sys_regs.c 63.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * Copyright (C) 2012,2013 - ARM Ltd
 * Author: Marc Zyngier <marc.zyngier@arm.com>
 *
 * Derived from arch/arm/kvm/coproc.c:
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Authors: Rusty Russell <rusty@rustcorp.com.au>
 *          Christoffer Dall <c.dall@virtualopensystems.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

23
#include <linux/bsearch.h>
24
#include <linux/kvm_host.h>
25
#include <linux/mm.h>
26
#include <linux/uaccess.h>
27

28 29
#include <asm/cacheflush.h>
#include <asm/cputype.h>
30
#include <asm/debug-monitors.h>
31 32
#include <asm/esr.h>
#include <asm/kvm_arm.h>
33
#include <asm/kvm_asm.h>
34 35 36 37
#include <asm/kvm_coproc.h>
#include <asm/kvm_emulate.h>
#include <asm/kvm_host.h>
#include <asm/kvm_mmu.h>
38
#include <asm/perf_event.h>
39
#include <asm/sysreg.h>
40

41 42 43 44
#include <trace/events/kvm.h>

#include "sys_regs.h"

45 46
#include "trace.h"

47 48 49 50 51
/*
 * All of this file is extremly similar to the ARM coproc.c, but the
 * types are different. My gut feeling is that it should be pretty
 * easy to merge, but that would be an ABI breakage -- again. VFP
 * would also need to be abstracted.
52 53 54 55
 *
 * For AArch32, we only take care of what is being trapped. Anything
 * that has to do with init and userspace access has to go via the
 * 64bit interface.
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
 */

/* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
static u32 cache_levels;

/* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
#define CSSELR_MAX 12

/* Which cache CCSIDR represents depends on CSSELR value. */
static u32 get_ccsidr(u32 csselr)
{
	u32 ccsidr;

	/* Make sure noone else changes CSSELR during this! */
	local_irq_disable();
71
	write_sysreg(csselr, csselr_el1);
72
	isb();
73
	ccsidr = read_sysreg(ccsidr_el1);
74 75 76 77 78
	local_irq_enable();

	return ccsidr;
}

79 80 81
/*
 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
 */
82
static bool access_dcsw(struct kvm_vcpu *vcpu,
83
			struct sys_reg_params *p,
84 85 86 87 88
			const struct sys_reg_desc *r)
{
	if (!p->is_write)
		return read_from_write_only(vcpu, p);

89
	kvm_set_way_flush(vcpu);
90 91 92
	return true;
}

93 94
/*
 * Generic accessor for VM registers. Only called as long as HCR_TVM
95 96
 * is set. If the guest enables the MMU, we stop trapping the VM
 * sys_regs and leave it in complete control of the caches.
97 98
 */
static bool access_vm_reg(struct kvm_vcpu *vcpu,
99
			  struct sys_reg_params *p,
100 101
			  const struct sys_reg_desc *r)
{
102
	bool was_enabled = vcpu_has_cache_enabled(vcpu);
103 104 105

	BUG_ON(!p->is_write);

106
	if (!p->is_aarch32) {
107
		vcpu_sys_reg(vcpu, r->reg) = p->regval;
108 109
	} else {
		if (!p->is_32bit)
110 111
			vcpu_cp15_64_high(vcpu, r->reg) = upper_32_bits(p->regval);
		vcpu_cp15_64_low(vcpu, r->reg) = lower_32_bits(p->regval);
112
	}
113

114
	kvm_toggle_cache(vcpu, was_enabled);
115 116 117
	return true;
}

118 119 120 121 122 123 124
/*
 * Trap handler for the GICv3 SGI generation system register.
 * Forward the request to the VGIC emulation.
 * The cp15_64 code makes sure this automatically works
 * for both AArch64 and AArch32 accesses.
 */
static bool access_gic_sgi(struct kvm_vcpu *vcpu,
125
			   struct sys_reg_params *p,
126 127 128 129 130
			   const struct sys_reg_desc *r)
{
	if (!p->is_write)
		return read_from_write_only(vcpu, p);

131
	vgic_v3_dispatch_sgi(vcpu, p->regval);
132 133 134 135

	return true;
}

136 137 138 139 140 141 142 143 144 145 146
static bool access_gic_sre(struct kvm_vcpu *vcpu,
			   struct sys_reg_params *p,
			   const struct sys_reg_desc *r)
{
	if (p->is_write)
		return ignore_write(vcpu, p);

	p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
	return true;
}

147
static bool trap_raz_wi(struct kvm_vcpu *vcpu,
148
			struct sys_reg_params *p,
149
			const struct sys_reg_desc *r)
150 151 152 153 154 155 156
{
	if (p->is_write)
		return ignore_write(vcpu, p);
	else
		return read_zero(vcpu, p);
}

157
static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
158
			   struct sys_reg_params *p,
159 160 161 162 163
			   const struct sys_reg_desc *r)
{
	if (p->is_write) {
		return ignore_write(vcpu, p);
	} else {
164
		p->regval = (1 << 3);
165 166 167 168 169
		return true;
	}
}

static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
170
				   struct sys_reg_params *p,
171 172 173 174 175
				   const struct sys_reg_desc *r)
{
	if (p->is_write) {
		return ignore_write(vcpu, p);
	} else {
176
		p->regval = read_sysreg(dbgauthstatus_el1);
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
		return true;
	}
}

/*
 * We want to avoid world-switching all the DBG registers all the
 * time:
 * 
 * - If we've touched any debug register, it is likely that we're
 *   going to touch more of them. It then makes sense to disable the
 *   traps and start doing the save/restore dance
 * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
 *   then mandatory to save/restore the registers, as the guest
 *   depends on them.
 * 
 * For this, we use a DIRTY bit, indicating the guest has modified the
 * debug registers, used as follow:
 *
 * On guest entry:
 * - If the dirty bit is set (because we're coming back from trapping),
 *   disable the traps, save host registers, restore guest registers.
 * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
 *   set the dirty bit, disable the traps, save host registers,
 *   restore guest registers.
 * - Otherwise, enable the traps
 *
 * On guest exit:
 * - If the dirty bit is set, save guest registers, restore host
 *   registers and clear the dirty bit. This ensure that the host can
 *   now use the debug registers.
 */
static bool trap_debug_regs(struct kvm_vcpu *vcpu,
209
			    struct sys_reg_params *p,
210 211 212
			    const struct sys_reg_desc *r)
{
	if (p->is_write) {
213
		vcpu_sys_reg(vcpu, r->reg) = p->regval;
214 215
		vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
	} else {
216
		p->regval = vcpu_sys_reg(vcpu, r->reg);
217 218
	}

219
	trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
220

221 222 223
	return true;
}

224 225 226 227 228 229 230 231 232
/*
 * reg_to_dbg/dbg_to_reg
 *
 * A 32 bit write to a debug register leave top bits alone
 * A 32 bit read from a debug register only returns the bottom bits
 *
 * All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the
 * hyp.S code switches between host and guest values in future.
 */
233 234 235
static void reg_to_dbg(struct kvm_vcpu *vcpu,
		       struct sys_reg_params *p,
		       u64 *dbg_reg)
236
{
237
	u64 val = p->regval;
238 239 240 241 242 243 244 245 246 247

	if (p->is_32bit) {
		val &= 0xffffffffUL;
		val |= ((*dbg_reg >> 32) << 32);
	}

	*dbg_reg = val;
	vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
}

248 249 250
static void dbg_to_reg(struct kvm_vcpu *vcpu,
		       struct sys_reg_params *p,
		       u64 *dbg_reg)
251
{
252
	p->regval = *dbg_reg;
253
	if (p->is_32bit)
254
		p->regval &= 0xffffffffUL;
255 256
}

257 258 259
static bool trap_bvr(struct kvm_vcpu *vcpu,
		     struct sys_reg_params *p,
		     const struct sys_reg_desc *rd)
260 261 262 263 264 265 266 267
{
	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];

	if (p->is_write)
		reg_to_dbg(vcpu, p, dbg_reg);
	else
		dbg_to_reg(vcpu, p, dbg_reg);

268 269
	trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);

270 271 272 273 274 275 276 277
	return true;
}

static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
		const struct kvm_one_reg *reg, void __user *uaddr)
{
	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];

278
	if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
279 280 281 282 283 284 285 286 287 288 289 290 291 292
		return -EFAULT;
	return 0;
}

static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
	const struct kvm_one_reg *reg, void __user *uaddr)
{
	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];

	if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
		return -EFAULT;
	return 0;
}

293 294
static void reset_bvr(struct kvm_vcpu *vcpu,
		      const struct sys_reg_desc *rd)
295 296 297 298
{
	vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg] = rd->val;
}

299 300 301
static bool trap_bcr(struct kvm_vcpu *vcpu,
		     struct sys_reg_params *p,
		     const struct sys_reg_desc *rd)
302 303 304 305 306 307 308 309
{
	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];

	if (p->is_write)
		reg_to_dbg(vcpu, p, dbg_reg);
	else
		dbg_to_reg(vcpu, p, dbg_reg);

310 311
	trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);

312 313 314 315 316 317 318 319
	return true;
}

static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
		const struct kvm_one_reg *reg, void __user *uaddr)
{
	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];

320
	if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
		return -EFAULT;

	return 0;
}

static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
	const struct kvm_one_reg *reg, void __user *uaddr)
{
	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];

	if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
		return -EFAULT;
	return 0;
}

336 337
static void reset_bcr(struct kvm_vcpu *vcpu,
		      const struct sys_reg_desc *rd)
338 339 340 341
{
	vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg] = rd->val;
}

