sys_regs.c 39.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/*
 * Copyright (C) 2012,2013 - ARM Ltd
 * Author: Marc Zyngier <marc.zyngier@arm.com>
 *
 * Derived from arch/arm/kvm/coproc.c:
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Authors: Rusty Russell <rusty@rustcorp.com.au>
 *          Christoffer Dall <c.dall@virtualopensystems.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#include <linux/mm.h>
#include <linux/kvm_host.h>
#include <linux/uaccess.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_host.h>
#include <asm/kvm_emulate.h>
#include <asm/kvm_coproc.h>
30
#include <asm/kvm_mmu.h>
31 32
#include <asm/cacheflush.h>
#include <asm/cputype.h>
33
#include <asm/debug-monitors.h>
34 35 36 37 38 39 40 41 42
#include <trace/events/kvm.h>

#include "sys_regs.h"

/*
 * All of this file is extremly similar to the ARM coproc.c, but the
 * types are different. My gut feeling is that it should be pretty
 * easy to merge, but that would be an ABI breakage -- again. VFP
 * would also need to be abstracted.
43 44 45 46
 *
 * For AArch32, we only take care of what is being trapped. Anything
 * that has to do with init and userspace access has to go via the
 * 64bit interface.
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
 */

/* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
static u32 cache_levels;

/* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
#define CSSELR_MAX 12

/* Which cache CCSIDR represents depends on CSSELR value. */
static u32 get_ccsidr(u32 csselr)
{
	u32 ccsidr;

	/* Make sure noone else changes CSSELR during this! */
	local_irq_disable();
	/* Put value into CSSELR */
	asm volatile("msr csselr_el1, %x0" : : "r" (csselr));
	isb();
	/* Read result out of CCSIDR */
	asm volatile("mrs %0, ccsidr_el1" : "=r" (ccsidr));
	local_irq_enable();

	return ccsidr;
}

static void do_dc_cisw(u32 val)
{
	asm volatile("dc cisw, %x0" : : "r" (val));
75
	dsb(ish);
76 77 78 79 80
}

static void do_dc_csw(u32 val)
{
	asm volatile("dc csw, %x0" : : "r" (val));
81
	dsb(ish);
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
}

/* See note at ARM ARM B1.14.4 */
static bool access_dcsw(struct kvm_vcpu *vcpu,
			const struct sys_reg_params *p,
			const struct sys_reg_desc *r)
{
	unsigned long val;
	int cpu;

	if (!p->is_write)
		return read_from_write_only(vcpu, p);

	cpu = get_cpu();

	cpumask_setall(&vcpu->arch.require_dcache_flush);
	cpumask_clear_cpu(cpu, &vcpu->arch.require_dcache_flush);

	/* If we were already preempted, take the long way around */
	if (cpu != vcpu->arch.last_pcpu) {
		flush_cache_all();
		goto done;
	}

	val = *vcpu_reg(vcpu, p->Rt);

	switch (p->CRm) {
	case 6:			/* Upgrade DCISW to DCCISW, as per HCR.SWIO */
	case 14:		/* DCCISW */
		do_dc_cisw(val);
		break;

	case 10:		/* DCCSW */
		do_dc_csw(val);
		break;
	}

done:
	put_cpu();

	return true;
}

125 126 127 128 129 130 131 132 133 134 135 136 137
/*
 * Generic accessor for VM registers. Only called as long as HCR_TVM
 * is set.
 */
static bool access_vm_reg(struct kvm_vcpu *vcpu,
			  const struct sys_reg_params *p,
			  const struct sys_reg_desc *r)
{
	unsigned long val;

	BUG_ON(!p->is_write);

	val = *vcpu_reg(vcpu, p->Rt);
138
	if (!p->is_aarch32 || !p->is_32bit)
139
		vcpu_sys_reg(vcpu, r->reg) = val;
140 141 142
	else
		vcpu_cp15_64_low(vcpu, r->reg) = val & 0xffffffffUL;

143 144 145 146 147 148 149 150 151 152 153 154 155 156
	return true;
}

/*
 * SCTLR_EL1 accessor. Only called as long as HCR_TVM is set.  If the
 * guest enables the MMU, we stop trapping the VM sys_regs and leave
 * it in complete control of the caches.
 */
static bool access_sctlr(struct kvm_vcpu *vcpu,
			 const struct sys_reg_params *p,
			 const struct sys_reg_desc *r)
{
	access_vm_reg(vcpu, p, r);

157
	if (vcpu_has_cache_enabled(vcpu)) {	/* MMU+Caches enabled? */
158
		vcpu->arch.hcr_el2 &= ~HCR_TVM;
159 160
		stage2_flush_vm(vcpu->kvm);
	}
161 162 163 164

	return true;
}

165 166 167
static bool trap_raz_wi(struct kvm_vcpu *vcpu,
			const struct sys_reg_params *p,
			const struct sys_reg_desc *r)
168 169 170 171 172 173 174
{
	if (p->is_write)
		return ignore_write(vcpu, p);
	else
		return read_zero(vcpu, p);
}

175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
			   const struct sys_reg_params *p,
			   const struct sys_reg_desc *r)
{
	if (p->is_write) {
		return ignore_write(vcpu, p);
	} else {
		*vcpu_reg(vcpu, p->Rt) = (1 << 3);
		return true;
	}
}

static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
				   const struct sys_reg_params *p,
				   const struct sys_reg_desc *r)
{
	if (p->is_write) {
		return ignore_write(vcpu, p);
	} else {
		u32 val;
		asm volatile("mrs %0, dbgauthstatus_el1" : "=r" (val));
		*vcpu_reg(vcpu, p->Rt) = val;
		return true;
	}
}

