tick-sched.c 31.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/*
 *  linux/kernel/time/tick-sched.c
 *
 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
 *
 *  No idle tick implementation for low and high resolution timers
 *
 *  Started by: Thomas Gleixner and Ingo Molnar
 *
P
Pavel Machek 已提交
12
 *  Distribute under GPLv2.
13 14 15 16 17 18 19
 */
#include <linux/cpu.h>
#include <linux/err.h>
#include <linux/hrtimer.h>
#include <linux/interrupt.h>
#include <linux/kernel_stat.h>
#include <linux/percpu.h>
20
#include <linux/nmi.h>
21
#include <linux/profile.h>
22
#include <linux/sched/signal.h>
23
#include <linux/sched/clock.h>
24
#include <linux/sched/stat.h>
25
#include <linux/sched/nohz.h>
26
#include <linux/module.h>
27
#include <linux/irq_work.h>
28
#include <linux/posix-timers.h>
29
#include <linux/context_tracking.h>
30
#include <linux/mm.h>
31

32 33
#include <asm/irq_regs.h>

34 35
#include "tick-internal.h"

F
Frederic Weisbecker 已提交
36 37
#include <trace/events/timer.h>

38
/*
39
 * Per-CPU nohz control structure
40
 */
41
static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
42

43 44 45 46 47
struct tick_sched *tick_get_tick_sched(int cpu)
{
	return &per_cpu(tick_cpu_sched, cpu);
}

48 49 50 51 52 53
#if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
/*
 * The time, when the last jiffy update happened. Protected by jiffies_lock.
 */
static ktime_t last_jiffies_update;

54 55 56 57 58 59 60 61 62
/*
 * Called after resume. Make sure that jiffies are not fast forwarded due to
 * clock monotonic being forwarded by the suspended time.
 */
void tick_sched_forward_next_period(void)
{
	last_jiffies_update = tick_next_period;
}

63 64 65 66 67 68 69 70
/*
 * Must be called with interrupts disabled !
 */
static void tick_do_update_jiffies64(ktime_t now)
{
	unsigned long ticks = 0;
	ktime_t delta;

71
	/*
72
	 * Do a quick check without holding jiffies_lock:
73 74
	 */
	delta = ktime_sub(now, last_jiffies_update);
T
Thomas Gleixner 已提交
75
	if (delta < tick_period)
76 77
		return;

W
Wei Jiangang 已提交
78
	/* Reevaluate with jiffies_lock held */
79
	write_seqlock(&jiffies_lock);
80 81

	delta = ktime_sub(now, last_jiffies_update);
T
Thomas Gleixner 已提交
82
	if (delta >= tick_period) {
83 84 85 86 87 88

		delta = ktime_sub(delta, tick_period);
		last_jiffies_update = ktime_add(last_jiffies_update,
						tick_period);

		/* Slow path for long timeouts */
T
Thomas Gleixner 已提交
89
		if (unlikely(delta >= tick_period)) {
90 91 92 93 94 95 96 97
			s64 incr = ktime_to_ns(tick_period);

			ticks = ktime_divns(delta, incr);

			last_jiffies_update = ktime_add_ns(last_jiffies_update,
							   incr * ticks);
		}
		do_timer(++ticks);
98 99 100

		/* Keep the tick_next_period variable up to date */
		tick_next_period = ktime_add(last_jiffies_update, tick_period);
101 102 103
	} else {
		write_sequnlock(&jiffies_lock);
		return;
104
	}
105
	write_sequnlock(&jiffies_lock);
106
	update_wall_time();
107 108 109 110 111 112 113 114 115
}

/*
 * Initialize and return retrieve the jiffies update.
 */
static ktime_t tick_init_jiffy_update(void)
{
	ktime_t period;

116
	write_seqlock(&jiffies_lock);
117
	/* Did we start the jiffies update yet ? */
T
Thomas Gleixner 已提交
118
	if (last_jiffies_update == 0)
119 120
		last_jiffies_update = tick_next_period;
	period = last_jiffies_update;
121
	write_sequnlock(&jiffies_lock);
122 123 124
	return period;
}

125 126 127 128 129

static void tick_sched_do_timer(ktime_t now)
{
	int cpu = smp_processor_id();

130
#ifdef CONFIG_NO_HZ_COMMON
131 132
	/*
	 * Check if the do_timer duty was dropped. We don't care about
133 134
	 * concurrency: This happens only when the CPU in charge went
	 * into a long sleep. If two CPUs happen to assign themselves to
135
	 * this duty, then the jiffies update is still serialized by
136
	 * jiffies_lock.
137
	 */
138
	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)
139
	    && !tick_nohz_full_cpu(cpu))
140 141 142 143 144 145 146 147
		tick_do_timer_cpu = cpu;
#endif

	/* Check, if the jiffies need an update */
	if (tick_do_timer_cpu == cpu)
		tick_do_update_jiffies64(now);
}