342 343 344
static bool trap_wvr(struct kvm_vcpu *vcpu,
		     struct sys_reg_params *p,
		     const struct sys_reg_desc *rd)
345 346 347 348 349 350 351 352
{
	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];

	if (p->is_write)
		reg_to_dbg(vcpu, p, dbg_reg);
	else
		dbg_to_reg(vcpu, p, dbg_reg);

353 354 355
	trace_trap_reg(__func__, rd->reg, p->is_write,
		vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg]);

356 357 358 359 360 361 362 363
	return true;
}

static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
		const struct kvm_one_reg *reg, void __user *uaddr)
{
	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];

364
	if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
365 366 367 368 369 370 371 372 373 374 375 376 377 378
		return -EFAULT;
	return 0;
}

static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
	const struct kvm_one_reg *reg, void __user *uaddr)
{
	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];

	if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
		return -EFAULT;
	return 0;
}

379 380
static void reset_wvr(struct kvm_vcpu *vcpu,
		      const struct sys_reg_desc *rd)
381 382 383 384
{
	vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg] = rd->val;
}

385 386 387
static bool trap_wcr(struct kvm_vcpu *vcpu,
		     struct sys_reg_params *p,
		     const struct sys_reg_desc *rd)
388 389 390 391 392 393 394 395
{
	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];

	if (p->is_write)
		reg_to_dbg(vcpu, p, dbg_reg);
	else
		dbg_to_reg(vcpu, p, dbg_reg);

396 397
	trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);

398 399 400 401 402 403 404 405
	return true;
}

static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
		const struct kvm_one_reg *reg, void __user *uaddr)
{
	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];

406
	if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
407 408 409 410 411 412 413 414 415 416 417 418 419 420
		return -EFAULT;
	return 0;
}

static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
	const struct kvm_one_reg *reg, void __user *uaddr)
{
	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];

	if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
		return -EFAULT;
	return 0;
}

421 422
static void reset_wcr(struct kvm_vcpu *vcpu,
		      const struct sys_reg_desc *rd)
423 424 425 426
{
	vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg] = rd->val;
}

427 428
static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
{
429
	vcpu_sys_reg(vcpu, AMAIR_EL1) = read_sysreg(amair_el1);
430 431 432 433
}

static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
{
434 435
	u64 mpidr;

436
	/*
437 438 439 440 441
	 * Map the vcpu_id into the first three affinity level fields of
	 * the MPIDR. We limit the number of VCPUs in level 0 due to a
	 * limitation to 16 CPUs in that level in the ICC_SGIxR registers
	 * of the GICv3 to be able to address each CPU directly when
	 * sending IPIs.
442
	 */
443 444 445 446
	mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
	mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
	mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
	vcpu_sys_reg(vcpu, MPIDR_EL1) = (1ULL << 31) | mpidr;
447 448
}

449 450 451 452
static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
{
	u64 pmcr, val;

453 454 455
	pmcr = read_sysreg(pmcr_el0);
	/*
	 * Writable bits of PMCR_EL0 (ARMV8_PMU_PMCR_MASK) are reset to UNKNOWN
456 457 458 459 460 461 462
	 * except PMCR.E resetting to zero.
	 */
	val = ((pmcr & ~ARMV8_PMU_PMCR_MASK)
	       | (ARMV8_PMU_PMCR_MASK & 0xdecafbad)) & (~ARMV8_PMU_PMCR_E);
	vcpu_sys_reg(vcpu, PMCR_EL0) = val;
}

463
static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
464 465
{
	u64 reg = vcpu_sys_reg(vcpu, PMUSERENR_EL0);
466
	bool enabled = (reg & flags) || vcpu_mode_priv(vcpu);
467

468
	return !enabled;
469 470
}

471
static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
472
{
473 474
	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
}
475

476 477 478
static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
{
	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
479 480 481 482
}

static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
{
483
	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
484 485 486 487
}

static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
{
488
	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
489 490
}

491 492 493 494 495 496 497 498
static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
			const struct sys_reg_desc *r)
{
	u64 val;

	if (!kvm_arm_pmu_v3_ready(vcpu))
		return trap_raz_wi(vcpu, p, r);

499 500 501
	if (pmu_access_el0_disabled(vcpu))
		return false;

502 503 504 505 506 507
	if (p->is_write) {
		/* Only update writeable bits of PMCR */
		val = vcpu_sys_reg(vcpu, PMCR_EL0);
		val &= ~ARMV8_PMU_PMCR_MASK;
		val |= p->regval & ARMV8_PMU_PMCR_MASK;
		vcpu_sys_reg(vcpu, PMCR_EL0) = val;
508
		kvm_pmu_handle_pmcr(vcpu, val);
509 510 511 512 513 514 515 516 517 518
	} else {
		/* PMCR.P & PMCR.C are RAZ */
		val = vcpu_sys_reg(vcpu, PMCR_EL0)
		      & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
		p->regval = val;
	}

	return true;
}

519 520 521 522 523 524
static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
			  const struct sys_reg_desc *r)
{
	if (!kvm_arm_pmu_v3_ready(vcpu))
		return trap_raz_wi(vcpu, p, r);

525 526 527
	if (pmu_access_event_counter_el0_disabled(vcpu))
		return false;

528 529 530 531 532 533 534 535 536 537
	if (p->is_write)
		vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
	else
		/* return PMSELR.SEL field */
		p->regval = vcpu_sys_reg(vcpu, PMSELR_EL0)
			    & ARMV8_PMU_COUNTER_MASK;

	return true;
}

538 539 540 541 542 543 544 545 546 547
static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
			  const struct sys_reg_desc *r)
{
	u64 pmceid;

	if (!kvm_arm_pmu_v3_ready(vcpu))
		return trap_raz_wi(vcpu, p, r);

	BUG_ON(p->is_write);

548 549 550
	if (pmu_access_el0_disabled(vcpu))
		return false;

551
	if (!(p->Op2 & 1))
552
		pmceid = read_sysreg(pmceid0_el0);
553
	else
554
		pmceid = read_sysreg(pmceid1_el0);
555 556 557 558 559 560

	p->regval = pmceid;

	return true;
}

561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
{
	u64 pmcr, val;

	pmcr = vcpu_sys_reg(vcpu, PMCR_EL0);
	val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
	if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX)
		return false;

	return true;
}

static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
			      struct sys_reg_params *p,
			      const struct sys_reg_desc *r)
{
	u64 idx;

	if (!kvm_arm_pmu_v3_ready(vcpu))
		return trap_raz_wi(vcpu, p, r);

	if (r->CRn == 9 && r->CRm == 13) {
		if (r->Op2 == 2) {
			/* PMXEVCNTR_EL0 */
585 586 587
			if (pmu_access_event_counter_el0_disabled(vcpu))
				return false;

588 589 590 591
			idx = vcpu_sys_reg(vcpu, PMSELR_EL0)
			      & ARMV8_PMU_COUNTER_MASK;
		} else if (r->Op2 == 0) {
			/* PMCCNTR_EL0 */
592 593 594
			if (pmu_access_cycle_counter_el0_disabled(vcpu))
				return false;

595 596
			idx = ARMV8_PMU_CYCLE_IDX;
		} else {
597
			return false;
598
		}
599 600 601 602 603 604
	} else if (r->CRn == 0 && r->CRm == 9) {
		/* PMCCNTR */
		if (pmu_access_event_counter_el0_disabled(vcpu))
			return false;

		idx = ARMV8_PMU_CYCLE_IDX;
605 606
	} else if (r->CRn == 14 && (r->CRm & 12) == 8) {
		/* PMEVCNTRn_EL0 */
607 608 609
		if (pmu_access_event_counter_el0_disabled(vcpu))
			return false;

610 611
		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
	} else {
612
		return false;
613 614 615 616 617
	}

	if (!pmu_counter_idx_valid(vcpu, idx))
		return false;

618 619 620 621
	if (p->is_write) {
		if (pmu_access_el0_disabled(vcpu))
			return false;

622
		kvm_pmu_set_counter_value(vcpu, idx, p->regval);
623
	} else {
624
		p->regval = kvm_pmu_get_counter_value(vcpu, idx);
625
	}
626 627 628 629

	return true;
}

630 631 632 633 634 635 636 637
static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
			       const struct sys_reg_desc *r)
{
	u64 idx, reg;

	if (!kvm_arm_pmu_v3_ready(vcpu))
		return trap_raz_wi(vcpu, p, r);

638 639 640
	if (pmu_access_el0_disabled(vcpu))
		return false;

641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
	if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
		/* PMXEVTYPER_EL0 */
		idx = vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
		reg = PMEVTYPER0_EL0 + idx;
	} else if (r->CRn == 14 && (r->CRm & 12) == 12) {
		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
		if (idx == ARMV8_PMU_CYCLE_IDX)
			reg = PMCCFILTR_EL0;
		else
			/* PMEVTYPERn_EL0 */
			reg = PMEVTYPER0_EL0 + idx;
	} else {
		BUG();
	}

	if (!pmu_counter_idx_valid(vcpu, idx))
		return false;

	if (p->is_write) {
		kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
		vcpu_sys_reg(vcpu, reg) = p->regval & ARMV8_PMU_EVTYPE_MASK;
	} else {
		p->regval = vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK;
	}

	return true;
}

669 670 671 672 673 674 675 676
static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
			   const struct sys_reg_desc *r)
{
	u64 val, mask;

	if (!kvm_arm_pmu_v3_ready(vcpu))
		return trap_raz_wi(vcpu, p, r);