/*
 * We want to avoid world-switching all the DBG registers all the
 * time:
 * 
 * - If we've touched any debug register, it is likely that we're
 *   going to touch more of them. It then makes sense to disable the
 *   traps and start doing the save/restore dance
 * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
 *   then mandatory to save/restore the registers, as the guest
 *   depends on them.
 * 
 * For this, we use a DIRTY bit, indicating the guest has modified the
 * debug registers, used as follow:
 *
 * On guest entry:
 * - If the dirty bit is set (because we're coming back from trapping),
 *   disable the traps, save host registers, restore guest registers.
 * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
 *   set the dirty bit, disable the traps, save host registers,
 *   restore guest registers.
 * - Otherwise, enable the traps
 *
 * On guest exit:
 * - If the dirty bit is set, save guest registers, restore host
 *   registers and clear the dirty bit. This ensure that the host can
 *   now use the debug registers.
 */
static bool trap_debug_regs(struct kvm_vcpu *vcpu,
			    const struct sys_reg_params *p,
			    const struct sys_reg_desc *r)
{
	if (p->is_write) {
		vcpu_sys_reg(vcpu, r->reg) = *vcpu_reg(vcpu, p->Rt);
		vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
	} else {
		*vcpu_reg(vcpu, p->Rt) = vcpu_sys_reg(vcpu, r->reg);
	}

	return true;
}

242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
{
	u64 amair;

	asm volatile("mrs %0, amair_el1\n" : "=r" (amair));
	vcpu_sys_reg(vcpu, AMAIR_EL1) = amair;
}

static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
{
	/*
	 * Simply map the vcpu_id into the Aff0 field of the MPIDR.
	 */
	vcpu_sys_reg(vcpu, MPIDR_EL1) = (1UL << 31) | (vcpu->vcpu_id & 0xff);
}

258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
/* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
#define DBG_BCR_BVR_WCR_WVR_EL1(n)					\
	/* DBGBVRn_EL1 */						\
	{ Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b100),	\
	  trap_debug_regs, reset_val, (DBGBVR0_EL1 + (n)), 0 },		\
	/* DBGBCRn_EL1 */						\
	{ Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b101),	\
	  trap_debug_regs, reset_val, (DBGBCR0_EL1 + (n)), 0 },		\
	/* DBGWVRn_EL1 */						\
	{ Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b110),	\
	  trap_debug_regs, reset_val, (DBGWVR0_EL1 + (n)), 0 },		\
	/* DBGWCRn_EL1 */						\
	{ Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b111),	\
	  trap_debug_regs, reset_val, (DBGWCR0_EL1 + (n)), 0 }

273 274 275
/*
 * Architected system registers.
 * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
276 277 278 279 280 281 282 283 284
 *
 * We could trap ID_DFR0 and tell the guest we don't support performance
 * monitoring.  Unfortunately the patch to make the kernel check ID_DFR0 was
 * NAKed, so it will read the PMCR anyway.
 *
 * Therefore we tell the guest we have 0 counters.  Unfortunately, we
 * must always support PMCCNTR (the cycle counter): we just RAZ/WI for
 * all PM registers, which doesn't crash the guest kernel at least.
 *
285 286 287 288 289 290
 * Debug handling: We do trap most, if not all debug related system
 * registers. The implementation is good enough to ensure that a guest
 * can use these with minimal performance degradation. The drawback is
 * that we don't implement any of the external debug, none of the
 * OSlock protocol. This should be revisited if we ever encounter a
 * more demanding guest...
291 292 293 294 295 296 297 298 299 300 301 302
 */
static const struct sys_reg_desc sys_reg_descs[] = {
	/* DC ISW */
	{ Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b0110), Op2(0b010),
	  access_dcsw },
	/* DC CSW */
	{ Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1010), Op2(0b010),
	  access_dcsw },
	/* DC CISW */
	{ Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b010),
	  access_dcsw },

303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
	DBG_BCR_BVR_WCR_WVR_EL1(0),
	DBG_BCR_BVR_WCR_WVR_EL1(1),
	/* MDCCINT_EL1 */
	{ Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
	  trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
	/* MDSCR_EL1 */
	{ Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
	  trap_debug_regs, reset_val, MDSCR_EL1, 0 },
	DBG_BCR_BVR_WCR_WVR_EL1(2),
	DBG_BCR_BVR_WCR_WVR_EL1(3),
	DBG_BCR_BVR_WCR_WVR_EL1(4),
	DBG_BCR_BVR_WCR_WVR_EL1(5),
	DBG_BCR_BVR_WCR_WVR_EL1(6),
	DBG_BCR_BVR_WCR_WVR_EL1(7),
	DBG_BCR_BVR_WCR_WVR_EL1(8),
	DBG_BCR_BVR_WCR_WVR_EL1(9),
	DBG_BCR_BVR_WCR_WVR_EL1(10),
	DBG_BCR_BVR_WCR_WVR_EL1(11),
	DBG_BCR_BVR_WCR_WVR_EL1(12),
	DBG_BCR_BVR_WCR_WVR_EL1(13),
	DBG_BCR_BVR_WCR_WVR_EL1(14),
	DBG_BCR_BVR_WCR_WVR_EL1(15),

