inode.c 103.7 KB
Newer Older
1
/*
2
 *  linux/fs/ext4/inode.c
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 *
 * Copyright (C) 1992, 1993, 1994, 1995
 * Remy Card (card@masi.ibp.fr)
 * Laboratoire MASI - Institut Blaise Pascal
 * Universite Pierre et Marie Curie (Paris VI)
 *
 *  from
 *
 *  linux/fs/minix/inode.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  Goal-directed block allocation by Stephen Tweedie
 *	(sct@redhat.com), 1993, 1998
 *  Big-endian to little-endian byte-swapping/bitmaps by
 *        David S. Miller (davem@caip.rutgers.edu), 1995
 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 *	(jj@sunsite.ms.mff.cuni.cz)
 *
22
 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23 24 25 26 27
 */

#include <linux/module.h>
#include <linux/fs.h>
#include <linux/time.h>
28
#include <linux/jbd2.h>
29 30 31 32 33 34 35 36 37
#include <linux/highuid.h>
#include <linux/pagemap.h>
#include <linux/quotaops.h>
#include <linux/string.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
#include <linux/mpage.h>
#include <linux/uio.h>
#include <linux/bio.h>
38
#include "ext4_jbd2.h"
39 40 41
#include "xattr.h"
#include "acl.h"

42 43 44 45 46 47 48
static inline int ext4_begin_ordered_truncate(struct inode *inode,
					      loff_t new_size)
{
	return jbd2_journal_begin_ordered_truncate(&EXT4_I(inode)->jinode,
						   new_size);
}

49 50 51
/*
 * Test whether an inode is a fast symlink.
 */
52
static int ext4_inode_is_fast_symlink(struct inode *inode)
53
{
54
	int ea_blocks = EXT4_I(inode)->i_file_acl ?
55 56 57 58 59 60
		(inode->i_sb->s_blocksize >> 9) : 0;

	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
}

/*
61
 * The ext4 forget function must perform a revoke if we are freeing data
62 63 64 65 66 67 68
 * which has been journaled.  Metadata (eg. indirect blocks) must be
 * revoked in all cases.
 *
 * "bh" may be NULL: a metadata block may have been freed from memory
 * but there may still be a record of it in the journal, and that record
 * still needs to be revoked.
 */
69 70
int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
			struct buffer_head *bh, ext4_fsblk_t blocknr)
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
{
	int err;

	might_sleep();

	BUFFER_TRACE(bh, "enter");

	jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
		  "data mode %lx\n",
		  bh, is_metadata, inode->i_mode,
		  test_opt(inode->i_sb, DATA_FLAGS));

	/* Never use the revoke function if we are doing full data
	 * journaling: there is no need to, and a V1 superblock won't
	 * support it.  Otherwise, only skip the revoke on un-journaled
	 * data blocks. */

88 89
	if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
	    (!is_metadata && !ext4_should_journal_data(inode))) {
90
		if (bh) {
91
			BUFFER_TRACE(bh, "call jbd2_journal_forget");
92
			return ext4_journal_forget(handle, bh);
93 94 95 96 97 98 99
		}
		return 0;
	}

	/*
	 * data!=journal && (is_metadata || should_journal_data(inode))
	 */
100 101
	BUFFER_TRACE(bh, "call ext4_journal_revoke");
	err = ext4_journal_revoke(handle, blocknr, bh);
102
	if (err)
103
		ext4_abort(inode->i_sb, __func__,
104 105 106 107 108 109 110 111 112 113 114
			   "error %d when attempting revoke", err);
	BUFFER_TRACE(bh, "exit");
	return err;
}

/*
 * Work out how many blocks we need to proceed with the next chunk of a
 * truncate transaction.
 */
static unsigned long blocks_for_truncate(struct inode *inode)
{
A
Aneesh Kumar K.V 已提交
115
	ext4_lblk_t needed;
116 117 118 119 120 121

	needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);

	/* Give ourselves just enough room to cope with inodes in which
	 * i_blocks is corrupt: we've seen disk corruptions in the past
	 * which resulted in random data in an inode which looked enough
122
	 * like a regular file for ext4 to try to delete it.  Things
123 124 125 126 127 128 129
	 * will go a bit crazy if that happens, but at least we should
	 * try not to panic the whole kernel. */
	if (needed < 2)
		needed = 2;

	/* But we need to bound the transaction so we don't overflow the
	 * journal. */
130 131
	if (needed > EXT4_MAX_TRANS_DATA)
		needed = EXT4_MAX_TRANS_DATA;
132

133
	return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
}

/*
 * Truncate transactions can be complex and absolutely huge.  So we need to
 * be able to restart the transaction at a conventient checkpoint to make
 * sure we don't overflow the journal.
 *
 * start_transaction gets us a new handle for a truncate transaction,
 * and extend_transaction tries to extend the existing one a bit.  If
 * extend fails, we need to propagate the failure up and restart the
 * transaction in the top-level truncate loop. --sct
 */
static handle_t *start_transaction(struct inode *inode)
{
	handle_t *result;

150
	result = ext4_journal_start(inode, blocks_for_truncate(inode));
151 152 153
	if (!IS_ERR(result))
		return result;

154
	ext4_std_error(inode->i_sb, PTR_ERR(result));
155 156 157 158 159 160 161 162 163 164 165
	return result;
}

/*
 * Try to extend this transaction for the purposes of truncation.
 *
 * Returns 0 if we managed to create more room.  If we can't create more
 * room, and the transaction must be restarted we return 1.
 */
static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
{
166
	if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS)
167
		return 0;
168
	if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
169 170 171 172 173 174 175 176 177
		return 0;
	return 1;
}