148 149
static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
{
150
#ifdef CONFIG_NO_HZ_COMMON
151 152 153 154 155 156 157 158 159
	/*
	 * When we are idle and the tick is stopped, we have to touch
	 * the watchdog as we might not schedule for a really long
	 * time. This happens on complete idle SMP systems while
	 * waiting on the login prompt. We also increment the "start of
	 * idle" jiffy stamp so the idle accounting adjustment we do
	 * when we go busy again does not account too much ticks.
	 */
	if (ts->tick_stopped) {
160
		touch_softlockup_watchdog_sched();
161 162
		if (is_idle_task(current))
			ts->idle_jiffies++;
163 164 165 166 167 168
		/*
		 * In case the current tick fired too early past its expected
		 * expiration, make sure we don't bypass the next clock reprogramming
		 * to the same deadline.
		 */
		ts->next_tick = 0;
169
	}
170
#endif
171 172 173
	update_process_times(user_mode(regs));
	profile_tick(CPU_PROFILING);
}
174
#endif
175

176
#ifdef CONFIG_NO_HZ_FULL
177
cpumask_var_t tick_nohz_full_mask;
178
bool tick_nohz_full_running;
179
static atomic_t tick_dep_mask;
180

181
static bool check_tick_dependency(atomic_t *dep)
182
{
183 184 185
	int val = atomic_read(dep);

	if (val & TICK_DEP_MASK_POSIX_TIMER) {
186
		trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
187
		return true;
188 189
	}

190
	if (val & TICK_DEP_MASK_PERF_EVENTS) {
191
		trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
192
		return true;
193 194
	}

195
	if (val & TICK_DEP_MASK_SCHED) {
196
		trace_tick_stop(0, TICK_DEP_MASK_SCHED);
197
		return true;
198 199
	}

200
	if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
201
		trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
202 203 204 205
		return true;
	}

	return false;
206 207
}

208
static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
209
{
210
	lockdep_assert_irqs_disabled();
211

212 213 214
	if (unlikely(!cpu_online(cpu)))
		return false;

215
	if (check_tick_dependency(&tick_dep_mask))
216 217
		return false;

218
	if (check_tick_dependency(&ts->tick_dep_mask))
219 220
		return false;

221
	if (check_tick_dependency(&current->tick_dep_mask))
222 223
		return false;

224
	if (check_tick_dependency(&current->signal->tick_dep_mask))
225 226
		return false;

227 228 229
	return true;
}

230
static void nohz_full_kick_func(struct irq_work *work)
231
{
232
	/* Empty, the tick restart happens on tick_nohz_irq_exit() */
233 234 235
}

static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
236
	.func = nohz_full_kick_func,
237 238
};

239 240 241 242 243 244
/*
 * Kick this CPU if it's full dynticks in order to force it to
 * re-evaluate its dependency on the tick and restart it if necessary.
 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
 * is NMI safe.
 */
245
static void tick_nohz_full_kick(void)
246 247 248 249
{
	if (!tick_nohz_full_cpu(smp_processor_id()))
		return;

250
	irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
251 252
}

253
/*
254
 * Kick the CPU if it's full dynticks in order to force it to
255 256
 * re-evaluate its dependency on the tick and restart it if necessary.
 */
257
void tick_nohz_full_kick_cpu(int cpu)
258
{
259 260 261 262
	if (!tick_nohz_full_cpu(cpu))
		return;

	irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
263 264 265 266 267 268
}

/*
 * Kick all full dynticks CPUs in order to force these to re-evaluate
 * their dependency on the tick and restart it if necessary.
 */
269
static void tick_nohz_full_kick_all(void)
270
{
271 272
	int cpu;

273
	if (!tick_nohz_full_running)
274 275 276
		return;

	preempt_disable();
277 278
	for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
		tick_nohz_full_kick_cpu(cpu);
279 280 281
	preempt_enable();
}

282
static void tick_nohz_dep_set_all(atomic_t *dep,
283 284
				  enum tick_dep_bits bit)
{
285
	int prev;
286

287
	prev = atomic_fetch_or(BIT(bit), dep);
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
	if (!prev)
		tick_nohz_full_kick_all();
}

/*
 * Set a global tick dependency. Used by perf events that rely on freq and
 * by unstable clock.
 */
void tick_nohz_dep_set(enum tick_dep_bits bit)
{
	tick_nohz_dep_set_all(&tick_dep_mask, bit);
}

void tick_nohz_dep_clear(enum tick_dep_bits bit)
{
303
	atomic_andnot(BIT(bit), &tick_dep_mask);
304 305 306 307 308 309 310 311
}

/*
 * Set per-CPU tick dependency. Used by scheduler and perf events in order to
 * manage events throttling.
 */
void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
{
312
	int prev;
313 314 315 316
	struct tick_sched *ts;

	ts = per_cpu_ptr(&tick_cpu_sched, cpu);

317
	prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
	if (!prev) {
		preempt_disable();
		/* Perf needs local kick that is NMI safe */
		if (cpu == smp_processor_id()) {
			tick_nohz_full_kick();
		} else {
			/* Remote irq work not NMI-safe */
			if (!WARN_ON_ONCE(in_nmi()))
				tick_nohz_full_kick_cpu(cpu);
		}
		preempt_enable();
	}
}

void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
{
	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);