677 678 679
	if (pmu_access_el0_disabled(vcpu))
		return false;

680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
	mask = kvm_pmu_valid_counter_mask(vcpu);
	if (p->is_write) {
		val = p->regval & mask;
		if (r->Op2 & 0x1) {
			/* accessing PMCNTENSET_EL0 */
			vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
			kvm_pmu_enable_counter(vcpu, val);
		} else {
			/* accessing PMCNTENCLR_EL0 */
			vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
			kvm_pmu_disable_counter(vcpu, val);
		}
	} else {
		p->regval = vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & mask;
	}

	return true;
}

699 700 701 702 703 704 705 706
static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
			   const struct sys_reg_desc *r)
{
	u64 mask = kvm_pmu_valid_counter_mask(vcpu);

	if (!kvm_arm_pmu_v3_ready(vcpu))
		return trap_raz_wi(vcpu, p, r);

707 708 709
	if (!vcpu_mode_priv(vcpu))
		return false;

710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
	if (p->is_write) {
		u64 val = p->regval & mask;

		if (r->Op2 & 0x1)
			/* accessing PMINTENSET_EL1 */
			vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
		else
			/* accessing PMINTENCLR_EL1 */
			vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
	} else {
		p->regval = vcpu_sys_reg(vcpu, PMINTENSET_EL1) & mask;
	}

	return true;
}

726 727 728 729 730 731 732 733
static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
			 const struct sys_reg_desc *r)
{
	u64 mask = kvm_pmu_valid_counter_mask(vcpu);

	if (!kvm_arm_pmu_v3_ready(vcpu))
		return trap_raz_wi(vcpu, p, r);

734 735 736
	if (pmu_access_el0_disabled(vcpu))
		return false;

737 738 739 740 741 742 743 744 745 746 747 748 749 750
	if (p->is_write) {
		if (r->CRm & 0x2)
			/* accessing PMOVSSET_EL0 */
			kvm_pmu_overflow_set(vcpu, p->regval & mask);
		else
			/* accessing PMOVSCLR_EL0 */
			vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
	} else {
		p->regval = vcpu_sys_reg(vcpu, PMOVSSET_EL0) & mask;
	}

	return true;
}

751 752 753 754 755 756 757 758
static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
			   const struct sys_reg_desc *r)
{
	u64 mask;

	if (!kvm_arm_pmu_v3_ready(vcpu))
		return trap_raz_wi(vcpu, p, r);

759 760 761
	if (pmu_write_swinc_el0_disabled(vcpu))
		return false;

762 763 764 765 766 767 768 769 770
	if (p->is_write) {
		mask = kvm_pmu_valid_counter_mask(vcpu);
		kvm_pmu_software_increment(vcpu, p->regval & mask);
		return true;
	}

	return false;
}

771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
			     const struct sys_reg_desc *r)
{
	if (!kvm_arm_pmu_v3_ready(vcpu))
		return trap_raz_wi(vcpu, p, r);

	if (p->is_write) {
		if (!vcpu_mode_priv(vcpu))
			return false;

		vcpu_sys_reg(vcpu, PMUSERENR_EL0) = p->regval
						    & ARMV8_PMU_USERENR_MASK;
	} else {
		p->regval = vcpu_sys_reg(vcpu, PMUSERENR_EL0)
			    & ARMV8_PMU_USERENR_MASK;
	}

	return true;
}

791 792 793 794
/* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
#define DBG_BCR_BVR_WCR_WVR_EL1(n)					\
	/* DBGBVRn_EL1 */						\
	{ Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b100),	\
795
	  trap_bvr, reset_bvr, n, 0, get_bvr, set_bvr },		\
796 797
	/* DBGBCRn_EL1 */						\
	{ Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b101),	\
798
	  trap_bcr, reset_bcr, n, 0, get_bcr, set_bcr },		\
799 800
	/* DBGWVRn_EL1 */						\
	{ Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b110),	\
801
	  trap_wvr, reset_wvr, n, 0,  get_wvr, set_wvr },		\
802 803
	/* DBGWCRn_EL1 */						\
	{ Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b111),	\
804
	  trap_wcr, reset_wcr, n, 0,  get_wcr, set_wcr }
805

806 807 808 809 810 811 812
/* Macro to expand the PMEVCNTRn_EL0 register */
#define PMU_PMEVCNTR_EL0(n)						\
	/* PMEVCNTRn_EL0 */						\
	{ Op0(0b11), Op1(0b011), CRn(0b1110),				\
	  CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),		\
	  access_pmu_evcntr, reset_unknown, (PMEVCNTR0_EL0 + n), }

813 814 815 816 817 818 819
/* Macro to expand the PMEVTYPERn_EL0 register */
#define PMU_PMEVTYPER_EL0(n)						\
	/* PMEVTYPERn_EL0 */						\
	{ Op0(0b11), Op1(0b011), CRn(0b1110),				\
	  CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),		\
	  access_pmu_evtyper, reset_unknown, (PMEVTYPER0_EL0 + n), }

820 821 822 823
static bool access_cntp_tval(struct kvm_vcpu *vcpu,
		struct sys_reg_params *p,
		const struct sys_reg_desc *r)
{
824 825 826 827 828 829 830 831
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
	u64 now = kvm_phys_timer_read();

	if (p->is_write)
		ptimer->cnt_cval = p->regval + now;
	else
		p->regval = ptimer->cnt_cval - now;

832 833 834 835 836 837 838
	return true;
}

static bool access_cntp_ctl(struct kvm_vcpu *vcpu,
		struct sys_reg_params *p,
		const struct sys_reg_desc *r)
{
839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);

	if (p->is_write) {
		/* ISTATUS bit is read-only */
		ptimer->cnt_ctl = p->regval & ~ARCH_TIMER_CTRL_IT_STAT;
	} else {
		u64 now = kvm_phys_timer_read();

		p->regval = ptimer->cnt_ctl;
		/*
		 * Set ISTATUS bit if it's expired.
		 * Note that according to ARMv8 ARM Issue A.k, ISTATUS bit is
		 * UNKNOWN when ENABLE bit is 0, so we chose to set ISTATUS bit
		 * regardless of ENABLE bit for our implementation convenience.
		 */
		if (ptimer->cnt_cval <= now)
			p->regval |= ARCH_TIMER_CTRL_IT_STAT;
	}

858 859 860 861 862 863 864
	return true;
}

static bool access_cntp_cval(struct kvm_vcpu *vcpu,
		struct sys_reg_params *p,
		const struct sys_reg_desc *r)
{
865 866 867 868 869 870 871
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);

	if (p->is_write)
		ptimer->cnt_cval = p->regval;
	else
		p->regval = ptimer->cnt_cval;

872 873 874
	return true;
}

875 876 877
/*
 * Architected system registers.
 * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
878
 *
879 880 881 882 883 884
 * Debug handling: We do trap most, if not all debug related system
 * registers. The implementation is good enough to ensure that a guest
 * can use these with minimal performance degradation. The drawback is
 * that we don't implement any of the external debug, none of the
 * OSlock protocol. This should be revisited if we ever encounter a
 * more demanding guest...
885 886 887 888 889 890 891 892 893 894 895 896
 */
static const struct sys_reg_desc sys_reg_descs[] = {
	/* DC ISW */
	{ Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b0110), Op2(0b010),
	  access_dcsw },
	/* DC CSW */
	{ Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1010), Op2(0b010),
	  access_dcsw },
	/* DC CISW */
	{ Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b010),
	  access_dcsw },

897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
	DBG_BCR_BVR_WCR_WVR_EL1(0),
	DBG_BCR_BVR_WCR_WVR_EL1(1),
	/* MDCCINT_EL1 */
	{ Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
	  trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
	/* MDSCR_EL1 */
	{ Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
	  trap_debug_regs, reset_val, MDSCR_EL1, 0 },
	DBG_BCR_BVR_WCR_WVR_EL1(2),
	DBG_BCR_BVR_WCR_WVR_EL1(3),
	DBG_BCR_BVR_WCR_WVR_EL1(4),
	DBG_BCR_BVR_WCR_WVR_EL1(5),
	DBG_BCR_BVR_WCR_WVR_EL1(6),
	DBG_BCR_BVR_WCR_WVR_EL1(7),
	DBG_BCR_BVR_WCR_WVR_EL1(8),
	DBG_BCR_BVR_WCR_WVR_EL1(9),
	DBG_BCR_BVR_WCR_WVR_EL1(10),
	DBG_BCR_BVR_WCR_WVR_EL1(11),
	DBG_BCR_BVR_WCR_WVR_EL1(12),
	DBG_BCR_BVR_WCR_WVR_EL1(13),
	DBG_BCR_BVR_WCR_WVR_EL1(14),
	DBG_BCR_BVR_WCR_WVR_EL1(15),

	/* MDRAR_EL1 */
	{ Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
	  trap_raz_wi },
	/* OSLAR_EL1 */
	{ Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b100),
	  trap_raz_wi },
	/* OSLSR_EL1 */
	{ Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0001), Op2(0b100),
	  trap_oslsr_el1 },
	/* OSDLR_EL1 */
	{ Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0011), Op2(0b100),
	  trap_raz_wi },
	/* DBGPRCR_EL1 */
	{ Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0100), Op2(0b100),
	  trap_raz_wi },
	/* DBGCLAIMSET_EL1 */
	{ Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1000), Op2(0b110),
	  trap_raz_wi },
	/* DBGCLAIMCLR_EL1 */
	{ Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1001), Op2(0b110),
	  trap_raz_wi },
	/* DBGAUTHSTATUS_EL1 */
	{ Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b110),
	  trap_dbgauthstatus_el1 },