/*
 * Restart the transaction associated with *handle.  This does a commit,
 * so before we call here everything must be consistently dirtied against
 * this transaction.
 */
178
static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
179 180
{
	jbd_debug(2, "restarting handle %p\n", handle);
181
	return ext4_journal_restart(handle, blocks_for_truncate(inode));
182 183 184 185 186
}

/*
 * Called at the last iput() if i_nlink is zero.
 */
187
void ext4_delete_inode (struct inode * inode)
188 189 190
{
	handle_t *handle;

191 192
	if (ext4_should_order_data(inode))
		ext4_begin_ordered_truncate(inode, 0);
193 194 195 196 197 198 199 200 201 202 203 204
	truncate_inode_pages(&inode->i_data, 0);

	if (is_bad_inode(inode))
		goto no_delete;

	handle = start_transaction(inode);
	if (IS_ERR(handle)) {
		/*
		 * If we're going to skip the normal cleanup, we still need to
		 * make sure that the in-core orphan linked list is properly
		 * cleaned up.
		 */
205
		ext4_orphan_del(NULL, inode);
206 207 208 209 210 211 212
		goto no_delete;
	}

	if (IS_SYNC(inode))
		handle->h_sync = 1;
	inode->i_size = 0;
	if (inode->i_blocks)
213
		ext4_truncate(inode);
214
	/*
215
	 * Kill off the orphan record which ext4_truncate created.
216
	 * AKPM: I think this can be inside the above `if'.
217
	 * Note that ext4_orphan_del() has to be able to cope with the
218
	 * deletion of a non-existent orphan - this is because we don't
219
	 * know if ext4_truncate() actually created an orphan record.
220 221
	 * (Well, we could do this if we need to, but heck - it works)
	 */
222 223
	ext4_orphan_del(handle, inode);
	EXT4_I(inode)->i_dtime	= get_seconds();
224 225 226 227 228 229 230 231

	/*
	 * One subtle ordering requirement: if anything has gone wrong
	 * (transaction abort, IO errors, whatever), then we can still
	 * do these next steps (the fs will already have been marked as
	 * having errors), but we can't free the inode if the mark_dirty
	 * fails.
	 */
232
	if (ext4_mark_inode_dirty(handle, inode))
233 234 235
		/* If that failed, just do the required in-core inode clear. */
		clear_inode(inode);
	else
236 237
		ext4_free_inode(handle, inode);
	ext4_journal_stop(handle);
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
	return;
no_delete:
	clear_inode(inode);	/* We must guarantee clearing of inode... */
}

typedef struct {
	__le32	*p;
	__le32	key;
	struct buffer_head *bh;
} Indirect;

static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
{
	p->key = *(p->p = v);
	p->bh = bh;
}

/**
256
 *	ext4_block_to_path - parse the block number into array of offsets
257 258 259
 *	@inode: inode in question (we are only interested in its superblock)
 *	@i_block: block number to be parsed
 *	@offsets: array to store the offsets in
D
Dave Kleikamp 已提交
260 261
 *	@boundary: set this non-zero if the referred-to block is likely to be
 *	       followed (on disk) by an indirect block.
262
 *
263
 *	To store the locations of file's data ext4 uses a data structure common
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
 *	for UNIX filesystems - tree of pointers anchored in the inode, with
 *	data blocks at leaves and indirect blocks in intermediate nodes.
 *	This function translates the block number into path in that tree -
 *	return value is the path length and @offsets[n] is the offset of
 *	pointer to (n+1)th node in the nth one. If @block is out of range
 *	(negative or too large) warning is printed and zero returned.
 *
 *	Note: function doesn't find node addresses, so no IO is needed. All
 *	we need to know is the capacity of indirect blocks (taken from the
 *	inode->i_sb).
 */

/*
 * Portability note: the last comparison (check that we fit into triple
 * indirect block) is spelled differently, because otherwise on an
 * architecture with 32-bit longs and 8Kb pages we might get into trouble
 * if our filesystem had 8Kb blocks. We might use long long, but that would
 * kill us on x86. Oh, well, at least the sign propagation does not matter -
 * i_block would have to be negative in the very beginning, so we would not
 * get there at all.
 */

286
static int ext4_block_to_path(struct inode *inode,
A
Aneesh Kumar K.V 已提交
287 288
			ext4_lblk_t i_block,
			ext4_lblk_t offsets[4], int *boundary)
289
{
290 291 292
	int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
	int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
	const long direct_blocks = EXT4_NDIR_BLOCKS,
293 294 295 296 297 298
		indirect_blocks = ptrs,
		double_blocks = (1 << (ptrs_bits * 2));
	int n = 0;
	int final = 0;

	if (i_block < 0) {
299
		ext4_warning (inode->i_sb, "ext4_block_to_path", "block < 0");
300 301 302 303
	} else if (i_block < direct_blocks) {
		offsets[n++] = i_block;
		final = direct_blocks;
	} else if ( (i_block -= direct_blocks) < indirect_blocks) {
304
		offsets[n++] = EXT4_IND_BLOCK;
305 306 307
		offsets[n++] = i_block;
		final = ptrs;
	} else if ((i_block -= indirect_blocks) < double_blocks) {
308
		offsets[n++] = EXT4_DIND_BLOCK;
309 310 311 312
		offsets[n++] = i_block >> ptrs_bits;
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
313
		offsets[n++] = EXT4_TIND_BLOCK;
314 315 316 317 318
		offsets[n++] = i_block >> (ptrs_bits * 2);
		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else {
319
		ext4_warning(inode->i_sb, "ext4_block_to_path",
320
				"block %lu > max",
321 322
				i_block + direct_blocks +
				indirect_blocks + double_blocks);
323 324 325 326 327 328 329
	}
	if (boundary)
		*boundary = final - 1 - (i_block & (ptrs - 1));
	return n;
}