336
	atomic_andnot(BIT(bit), &ts->tick_dep_mask);
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
}

/*
 * Set a per-task tick dependency. Posix CPU timers need this in order to elapse
 * per task timers.
 */
void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
{
	/*
	 * We could optimize this with just kicking the target running the task
	 * if that noise matters for nohz full users.
	 */
	tick_nohz_dep_set_all(&tsk->tick_dep_mask, bit);
}

void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
{
354
	atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
355 356 357 358 359 360 361 362 363 364 365 366 367
}

/*
 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
 * per process timers.
 */
void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit)
{
	tick_nohz_dep_set_all(&sig->tick_dep_mask, bit);
}

void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
{
368
	atomic_andnot(BIT(bit), &sig->tick_dep_mask);
369 370
}

371 372 373
/*
 * Re-evaluate the need for the tick as we switch the current task.
 * It might need the tick due to per task/process properties:
374
 * perf events, posix CPU timers, ...
375
 */
376
void __tick_nohz_task_switch(void)
377 378
{
	unsigned long flags;
379
	struct tick_sched *ts;
380 381 382

	local_irq_save(flags);

383 384 385
	if (!tick_nohz_full_cpu(smp_processor_id()))
		goto out;

386
	ts = this_cpu_ptr(&tick_cpu_sched);
387

388
	if (ts->tick_stopped) {
389 390
		if (atomic_read(&current->tick_dep_mask) ||
		    atomic_read(&current->signal->tick_dep_mask))
391 392
			tick_nohz_full_kick();
	}
393
out:
394 395 396
	local_irq_restore(flags);
}

397 398
/* Get the boot-time nohz CPU list from the kernel parameters. */
void __init tick_nohz_full_setup(cpumask_var_t cpumask)
399
{
400
	alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
401
	cpumask_copy(tick_nohz_full_mask, cpumask);
402
	tick_nohz_full_running = true;
403 404
}

405
static int tick_nohz_cpu_down(unsigned int cpu)
406
{
407 408 409 410 411 412 413 414
	/*
	 * The boot CPU handles housekeeping duty (unbound timers,
	 * workqueues, timekeeping, ...) on behalf of full dynticks
	 * CPUs. It must remain online when nohz full is enabled.
	 */
	if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
		return -EBUSY;
	return 0;
415 416
}

417
void __init tick_nohz_init(void)
418
{
419
	int cpu, ret;
420

421 422
	if (!tick_nohz_full_running)
		return;
423

424 425 426 427 428 429
	/*
	 * Full dynticks uses irq work to drive the tick rescheduling on safe
	 * locking contexts. But then we need irq work to raise its own
	 * interrupts to avoid circular dependency on the tick
	 */
	if (!arch_irq_work_has_interrupt()) {
430
		pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
431 432 433 434 435
		cpumask_clear(tick_nohz_full_mask);
		tick_nohz_full_running = false;
		return;
	}

436 437 438
	cpu = smp_processor_id();

	if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
439 440
		pr_warn("NO_HZ: Clearing %d from nohz_full range for timekeeping\n",
			cpu);
441 442 443
		cpumask_clear_cpu(cpu, tick_nohz_full_mask);
	}

444
	for_each_cpu(cpu, tick_nohz_full_mask)
445 446
		context_tracking_cpu_set(cpu);

447 448 449 450
	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
					"kernel/nohz:predown", NULL,
					tick_nohz_cpu_down);
	WARN_ON(ret < 0);
451 452
	pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
		cpumask_pr_args(tick_nohz_full_mask));
453 454 455
}
#endif

456 457 458
/*
 * NOHZ - aka dynamic tick functionality
 */
459
#ifdef CONFIG_NO_HZ_COMMON
460 461 462
/*
 * NO HZ enabled ?
 */
463
bool tick_nohz_enabled __read_mostly  = true;
464
unsigned long tick_nohz_active  __read_mostly;
465 466 467 468 469
/*
 * Enable / Disable tickless mode
 */
static int __init setup_tick_nohz(char *str)
{
470
	return (kstrtobool(str, &tick_nohz_enabled) == 0);
471 472 473 474
}

__setup("nohz=", setup_tick_nohz);

475
bool tick_nohz_tick_stopped(void)
476 477 478 479
{
	return __this_cpu_read(tick_cpu_sched.tick_stopped);
}

480 481 482 483 484 485 486
bool tick_nohz_tick_stopped_cpu(int cpu)
{
	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);

	return ts->tick_stopped;
}

487 488 489 490 491 492 493
/**
 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
 *
 * Called from interrupt entry when the CPU was idle
 *
 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
 * must be updated. Otherwise an interrupt handler could use a stale jiffy
494 495
 * value. We do this unconditionally on any CPU, as we don't know whether the
 * CPU, which has the update task assigned is in a long sleep.
496
 */
497
static void tick_nohz_update_jiffies(ktime_t now)
498 499 500
{
	unsigned long flags;