	/* MDRAR_EL1 */
	{ Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
	  trap_raz_wi },
	/* OSLAR_EL1 */
	{ Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b100),
	  trap_raz_wi },
	/* OSLSR_EL1 */
	{ Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0001), Op2(0b100),
	  trap_oslsr_el1 },
	/* OSDLR_EL1 */
	{ Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0011), Op2(0b100),
	  trap_raz_wi },
	/* DBGPRCR_EL1 */
	{ Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0100), Op2(0b100),
	  trap_raz_wi },
	/* DBGCLAIMSET_EL1 */
	{ Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1000), Op2(0b110),
	  trap_raz_wi },
	/* DBGCLAIMCLR_EL1 */
	{ Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1001), Op2(0b110),
	  trap_raz_wi },
	/* DBGAUTHSTATUS_EL1 */
	{ Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b110),
	  trap_dbgauthstatus_el1 },

351 352 353 354 355 356
	/* TEECR32_EL1 */
	{ Op0(0b10), Op1(0b010), CRn(0b0000), CRm(0b0000), Op2(0b000),
	  NULL, reset_val, TEECR32_EL1, 0 },
	/* TEEHBR32_EL1 */
	{ Op0(0b10), Op1(0b010), CRn(0b0001), CRm(0b0000), Op2(0b000),
	  NULL, reset_val, TEEHBR32_EL1, 0 },
357 358 359 360 361 362 363 364 365 366 367

	/* MDCCSR_EL1 */
	{ Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0001), Op2(0b000),
	  trap_raz_wi },
	/* DBGDTR_EL0 */
	{ Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0100), Op2(0b000),
	  trap_raz_wi },
	/* DBGDTR[TR]X_EL0 */
	{ Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0101), Op2(0b000),
	  trap_raz_wi },

368 369 370 371
	/* DBGVCR32_EL2 */
	{ Op0(0b10), Op1(0b100), CRn(0b0000), CRm(0b0111), Op2(0b000),
	  NULL, reset_val, DBGVCR32_EL2, 0 },

372 373 374 375 376
	/* MPIDR_EL1 */
	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b101),
	  NULL, reset_mpidr, MPIDR_EL1 },
	/* SCTLR_EL1 */
	{ Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
377
	  access_sctlr, reset_val, SCTLR_EL1, 0x00C50078 },
378 379 380 381 382
	/* CPACR_EL1 */
	{ Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b010),
	  NULL, reset_val, CPACR_EL1, 0 },
	/* TTBR0_EL1 */
	{ Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b000),
383
	  access_vm_reg, reset_unknown, TTBR0_EL1 },
384 385
	/* TTBR1_EL1 */
	{ Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b001),
386
	  access_vm_reg, reset_unknown, TTBR1_EL1 },
387 388
	/* TCR_EL1 */
	{ Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b010),
389
	  access_vm_reg, reset_val, TCR_EL1, 0 },
390 391 392

	/* AFSR0_EL1 */
	{ Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b000),
393
	  access_vm_reg, reset_unknown, AFSR0_EL1 },
394 395
	/* AFSR1_EL1 */
	{ Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b001),
396
	  access_vm_reg, reset_unknown, AFSR1_EL1 },
397 398
	/* ESR_EL1 */
	{ Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0010), Op2(0b000),
399
	  access_vm_reg, reset_unknown, ESR_EL1 },
400 401
	/* FAR_EL1 */
	{ Op0(0b11), Op1(0b000), CRn(0b0110), CRm(0b0000), Op2(0b000),
402
	  access_vm_reg, reset_unknown, FAR_EL1 },
403 404 405
	/* PAR_EL1 */
	{ Op0(0b11), Op1(0b000), CRn(0b0111), CRm(0b0100), Op2(0b000),
	  NULL, reset_unknown, PAR_EL1 },
406 407 408

	/* PMINTENSET_EL1 */
	{ Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b001),
409
	  trap_raz_wi },
410 411
	/* PMINTENCLR_EL1 */
	{ Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b010),
412
	  trap_raz_wi },
413 414 415

	/* MAIR_EL1 */
	{ Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0010), Op2(0b000),
416
	  access_vm_reg, reset_unknown, MAIR_EL1 },
417 418
	/* AMAIR_EL1 */
	{ Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0011), Op2(0b000),
419
	  access_vm_reg, reset_amair_el1, AMAIR_EL1 },
420 421 422 423 424 425

	/* VBAR_EL1 */
	{ Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b0000), Op2(0b000),
	  NULL, reset_val, VBAR_EL1, 0 },
	/* CONTEXTIDR_EL1 */
	{ Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b001),
426
	  access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
427 428 429 430 431 432 433 434 435 436 437 438 439 440
	/* TPIDR_EL1 */
	{ Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b100),
	  NULL, reset_unknown, TPIDR_EL1 },

	/* CNTKCTL_EL1 */
	{ Op0(0b11), Op1(0b000), CRn(0b1110), CRm(0b0001), Op2(0b000),
	  NULL, reset_val, CNTKCTL_EL1, 0},

	/* CSSELR_EL1 */
	{ Op0(0b11), Op1(0b010), CRn(0b0000), CRm(0b0000), Op2(0b000),
	  NULL, reset_unknown, CSSELR_EL1 },