/**
330
 *	ext4_get_branch - read the chain of indirect blocks leading to data
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
 *	@inode: inode in question
 *	@depth: depth of the chain (1 - direct pointer, etc.)
 *	@offsets: offsets of pointers in inode/indirect blocks
 *	@chain: place to store the result
 *	@err: here we store the error value
 *
 *	Function fills the array of triples <key, p, bh> and returns %NULL
 *	if everything went OK or the pointer to the last filled triple
 *	(incomplete one) otherwise. Upon the return chain[i].key contains
 *	the number of (i+1)-th block in the chain (as it is stored in memory,
 *	i.e. little-endian 32-bit), chain[i].p contains the address of that
 *	number (it points into struct inode for i==0 and into the bh->b_data
 *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
 *	block for i>0 and NULL for i==0. In other words, it holds the block
 *	numbers of the chain, addresses they were taken from (and where we can
 *	verify that chain did not change) and buffer_heads hosting these
 *	numbers.
 *
 *	Function stops when it stumbles upon zero pointer (absent block)
 *		(pointer to last triple returned, *@err == 0)
 *	or when it gets an IO error reading an indirect block
 *		(ditto, *@err == -EIO)
 *	or when it reads all @depth-1 indirect blocks successfully and finds
 *	the whole chain, all way to the data (returns %NULL, *err == 0).
355 356
 *
 *      Need to be called with
357
 *      down_read(&EXT4_I(inode)->i_data_sem)
358
 */
A
Aneesh Kumar K.V 已提交
359 360
static Indirect *ext4_get_branch(struct inode *inode, int depth,
				 ext4_lblk_t  *offsets,
361 362 363 364 365 366 367 368
				 Indirect chain[4], int *err)
{
	struct super_block *sb = inode->i_sb;
	Indirect *p = chain;
	struct buffer_head *bh;

	*err = 0;
	/* i_data is not going away, no lock needed */
369
	add_chain (chain, NULL, EXT4_I(inode)->i_data + *offsets);
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
	if (!p->key)
		goto no_block;
	while (--depth) {
		bh = sb_bread(sb, le32_to_cpu(p->key));
		if (!bh)
			goto failure;
		add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
		/* Reader: end */
		if (!p->key)
			goto no_block;
	}
	return NULL;

failure:
	*err = -EIO;
no_block:
	return p;
}

/**
390
 *	ext4_find_near - find a place for allocation with sufficient locality
391 392 393
 *	@inode: owner
 *	@ind: descriptor of indirect block.
 *
394
 *	This function returns the preferred place for block allocation.
395 396 397 398 399 400 401 402 403 404 405 406 407 408
 *	It is used when heuristic for sequential allocation fails.
 *	Rules are:
 *	  + if there is a block to the left of our position - allocate near it.
 *	  + if pointer will live in indirect block - allocate near that block.
 *	  + if pointer will live in inode - allocate in the same
 *	    cylinder group.
 *
 * In the latter case we colour the starting block by the callers PID to
 * prevent it from clashing with concurrent allocations for a different inode
 * in the same block group.   The PID is used here so that functionally related
 * files will be close-by on-disk.
 *
 *	Caller must make sure that @ind is valid and will stay that way.
 */
409
static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
410
{
411
	struct ext4_inode_info *ei = EXT4_I(inode);
412 413
	__le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
	__le32 *p;
414
	ext4_fsblk_t bg_start;
415
	ext4_fsblk_t last_block;
416
	ext4_grpblk_t colour;
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431

	/* Try to find previous block */
	for (p = ind->p - 1; p >= start; p--) {
		if (*p)
			return le32_to_cpu(*p);
	}

	/* No such thing, so let's try location of indirect block */
	if (ind->bh)
		return ind->bh->b_blocknr;

	/*
	 * It is going to be referred to from the inode itself? OK, just put it
	 * into the same cylinder group then.
	 */
432
	bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
433 434 435 436
	last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;

	if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
		colour = (current->pid % 16) *
437
			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
438 439
	else
		colour = (current->pid % 16) * ((last_block - bg_start) / 16);
440 441 442 443
	return bg_start + colour;
}

/**
444
 *	ext4_find_goal - find a preferred place for allocation.
445 446 447 448
 *	@inode: owner
 *	@block:  block we want
 *	@partial: pointer to the last triple within a chain
 *
449
 *	Normally this function find the preferred place for block allocation,
450
 *	returns it.
451
 */
A
Aneesh Kumar K.V 已提交
452
static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
453
		Indirect *partial)
454
{
455
	struct ext4_block_alloc_info *block_i;
456

457
	block_i =  EXT4_I(inode)->i_block_alloc_info;
458 459 460 461 462 463 464 465 466 467

	/*
	 * try the heuristic for sequential allocation,
	 * failing that at least try to get decent locality.
	 */
	if (block_i && (block == block_i->last_alloc_logical_block + 1)
		&& (block_i->last_alloc_physical_block != 0)) {
		return block_i->last_alloc_physical_block + 1;
	}

468
	return ext4_find_near(inode, partial);
469 470 471
}

/**
472
 *	ext4_blks_to_allocate: Look up the block map and count the number
473 474 475 476 477 478 479 480 481 482
 *	of direct blocks need to be allocated for the given branch.
 *
 *	@branch: chain of indirect blocks
 *	@k: number of blocks need for indirect blocks
 *	@blks: number of data blocks to be mapped.
 *	@blocks_to_boundary:  the offset in the indirect block
 *
 *	return the total number of blocks to be allocate, including the
 *	direct and indirect blocks.
 */
483
static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
		int blocks_to_boundary)
{
	unsigned long count = 0;