501
	__this_cpu_write(tick_cpu_sched.idle_waketime, now);
502 503 504 505

	local_irq_save(flags);
	tick_do_update_jiffies64(now);
	local_irq_restore(flags);
506

507
	touch_softlockup_watchdog_sched();
508 509
}

510
/*
511
 * Updates the per-CPU time idle statistics counters
512
 */
513
static void
514
update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
515
{
516
	ktime_t delta;
517

518 519
	if (ts->idle_active) {
		delta = ktime_sub(now, ts->idle_entrytime);
520
		if (nr_iowait_cpu(cpu) > 0)
521
			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
522 523
		else
			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
524
		ts->idle_entrytime = now;
525
	}
526

527
	if (last_update_time)
528 529
		*last_update_time = ktime_to_us(now);

530 531
}

532
static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
533
{
534
	update_ts_time_stats(smp_processor_id(), ts, now, NULL);
535
	ts->idle_active = 0;
536

537
	sched_clock_idle_wakeup_event();
538 539
}

540
static ktime_t tick_nohz_start_idle(struct tick_sched *ts)
541
{
542
	ktime_t now = ktime_get();
543

544 545
	ts->idle_entrytime = now;
	ts->idle_active = 1;
546
	sched_clock_idle_sleep_event();
547 548 549
	return now;
}

550
/**
551
 * get_cpu_idle_time_us - get the total idle time of a CPU
552
 * @cpu: CPU number to query
553 554
 * @last_update_time: variable to store update time in. Do not update
 * counters if NULL.
555
 *
W
Wei Jiangang 已提交
556
 * Return the cumulative idle time (since boot) for a given
557
 * CPU, in microseconds.
558 559 560 561 562 563
 *
 * This time is measured via accounting rather than sampling,
 * and is as accurate as ktime_get() is.
 *
 * This function returns -1 if NOHZ is not enabled.
 */
564 565 566
u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
{
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
567
	ktime_t now, idle;
568

569
	if (!tick_nohz_active)
570 571
		return -1;

572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
	now = ktime_get();
	if (last_update_time) {
		update_ts_time_stats(cpu, ts, now, last_update_time);
		idle = ts->idle_sleeptime;
	} else {
		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
			ktime_t delta = ktime_sub(now, ts->idle_entrytime);

			idle = ktime_add(ts->idle_sleeptime, delta);
		} else {
			idle = ts->idle_sleeptime;
		}
	}

	return ktime_to_us(idle);
587

588
}
589
EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
590

591
/**
592
 * get_cpu_iowait_time_us - get the total iowait time of a CPU
593
 * @cpu: CPU number to query
594 595
 * @last_update_time: variable to store update time in. Do not update
 * counters if NULL.
596
 *
W
Wei Jiangang 已提交
597
 * Return the cumulative iowait time (since boot) for a given
598 599 600 601 602 603 604 605 606 607
 * CPU, in microseconds.
 *
 * This time is measured via accounting rather than sampling,
 * and is as accurate as ktime_get() is.
 *
 * This function returns -1 if NOHZ is not enabled.
 */
u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
{
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
608
	ktime_t now, iowait;
609

610
	if (!tick_nohz_active)
611 612
		return -1;

613 614 615 616 617 618 619
	now = ktime_get();
	if (last_update_time) {
		update_ts_time_stats(cpu, ts, now, last_update_time);
		iowait = ts->iowait_sleeptime;
	} else {
		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
620

621 622 623 624 625
			iowait = ktime_add(ts->iowait_sleeptime, delta);
		} else {
			iowait = ts->iowait_sleeptime;
		}
	}
626

627
	return ktime_to_us(iowait);
628 629 630
}
EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);

631 632 633 634 635 636 637 638 639 640 641 642
static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
{
	hrtimer_cancel(&ts->sched_timer);
	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);

	/* Forward the time to expire in the future */
	hrtimer_forward(&ts->sched_timer, now, tick_period);

	if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
		hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
	else
		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
643 644 645 646 647 648

	/*
	 * Reset to make sure next tick stop doesn't get fooled by past
	 * cached clock deadline.
	 */
	ts->next_tick = 0;
649 650
}

651 652 653 654 655
static inline bool local_timer_softirq_pending(void)
{
	return local_softirq_pending() & TIMER_SOFTIRQ;
}

656 657
static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
					 ktime_t now, int cpu)
658
{
659
	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
660 661 662
	u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
	unsigned long seq, basejiff;
	ktime_t	tick;
663

664 665
	/* Read jiffies and the time when jiffies were updated last */
	do {
666
		seq = read_seqbegin(&jiffies_lock);
T
Thomas Gleixner 已提交
667
		basemono = last_jiffies_update;
668
		basejiff = jiffies;
669
	} while (read_seqretry(&jiffies_lock, seq));
670
	ts->last_jiffies = basejiff;
671