	/* PMCR_EL0 */
	{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b000),
441
	  trap_raz_wi },
442 443
	/* PMCNTENSET_EL0 */
	{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b001),
444
	  trap_raz_wi },
445 446
	/* PMCNTENCLR_EL0 */
	{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b010),
447
	  trap_raz_wi },
448 449
	/* PMOVSCLR_EL0 */
	{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b011),
450
	  trap_raz_wi },
451 452
	/* PMSWINC_EL0 */
	{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b100),
453
	  trap_raz_wi },
454 455
	/* PMSELR_EL0 */
	{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b101),
456
	  trap_raz_wi },
457 458
	/* PMCEID0_EL0 */
	{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b110),
459
	  trap_raz_wi },
460 461
	/* PMCEID1_EL0 */
	{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b111),
462
	  trap_raz_wi },
463 464
	/* PMCCNTR_EL0 */
	{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b000),
465
	  trap_raz_wi },
466 467
	/* PMXEVTYPER_EL0 */
	{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b001),
468
	  trap_raz_wi },
469 470
	/* PMXEVCNTR_EL0 */
	{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b010),
471
	  trap_raz_wi },
472 473
	/* PMUSERENR_EL0 */
	{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b000),
474
	  trap_raz_wi },
475 476
	/* PMOVSSET_EL0 */
	{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b011),
477
	  trap_raz_wi },
478 479 480 481 482 483 484

	/* TPIDR_EL0 */
	{ Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b010),
	  NULL, reset_unknown, TPIDR_EL0 },
	/* TPIDRRO_EL0 */
	{ Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b011),
	  NULL, reset_unknown, TPIDRRO_EL0 },
485 486 487 488 489 490 491 492 493 494 495 496

	/* DACR32_EL2 */
	{ Op0(0b11), Op1(0b100), CRn(0b0011), CRm(0b0000), Op2(0b000),
	  NULL, reset_unknown, DACR32_EL2 },
	/* IFSR32_EL2 */
	{ Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0000), Op2(0b001),
	  NULL, reset_unknown, IFSR32_EL2 },
	/* FPEXC32_EL2 */
	{ Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0011), Op2(0b000),
	  NULL, reset_val, FPEXC32_EL2, 0x70 },
};

497 498 499 500
/* Trapped cp14 registers */
static const struct sys_reg_desc cp14_regs[] = {
};

501 502 503 504
/* Trapped cp14 64bit registers */
static const struct sys_reg_desc cp14_64_regs[] = {
};

505 506 507 508 509
/*
 * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
 * depending on the way they are accessed (as a 32bit or a 64bit
 * register).
 */
510
static const struct sys_reg_desc cp15_regs[] = {
511 512 513 514 515 516 517 518 519 520 521 522
	{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_sctlr, NULL, c1_SCTLR },
	{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
	{ Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 },
	{ Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, c2_TTBCR },
	{ Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, c3_DACR },
	{ Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, c5_DFSR },
	{ Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, c5_IFSR },
	{ Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, c5_ADFSR },
	{ Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, c5_AIFSR },
	{ Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, c6_DFAR },
	{ Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, c6_IFAR },

523 524 525 526 527 528
	/*
	 * DC{C,I,CI}SW operations:
	 */
	{ Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
	{ Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
	{ Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
529

530 531 532 533 534 535 536 537 538 539 540 541 542 543
	/* PMU */
	{ Op1( 0), CRn( 9), CRm(12), Op2( 0), trap_raz_wi },
	{ Op1( 0), CRn( 9), CRm(12), Op2( 1), trap_raz_wi },
	{ Op1( 0), CRn( 9), CRm(12), Op2( 2), trap_raz_wi },
	{ Op1( 0), CRn( 9), CRm(12), Op2( 3), trap_raz_wi },
	{ Op1( 0), CRn( 9), CRm(12), Op2( 5), trap_raz_wi },
	{ Op1( 0), CRn( 9), CRm(12), Op2( 6), trap_raz_wi },
	{ Op1( 0), CRn( 9), CRm(12), Op2( 7), trap_raz_wi },
	{ Op1( 0), CRn( 9), CRm(13), Op2( 0), trap_raz_wi },
	{ Op1( 0), CRn( 9), CRm(13), Op2( 1), trap_raz_wi },
	{ Op1( 0), CRn( 9), CRm(13), Op2( 2), trap_raz_wi },
	{ Op1( 0), CRn( 9), CRm(14), Op2( 0), trap_raz_wi },
	{ Op1( 0), CRn( 9), CRm(14), Op2( 1), trap_raz_wi },
	{ Op1( 0), CRn( 9), CRm(14), Op2( 2), trap_raz_wi },
544 545 546 547 548 549 550

	{ Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, c10_PRRR },
	{ Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, c10_NMRR },
	{ Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, c10_AMAIR0 },
	{ Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, c10_AMAIR1 },
	{ Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, c13_CID },

551 552 553 554
};

static const struct sys_reg_desc cp15_64_regs[] = {
	{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
555
	{ Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR1 },
556 557 558 559 560 561 562 563 564 565 566 567
};

/* Target specific emulation tables */
static struct kvm_sys_reg_target_table *target_tables[KVM_ARM_NUM_TARGETS];

void kvm_register_target_sys_reg_table(unsigned int target,
				       struct kvm_sys_reg_target_table *table)
{
	target_tables[target] = table;
}

/* Get specific register table for this target. */
568 569 570
static const struct sys_reg_desc *get_target_table(unsigned target,
						   bool mode_is_64,
						   size_t *num)
571 572 573 574
{
	struct kvm_sys_reg_target_table *table;

	table = target_tables[target];
575 576 577 578 579 580 581
	if (mode_is_64) {
		*num = table->table64.num;
		return table->table64.table;
	} else {
		*num = table->table32.num;
		return table->table32.table;
	}
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
}

static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
					 const struct sys_reg_desc table[],
					 unsigned int num)
{
	unsigned int i;

	for (i = 0; i < num; i++) {
		const struct sys_reg_desc *r = &table[i];

		if (params->Op0 != r->Op0)
			continue;
		if (params->Op1 != r->Op1)
			continue;
		if (params->CRn != r->CRn)
			continue;
		if (params->CRm != r->CRm)
			continue;
		if (params->Op2 != r->Op2)
			continue;

		return r;
	}
	return NULL;
}

609 610 611 612 613 614
int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
	kvm_inject_undefined(vcpu);
	return 1;
}