	/*
	 * Simple case, [t,d]Indirect block(s) has not allocated yet
	 * then it's clear blocks on that path have not allocated
	 */
	if (k > 0) {
		/* right now we don't handle cross boundary allocation */
		if (blks < blocks_to_boundary + 1)
			count += blks;
		else
			count += blocks_to_boundary + 1;
		return count;
	}

	count++;
	while (count < blks && count <= blocks_to_boundary &&
		le32_to_cpu(*(branch[0].p + count)) == 0) {
		count++;
	}
	return count;
}

/**
510
 *	ext4_alloc_blocks: multiple allocate blocks needed for a branch
511 512 513 514 515 516 517 518
 *	@indirect_blks: the number of blocks need to allocate for indirect
 *			blocks
 *
 *	@new_blocks: on return it will store the new block numbers for
 *	the indirect blocks(if needed) and the first direct block,
 *	@blks:	on return it will store the total number of allocated
 *		direct blocks
 */
519
static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
520 521 522
				ext4_lblk_t iblock, ext4_fsblk_t goal,
				int indirect_blks, int blks,
				ext4_fsblk_t new_blocks[4], int *err)
523 524
{
	int target, i;
525
	unsigned long count = 0, blk_allocated = 0;
526
	int index = 0;
527
	ext4_fsblk_t current_block = 0;
528 529 530 531 532 533 534 535 536 537
	int ret = 0;

	/*
	 * Here we try to allocate the requested multiple blocks at once,
	 * on a best-effort basis.
	 * To build a branch, we should allocate blocks for
	 * the indirect blocks(if not allocated yet), and at least
	 * the first direct block of this branch.  That's the
	 * minimum number of blocks need to allocate(required)
	 */
538 539 540
	/* first we try to allocate the indirect blocks */
	target = indirect_blks;
	while (target > 0) {
541 542
		count = target;
		/* allocating blocks for indirect blocks and direct blocks */
543 544
		current_block = ext4_new_meta_blocks(handle, inode,
							goal, &count, err);
545 546 547 548 549 550 551 552 553
		if (*err)
			goto failed_out;

		target -= count;
		/* allocate blocks for indirect blocks */
		while (index < indirect_blks && count) {
			new_blocks[index++] = current_block++;
			count--;
		}
554 555 556 557 558 559 560 561 562
		if (count > 0) {
			/*
			 * save the new block number
			 * for the first direct block
			 */
			new_blocks[index] = current_block;
			printk(KERN_INFO "%s returned more blocks than "
						"requested\n", __func__);
			WARN_ON(1);
563
			break;
564
		}
565 566
	}

567 568 569 570 571 572
	target = blks - count ;
	blk_allocated = count;
	if (!target)
		goto allocated;
	/* Now allocate data blocks */
	count = target;
A
Aneesh Kumar K.V 已提交
573
	/* allocating blocks for data blocks */
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
	current_block = ext4_new_blocks(handle, inode, iblock,
						goal, &count, err);
	if (*err && (target == blks)) {
		/*
		 * if the allocation failed and we didn't allocate
		 * any blocks before
		 */
		goto failed_out;
	}
	if (!*err) {
		if (target == blks) {
		/*
		 * save the new block number
		 * for the first direct block
		 */
			new_blocks[index] = current_block;
		}
		blk_allocated += count;
	}
allocated:
594
	/* total number of blocks allocated for direct blocks */
595
	ret = blk_allocated;
596 597 598 599
	*err = 0;
	return ret;
failed_out:
	for (i = 0; i <index; i++)
600
		ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
601 602 603 604
	return ret;
}

/**
605
 *	ext4_alloc_branch - allocate and set up a chain of blocks.
606 607 608 609 610 611 612 613 614 615
 *	@inode: owner
 *	@indirect_blks: number of allocated indirect blocks
 *	@blks: number of allocated direct blocks
 *	@offsets: offsets (in the blocks) to store the pointers to next.
 *	@branch: place to store the chain in.
 *
 *	This function allocates blocks, zeroes out all but the last one,
 *	links them into chain and (if we are synchronous) writes them to disk.
 *	In other words, it prepares a branch that can be spliced onto the
 *	inode. It stores the information about that chain in the branch[], in
616
 *	the same format as ext4_get_branch() would do. We are calling it after
617 618
 *	we had read the existing part of chain and partial points to the last
 *	triple of that (one with zero ->key). Upon the exit we have the same
619
 *	picture as after the successful ext4_get_block(), except that in one
620 621 622 623 624 625
 *	place chain is disconnected - *branch->p is still zero (we did not
 *	set the last link), but branch->key contains the number that should
 *	be placed into *branch->p to fill that gap.
 *
 *	If allocation fails we free all blocks we've allocated (and forget
 *	their buffer_heads) and return the error value the from failed
626
 *	ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
627 628
 *	as described above and return 0.
 */
629
static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
630 631 632
				ext4_lblk_t iblock, int indirect_blks,
				int *blks, ext4_fsblk_t goal,
				ext4_lblk_t *offsets, Indirect *branch)
633 634 635 636 637 638
{
	int blocksize = inode->i_sb->s_blocksize;
	int i, n = 0;
	int err = 0;
	struct buffer_head *bh;
	int num;
639 640
	ext4_fsblk_t new_blocks[4];
	ext4_fsblk_t current_block;
641