	/* MDCCSR_EL1 */
	{ Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0001), Op2(0b000),
	  trap_raz_wi },
	/* DBGDTR_EL0 */
	{ Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0100), Op2(0b000),
	  trap_raz_wi },
	/* DBGDTR[TR]X_EL0 */
	{ Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0101), Op2(0b000),
	  trap_raz_wi },

955 956 957 958
	/* DBGVCR32_EL2 */
	{ Op0(0b10), Op1(0b100), CRn(0b0000), CRm(0b0111), Op2(0b000),
	  NULL, reset_val, DBGVCR32_EL2, 0 },

959 960 961 962 963
	/* MPIDR_EL1 */
	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b101),
	  NULL, reset_mpidr, MPIDR_EL1 },
	/* SCTLR_EL1 */
	{ Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
964
	  access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
965 966 967 968 969
	/* CPACR_EL1 */
	{ Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b010),
	  NULL, reset_val, CPACR_EL1, 0 },
	/* TTBR0_EL1 */
	{ Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b000),
970
	  access_vm_reg, reset_unknown, TTBR0_EL1 },
971 972
	/* TTBR1_EL1 */
	{ Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b001),
973
	  access_vm_reg, reset_unknown, TTBR1_EL1 },
974 975
	/* TCR_EL1 */
	{ Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b010),
976
	  access_vm_reg, reset_val, TCR_EL1, 0 },
977 978 979

	/* AFSR0_EL1 */
	{ Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b000),
980
	  access_vm_reg, reset_unknown, AFSR0_EL1 },
981 982
	/* AFSR1_EL1 */
	{ Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b001),
983
	  access_vm_reg, reset_unknown, AFSR1_EL1 },
984 985
	/* ESR_EL1 */
	{ Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0010), Op2(0b000),
986
	  access_vm_reg, reset_unknown, ESR_EL1 },
987 988
	/* FAR_EL1 */
	{ Op0(0b11), Op1(0b000), CRn(0b0110), CRm(0b0000), Op2(0b000),
989
	  access_vm_reg, reset_unknown, FAR_EL1 },
990 991 992
	/* PAR_EL1 */
	{ Op0(0b11), Op1(0b000), CRn(0b0111), CRm(0b0100), Op2(0b000),
	  NULL, reset_unknown, PAR_EL1 },
993 994 995

	/* PMINTENSET_EL1 */
	{ Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b001),
996
	  access_pminten, reset_unknown, PMINTENSET_EL1 },
997 998
	/* PMINTENCLR_EL1 */
	{ Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b010),
999
	  access_pminten, NULL, PMINTENSET_EL1 },
1000 1001 1002

	/* MAIR_EL1 */
	{ Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0010), Op2(0b000),
1003
	  access_vm_reg, reset_unknown, MAIR_EL1 },
1004 1005
	/* AMAIR_EL1 */
	{ Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0011), Op2(0b000),
1006
	  access_vm_reg, reset_amair_el1, AMAIR_EL1 },
1007 1008 1009 1010

	/* VBAR_EL1 */
	{ Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b0000), Op2(0b000),
	  NULL, reset_val, VBAR_EL1, 0 },
1011

1012 1013 1014
	/* ICC_SGI1R_EL1 */
	{ Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b1011), Op2(0b101),
	  access_gic_sgi },
1015 1016
	/* ICC_SRE_EL1 */
	{ Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b1100), Op2(0b101),
1017
	  access_gic_sre },
1018

1019 1020
	/* CONTEXTIDR_EL1 */
	{ Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b001),
1021
	  access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
	/* TPIDR_EL1 */
	{ Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b100),
	  NULL, reset_unknown, TPIDR_EL1 },

	/* CNTKCTL_EL1 */
	{ Op0(0b11), Op1(0b000), CRn(0b1110), CRm(0b0001), Op2(0b000),
	  NULL, reset_val, CNTKCTL_EL1, 0},

	/* CSSELR_EL1 */
	{ Op0(0b11), Op1(0b010), CRn(0b0000), CRm(0b0000), Op2(0b000),
	  NULL, reset_unknown, CSSELR_EL1 },

	/* PMCR_EL0 */
	{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b000),
1036
	  access_pmcr, reset_pmcr, },
1037 1038
	/* PMCNTENSET_EL0 */
	{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b001),
1039
	  access_pmcnten, reset_unknown, PMCNTENSET_EL0 },
1040 1041
	/* PMCNTENCLR_EL0 */
	{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b010),
1042
	  access_pmcnten, NULL, PMCNTENSET_EL0 },
1043 1044
	/* PMOVSCLR_EL0 */
	{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b011),
1045
	  access_pmovs, NULL, PMOVSSET_EL0 },
1046 1047
	/* PMSWINC_EL0 */
	{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b100),
1048
	  access_pmswinc, reset_unknown, PMSWINC_EL0 },
1049 1050
	/* PMSELR_EL0 */
	{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b101),
1051
	  access_pmselr, reset_unknown, PMSELR_EL0 },
1052 1053
	/* PMCEID0_EL0 */
	{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b110),
1054
	  access_pmceid },
1055 1056
	/* PMCEID1_EL0 */
	{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b111),
1057
	  access_pmceid },
1058 1059
	/* PMCCNTR_EL0 */
	{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b000),
1060
	  access_pmu_evcntr, reset_unknown, PMCCNTR_EL0 },
1061 1062
	/* PMXEVTYPER_EL0 */
	{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b001),
1063
	  access_pmu_evtyper },
1064 1065
	/* PMXEVCNTR_EL0 */
	{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b010),
1066
	  access_pmu_evcntr },
1067 1068 1069 1070
	/* PMUSERENR_EL0
	 * This register resets as unknown in 64bit mode while it resets as zero
	 * in 32bit mode. Here we choose to reset it as zero for consistency.
	 */
1071
	{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b000),
1072
	  access_pmuserenr, reset_val, PMUSERENR_EL0, 0 },
1073 1074
	/* PMOVSSET_EL0 */
	{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b011),
1075
	  access_pmovs, reset_unknown, PMOVSSET_EL0 },
1076 1077 1078 1079 1080 1081 1082

	/* TPIDR_EL0 */
	{ Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b010),
	  NULL, reset_unknown, TPIDR_EL0 },
	/* TPIDRRO_EL0 */
	{ Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b011),
	  NULL, reset_unknown, TPIDRRO_EL0 },
1083

1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
	/* CNTP_TVAL_EL0 */
	{ Op0(0b11), Op1(0b011), CRn(0b1110), CRm(0b0010), Op2(0b000),
	  access_cntp_tval },
	/* CNTP_CTL_EL0 */
	{ Op0(0b11), Op1(0b011), CRn(0b1110), CRm(0b0010), Op2(0b001),
	  access_cntp_ctl },
	/* CNTP_CVAL_EL0 */
	{ Op0(0b11), Op1(0b011), CRn(0b1110), CRm(0b0010), Op2(0b010),
	  access_cntp_cval },

1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
	/* PMEVCNTRn_EL0 */
	PMU_PMEVCNTR_EL0(0),
	PMU_PMEVCNTR_EL0(1),
	PMU_PMEVCNTR_EL0(2),
	PMU_PMEVCNTR_EL0(3),
	PMU_PMEVCNTR_EL0(4),
	PMU_PMEVCNTR_EL0(5),
	PMU_PMEVCNTR_EL0(6),
	PMU_PMEVCNTR_EL0(7),
	PMU_PMEVCNTR_EL0(8),
	PMU_PMEVCNTR_EL0(9),
	PMU_PMEVCNTR_EL0(10),
	PMU_PMEVCNTR_EL0(11),
	PMU_PMEVCNTR_EL0(12),
	PMU_PMEVCNTR_EL0(13),
	PMU_PMEVCNTR_EL0(14),
	PMU_PMEVCNTR_EL0(15),
	PMU_PMEVCNTR_EL0(16),
	PMU_PMEVCNTR_EL0(17),
	PMU_PMEVCNTR_EL0(18),
	PMU_PMEVCNTR_EL0(19),
	PMU_PMEVCNTR_EL0(20),
	PMU_PMEVCNTR_EL0(21),
	PMU_PMEVCNTR_EL0(22),
	PMU_PMEVCNTR_EL0(23),
	PMU_PMEVCNTR_EL0(24),
	PMU_PMEVCNTR_EL0(25),
	PMU_PMEVCNTR_EL0(26),
	PMU_PMEVCNTR_EL0(27),
	PMU_PMEVCNTR_EL0(28),
	PMU_PMEVCNTR_EL0(29),
	PMU_PMEVCNTR_EL0(30),
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
	/* PMEVTYPERn_EL0 */
	PMU_PMEVTYPER_EL0(0),
	PMU_PMEVTYPER_EL0(1),
	PMU_PMEVTYPER_EL0(2),
	PMU_PMEVTYPER_EL0(3),
	PMU_PMEVTYPER_EL0(4),
	PMU_PMEVTYPER_EL0(5),
	PMU_PMEVTYPER_EL0(6),
	PMU_PMEVTYPER_EL0(7),
	PMU_PMEVTYPER_EL0(8),
	PMU_PMEVTYPER_EL0(9),
	PMU_PMEVTYPER_EL0(10),
	PMU_PMEVTYPER_EL0(11),
	PMU_PMEVTYPER_EL0(12),
	PMU_PMEVTYPER_EL0(13),
	PMU_PMEVTYPER_EL0(14),
	PMU_PMEVTYPER_EL0(15),
	PMU_PMEVTYPER_EL0(16),
	PMU_PMEVTYPER_EL0(17),
	PMU_PMEVTYPER_EL0(18),
	PMU_PMEVTYPER_EL0(19),
	PMU_PMEVTYPER_EL0(20),
	PMU_PMEVTYPER_EL0(21),
	PMU_PMEVTYPER_EL0(22),
	PMU_PMEVTYPER_EL0(23),
	PMU_PMEVTYPER_EL0(24),
	PMU_PMEVTYPER_EL0(25),
	PMU_PMEVTYPER_EL0(26),
	PMU_PMEVTYPER_EL0(27),
	PMU_PMEVTYPER_EL0(28),
	PMU_PMEVTYPER_EL0(29),
	PMU_PMEVTYPER_EL0(30),
	/* PMCCFILTR_EL0
	 * This register resets as unknown in 64bit mode while it resets as zero
	 * in 32bit mode. Here we choose to reset it as zero for consistency.
	 */
	{ Op0(0b11), Op1(0b011), CRn(0b1110), CRm(0b1111), Op2(0b111),
	  access_pmu_evtyper, reset_val, PMCCFILTR_EL0, 0 },
1164