672 673 674 675 676 677 678 679 680 681 682 683
	/*
	 * Keep the periodic tick, when RCU, architecture or irq_work
	 * requests it.
	 * Aside of that check whether the local timer softirq is
	 * pending. If so its a bad idea to call get_next_timer_interrupt()
	 * because there is an already expired timer, so it will request
	 * immeditate expiry, which rearms the hardware timer with a
	 * minimal delta which brings us back to this place
	 * immediately. Lather, rinse and repeat...
	 */
	if (rcu_needs_cpu(basemono, &next_rcu) || arch_needs_cpu() ||
	    irq_work_needs_cpu() || local_timer_softirq_pending()) {
684
		next_tick = basemono + TICK_NSEC;
685
	} else {
686 687 688 689 690 691 692 693 694 695 696
		/*
		 * Get the next pending timer. If high resolution
		 * timers are enabled this only takes the timer wheel
		 * timers into account. If high resolution timers are
		 * disabled this also looks at the next expiring
		 * hrtimer.
		 */
		next_tmr = get_next_timer_interrupt(basejiff, basemono);
		ts->next_timer = next_tmr;
		/* Take the next rcu event into account */
		next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
697
	}
698

699 700
	/*
	 * If the tick is due in the next period, keep it ticking or
701
	 * force prod the timer.
702 703 704
	 */
	delta = next_tick - basemono;
	if (delta <= (u64)TICK_NSEC) {
705 706 707 708 709
		/*
		 * Tell the timer code that the base is not idle, i.e. undo
		 * the effect of get_next_timer_interrupt():
		 */
		timer_clear_idle();
710 711 712 713
		/*
		 * We've not stopped the tick yet, and there's a timer in the
		 * next period, so no point in stopping it either, bail.
		 */
714 715
		if (!ts->tick_stopped) {
			tick = 0;
T
Thomas Gleixner 已提交
716 717 718 719
			goto out;
		}
	}

720
	/*
721 722 723
	 * If this CPU is the one which updates jiffies, then give up
	 * the assignment and let it be taken by the CPU which runs
	 * the tick timer next, which might be this CPU as well. If we
T
Thomas Gleixner 已提交
724 725
	 * don't drop this here the jiffies might be stale and
	 * do_timer() never invoked. Keep track of the fact that it
726
	 * was the one which had the do_timer() duty last. If this CPU
T
Thomas Gleixner 已提交
727
	 * is the one which had the do_timer() duty last, we limit the
W
Wei Jiangang 已提交
728
	 * sleep time to the timekeeping max_deferment value.
729
	 * Otherwise we can sleep as long as we want.
730
	 */
731
	delta = timekeeping_max_deferment();
T
Thomas Gleixner 已提交
732 733 734 735
	if (cpu == tick_do_timer_cpu) {
		tick_do_timer_cpu = TICK_DO_TIMER_NONE;
		ts->do_timer_last = 1;
	} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
736
		delta = KTIME_MAX;
T
Thomas Gleixner 已提交
737 738
		ts->do_timer_last = 0;
	} else if (!ts->do_timer_last) {
739
		delta = KTIME_MAX;
T
Thomas Gleixner 已提交
740
	}
T
Thomas Gleixner 已提交
741

742 743 744
	/* Calculate the next expiry time */
	if (delta < (KTIME_MAX - basemono))
		expires = basemono + delta;
T
Thomas Gleixner 已提交
745
	else
746 747 748
		expires = KTIME_MAX;

	expires = min_t(u64, expires, next_tick);
T
Thomas Gleixner 已提交
749
	tick = expires;
750

T
Thomas Gleixner 已提交
751
	/* Skip reprogram of event if its not changed */
752 753
	if (ts->tick_stopped && (expires == ts->next_tick)) {
		/* Sanity check: make sure clockevent is actually programmed */
754
		if (tick == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer))
755
			goto out;
756 757 758 759 760

		WARN_ON_ONCE(1);
		printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n",
			    basemono, ts->next_tick, dev->next_event,
			    hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer));
761
	}
762

T
Thomas Gleixner 已提交
763 764 765 766 767 768 769 770
	/*
	 * nohz_stop_sched_tick can be called several times before
	 * the nohz_restart_sched_tick is called. This happens when
	 * interrupts arrive which do not cause a reschedule. In the
	 * first call we save the current tick time, so we can restart
	 * the scheduler tick in nohz_restart_sched_tick.
	 */
	if (!ts->tick_stopped) {
771
		calc_load_nohz_start();
772
		cpu_load_update_nohz_start();
773
		quiet_vmstat();
774

T
Thomas Gleixner 已提交
775 776
		ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
		ts->tick_stopped = 1;
777
		trace_tick_stop(1, TICK_DEP_MASK_NONE);
T
Thomas Gleixner 已提交
778
	}
779

780 781
	ts->next_tick = tick;

T
Thomas Gleixner 已提交
782
	/*
783 784
	 * If the expiration time == KTIME_MAX, then we simply stop
	 * the tick timer.
T
Thomas Gleixner 已提交
785
	 */
786
	if (unlikely(expires == KTIME_MAX)) {
T
Thomas Gleixner 已提交
787 788 789
		if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
			hrtimer_cancel(&ts->sched_timer);
		goto out;
790
	}
791

792 793
	hrtimer_set_expires(&ts->sched_timer, tick);