642
	num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
				*blks, new_blocks, &err);
	if (err)
		return err;

	branch[0].key = cpu_to_le32(new_blocks[0]);
	/*
	 * metadata blocks and data blocks are allocated.
	 */
	for (n = 1; n <= indirect_blks;  n++) {
		/*
		 * Get buffer_head for parent block, zero it out
		 * and set the pointer to new one, then send
		 * parent to disk.
		 */
		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
		branch[n].bh = bh;
		lock_buffer(bh);
		BUFFER_TRACE(bh, "call get_create_access");
661
		err = ext4_journal_get_create_access(handle, bh);
662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
		if (err) {
			unlock_buffer(bh);
			brelse(bh);
			goto failed;
		}

		memset(bh->b_data, 0, blocksize);
		branch[n].p = (__le32 *) bh->b_data + offsets[n];
		branch[n].key = cpu_to_le32(new_blocks[n]);
		*branch[n].p = branch[n].key;
		if ( n == indirect_blks) {
			current_block = new_blocks[n];
			/*
			 * End of chain, update the last new metablock of
			 * the chain to point to the new allocated
			 * data blocks numbers
			 */
			for (i=1; i < num; i++)
				*(branch[n].p + i) = cpu_to_le32(++current_block);
		}
		BUFFER_TRACE(bh, "marking uptodate");
		set_buffer_uptodate(bh);
		unlock_buffer(bh);

686 687
		BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
		err = ext4_journal_dirty_metadata(handle, bh);
688 689 690 691 692 693 694 695
		if (err)
			goto failed;
	}
	*blks = num;
	return err;
failed:
	/* Allocation failed, free what we already allocated */
	for (i = 1; i <= n ; i++) {
696
		BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
697
		ext4_journal_forget(handle, branch[i].bh);
698 699
	}
	for (i = 0; i <indirect_blks; i++)
700
		ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
701

702
	ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
703 704 705 706 707

	return err;
}

/**
708
 * ext4_splice_branch - splice the allocated branch onto inode.
709 710 711
 * @inode: owner
 * @block: (logical) number of block we are adding
 * @chain: chain of indirect blocks (with a missing link - see
712
 *	ext4_alloc_branch)
713 714 715 716 717 718 719 720
 * @where: location of missing link
 * @num:   number of indirect blocks we are adding
 * @blks:  number of direct blocks we are adding
 *
 * This function fills the missing link and does all housekeeping needed in
 * inode (->i_blocks, etc.). In case of success we end up with the full
 * chain to new block and return 0.
 */
721
static int ext4_splice_branch(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
722
			ext4_lblk_t block, Indirect *where, int num, int blks)
723 724 725
{
	int i;
	int err = 0;
726 727
	struct ext4_block_alloc_info *block_i;
	ext4_fsblk_t current_block;
728

729
	block_i = EXT4_I(inode)->i_block_alloc_info;
730 731 732 733 734 735 736
	/*
	 * If we're splicing into a [td]indirect block (as opposed to the
	 * inode) then we need to get write access to the [td]indirect block
	 * before the splice.
	 */
	if (where->bh) {
		BUFFER_TRACE(where->bh, "get_write_access");
737
		err = ext4_journal_get_write_access(handle, where->bh);
738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
		if (err)
			goto err_out;
	}
	/* That's it */

	*where->p = where->key;

	/*
	 * Update the host buffer_head or inode to point to more just allocated
	 * direct blocks blocks
	 */
	if (num == 0 && blks > 1) {
		current_block = le32_to_cpu(where->key) + 1;
		for (i = 1; i < blks; i++)
			*(where->p + i ) = cpu_to_le32(current_block++);
	}

	/*
	 * update the most recently allocated logical & physical block
	 * in i_block_alloc_info, to assist find the proper goal block for next
	 * allocation
	 */
	if (block_i) {
		block_i->last_alloc_logical_block = block + blks - 1;
		block_i->last_alloc_physical_block =
				le32_to_cpu(where[num].key) + blks - 1;
	}

	/* We are done with atomic stuff, now do the rest of housekeeping */

K
Kalpak Shah 已提交
768
	inode->i_ctime = ext4_current_time(inode);
769
	ext4_mark_inode_dirty(handle, inode);
770 771 772 773 774 775 776 777 778

	/* had we spliced it onto indirect block? */
	if (where->bh) {
		/*
		 * If we spliced it onto an indirect block, we haven't
		 * altered the inode.  Note however that if it is being spliced
		 * onto an indirect block at the very end of the file (the
		 * file is growing) then we *will* alter the inode to reflect
		 * the new i_size.  But that is not done here - it is done in
779
		 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
780 781
		 */
		jbd_debug(5, "splicing indirect only\n");
782 783
		BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata");
		err = ext4_journal_dirty_metadata(handle, where->bh);
784 785 786 787 788 789 790 791 792 793 794 795 796
		if (err)
			goto err_out;
	} else {
		/*
		 * OK, we spliced it into the inode itself on a direct block.
		 * Inode was dirtied above.
		 */
		jbd_debug(5, "splicing direct\n");
	}
	return err;

err_out:
	for (i = 1; i <= num; i++) {
797
		BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
798
		ext4_journal_forget(handle, where[i].bh);
799 800
		ext4_free_blocks(handle, inode,
					le32_to_cpu(where[i-1].key), 1, 0);
801
	}
802
	ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823

	return err;
}

/*
 * Allocation strategy is simple: if we have to allocate something, we will
 * have to go the whole way to leaf. So let's do it before attaching anything
 * to tree, set linkage between the newborn blocks, write them if sync is
 * required, recheck the path, free and repeat if check fails, otherwise
 * set the last missing link (that will protect us from any truncate-generated
 * removals - all blocks on the path are immune now) and possibly force the
 * write on the parent block.
 * That has a nice additional property: no special recovery from the failed
 * allocations is needed - we simply release blocks and do not touch anything
 * reachable from inode.
 *
 * `handle' can be NULL if create == 0.
 *
 * return > 0, # of blocks mapped or allocated.
 * return = 0, if plain lookup failed.
 * return < 0, error case.
824 825 826
 *
 *
 * Need to be called with
827 828
 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
829
 */
830
int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
831
		ext4_lblk_t iblock, unsigned long maxblocks,
832 833 834 835
		struct buffer_head *bh_result,
		int create, int extend_disksize)
{
	int err = -EIO;
A
Aneesh Kumar K.V 已提交
836
	ext4_lblk_t offsets[4];
837 838
	Indirect chain[4];
	Indirect *partial;
839
	ext4_fsblk_t goal;
840 841 842
	int indirect_blks;
	int blocks_to_boundary = 0;
	int depth;
843
	struct ext4_inode_info *ei = EXT4_I(inode);
844
	int count = 0;
845
	ext4_fsblk_t first_block = 0;
846 847