1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
	/* DACR32_EL2 */
	{ Op0(0b11), Op1(0b100), CRn(0b0011), CRm(0b0000), Op2(0b000),
	  NULL, reset_unknown, DACR32_EL2 },
	/* IFSR32_EL2 */
	{ Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0000), Op2(0b001),
	  NULL, reset_unknown, IFSR32_EL2 },
	/* FPEXC32_EL2 */
	{ Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0011), Op2(0b000),
	  NULL, reset_val, FPEXC32_EL2, 0x70 },
};

1176
static bool trap_dbgidr(struct kvm_vcpu *vcpu,
1177
			struct sys_reg_params *p,
1178 1179 1180 1181 1182
			const struct sys_reg_desc *r)
{
	if (p->is_write) {
		return ignore_write(vcpu, p);
	} else {
1183 1184
		u64 dfr = read_system_reg(SYS_ID_AA64DFR0_EL1);
		u64 pfr = read_system_reg(SYS_ID_AA64PFR0_EL1);
1185
		u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL3_SHIFT);
1186

1187 1188 1189 1190
		p->regval = ((((dfr >> ID_AA64DFR0_WRPS_SHIFT) & 0xf) << 28) |
			     (((dfr >> ID_AA64DFR0_BRPS_SHIFT) & 0xf) << 24) |
			     (((dfr >> ID_AA64DFR0_CTX_CMPS_SHIFT) & 0xf) << 20)
			     | (6 << 16) | (el3 << 14) | (el3 << 12));
1191 1192 1193 1194 1195
		return true;
	}
}

static bool trap_debug32(struct kvm_vcpu *vcpu,
1196
			 struct sys_reg_params *p,
1197 1198 1199
			 const struct sys_reg_desc *r)
{
	if (p->is_write) {
1200
		vcpu_cp14(vcpu, r->reg) = p->regval;
1201 1202
		vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
	} else {
1203
		p->regval = vcpu_cp14(vcpu, r->reg);
1204 1205 1206 1207 1208
	}

	return true;
}

1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
/* AArch32 debug register mappings
 *
 * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
 * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
 *
 * All control registers and watchpoint value registers are mapped to
 * the lower 32 bits of their AArch64 equivalents. We share the trap
 * handlers with the above AArch64 code which checks what mode the
 * system is in.
 */

1220 1221 1222
static bool trap_xvr(struct kvm_vcpu *vcpu,
		     struct sys_reg_params *p,
		     const struct sys_reg_desc *rd)
1223 1224 1225 1226 1227 1228 1229
{
	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];

	if (p->is_write) {
		u64 val = *dbg_reg;

		val &= 0xffffffffUL;
1230
		val |= p->regval << 32;
1231 1232 1233 1234
		*dbg_reg = val;

		vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
	} else {
1235
		p->regval = *dbg_reg >> 32;
1236 1237
	}

1238 1239
	trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);

1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
	return true;
}

#define DBG_BCR_BVR_WCR_WVR(n)						\
	/* DBGBVRn */							\
	{ Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, 	\
	/* DBGBCRn */							\
	{ Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n },	\
	/* DBGWVRn */							\
	{ Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n },	\
	/* DBGWCRn */							\
	{ Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }

#define DBGBXVR(n)							\
	{ Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_xvr, NULL, n }
1255 1256 1257 1258

/*
 * Trapped cp14 registers. We generally ignore most of the external
 * debug, on the principle that they don't really make sense to a
1259
 * guest. Revisit this one day, would this principle change.
1260
 */
1261
static const struct sys_reg_desc cp14_regs[] = {
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
	/* DBGIDR */
	{ Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr },
	/* DBGDTRRXext */
	{ Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },

	DBG_BCR_BVR_WCR_WVR(0),
	/* DBGDSCRint */
	{ Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
	DBG_BCR_BVR_WCR_WVR(1),
	/* DBGDCCINT */
	{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug32 },
	/* DBGDSCRext */
	{ Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug32 },
	DBG_BCR_BVR_WCR_WVR(2),
	/* DBGDTR[RT]Xint */
	{ Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
	/* DBGDTR[RT]Xext */
	{ Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
	DBG_BCR_BVR_WCR_WVR(3),
	DBG_BCR_BVR_WCR_WVR(4),
	DBG_BCR_BVR_WCR_WVR(5),
	/* DBGWFAR */
	{ Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
	/* DBGOSECCR */
	{ Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
	DBG_BCR_BVR_WCR_WVR(6),
	/* DBGVCR */
	{ Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug32 },
	DBG_BCR_BVR_WCR_WVR(7),
	DBG_BCR_BVR_WCR_WVR(8),
	DBG_BCR_BVR_WCR_WVR(9),
	DBG_BCR_BVR_WCR_WVR(10),
	DBG_BCR_BVR_WCR_WVR(11),
	DBG_BCR_BVR_WCR_WVR(12),
	DBG_BCR_BVR_WCR_WVR(13),
	DBG_BCR_BVR_WCR_WVR(14),
	DBG_BCR_BVR_WCR_WVR(15),

	/* DBGDRAR (32bit) */
	{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },

	DBGBXVR(0),
	/* DBGOSLAR */
	{ Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi },
	DBGBXVR(1),
	/* DBGOSLSR */
	{ Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 },
	DBGBXVR(2),
	DBGBXVR(3),
	/* DBGOSDLR */
	{ Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
	DBGBXVR(4),
	/* DBGPRCR */
	{ Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
	DBGBXVR(5),
	DBGBXVR(6),
	DBGBXVR(7),
	DBGBXVR(8),
	DBGBXVR(9),
	DBGBXVR(10),
	DBGBXVR(11),
	DBGBXVR(12),
	DBGBXVR(13),
	DBGBXVR(14),
	DBGBXVR(15),

	/* DBGDSAR (32bit) */
	{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },

	/* DBGDEVID2 */
	{ Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
	/* DBGDEVID1 */
	{ Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
	/* DBGDEVID */
	{ Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
	/* DBGCLAIMSET */
	{ Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
	/* DBGCLAIMCLR */
	{ Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
	/* DBGAUTHSTATUS */
	{ Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
1343 1344
};

1345 1346
/* Trapped cp14 64bit registers */
static const struct sys_reg_desc cp14_64_regs[] = {
1347 1348 1349 1350 1351
	/* DBGDRAR (64bit) */
	{ Op1( 0), CRm( 1), .access = trap_raz_wi },

	/* DBGDSAR (64bit) */
	{ Op1( 0), CRm( 2), .access = trap_raz_wi },
1352 1353
};

1354 1355 1356 1357 1358 1359 1360
/* Macro to expand the PMEVCNTRn register */
#define PMU_PMEVCNTR(n)							\
	/* PMEVCNTRn */							\
	{ Op1(0), CRn(0b1110),						\
	  CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),		\
	  access_pmu_evcntr }

1361 1362 1363 1364 1365 1366 1367
/* Macro to expand the PMEVTYPERn register */
#define PMU_PMEVTYPER(n)						\
	/* PMEVTYPERn */						\
	{ Op1(0), CRn(0b1110),						\
	  CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),		\
	  access_pmu_evtyper }

1368 1369 1370 1371 1372
/*
 * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
 * depending on the way they are accessed (as a 32bit or a 64bit
 * register).
 */
1373
static const struct sys_reg_desc cp15_regs[] = {
1374 1375
	{ Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi },

1376
	{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, c1_SCTLR },
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
	{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
	{ Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 },
	{ Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, c2_TTBCR },
	{ Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, c3_DACR },
	{ Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, c5_DFSR },
	{ Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, c5_IFSR },
	{ Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, c5_ADFSR },
	{ Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, c5_AIFSR },
	{ Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, c6_DFAR },
	{ Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, c6_IFAR },

1388 1389 1390 1391 1392 1393
	/*
	 * DC{C,I,CI}SW operations:
	 */
	{ Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
	{ Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
	{ Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
1394