615 616 617 618 619 620 621 622 623 624 625 626 627 628
/*
 * emulate_cp --  tries to match a sys_reg access in a handling table, and
 *                call the corresponding trap handler.
 *
 * @params: pointer to the descriptor of the access
 * @table: array of trap descriptors
 * @num: size of the trap descriptor array
 *
 * Return 0 if the access has been handled, and -1 if not.
 */
static int emulate_cp(struct kvm_vcpu *vcpu,
		      const struct sys_reg_params *params,
		      const struct sys_reg_desc *table,
		      size_t num)
629
{
630
	const struct sys_reg_desc *r;
631

632 633
	if (!table)
		return -1;	/* Not handled */
634 635 636

	r = find_reg(params, table, num);

637
	if (r) {
638 639 640 641 642 643 644 645 646 647 648 649
		/*
		 * Not having an accessor means that we have
		 * configured a trap that we don't know how to
		 * handle. This certainly qualifies as a gross bug
		 * that should be fixed right away.
		 */
		BUG_ON(!r->access);

		if (likely(r->access(vcpu, params, r))) {
			/* Skip instruction, since it was emulated */
			kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
		}
650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675

		/* Handled */
		return 0;
	}

	/* Not handled */
	return -1;
}

static void unhandled_cp_access(struct kvm_vcpu *vcpu,
				struct sys_reg_params *params)
{
	u8 hsr_ec = kvm_vcpu_trap_get_class(vcpu);
	int cp;

	switch(hsr_ec) {
	case ESR_EL2_EC_CP15_32:
	case ESR_EL2_EC_CP15_64:
		cp = 15;
		break;
	case ESR_EL2_EC_CP14_MR:
	case ESR_EL2_EC_CP14_64:
		cp = 14;
		break;
	default:
		WARN_ON((cp = -1));
676 677
	}

678 679
	kvm_err("Unsupported guest CP%d access at: %08lx\n",
		cp, *vcpu_pc(vcpu));
680 681 682 683 684
	print_sys_reg_instr(params);
	kvm_inject_undefined(vcpu);
}

/**
685
 * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP15 access
686 687 688
 * @vcpu: The VCPU pointer
 * @run:  The kvm_run struct
 */
689 690 691 692 693
static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
			    const struct sys_reg_desc *global,
			    size_t nr_global,
			    const struct sys_reg_desc *target_specific,
			    size_t nr_specific)
694 695 696 697 698
{
	struct sys_reg_params params;
	u32 hsr = kvm_vcpu_get_hsr(vcpu);
	int Rt2 = (hsr >> 10) & 0xf;

699 700
	params.is_aarch32 = true;
	params.is_32bit = false;
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
	params.CRm = (hsr >> 1) & 0xf;
	params.Rt = (hsr >> 5) & 0xf;
	params.is_write = ((hsr & 1) == 0);

	params.Op0 = 0;
	params.Op1 = (hsr >> 16) & 0xf;
	params.Op2 = 0;
	params.CRn = 0;

	/*
	 * Massive hack here. Store Rt2 in the top 32bits so we only
	 * have one register to deal with. As we use the same trap
	 * backends between AArch32 and AArch64, we get away with it.
	 */
	if (params.is_write) {
		u64 val = *vcpu_reg(vcpu, params.Rt);
		val &= 0xffffffff;
		val |= *vcpu_reg(vcpu, Rt2) << 32;
		*vcpu_reg(vcpu, params.Rt) = val;
	}

722 723 724 725 726 727
	if (!emulate_cp(vcpu, &params, target_specific, nr_specific))
		goto out;
	if (!emulate_cp(vcpu, &params, global, nr_global))
		goto out;

	unhandled_cp_access(vcpu, &params);
728

729
out:
730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
	/* Do the opposite hack for the read side */
	if (!params.is_write) {
		u64 val = *vcpu_reg(vcpu, params.Rt);
		val >>= 32;
		*vcpu_reg(vcpu, Rt2) = val;
	}

	return 1;
}

/**
 * kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access
 * @vcpu: The VCPU pointer
 * @run:  The kvm_run struct
 */
745 746 747 748 749
static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
			    const struct sys_reg_desc *global,
			    size_t nr_global,
			    const struct sys_reg_desc *target_specific,
			    size_t nr_specific)
750 751 752 753
{
	struct sys_reg_params params;
	u32 hsr = kvm_vcpu_get_hsr(vcpu);

754 755
	params.is_aarch32 = true;
	params.is_32bit = true;
756 757 758 759 760 761 762 763
	params.CRm = (hsr >> 1) & 0xf;
	params.Rt  = (hsr >> 5) & 0xf;
	params.is_write = ((hsr & 1) == 0);
	params.CRn = (hsr >> 10) & 0xf;
	params.Op0 = 0;
	params.Op1 = (hsr >> 14) & 0x7;
	params.Op2 = (hsr >> 17) & 0x7;