A
Alex Tomas 已提交
848
	J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
849
	J_ASSERT(handle != NULL || create == 0);
A
Aneesh Kumar K.V 已提交
850 851
	depth = ext4_block_to_path(inode, iblock, offsets,
					&blocks_to_boundary);
852 853 854 855

	if (depth == 0)
		goto out;

856
	partial = ext4_get_branch(inode, depth, offsets, chain, &err);
857 858 859 860 861 862 863 864

	/* Simplest case - block found, no allocation needed */
	if (!partial) {
		first_block = le32_to_cpu(chain[depth - 1].key);
		clear_buffer_new(bh_result);
		count++;
		/*map more blocks*/
		while (count < maxblocks && count <= blocks_to_boundary) {
865
			ext4_fsblk_t blk;
866 867 868 869 870 871 872 873

			blk = le32_to_cpu(*(chain[depth-1].p + count));

			if (blk == first_block + count)
				count++;
			else
				break;
		}
874
		goto got_it;
875 876 877 878 879 880 881 882 883 884 885
	}

	/* Next simple case - plain lookup or failed read of indirect block */
	if (!create || err == -EIO)
		goto cleanup;

	/*
	 * Okay, we need to do block allocation.  Lazily initialize the block
	 * allocation info here if necessary
	*/
	if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
886
		ext4_init_block_alloc_info(inode);
887

888
	goal = ext4_find_goal(inode, iblock, partial);
889 890 891 892 893 894 895 896

	/* the number of blocks need to allocate for [d,t]indirect blocks */
	indirect_blks = (chain + depth) - partial - 1;

	/*
	 * Next look up the indirect map to count the totoal number of
	 * direct blocks to allocate for this branch.
	 */
897
	count = ext4_blks_to_allocate(partial, indirect_blks,
898 899
					maxblocks, blocks_to_boundary);
	/*
900
	 * Block out ext4_truncate while we alter the tree
901
	 */
902 903 904
	err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
					&count, goal,
					offsets + (partial - chain), partial);
905 906

	/*
907
	 * The ext4_splice_branch call will free and forget any buffers
908 909 910 911 912 913
	 * on the new chain if there is a failure, but that risks using
	 * up transaction credits, especially for bitmaps where the
	 * credits cannot be returned.  Can we handle this somehow?  We
	 * may need to return -EAGAIN upwards in the worst case.  --sct
	 */
	if (!err)
914
		err = ext4_splice_branch(handle, inode, iblock,
915 916
					partial, indirect_blks, count);
	/*
917
	 * i_disksize growing is protected by i_data_sem.  Don't forget to
918
	 * protect it if you're about to implement concurrent
919
	 * ext4_get_block() -bzzz
920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
	*/
	if (!err && extend_disksize && inode->i_size > ei->i_disksize)
		ei->i_disksize = inode->i_size;
	if (err)
		goto cleanup;

	set_buffer_new(bh_result);
got_it:
	map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
	if (count > blocks_to_boundary)
		set_buffer_boundary(bh_result);
	err = count;
	/* Clean up and exit */
	partial = chain + depth - 1;	/* the whole chain */
cleanup:
	while (partial > chain) {
		BUFFER_TRACE(partial->bh, "call brelse");
		brelse(partial->bh);
		partial--;
	}
	BUFFER_TRACE(bh_result, "returned");
out:
	return err;
}

J
Jan Kara 已提交
945 946 947 948 949 950 951 952 953 954
/* Maximum number of blocks we map for direct IO at once. */
#define DIO_MAX_BLOCKS 4096
/*
 * Number of credits we need for writing DIO_MAX_BLOCKS:
 * We need sb + group descriptor + bitmap + inode -> 4
 * For B blocks with A block pointers per block we need:
 * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect).
 * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25.
 */
#define DIO_CREDITS 25
955

956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979

/*
 *
 *
 * ext4_ext4 get_block() wrapper function
 * It will do a look up first, and returns if the blocks already mapped.
 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 * and store the allocated blocks in the result buffer head and mark it
 * mapped.
 *
 * If file type is extents based, it will call ext4_ext_get_blocks(),
 * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping
 * based files
 *
 * On success, it returns the number of blocks being mapped or allocate.
 * if create==0 and the blocks are pre-allocated and uninitialized block,
 * the result buffer head is unmapped. If the create ==1, it will make sure
 * the buffer head is mapped.
 *
 * It returns 0 if plain look up failed (blocks have not been allocated), in
 * that casem, buffer head is unmapped
 *
 * It returns the error in case of allocation failure.
 */
980 981 982 983 984
int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
			unsigned long max_blocks, struct buffer_head *bh,
			int create, int extend_disksize)
{
	int retval;
985 986 987

	clear_buffer_mapped(bh);

988 989 990 991 992 993 994 995
	/*
	 * Try to see if we can get  the block without requesting
	 * for new file system block.
	 */
	down_read((&EXT4_I(inode)->i_data_sem));
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
		retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
				bh, 0, 0);
996
	} else {
997 998
		retval = ext4_get_blocks_handle(handle,
				inode, block, max_blocks, bh, 0, 0);
999
	}
1000
	up_read((&EXT4_I(inode)->i_data_sem));
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013

