fmeter);
2703
	rcu_read_unlock();
2704 2705
}

2706
#ifdef CONFIG_PROC_PID_CPUSET
L
Linus Torvalds 已提交
2707 2708 2709 2710
/*
 * proc_cpuset_show()
 *  - Print tasks cpuset path into seq_file.
 *  - Used for /proc/<pid>/cpuset.
2711 2712
 *  - No need to task_lock(tsk) on this tsk->cpuset reference, as it
 *    doesn't really matter if tsk->cpuset changes after we read it,
2713
 *    and we take cpuset_mutex, keeping cpuset_attach() from changing it
2714
 *    anyway.
L
Linus Torvalds 已提交
2715
 */
Z
Zefan Li 已提交
2716 2717
int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
		     struct pid *pid, struct task_struct *tsk)
L
Linus Torvalds 已提交
2718
{
2719
	char *buf;
2720
	struct cgroup_subsys_state *css;
2721
	int retval;
L
Linus Torvalds 已提交
2722

2723
	retval = -ENOMEM;
T
Tejun Heo 已提交
2724
	buf = kmalloc(PATH_MAX, GFP_KERNEL);
L
Linus Torvalds 已提交
2725
	if (!buf)
2726 2727
		goto out;

2728
	css = task_get_css(tsk, cpuset_cgrp_id);
2729 2730
	retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX,
				current->nsproxy->cgroup_ns);
2731
	css_put(css);
2732
	if (retval >= PATH_MAX)
2733 2734
		retval = -ENAMETOOLONG;
	if (retval < 0)
Z
Zefan Li 已提交
2735
		goto out_free;
2736
	seq_puts(m, buf);
L
Linus Torvalds 已提交
2737
	seq_putc(m, '\n');
T
Tejun Heo 已提交
2738
	retval = 0;
2739
out_free:
L
Linus Torvalds 已提交
2740
	kfree(buf);
2741
out:
L
Linus Torvalds 已提交
2742 2743
	return retval;
}
2744
#endif /* CONFIG_PROC_PID_CPUSET */
L
Linus Torvalds 已提交
2745

2746
/* Display task mems_allowed in /proc/<pid>/status file. */
2747 2748
void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
{
2749 2750 2751 2752
	seq_printf(m, "Mems_allowed:\t%*pb\n",
		   nodemask_pr_args(&task->mems_allowed));
	seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
		   nodemask_pr_args(&task->mems_allowed));
L
Linus Torvalds 已提交
2753
}