764 765 766 767 768 769
	if (!emulate_cp(vcpu, &params, target_specific, nr_specific))
		return 1;
	if (!emulate_cp(vcpu, &params, global, nr_global))
		return 1;

	unhandled_cp_access(vcpu, &params);
770 771 772
	return 1;
}

773 774 775 776 777 778 779
int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
	const struct sys_reg_desc *target_specific;
	size_t num;

	target_specific = get_target_table(vcpu->arch.target, false, &num);
	return kvm_handle_cp_64(vcpu,
780
				cp15_64_regs, ARRAY_SIZE(cp15_64_regs),
781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
				target_specific, num);
}

int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
	const struct sys_reg_desc *target_specific;
	size_t num;

	target_specific = get_target_table(vcpu->arch.target, false, &num);
	return kvm_handle_cp_32(vcpu,
				cp15_regs, ARRAY_SIZE(cp15_regs),
				target_specific, num);
}

int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
	return kvm_handle_cp_64(vcpu,
798
				cp14_64_regs, ARRAY_SIZE(cp14_64_regs),
799 800 801 802 803 804 805 806 807 808
				NULL, 0);
}

int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
	return kvm_handle_cp_32(vcpu,
				cp14_regs, ARRAY_SIZE(cp14_regs),
				NULL, 0);
}

809 810 811 812 813 814
static int emulate_sys_reg(struct kvm_vcpu *vcpu,
			   const struct sys_reg_params *params)
{
	size_t num;
	const struct sys_reg_desc *table, *r;

815
	table = get_target_table(vcpu->arch.target, true, &num);
816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865

	/* Search target-specific then generic table. */
	r = find_reg(params, table, num);
	if (!r)
		r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));

	if (likely(r)) {
		/*
		 * Not having an accessor means that we have
		 * configured a trap that we don't know how to
		 * handle. This certainly qualifies as a gross bug
		 * that should be fixed right away.
		 */
		BUG_ON(!r->access);

		if (likely(r->access(vcpu, params, r))) {
			/* Skip instruction, since it was emulated */
			kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
			return 1;
		}
		/* If access function fails, it should complain. */
	} else {
		kvm_err("Unsupported guest sys_reg access at: %lx\n",
			*vcpu_pc(vcpu));
		print_sys_reg_instr(params);
	}
	kvm_inject_undefined(vcpu);
	return 1;
}

static void reset_sys_reg_descs(struct kvm_vcpu *vcpu,
			      const struct sys_reg_desc *table, size_t num)
{
	unsigned long i;

	for (i = 0; i < num; i++)
		if (table[i].reset)
			table[i].reset(vcpu, &table[i]);
}

/**
 * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
 * @vcpu: The VCPU pointer
 * @run:  The kvm_run struct
 */
int kvm_handle_sys_reg(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
	struct sys_reg_params params;
	unsigned long esr = kvm_vcpu_get_hsr(vcpu);

866 867
	params.is_aarch32 = false;
	params.is_32bit = false;
868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926
	params.Op0 = (esr >> 20) & 3;
	params.Op1 = (esr >> 14) & 0x7;
	params.CRn = (esr >> 10) & 0xf;
	params.CRm = (esr >> 1) & 0xf;
	params.Op2 = (esr >> 17) & 0x7;
	params.Rt = (esr >> 5) & 0x1f;
	params.is_write = !(esr & 1);

	return emulate_sys_reg(vcpu, &params);
}

/******************************************************************************
 * Userspace API
 *****************************************************************************/

static bool index_to_params(u64 id, struct sys_reg_params *params)
{
	switch (id & KVM_REG_SIZE_MASK) {
	case KVM_REG_SIZE_U64:
		/* Any unused index bits means it's not valid. */
		if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
			      | KVM_REG_ARM_COPROC_MASK
			      | KVM_REG_ARM64_SYSREG_OP0_MASK
			      | KVM_REG_ARM64_SYSREG_OP1_MASK
			      | KVM_REG_ARM64_SYSREG_CRN_MASK
			      | KVM_REG_ARM64_SYSREG_CRM_MASK
			      | KVM_REG_ARM64_SYSREG_OP2_MASK))
			return false;
		params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
			       >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
		params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
			       >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
		params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
			       >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
		params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
			       >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
		params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
			       >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
		return true;
	default:
		return false;
	}
}

/* Decode an index value, and find the sys_reg_desc entry. */
static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
						    u64 id)
{
	size_t num;
	const struct sys_reg_desc *table, *r;
	struct sys_reg_params params;

	/* We only do sys_reg for now. */
	if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
		return NULL;

	if (!index_to_params(id, &params))
		return NULL;

927
	table = get_target_table(vcpu->arch.target, true, &num);
928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
	r = find_reg(&params, table, num);
	if (!r)
		r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));

	/* Not saved in the sys_reg array? */
	if (r && !r->reg)
		r = NULL;

	return r;
}

/*
 * These are the invariant sys_reg registers: we let the guest see the
 * host versions of these, so they're part of the guest state.
 *
 * A future CPU may provide a mechanism to present different values to
 * the guest, or a future kvm may trap them.
 */

#define FUNCTION_INVARIANT(reg)						\
	static void get_##reg(struct kvm_vcpu *v,			\
			      const struct sys_reg_desc *r)		\
	{								\
		u64 val;						\
									\
		asm volatile("mrs %0, " __stringify(reg) "\n"		\
			     : "=r" (val));				\
		((struct sys_reg_desc *)r)->val = val;			\
	}