	/* If it is only a block(s) look up */
	if (!create)
		return retval;

	/*
	 * Returns if the blocks have already allocated
	 *
	 * Note that if blocks have been preallocated
	 * ext4_ext_get_block() returns th create = 0
	 * with buffer head unmapped.
	 */
	if (retval > 0 && buffer_mapped(bh))
1014 1015 1016
		return retval;

	/*
1017 1018 1019 1020
	 * New blocks allocate and/or writing to uninitialized extent
	 * will possibly result in updating i_data, so we take
	 * the write lock of i_data_sem, and call get_blocks()
	 * with create == 1 flag.
1021 1022 1023 1024 1025 1026
	 */
	down_write((&EXT4_I(inode)->i_data_sem));
	/*
	 * We need to check for EXT4 here because migrate
	 * could have changed the inode type in between
	 */
1027 1028 1029 1030 1031 1032
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
		retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
				bh, create, extend_disksize);
	} else {
		retval = ext4_get_blocks_handle(handle, inode, block,
				max_blocks, bh, create, extend_disksize);
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042

		if (retval > 0 && buffer_new(bh)) {
			/*
			 * We allocated new blocks which will result in
			 * i_data's format changing.  Force the migrate
			 * to fail by clearing migrate flags
			 */
			EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
							~EXT4_EXT_MIGRATE;
		}
1043
	}
1044
	up_write((&EXT4_I(inode)->i_data_sem));
1045 1046 1047
	return retval;
}

1048
static int ext4_get_block(struct inode *inode, sector_t iblock,
1049 1050
			struct buffer_head *bh_result, int create)
{
1051
	handle_t *handle = ext4_journal_current_handle();
J
Jan Kara 已提交
1052
	int ret = 0, started = 0;
1053 1054
	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;

J
Jan Kara 已提交
1055 1056 1057 1058 1059 1060 1061
	if (create && !handle) {
		/* Direct IO write... */
		if (max_blocks > DIO_MAX_BLOCKS)
			max_blocks = DIO_MAX_BLOCKS;
		handle = ext4_journal_start(inode, DIO_CREDITS +
			      2 * EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb));
		if (IS_ERR(handle)) {
1062
			ret = PTR_ERR(handle);
J
Jan Kara 已提交
1063
			goto out;
1064
		}
J
Jan Kara 已提交
1065
		started = 1;
1066 1067
	}

J
Jan Kara 已提交
1068
	ret = ext4_get_blocks_wrap(handle, inode, iblock,
1069
					max_blocks, bh_result, create, 0);
J
Jan Kara 已提交
1070 1071 1072
	if (ret > 0) {
		bh_result->b_size = (ret << inode->i_blkbits);
		ret = 0;
1073
	}
J
Jan Kara 已提交
1074 1075 1076
	if (started)
		ext4_journal_stop(handle);
out:
1077 1078 1079 1080 1081 1082
	return ret;
}

/*
 * `handle' can be NULL if create is zero
 */
1083
struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
1084
				ext4_lblk_t block, int create, int *errp)
1085 1086 1087 1088 1089 1090 1091 1092 1093
{
	struct buffer_head dummy;
	int fatal = 0, err;

	J_ASSERT(handle != NULL || create == 0);

	dummy.b_state = 0;
	dummy.b_blocknr = -1000;
	buffer_trace_init(&dummy.b_history);
A
Alex Tomas 已提交
1094
	err = ext4_get_blocks_wrap(handle, inode, block, 1,
1095 1096
					&dummy, create, 1);
	/*
1097
	 * ext4_get_blocks_handle() returns number of blocks
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
	 * mapped. 0 in case of a HOLE.
	 */
	if (err > 0) {
		if (err > 1)
			WARN_ON(1);
		err = 0;
	}
	*errp = err;
	if (!err && buffer_mapped(&dummy)) {
		struct buffer_head *bh;
		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
		if (!bh) {
			*errp = -EIO;
			goto err;
		}
		if (buffer_new(&dummy)) {
			J_ASSERT(create != 0);
A
Aneesh Kumar K.V 已提交
1115
			J_ASSERT(handle != NULL);
1116 1117 1118 1119 1120

			/*
			 * Now that we do not always journal data, we should
			 * keep in mind whether this should always journal the
			 * new buffer as metadata.  For now, regular file
1121
			 * writes use ext4_get_block instead, so it's not a
1122 1123 1124 1125
			 * problem.
			 */
			lock_buffer(bh);
			BUFFER_TRACE(bh, "call get_create_access");
1126
			fatal = ext4_journal_get_create_access(handle, bh);
1127 1128 1129 1130 1131
			if (!fatal && !buffer_uptodate(bh)) {
				memset(bh->b_data,0,inode->i_sb->s_blocksize);
				set_buffer_uptodate(bh);
			}
			unlock_buffer(bh);
1132 1133
			BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
			err = ext4_journal_dirty_metadata(handle, bh);
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
			if (!fatal)
				fatal = err;
		} else {
			BUFFER_TRACE(bh, "not a new buffer");
		}
		if (fatal) {
			*errp = fatal;
			brelse(bh);
			bh = NULL;
		}
		return bh;
	}
err:
	return NULL;
}

1150
struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
1151
			       ext4_lblk_t block, int create, int *err)
1152 1153 1154
{
	struct buffer_head * bh;