T
Thomas Gleixner 已提交
794
	if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
795
		hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
T
Thomas Gleixner 已提交
796
	else
797
		tick_program_event(tick, 1);
798
out:
799 800 801 802
	/*
	 * Update the estimated sleep length until the next timer
	 * (not only the tick).
	 */
803
	ts->sleep_length = ktime_sub(dev->next_event, now);
804
	return tick;
805 806
}

807
static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
808 809 810
{
	/* Update jiffies first */
	tick_do_update_jiffies64(now);
811
	cpu_load_update_nohz_stop();
812

813 814 815 816 817 818
	/*
	 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
	 * the clock forward checks in the enqueue path:
	 */
	timer_clear_idle();

819
	calc_load_nohz_stop();
820
	touch_softlockup_watchdog_sched();
821 822 823 824 825 826 827 828
	/*
	 * Cancel the scheduled timer and restore the tick
	 */
	ts->tick_stopped  = 0;
	ts->idle_exittime = now;

	tick_nohz_restart(ts, now);
}
829 830

static void tick_nohz_full_update_tick(struct tick_sched *ts)
831 832
{
#ifdef CONFIG_NO_HZ_FULL
833
	int cpu = smp_processor_id();
834

835
	if (!tick_nohz_full_cpu(cpu))
836
		return;
837

838 839
	if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
		return;
840

841
	if (can_stop_full_tick(cpu, ts))
842 843
		tick_nohz_stop_sched_tick(ts, ktime_get(), cpu);
	else if (ts->tick_stopped)
844
		tick_nohz_restart_sched_tick(ts, ktime_get());
845 846 847
#endif
}

848 849 850
static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
{
	/*
851
	 * If this CPU is offline and it is the one which updates
852
	 * jiffies, then give up the assignment and let it be taken by
853
	 * the CPU which runs the tick timer next. If we don't drop
854 855 856 857 858 859
	 * this here the jiffies might be stale and do_timer() never
	 * invoked.
	 */
	if (unlikely(!cpu_online(cpu))) {
		if (cpu == tick_do_timer_cpu)
			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
860 861 862 863 864
		/*
		 * Make sure the CPU doesn't get fooled by obsolete tick
		 * deadline if it comes back online later.
		 */
		ts->next_tick = 0;
865
		return false;
866 867
	}

868
	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) {
T
Thomas Gleixner 已提交
869
		ts->sleep_length = NSEC_PER_SEC / HZ;
870
		return false;
871
	}
872 873 874 875 876 877 878

	if (need_resched())
		return false;

	if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
		static int ratelimit;

879 880
		if (ratelimit < 10 &&
		    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
881 882
			pr_warn("NOHZ: local_softirq_pending %02x\n",
				(unsigned int) local_softirq_pending());
883 884 885 886 887
			ratelimit++;
		}
		return false;
	}

888
	if (tick_nohz_full_enabled()) {
889 890 891 892 893 894 895 896 897 898 899 900 901 902
		/*
		 * Keep the tick alive to guarantee timekeeping progression
		 * if there are full dynticks CPUs around
		 */
		if (tick_do_timer_cpu == cpu)
			return false;
		/*
		 * Boot safety: make sure the timekeeping duty has been
		 * assigned before entering dyntick-idle mode,
		 */
		if (tick_do_timer_cpu == TICK_DO_TIMER_NONE)
			return false;
	}

903 904 905
	return true;
}

906 907
static void __tick_nohz_idle_enter(struct tick_sched *ts)
{
908
	ktime_t now, expires;
909
	int cpu = smp_processor_id();
910

911 912
	now = tick_nohz_start_idle(ts);

913 914 915 916
	if (can_stop_idle_tick(cpu, ts)) {
		int was_stopped = ts->tick_stopped;

		ts->idle_calls++;
917 918

		expires = tick_nohz_stop_sched_tick(ts, now, cpu);
T
Thomas Gleixner 已提交
919
		if (expires > 0LL) {
920 921 922
			ts->idle_sleeps++;
			ts->idle_expires = expires;
		}
923

924
		if (!was_stopped && ts->tick_stopped) {
925
			ts->idle_jiffies = ts->last_jiffies;
926 927
			nohz_balance_enter_idle(cpu);
		}
928
	}
929 930 931 932 933 934 935
}

/**
 * tick_nohz_idle_enter - stop the idle tick from the idle task
 *
 * When the next event is more than a tick into the future, stop the idle tick
 * Called when we start the idle loop.
936
 *
937
 * The arch is responsible of calling:
938 939 940 941
 *
 * - rcu_idle_enter() after its last use of RCU before the CPU is put
 *  to sleep.
 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
942
 */
943
void tick_nohz_idle_enter(void)
944 945 946
{
	struct tick_sched *ts;

947
	lockdep_assert_irqs_enabled();
948

949 950
	local_irq_disable();