FUNCTION_INVARIANT(midr_el1)
FUNCTION_INVARIANT(ctr_el0)
FUNCTION_INVARIANT(revidr_el1)
FUNCTION_INVARIANT(id_pfr0_el1)
FUNCTION_INVARIANT(id_pfr1_el1)
FUNCTION_INVARIANT(id_dfr0_el1)
FUNCTION_INVARIANT(id_afr0_el1)
FUNCTION_INVARIANT(id_mmfr0_el1)
FUNCTION_INVARIANT(id_mmfr1_el1)
FUNCTION_INVARIANT(id_mmfr2_el1)
FUNCTION_INVARIANT(id_mmfr3_el1)
FUNCTION_INVARIANT(id_isar0_el1)
FUNCTION_INVARIANT(id_isar1_el1)
FUNCTION_INVARIANT(id_isar2_el1)
FUNCTION_INVARIANT(id_isar3_el1)
FUNCTION_INVARIANT(id_isar4_el1)
FUNCTION_INVARIANT(id_isar5_el1)
FUNCTION_INVARIANT(clidr_el1)
FUNCTION_INVARIANT(aidr_el1)

/* ->val is filled in by kvm_sys_reg_table_init() */
static struct sys_reg_desc invariant_sys_regs[] = {
	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b000),
	  NULL, get_midr_el1 },
	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b110),
	  NULL, get_revidr_el1 },
	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b000),
	  NULL, get_id_pfr0_el1 },
	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b001),
	  NULL, get_id_pfr1_el1 },
	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b010),
	  NULL, get_id_dfr0_el1 },
	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b011),
	  NULL, get_id_afr0_el1 },
	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b100),
	  NULL, get_id_mmfr0_el1 },
	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b101),
	  NULL, get_id_mmfr1_el1 },
	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b110),
	  NULL, get_id_mmfr2_el1 },
	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b111),
	  NULL, get_id_mmfr3_el1 },
	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
	  NULL, get_id_isar0_el1 },
	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b001),
	  NULL, get_id_isar1_el1 },
	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
	  NULL, get_id_isar2_el1 },
	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b011),
	  NULL, get_id_isar3_el1 },
	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b100),
	  NULL, get_id_isar4_el1 },
	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b101),
	  NULL, get_id_isar5_el1 },
	{ Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b001),
	  NULL, get_clidr_el1 },
	{ Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b111),
	  NULL, get_aidr_el1 },
	{ Op0(0b11), Op1(0b011), CRn(0b0000), CRm(0b0000), Op2(0b001),
	  NULL, get_ctr_el0 },
};

1020
static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
1021 1022 1023 1024 1025 1026
{
	if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
		return -EFAULT;
	return 0;
}

1027
static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
{
	if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
		return -EFAULT;
	return 0;
}

static int get_invariant_sys_reg(u64 id, void __user *uaddr)
{
	struct sys_reg_params params;
	const struct sys_reg_desc *r;

	if (!index_to_params(id, &params))
		return -ENOENT;

	r = find_reg(&params, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
	if (!r)
		return -ENOENT;

	return reg_to_user(uaddr, &r->val, id);
}

static int set_invariant_sys_reg(u64 id, void __user *uaddr)
{
	struct sys_reg_params params;
	const struct sys_reg_desc *r;
	int err;
	u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */

	if (!index_to_params(id, &params))
		return -ENOENT;
	r = find_reg(&params, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
	if (!r)
		return -ENOENT;

	err = reg_from_user(&val, uaddr, id);
	if (err)
		return err;

	/* This is what we mean by invariant: you can't change it. */
	if (r->val != val)
		return -EINVAL;

	return 0;
}

static bool is_valid_cache(u32 val)
{
	u32 level, ctype;

	if (val >= CSSELR_MAX)
		return -ENOENT;

	/* Bottom bit is Instruction or Data bit.  Next 3 bits are level. */
	level = (val >> 1);
	ctype = (cache_levels >> (level * 3)) & 7;

	switch (ctype) {
	case 0: /* No cache */
		return false;
	case 1: /* Instruction cache only */
		return (val & 1);
	case 2: /* Data cache only */
	case 4: /* Unified cache */
		return !(val & 1);
	case 3: /* Separate instruction and data caches */
		return true;
	default: /* Reserved: we can't know instruction or data. */
		return false;
	}
}

static int demux_c15_get(u64 id, void __user *uaddr)
{
	u32 val;
	u32 __user *uval = uaddr;

	/* Fail if we have unknown bits set. */
	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
		return -ENOENT;

	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
		if (KVM_REG_SIZE(id) != 4)
			return -ENOENT;
		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
		if (!is_valid_cache(val))
			return -ENOENT;

		return put_user(get_ccsidr(val), uval);
	default:
		return -ENOENT;
	}
}

static int demux_c15_set(u64 id, void __user *uaddr)
{
	u32 val, newval;
	u32 __user *uval = uaddr;

	/* Fail if we have unknown bits set. */
	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
		return -ENOENT;

	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
		if (KVM_REG_SIZE(id) != 4)
			return -ENOENT;
		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
		if (!is_valid_cache(val))
			return -ENOENT;

		if (get_user(newval, uval))
			return -EFAULT;

		/* This is also invariant: you can't change it. */
		if (newval != get_ccsidr(val))
			return -EINVAL;
		return 0;
	default:
		return -ENOENT;
	}
}

int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
{
	const struct sys_reg_desc *r;
	void __user *uaddr = (void __user *)(unsigned long)reg->addr;

	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
		return demux_c15_get(reg->id, uaddr);

	if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
		return -ENOENT;

	r = index_to_sys_reg_desc(vcpu, reg->id);
	if (!r)
		return get_invariant_sys_reg(reg->id, uaddr);

	return reg_to_user(uaddr, &vcpu_sys_reg(vcpu, r->reg), reg->id);
}

int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
{
	const struct sys_reg_desc *r;
	void __user *uaddr = (void __user *)(unsigned long)reg->addr;