1395
	/* PMU */
1396
	{ Op1( 0), CRn( 9), CRm(12), Op2( 0), access_pmcr },
1397 1398
	{ Op1( 0), CRn( 9), CRm(12), Op2( 1), access_pmcnten },
	{ Op1( 0), CRn( 9), CRm(12), Op2( 2), access_pmcnten },
1399
	{ Op1( 0), CRn( 9), CRm(12), Op2( 3), access_pmovs },
1400
	{ Op1( 0), CRn( 9), CRm(12), Op2( 4), access_pmswinc },
1401
	{ Op1( 0), CRn( 9), CRm(12), Op2( 5), access_pmselr },
1402 1403
	{ Op1( 0), CRn( 9), CRm(12), Op2( 6), access_pmceid },
	{ Op1( 0), CRn( 9), CRm(12), Op2( 7), access_pmceid },
1404
	{ Op1( 0), CRn( 9), CRm(13), Op2( 0), access_pmu_evcntr },
1405
	{ Op1( 0), CRn( 9), CRm(13), Op2( 1), access_pmu_evtyper },
1406
	{ Op1( 0), CRn( 9), CRm(13), Op2( 2), access_pmu_evcntr },
1407
	{ Op1( 0), CRn( 9), CRm(14), Op2( 0), access_pmuserenr },
1408 1409
	{ Op1( 0), CRn( 9), CRm(14), Op2( 1), access_pminten },
	{ Op1( 0), CRn( 9), CRm(14), Op2( 2), access_pminten },
1410
	{ Op1( 0), CRn( 9), CRm(14), Op2( 3), access_pmovs },
1411 1412 1413 1414 1415

	{ Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, c10_PRRR },
	{ Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, c10_NMRR },
	{ Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, c10_AMAIR0 },
	{ Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, c10_AMAIR1 },
1416 1417

	/* ICC_SRE */
1418
	{ Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
1419

1420
	{ Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, c13_CID },
1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453

	/* PMEVCNTRn */
	PMU_PMEVCNTR(0),
	PMU_PMEVCNTR(1),
	PMU_PMEVCNTR(2),
	PMU_PMEVCNTR(3),
	PMU_PMEVCNTR(4),
	PMU_PMEVCNTR(5),
	PMU_PMEVCNTR(6),
	PMU_PMEVCNTR(7),
	PMU_PMEVCNTR(8),
	PMU_PMEVCNTR(9),
	PMU_PMEVCNTR(10),
	PMU_PMEVCNTR(11),
	PMU_PMEVCNTR(12),
	PMU_PMEVCNTR(13),
	PMU_PMEVCNTR(14),
	PMU_PMEVCNTR(15),
	PMU_PMEVCNTR(16),
	PMU_PMEVCNTR(17),
	PMU_PMEVCNTR(18),
	PMU_PMEVCNTR(19),
	PMU_PMEVCNTR(20),
	PMU_PMEVCNTR(21),
	PMU_PMEVCNTR(22),
	PMU_PMEVCNTR(23),
	PMU_PMEVCNTR(24),
	PMU_PMEVCNTR(25),
	PMU_PMEVCNTR(26),
	PMU_PMEVCNTR(27),
	PMU_PMEVCNTR(28),
	PMU_PMEVCNTR(29),
	PMU_PMEVCNTR(30),
1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
	/* PMEVTYPERn */
	PMU_PMEVTYPER(0),
	PMU_PMEVTYPER(1),
	PMU_PMEVTYPER(2),
	PMU_PMEVTYPER(3),
	PMU_PMEVTYPER(4),
	PMU_PMEVTYPER(5),
	PMU_PMEVTYPER(6),
	PMU_PMEVTYPER(7),
	PMU_PMEVTYPER(8),
	PMU_PMEVTYPER(9),
	PMU_PMEVTYPER(10),
	PMU_PMEVTYPER(11),
	PMU_PMEVTYPER(12),
	PMU_PMEVTYPER(13),
	PMU_PMEVTYPER(14),
	PMU_PMEVTYPER(15),
	PMU_PMEVTYPER(16),
	PMU_PMEVTYPER(17),
	PMU_PMEVTYPER(18),
	PMU_PMEVTYPER(19),
	PMU_PMEVTYPER(20),
	PMU_PMEVTYPER(21),
	PMU_PMEVTYPER(22),
	PMU_PMEVTYPER(23),
	PMU_PMEVTYPER(24),
	PMU_PMEVTYPER(25),
	PMU_PMEVTYPER(26),
	PMU_PMEVTYPER(27),
	PMU_PMEVTYPER(28),
	PMU_PMEVTYPER(29),
	PMU_PMEVTYPER(30),
	/* PMCCFILTR */
	{ Op1(0), CRn(14), CRm(15), Op2(7), access_pmu_evtyper },
1488 1489 1490 1491
};

static const struct sys_reg_desc cp15_64_regs[] = {
	{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
1492
	{ Op1( 0), CRn( 0), CRm( 9), Op2( 0), access_pmu_evcntr },
1493
	{ Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi },
1494
	{ Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR1 },
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
};

/* Target specific emulation tables */
static struct kvm_sys_reg_target_table *target_tables[KVM_ARM_NUM_TARGETS];

void kvm_register_target_sys_reg_table(unsigned int target,
				       struct kvm_sys_reg_target_table *table)
{
	target_tables[target] = table;
}

/* Get specific register table for this target. */
1507 1508 1509
static const struct sys_reg_desc *get_target_table(unsigned target,
						   bool mode_is_64,
						   size_t *num)
1510 1511 1512 1513
{
	struct kvm_sys_reg_target_table *table;

	table = target_tables[target];
1514 1515 1516 1517 1518 1519 1520
	if (mode_is_64) {
		*num = table->table64.num;
		return table->table64.table;
	} else {
		*num = table->table32.num;
		return table->table32.table;
	}
1521 1522
}

1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
#define reg_to_match_value(x)						\
	({								\
		unsigned long val;					\
		val  = (x)->Op0 << 14;					\
		val |= (x)->Op1 << 11;					\
		val |= (x)->CRn << 7;					\
		val |= (x)->CRm << 3;					\
		val |= (x)->Op2;					\
		val;							\
	 })

static int match_sys_reg(const void *key, const void *elt)
{
	const unsigned long pval = (unsigned long)key;
	const struct sys_reg_desc *r = elt;

	return pval - reg_to_match_value(r);
}

1542 1543 1544 1545
static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
					 const struct sys_reg_desc table[],
					 unsigned int num)
{
1546 1547 1548
	unsigned long pval = reg_to_match_value(params);

	return bsearch((void *)pval, table, num, sizeof(table[0]), match_sys_reg);
1549 1550
}

1551 1552 1553 1554 1555 1556
int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
	kvm_inject_undefined(vcpu);
	return 1;
}

1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
/*
 * emulate_cp --  tries to match a sys_reg access in a handling table, and
 *                call the corresponding trap handler.
 *
 * @params: pointer to the descriptor of the access
 * @table: array of trap descriptors
 * @num: size of the trap descriptor array
 *
 * Return 0 if the access has been handled, and -1 if not.
 */
static int emulate_cp(struct kvm_vcpu *vcpu,
1568
		      struct sys_reg_params *params,
1569 1570
		      const struct sys_reg_desc *table,
		      size_t num)
1571
{
1572
	const struct sys_reg_desc *r;
1573

1574 1575
	if (!table)
		return -1;	/* Not handled */
1576 1577 1578

	r = find_reg(params, table, num);

1579
	if (r) {
1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
		/*
		 * Not having an accessor means that we have
		 * configured a trap that we don't know how to
		 * handle. This certainly qualifies as a gross bug
		 * that should be fixed right away.
		 */
		BUG_ON(!r->access);

		if (likely(r->access(vcpu, params, r))) {
			/* Skip instruction, since it was emulated */
			kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
1591 1592
			/* Handled */
			return 0;
1593
		}
1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
	}

	/* Not handled */
	return -1;
}

static void unhandled_cp_access(struct kvm_vcpu *vcpu,
				struct sys_reg_params *params)
{
	u8 hsr_ec = kvm_vcpu_trap_get_class(vcpu);
D
Dan Carpenter 已提交
1604
	int cp = -1;
1605 1606

	switch(hsr_ec) {
1607 1608
	case ESR_ELx_EC_CP15_32:
	case ESR_ELx_EC_CP15_64:
1609 1610
		cp = 15;
		break;
1611 1612
	case ESR_ELx_EC_CP14_MR:
	case ESR_ELx_EC_CP14_64:
1613 1614 1615
		cp = 14;
		break;
	default:
D
Dan Carpenter 已提交
1616
		WARN_ON(1);
1617 1618
	}

1619 1620
	kvm_err("Unsupported guest CP%d access at: %08lx\n",
		cp, *vcpu_pc(vcpu));
1621 1622 1623 1624 1625
	print_sys_reg_instr(params);
	kvm_inject_undefined(vcpu);
}

/**
1626
 * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
1627 1628 1629
 * @vcpu: The VCPU pointer
 * @run:  The kvm_run struct
 */
1630 1631 1632 1633 1634
static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
			    const struct sys_reg_desc *global,
			    size_t nr_global,
			    const struct sys_reg_desc *target_specific,
			    size_t nr_specific)
1635 1636 1637
{
	struct sys_reg_params params;
	u32 hsr = kvm_vcpu_get_hsr(vcpu);
1638
	int Rt = (hsr >> 5) & 0xf;
1639 1640
	int Rt2 = (hsr >> 10) & 0xf;

1641 1642
	params.is_aarch32 = true;
	params.is_32bit = false;
1643 1644 1645 1646 1647 1648 1649 1650 1651
	params.CRm = (hsr >> 1) & 0xf;
	params.is_write = ((hsr & 1) == 0);

	params.Op0 = 0;
	params.Op1 = (hsr >> 16) & 0xf;
	params.Op2 = 0;
	params.CRn = 0;

	/*
1652
	 * Make a 64-bit value out of Rt and Rt2. As we use the same trap
1653 1654 1655
	 * backends between AArch32 and AArch64, we get away with it.
	 */
	if (params.is_write) {
1656 1657
		params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
		params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
1658 1659
	}