951
	ts = this_cpu_ptr(&tick_cpu_sched);
952
	ts->inidle = 1;
953
	__tick_nohz_idle_enter(ts);
954 955

	local_irq_enable();
956 957 958 959 960 961 962 963 964 965 966 967
}

/**
 * tick_nohz_irq_exit - update next tick event from interrupt exit
 *
 * When an interrupt fires while we are idle and it doesn't cause
 * a reschedule, it may still add, modify or delete a timer, enqueue
 * an RCU callback, etc...
 * So we need to re-calculate and reprogram the next tick event.
 */
void tick_nohz_irq_exit(void)
{
968
	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
969

970
	if (ts->inidle)
971
		__tick_nohz_idle_enter(ts);
972
	else
973
		tick_nohz_full_update_tick(ts);
974 975
}

976 977 978 979 980 981 982
/**
 * tick_nohz_get_sleep_length - return the length of the current sleep
 *
 * Called from power state control code with interrupts disabled
 */
ktime_t tick_nohz_get_sleep_length(void)
{
983
	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
984 985 986 987

	return ts->sleep_length;
}

988 989 990 991 992 993 994 995 996 997 998 999 1000
/**
 * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value
 * for a particular CPU.
 *
 * Called from the schedutil frequency scaling governor in scheduler context.
 */
unsigned long tick_nohz_get_idle_calls_cpu(int cpu)
{
	struct tick_sched *ts = tick_get_tick_sched(cpu);

	return ts->idle_calls;
}

1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
/**
 * tick_nohz_get_idle_calls - return the current idle calls counter value
 *
 * Called from the schedutil frequency scaling governor in scheduler context.
 */
unsigned long tick_nohz_get_idle_calls(void)
{
	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);

	return ts->idle_calls;
}

1013 1014
static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
{
1015
#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1016
	unsigned long ticks;
1017

1018
	if (vtime_accounting_cpu_enabled())
1019
		return;
1020 1021 1022 1023 1024 1025 1026 1027 1028
	/*
	 * We stopped the tick in idle. Update process times would miss the
	 * time we slept as update_process_times does only a 1 tick
	 * accounting. Enforce that this is accounted to idle !
	 */
	ticks = jiffies - ts->idle_jiffies;
	/*
	 * We might be one off. Do not randomly account a huge number of ticks!
	 */
1029 1030 1031
	if (ticks && ticks < LONG_MAX)
		account_idle_ticks(ticks);
#endif
1032 1033
}

1034
/**
1035
 * tick_nohz_idle_exit - restart the idle tick from the idle task
1036 1037
 *
 * Restart the idle tick when the CPU is woken up from idle
1038 1039
 * This also exit the RCU extended quiescent state. The CPU
 * can use RCU again after this function is called.
1040
 */
1041
void tick_nohz_idle_exit(void)
1042
{
1043
	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1044
	ktime_t now;
1045

1046
	local_irq_disable();
1047

1048 1049 1050 1051 1052
	WARN_ON_ONCE(!ts->inidle);

	ts->inidle = 0;

	if (ts->idle_active || ts->tick_stopped)
1053 1054 1055
		now = ktime_get();

	if (ts->idle_active)
1056
		tick_nohz_stop_idle(ts, now);
1057

1058
	if (ts->tick_stopped) {
1059
		tick_nohz_restart_sched_tick(ts, now);
1060
		tick_nohz_account_idle_ticks(ts);
1061
	}
1062 1063 1064 1065 1066 1067 1068 1069 1070

	local_irq_enable();
}

/*
 * The nohz low res interrupt handler
 */
static void tick_nohz_handler(struct clock_event_device *dev)
{
1071
	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1072 1073 1074
	struct pt_regs *regs = get_irq_regs();
	ktime_t now = ktime_get();

T
Thomas Gleixner 已提交
1075
	dev->next_event = KTIME_MAX;
1076

1077
	tick_sched_do_timer(now);
1078
	tick_sched_handle(ts, regs);
1079

1080 1081 1082 1083
	/* No need to reprogram if we are running tickless  */
	if (unlikely(ts->tick_stopped))
		return;

1084 1085
	hrtimer_forward(&ts->sched_timer, now, tick_period);
	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1086 1087
}

1088 1089 1090 1091 1092 1093 1094
static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
{
	if (!tick_nohz_enabled)
		return;
	ts->nohz_mode = mode;
	/* One update is enough */
	if (!test_and_set_bit(0, &tick_nohz_active))
1095
		timers_update_nohz();
1096 1097
}

1098 1099 1100 1101 1102
/**
 * tick_nohz_switch_to_nohz - switch to nohz mode
 */
static void tick_nohz_switch_to_nohz(void)
{
1103
	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1104 1105
	ktime_t next;

1106
	if (!tick_nohz_enabled)
1107 1108
		return;

1109
	if (tick_switch_to_oneshot(tick_nohz_handler))
1110
		return;
1111

1112 1113 1114 1115 1116 1117 1118 1119
	/*
	 * Recycle the hrtimer in ts, so we can share the
	 * hrtimer_forward with the highres code.
	 */
	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
	/* Get the next period */
	next = tick_init_jiffy_update();

1120
	hrtimer_set_expires(&ts->sched_timer, next);
1121 1122
	hrtimer_forward_now(&ts->sched_timer, tick_period);
	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1123
	tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
1124 1125
}