	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
		return demux_c15_set(reg->id, uaddr);

	if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
		return -ENOENT;

	r = index_to_sys_reg_desc(vcpu, reg->id);
	if (!r)
		return set_invariant_sys_reg(reg->id, uaddr);

	return reg_from_user(&vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
}

static unsigned int num_demux_regs(void)
{
	unsigned int i, count = 0;

	for (i = 0; i < CSSELR_MAX; i++)
		if (is_valid_cache(i))
			count++;

	return count;
}

static int write_demux_regids(u64 __user *uindices)
{
1204
	u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
	unsigned int i;

	val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
	for (i = 0; i < CSSELR_MAX; i++) {
		if (!is_valid_cache(i))
			continue;
		if (put_user(val | i, uindices))
			return -EFAULT;
		uindices++;
	}
	return 0;
}

static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
{
	return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
		KVM_REG_ARM64_SYSREG |
		(reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
		(reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
		(reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
		(reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
		(reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
}

static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
{
	if (!*uind)
		return true;

	if (put_user(sys_reg_to_index(reg), *uind))
		return false;

	(*uind)++;
	return true;
}

/* Assumed ordered tables, see kvm_sys_reg_table_init. */
static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
{
	const struct sys_reg_desc *i1, *i2, *end1, *end2;
	unsigned int total = 0;
	size_t num;

	/* We check for duplicates here, to allow arch-specific overrides. */
1249
	i1 = get_target_table(vcpu->arch.target, true, &num);
1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
	end1 = i1 + num;
	i2 = sys_reg_descs;
	end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);

	BUG_ON(i1 == end1 || i2 == end2);

	/* Walk carefully, as both tables may refer to the same register. */
	while (i1 || i2) {
		int cmp = cmp_sys_reg(i1, i2);
		/* target-specific overrides generic entry. */
		if (cmp <= 0) {
			/* Ignore registers we trap but don't save. */
			if (i1->reg) {
				if (!copy_reg_to_user(i1, &uind))
					return -EFAULT;
				total++;
			}
		} else {
			/* Ignore registers we trap but don't save. */
			if (i2->reg) {
				if (!copy_reg_to_user(i2, &uind))
					return -EFAULT;
				total++;
			}
		}

		if (cmp <= 0 && ++i1 == end1)
			i1 = NULL;
		if (cmp >= 0 && ++i2 == end2)
			i2 = NULL;
	}
	return total;
}

unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
{
	return ARRAY_SIZE(invariant_sys_regs)
		+ num_demux_regs()
		+ walk_sys_regs(vcpu, (u64 __user *)NULL);
}

int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
{
	unsigned int i;
	int err;

	/* Then give them all the invariant registers' indices. */
	for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
		if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
			return -EFAULT;
		uindices++;
	}

	err = walk_sys_regs(vcpu, uindices);
	if (err < 0)
		return err;
	uindices += err;

	return write_demux_regids(uindices);
}

1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n)
{
	unsigned int i;

	for (i = 1; i < n; i++) {
		if (cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
			kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
			return 1;
		}
	}

	return 0;
}

1325 1326 1327 1328 1329 1330
void kvm_sys_reg_table_init(void)
{
	unsigned int i;
	struct sys_reg_desc clidr;

	/* Make sure tables are unique and in order. */
1331 1332 1333 1334 1335 1336
	BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs)));
	BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs)));
	BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs)));
	BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
	BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs)));
	BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs)));
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378

	/* We abuse the reset function to overwrite the table itself. */
	for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
		invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);

	/*
	 * CLIDR format is awkward, so clean it up.  See ARM B4.1.20:
	 *
	 *   If software reads the Cache Type fields from Ctype1
	 *   upwards, once it has seen a value of 0b000, no caches
	 *   exist at further-out levels of the hierarchy. So, for
	 *   example, if Ctype3 is the first Cache Type field with a
	 *   value of 0b000, the values of Ctype4 to Ctype7 must be
	 *   ignored.
	 */
	get_clidr_el1(NULL, &clidr); /* Ugly... */
	cache_levels = clidr.val;
	for (i = 0; i < 7; i++)
		if (((cache_levels >> (i*3)) & 7) == 0)
			break;
	/* Clear all higher bits. */
	cache_levels &= (1 << (i*3))-1;
}

/**
 * kvm_reset_sys_regs - sets system registers to reset value
 * @vcpu: The VCPU pointer
 *
 * This function finds the right table above and sets the registers on the
 * virtual CPU struct to their architecturally defined reset values.
 */
void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
{
	size_t num;
	const struct sys_reg_desc *table;

	/* Catch someone adding a register without putting in reset entry. */
	memset(&vcpu->arch.ctxt.sys_regs, 0x42, sizeof(vcpu->arch.ctxt.sys_regs));

	/* Generic chip reset first (so target could override). */
	reset_sys_reg_descs(vcpu, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));

1379
	table = get_target_table(vcpu->arch.target, true, &num);
1380 1381 1382 1383 1384 1385
	reset_sys_reg_descs(vcpu, table, num);

	for (num = 1; num < NR_SYS_REGS; num++)
		if (vcpu_sys_reg(vcpu, num) == 0x4242424242424242)
			panic("Didn't reset vcpu_sys_reg(%zi)", num);
}