1660 1661 1662 1663 1664 1665
	if (!emulate_cp(vcpu, &params, target_specific, nr_specific))
		goto out;
	if (!emulate_cp(vcpu, &params, global, nr_global))
		goto out;

	unhandled_cp_access(vcpu, &params);
1666

1667
out:
1668
	/* Split up the value between registers for the read side */
1669
	if (!params.is_write) {
1670 1671
		vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
		vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
1672 1673 1674 1675 1676 1677
	}

	return 1;
}

/**
1678
 * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
1679 1680 1681
 * @vcpu: The VCPU pointer
 * @run:  The kvm_run struct
 */
1682 1683 1684 1685 1686
static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
			    const struct sys_reg_desc *global,
			    size_t nr_global,
			    const struct sys_reg_desc *target_specific,
			    size_t nr_specific)
1687 1688 1689
{
	struct sys_reg_params params;
	u32 hsr = kvm_vcpu_get_hsr(vcpu);
1690
	int Rt  = (hsr >> 5) & 0xf;
1691

1692 1693
	params.is_aarch32 = true;
	params.is_32bit = true;
1694
	params.CRm = (hsr >> 1) & 0xf;
1695
	params.regval = vcpu_get_reg(vcpu, Rt);
1696 1697 1698 1699 1700 1701
	params.is_write = ((hsr & 1) == 0);
	params.CRn = (hsr >> 10) & 0xf;
	params.Op0 = 0;
	params.Op1 = (hsr >> 14) & 0x7;
	params.Op2 = (hsr >> 17) & 0x7;

1702 1703 1704 1705
	if (!emulate_cp(vcpu, &params, target_specific, nr_specific) ||
	    !emulate_cp(vcpu, &params, global, nr_global)) {
		if (!params.is_write)
			vcpu_set_reg(vcpu, Rt, params.regval);
1706
		return 1;
1707
	}
1708 1709

	unhandled_cp_access(vcpu, &params);
1710 1711 1712
	return 1;
}

1713 1714 1715 1716 1717 1718 1719
int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
	const struct sys_reg_desc *target_specific;
	size_t num;

	target_specific = get_target_table(vcpu->arch.target, false, &num);
	return kvm_handle_cp_64(vcpu,
1720
				cp15_64_regs, ARRAY_SIZE(cp15_64_regs),
1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737
				target_specific, num);
}

int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
	const struct sys_reg_desc *target_specific;
	size_t num;

	target_specific = get_target_table(vcpu->arch.target, false, &num);
	return kvm_handle_cp_32(vcpu,
				cp15_regs, ARRAY_SIZE(cp15_regs),
				target_specific, num);
}

int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
	return kvm_handle_cp_64(vcpu,
1738
				cp14_64_regs, ARRAY_SIZE(cp14_64_regs),
1739 1740 1741 1742 1743 1744 1745 1746 1747 1748
				NULL, 0);
}

int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
	return kvm_handle_cp_32(vcpu,
				cp14_regs, ARRAY_SIZE(cp14_regs),
				NULL, 0);
}

1749
static int emulate_sys_reg(struct kvm_vcpu *vcpu,
1750
			   struct sys_reg_params *params)
1751 1752 1753 1754
{
	size_t num;
	const struct sys_reg_desc *table, *r;

1755
	table = get_target_table(vcpu->arch.target, true, &num);
1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804

	/* Search target-specific then generic table. */
	r = find_reg(params, table, num);
	if (!r)
		r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));

	if (likely(r)) {
		/*
		 * Not having an accessor means that we have
		 * configured a trap that we don't know how to
		 * handle. This certainly qualifies as a gross bug
		 * that should be fixed right away.
		 */
		BUG_ON(!r->access);

		if (likely(r->access(vcpu, params, r))) {
			/* Skip instruction, since it was emulated */
			kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
			return 1;
		}
		/* If access function fails, it should complain. */
	} else {
		kvm_err("Unsupported guest sys_reg access at: %lx\n",
			*vcpu_pc(vcpu));
		print_sys_reg_instr(params);
	}
	kvm_inject_undefined(vcpu);
	return 1;
}

static void reset_sys_reg_descs(struct kvm_vcpu *vcpu,
			      const struct sys_reg_desc *table, size_t num)
{
	unsigned long i;

	for (i = 0; i < num; i++)
		if (table[i].reset)
			table[i].reset(vcpu, &table[i]);
}

/**
 * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
 * @vcpu: The VCPU pointer
 * @run:  The kvm_run struct
 */
int kvm_handle_sys_reg(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
	struct sys_reg_params params;
	unsigned long esr = kvm_vcpu_get_hsr(vcpu);
1805 1806
	int Rt = (esr >> 5) & 0x1f;
	int ret;
1807

1808 1809
	trace_kvm_handle_sys_reg(esr);

1810 1811
	params.is_aarch32 = false;
	params.is_32bit = false;
1812 1813 1814 1815 1816
	params.Op0 = (esr >> 20) & 3;
	params.Op1 = (esr >> 14) & 0x7;
	params.CRn = (esr >> 10) & 0xf;
	params.CRm = (esr >> 1) & 0xf;
	params.Op2 = (esr >> 17) & 0x7;
1817
	params.regval = vcpu_get_reg(vcpu, Rt);
1818 1819
	params.is_write = !(esr & 1);

1820 1821 1822 1823 1824
	ret = emulate_sys_reg(vcpu, &params);

	if (!params.is_write)
		vcpu_set_reg(vcpu, Rt, params.regval);
	return ret;
1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
}

/******************************************************************************
 * Userspace API
 *****************************************************************************/

static bool index_to_params(u64 id, struct sys_reg_params *params)
{
	switch (id & KVM_REG_SIZE_MASK) {
	case KVM_REG_SIZE_U64:
		/* Any unused index bits means it's not valid. */
		if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
			      | KVM_REG_ARM_COPROC_MASK
			      | KVM_REG_ARM64_SYSREG_OP0_MASK
			      | KVM_REG_ARM64_SYSREG_OP1_MASK
			      | KVM_REG_ARM64_SYSREG_CRN_MASK
			      | KVM_REG_ARM64_SYSREG_CRM_MASK
			      | KVM_REG_ARM64_SYSREG_OP2_MASK))
			return false;
		params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
			       >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
		params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
			       >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
		params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
			       >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
		params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
			       >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
		params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
			       >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
		return true;
	default:
		return false;
	}
}

1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
const struct sys_reg_desc *find_reg_by_id(u64 id,
					  struct sys_reg_params *params,
					  const struct sys_reg_desc table[],
					  unsigned int num)
{
	if (!index_to_params(id, params))
		return NULL;

	return find_reg(params, table, num);
}

1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882
/* Decode an index value, and find the sys_reg_desc entry. */
static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
						    u64 id)
{
	size_t num;
	const struct sys_reg_desc *table, *r;
	struct sys_reg_params params;

	/* We only do sys_reg for now. */
	if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
		return NULL;

1883
	table = get_target_table(vcpu->arch.target, true, &num);
1884
	r = find_reg_by_id(id, &params, table, num);
1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906
	if (!r)
		r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));

	/* Not saved in the sys_reg array? */
	if (r && !r->reg)
		r = NULL;

	return r;
}

/*
 * These are the invariant sys_reg registers: we let the guest see the
 * host versions of these, so they're part of the guest state.
 *
 * A future CPU may provide a mechanism to present different values to
 * the guest, or a future kvm may trap them.
 */

#define FUNCTION_INVARIANT(reg)						\
	static void get_##reg(struct kvm_vcpu *v,			\
			      const struct sys_reg_desc *r)		\
	{								\
1907
		((struct sys_reg_desc *)r)->val = read_sysreg(reg);	\
1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971
	}

FUNCTION_INVARIANT(midr_el1)
FUNCTION_INVARIANT(ctr_el0)
FUNCTION_INVARIANT(revidr_el1)
FUNCTION_INVARIANT(id_pfr0_el1)
FUNCTION_INVARIANT(id_pfr1_el1)
FUNCTION_INVARIANT(id_dfr0_el1)
FUNCTION_INVARIANT(id_afr0_el1)
FUNCTION_INVARIANT(id_mmfr0_el1)
FUNCTION_INVARIANT(id_mmfr1_el1)
FUNCTION_INVARIANT(id_mmfr2_el1)
FUNCTION_INVARIANT(id_mmfr3_el1)
FUNCTION_INVARIANT(id_isar0_el1)
FUNCTION_INVARIANT(id_isar1_el1)
FUNCTION_INVARIANT(id_isar2_el1)
FUNCTION_INVARIANT(id_isar3_el1)
FUNCTION_INVARIANT(id_isar4_el1)
FUNCTION_INVARIANT(id_isar5_el1)
FUNCTION_INVARIANT(clidr_el1)
FUNCTION_INVARIANT(aidr_el1)

/* ->val is filled in by kvm_sys_reg_table_init() */
static struct sys_reg_desc invariant_sys_regs[] = {
	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b000),
	  NULL, get_midr_el1 },
	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b110),
	  NULL, get_revidr_el1 },
	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b000),
	  NULL, get_id_pfr0_el1 },
	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b001),
	  NULL, get_id_pfr1_el1 },
	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b010),
	  NULL, get_id_dfr0_el1 },
	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b011),
	  NULL, get_id_afr0_el1 },
	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b100),
	  NULL, get_id_mmfr0_el1 },
	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b101),
	  NULL, get_id_mmfr1_el1 },
	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b110),
	  NULL, get_id_mmfr2_el1 },
	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b111),
	  NULL, get_id_mmfr3_el1 },
	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
	  NULL, get_id_isar0_el1 },
	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b001),
	  NULL, get_id_isar1_el1 },
	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
	  NULL, get_id_isar2_el1 },
	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b011),
	  NULL, get_id_isar3_el1 },
	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b100),
	  NULL, get_id_isar4_el1 },
	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b101),
	  NULL, get_id_isar5_el1 },
	{ Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b001),
	  NULL, get_clidr_el1 },
	{ Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b111),
	  NULL, get_aidr_el1 },
	{ Op0(0b11), Op1(0b011), CRn(0b0000), CRm(0b0000), Op2(0b001),
	  NULL, get_ctr_el0 },
};