1126
static inline void tick_nohz_irq_enter(void)
1127
{
1128
	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1129 1130 1131 1132 1133 1134
	ktime_t now;

	if (!ts->idle_active && !ts->tick_stopped)
		return;
	now = ktime_get();
	if (ts->idle_active)
1135
		tick_nohz_stop_idle(ts, now);
1136
	if (ts->tick_stopped)
1137 1138 1139
		tick_nohz_update_jiffies(now);
}

1140 1141 1142
#else

static inline void tick_nohz_switch_to_nohz(void) { }
1143
static inline void tick_nohz_irq_enter(void) { }
1144
static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1145

1146
#endif /* CONFIG_NO_HZ_COMMON */
1147

1148 1149 1150
/*
 * Called from irq_enter to notify about the possible interruption of idle()
 */
1151
void tick_irq_enter(void)
1152
{
1153
	tick_check_oneshot_broadcast_this_cpu();
1154
	tick_nohz_irq_enter();
1155 1156
}

1157 1158 1159 1160 1161
/*
 * High resolution timer specific code
 */
#ifdef CONFIG_HIGH_RES_TIMERS
/*
P
Pavel Machek 已提交
1162
 * We rearm the timer until we get disabled by the idle code.
1163
 * Called with interrupts disabled.
1164 1165 1166 1167 1168 1169 1170
 */
static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
{
	struct tick_sched *ts =
		container_of(timer, struct tick_sched, sched_timer);
	struct pt_regs *regs = get_irq_regs();
	ktime_t now = ktime_get();
1171

1172
	tick_sched_do_timer(now);
1173 1174 1175 1176 1177

	/*
	 * Do not call, when we are not in irq context and have
	 * no valid regs pointer
	 */
1178 1179
	if (regs)
		tick_sched_handle(ts, regs);
1180 1181
	else
		ts->next_tick = 0;
1182

1183 1184 1185 1186
	/* No need to reprogram if we are in idle or full dynticks mode */
	if (unlikely(ts->tick_stopped))
		return HRTIMER_NORESTART;

1187 1188 1189 1190 1191
	hrtimer_forward(timer, now, tick_period);

	return HRTIMER_RESTART;
}

M
Mike Galbraith 已提交
1192 1193
static int sched_skew_tick;

1194 1195 1196 1197 1198 1199 1200 1201
static int __init skew_tick(char *str)
{
	get_option(&str, &sched_skew_tick);

	return 0;
}
early_param("skew_tick", skew_tick);

1202 1203 1204 1205 1206
/**
 * tick_setup_sched_timer - setup the tick emulation timer
 */
void tick_setup_sched_timer(void)
{
1207
	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1208 1209 1210 1211 1212 1213 1214 1215
	ktime_t now = ktime_get();

	/*
	 * Emulate tick processing via per-CPU hrtimers:
	 */
	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
	ts->sched_timer.function = tick_sched_timer;

1216
	/* Get the next period (per-CPU) */
1217
	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1218

1219
	/* Offset the tick to avert jiffies_lock contention. */
M
Mike Galbraith 已提交
1220 1221 1222 1223 1224 1225 1226
	if (sched_skew_tick) {
		u64 offset = ktime_to_ns(tick_period) >> 1;
		do_div(offset, num_possible_cpus());
		offset *= smp_processor_id();
		hrtimer_add_expires_ns(&ts->sched_timer, offset);
	}

1227 1228
	hrtimer_forward(&ts->sched_timer, now, tick_period);
	hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
1229
	tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
1230
}
1231
#endif /* HIGH_RES_TIMERS */
1232

1233
#if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1234 1235 1236 1237
void tick_cancel_sched_timer(int cpu)
{
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);

1238
# ifdef CONFIG_HIGH_RES_TIMERS
1239 1240
	if (ts->sched_timer.base)
		hrtimer_cancel(&ts->sched_timer);
1241
# endif
1242

1243
	memset(ts, 0, sizeof(*ts));
1244
}
1245
#endif
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262

/**
 * Async notification about clocksource changes
 */
void tick_clock_notify(void)
{
	int cpu;

	for_each_possible_cpu(cpu)
		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
}

/*
 * Async notification about clock event changes
 */
void tick_oneshot_notify(void)
{
1263
	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273

	set_bit(0, &ts->check_clocks);
}

/**
 * Check, if a change happened, which makes oneshot possible.
 *
 * Called cyclic from the hrtimer softirq (driven by the timer
 * softirq) allow_nohz signals, that we can switch into low-res nohz
 * mode, because high resolution timers are disabled (either compile
1274
 * or runtime). Called with interrupts disabled.
1275 1276 1277
 */
int tick_check_oneshot_change(int allow_nohz)
{
1278
	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1279 1280 1281 1282 1283 1284 1285

	if (!test_and_clear_bit(0, &ts->check_clocks))
		return 0;

	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
		return 0;

1286
	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1287 1288 1289 1290 1291 1292 1293 1294
		return 0;

	if (!allow_nohz)
		return 1;

	tick_nohz_switch_to_nohz();
	return 0;
}