1972
static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
1973 1974 1975 1976 1977 1978
{
	if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
		return -EFAULT;
	return 0;
}

1979
static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
{
	if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
		return -EFAULT;
	return 0;
}

static int get_invariant_sys_reg(u64 id, void __user *uaddr)
{
	struct sys_reg_params params;
	const struct sys_reg_desc *r;

1991 1992
	r = find_reg_by_id(id, &params, invariant_sys_regs,
			   ARRAY_SIZE(invariant_sys_regs));
1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
	if (!r)
		return -ENOENT;

	return reg_to_user(uaddr, &r->val, id);
}

static int set_invariant_sys_reg(u64 id, void __user *uaddr)
{
	struct sys_reg_params params;
	const struct sys_reg_desc *r;
	int err;
	u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */

2006 2007
	r = find_reg_by_id(id, &params, invariant_sys_regs,
			   ARRAY_SIZE(invariant_sys_regs));
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026
	if (!r)
		return -ENOENT;

	err = reg_from_user(&val, uaddr, id);
	if (err)
		return err;

	/* This is what we mean by invariant: you can't change it. */
	if (r->val != val)
		return -EINVAL;

	return 0;
}

static bool is_valid_cache(u32 val)
{
	u32 level, ctype;

	if (val >= CSSELR_MAX)
2027
		return false;
2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118

	/* Bottom bit is Instruction or Data bit.  Next 3 bits are level. */
	level = (val >> 1);
	ctype = (cache_levels >> (level * 3)) & 7;

	switch (ctype) {
	case 0: /* No cache */
		return false;
	case 1: /* Instruction cache only */
		return (val & 1);
	case 2: /* Data cache only */
	case 4: /* Unified cache */
		return !(val & 1);
	case 3: /* Separate instruction and data caches */
		return true;
	default: /* Reserved: we can't know instruction or data. */
		return false;
	}
}

static int demux_c15_get(u64 id, void __user *uaddr)
{
	u32 val;
	u32 __user *uval = uaddr;

	/* Fail if we have unknown bits set. */
	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
		return -ENOENT;

	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
		if (KVM_REG_SIZE(id) != 4)
			return -ENOENT;
		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
		if (!is_valid_cache(val))
			return -ENOENT;

		return put_user(get_ccsidr(val), uval);
	default:
		return -ENOENT;
	}
}

static int demux_c15_set(u64 id, void __user *uaddr)
{
	u32 val, newval;
	u32 __user *uval = uaddr;

	/* Fail if we have unknown bits set. */
	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
		return -ENOENT;

	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
		if (KVM_REG_SIZE(id) != 4)
			return -ENOENT;
		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
		if (!is_valid_cache(val))
			return -ENOENT;

		if (get_user(newval, uval))
			return -EFAULT;

		/* This is also invariant: you can't change it. */
		if (newval != get_ccsidr(val))
			return -EINVAL;
		return 0;
	default:
		return -ENOENT;
	}
}

int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
{
	const struct sys_reg_desc *r;
	void __user *uaddr = (void __user *)(unsigned long)reg->addr;

	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
		return demux_c15_get(reg->id, uaddr);

	if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
		return -ENOENT;

	r = index_to_sys_reg_desc(vcpu, reg->id);
	if (!r)
		return get_invariant_sys_reg(reg->id, uaddr);

2119 2120 2121
	if (r->get_user)
		return (r->get_user)(vcpu, r, reg, uaddr);

2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139
	return reg_to_user(uaddr, &vcpu_sys_reg(vcpu, r->reg), reg->id);
}

int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
{
	const struct sys_reg_desc *r;
	void __user *uaddr = (void __user *)(unsigned long)reg->addr;

	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
		return demux_c15_set(reg->id, uaddr);

	if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
		return -ENOENT;

	r = index_to_sys_reg_desc(vcpu, reg->id);
	if (!r)
		return set_invariant_sys_reg(reg->id, uaddr);

2140 2141 2142
	if (r->set_user)
		return (r->set_user)(vcpu, r, reg, uaddr);

2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158
	return reg_from_user(&vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
}

static unsigned int num_demux_regs(void)
{
	unsigned int i, count = 0;

	for (i = 0; i < CSSELR_MAX; i++)
		if (is_valid_cache(i))
			count++;

	return count;
}

static int write_demux_regids(u64 __user *uindices)
{
2159
	u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203
	unsigned int i;

	val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
	for (i = 0; i < CSSELR_MAX; i++) {
		if (!is_valid_cache(i))
			continue;
		if (put_user(val | i, uindices))
			return -EFAULT;
		uindices++;
	}
	return 0;
}

static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
{
	return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
		KVM_REG_ARM64_SYSREG |
		(reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
		(reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
		(reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
		(reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
		(reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
}

static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
{
	if (!*uind)
		return true;

	if (put_user(sys_reg_to_index(reg), *uind))
		return false;

	(*uind)++;
	return true;
}

/* Assumed ordered tables, see kvm_sys_reg_table_init. */
static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
{
	const struct sys_reg_desc *i1, *i2, *end1, *end2;
	unsigned int total = 0;
	size_t num;

	/* We check for duplicates here, to allow arch-specific overrides. */
2204
	i1 = get_target_table(vcpu->arch.target, true, &num);
2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265
	end1 = i1 + num;
	i2 = sys_reg_descs;
	end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);

	BUG_ON(i1 == end1 || i2 == end2);

	/* Walk carefully, as both tables may refer to the same register. */
	while (i1 || i2) {
		int cmp = cmp_sys_reg(i1, i2);
		/* target-specific overrides generic entry. */
		if (cmp <= 0) {
			/* Ignore registers we trap but don't save. */
			if (i1->reg) {
				if (!copy_reg_to_user(i1, &uind))
					return -EFAULT;
				total++;
			}
		} else {
			/* Ignore registers we trap but don't save. */
			if (i2->reg) {
				if (!copy_reg_to_user(i2, &uind))
					return -EFAULT;
				total++;
			}
		}

		if (cmp <= 0 && ++i1 == end1)
			i1 = NULL;
		if (cmp >= 0 && ++i2 == end2)
			i2 = NULL;
	}
	return total;
}

unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
{
	return ARRAY_SIZE(invariant_sys_regs)
		+ num_demux_regs()
		+ walk_sys_regs(vcpu, (u64 __user *)NULL);
}

int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
{
	unsigned int i;
	int err;

	/* Then give them all the invariant registers' indices. */
	for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
		if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
			return -EFAULT;
		uindices++;
	}

	err = walk_sys_regs(vcpu, uindices);
	if (err < 0)
		return err;
	uindices += err;

	return write_demux_regids(uindices);
}

2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279
static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n)
{
	unsigned int i;

	for (i = 1; i < n; i++) {
		if (cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
			kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
			return 1;
		}
	}

	return 0;
}

2280 2281 2282 2283 2284 2285
void kvm_sys_reg_table_init(void)
{
	unsigned int i;
	struct sys_reg_desc clidr;

	/* Make sure tables are unique and in order. */
2286 2287 2288 2289 2290 2291
	BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs)));
	BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs)));
	BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs)));
	BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
	BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs)));
	BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs)));
2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333

	/* We abuse the reset function to overwrite the table itself. */
	for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
		invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);

	/*
	 * CLIDR format is awkward, so clean it up.  See ARM B4.1.20:
	 *
	 *   If software reads the Cache Type fields from Ctype1
	 *   upwards, once it has seen a value of 0b000, no caches
	 *   exist at further-out levels of the hierarchy. So, for
	 *   example, if Ctype3 is the first Cache Type field with a
	 *   value of 0b000, the values of Ctype4 to Ctype7 must be
	 *   ignored.
	 */
	get_clidr_el1(NULL, &clidr); /* Ugly... */
	cache_levels = clidr.val;
	for (i = 0; i < 7; i++)
		if (((cache_levels >> (i*3)) & 7) == 0)
			break;
	/* Clear all higher bits. */
	cache_levels &= (1 << (i*3))-1;
}

/**
 * kvm_reset_sys_regs - sets system registers to reset value
 * @vcpu: The VCPU pointer
 *
 * This function finds the right table above and sets the registers on the
 * virtual CPU struct to their architecturally defined reset values.
 */
void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
{
	size_t num;
	const struct sys_reg_desc *table;

	/* Catch someone adding a register without putting in reset entry. */
	memset(&vcpu->arch.ctxt.sys_regs, 0x42, sizeof(vcpu->arch.ctxt.sys_regs));

	/* Generic chip reset first (so target could override). */
	reset_sys_reg_descs(vcpu, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));

2334
	table = get_target_table(vcpu->arch.target, true, &num);
2335 2336 2337 2338 2339 2340
	reset_sys_reg_descs(vcpu, table, num);

	for (num = 1; num < NR_SYS_REGS; num++)
		if (vcpu_sys_reg(vcpu, num) == 0x4242424242424242)
			panic("Didn't reset vcpu_sys_reg(%zi)", num);
}