1155
	bh = ext4_getblk(handle, inode, block, create, err);
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
	if (!bh)
		return bh;
	if (buffer_uptodate(bh))
		return bh;
	ll_rw_block(READ_META, 1, &bh);
	wait_on_buffer(bh);
	if (buffer_uptodate(bh))
		return bh;
	put_bh(bh);
	*err = -EIO;
	return NULL;
}

static int walk_page_buffers(	handle_t *handle,
				struct buffer_head *head,
				unsigned from,
				unsigned to,
				int *partial,
				int (*fn)(	handle_t *handle,
						struct buffer_head *bh))
{
	struct buffer_head *bh;
	unsigned block_start, block_end;
	unsigned blocksize = head->b_size;
	int err, ret = 0;
	struct buffer_head *next;

	for (	bh = head, block_start = 0;
		ret == 0 && (bh != head || !block_start);
		block_start = block_end, bh = next)
	{
		next = bh->b_this_page;
		block_end = block_start + blocksize;
		if (block_end <= from || block_start >= to) {
			if (partial && !buffer_uptodate(bh))
				*partial = 1;
			continue;
		}
		err = (*fn)(handle, bh);
		if (!ret)
			ret = err;
	}
	return ret;
}

/*
 * To preserve ordering, it is essential that the hole instantiation and
 * the data write be encapsulated in a single transaction.  We cannot
1204
 * close off a transaction and start a new one between the ext4_get_block()
1205
 * and the commit_write().  So doing the jbd2_journal_start at the start of
1206 1207
 * prepare_write() is the right place.
 *
1208 1209
 * Also, this function can nest inside ext4_writepage() ->
 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1210 1211 1212 1213
 * has generated enough buffer credits to do the whole page.  So we won't
 * block on the journal in that case, which is good, because the caller may
 * be PF_MEMALLOC.
 *
1214
 * By accident, ext4 can be reentered when a transaction is open via
1215 1216 1217 1218 1219 1220
 * quota file writes.  If we were to commit the transaction while thus
 * reentered, there can be a deadlock - we would be holding a quota
 * lock, and the commit would never complete if another thread had a
 * transaction open and was blocking on the quota lock - a ranking
 * violation.
 *
1221
 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1222 1223 1224 1225 1226 1227 1228 1229 1230
 * will _not_ run commit under these circumstances because handle->h_ref
 * is elevated.  We'll still have enough credits for the tiny quotafile
 * write.
 */
static int do_journal_get_write_access(handle_t *handle,
					struct buffer_head *bh)
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
1231
	return ext4_journal_get_write_access(handle, bh);
1232 1233
}

N
Nick Piggin 已提交
1234 1235 1236
static int ext4_write_begin(struct file *file, struct address_space *mapping,
				loff_t pos, unsigned len, unsigned flags,
				struct page **pagep, void **fsdata)
1237
{
N
Nick Piggin 已提交
1238
 	struct inode *inode = mapping->host;
1239
	int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1240 1241
	handle_t *handle;
	int retries = 0;
N
Nick Piggin 已提交
1242 1243 1244 1245 1246 1247 1248
 	struct page *page;
 	pgoff_t index;
 	unsigned from, to;

 	index = pos >> PAGE_CACHE_SHIFT;
 	from = pos & (PAGE_CACHE_SIZE - 1);
 	to = from + len;
1249 1250

retry:
N
Nick Piggin 已提交
1251 1252 1253 1254
  	handle = ext4_journal_start(inode, needed_blocks);
  	if (IS_ERR(handle)) {
  		ret = PTR_ERR(handle);
  		goto out;
1255
	}
1256

1257 1258 1259 1260 1261 1262 1263 1264
	page = __grab_cache_page(mapping, index);
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
	*pagep = page;

N
Nick Piggin 已提交
1265 1266 1267 1268
	ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
							ext4_get_block);

	if (!ret && ext4_should_journal_data(inode)) {
1269 1270 1271
		ret = walk_page_buffers(handle, page_buffers(page),
				from, to, NULL, do_journal_get_write_access);
	}
N
Nick Piggin 已提交
1272 1273 1274

	if (ret) {
 		unlock_page(page);
1275
		ext4_journal_stop(handle);
N
Nick Piggin 已提交
1276 1277 1278
 		page_cache_release(page);
	}

1279
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1280
		goto retry;
1281
out:
1282 1283 1284
	return ret;
}

N
Nick Piggin 已提交
1285 1286
/* For write_end() in data=journal mode */
static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1287 1288 1289 1290
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
	set_buffer_uptodate(bh);
1291
	return ext4_journal_dirty_metadata(handle, bh);
1292 1293 1294 1295 1296 1297
}

/*
 * We need to pick up the new inode size which generic_commit_write gave us
 * `file' can be NULL - eg, when called from page_symlink().
 *
1298
 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1299 1300
 * buffers are managed internally.
 */
N
Nick Piggin 已提交
1301 1302 1303 1304
static int ext4_ordered_write_end(struct file *file,
				struct address_space *mapping,
				loff_t pos, unsigned len, unsigned copied,
				struct page *page, void *fsdata)
1305
{
1306
	handle_t *handle = ext4_journal_current_handle();
1307
	struct inode *inode = mapping->host;
N
Nick Piggin 已提交
1308
	unsigned from, to;
1309 1310
	int ret = 0, ret2;

N
Nick Piggin 已提交
1311 1312 1313
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;

1314
	ret = ext4_jbd2_file_inode(handle, inode);
1315 1316 1317

	if (ret == 0) {
		/*
N
Nick Piggin 已提交
1318
		 * generic_write_end() will run mark_inode_dirty() if i_size
1319 1320 1321 1322 1323
		 * changes.  So let's piggyback the i_disksize mark_inode_dirty
		 * into that.
		 */
		loff_t new_i_size;

N
Nick Piggin 已提交
1324
		new_i_size = pos + copied;
1325 1326
		if (new_i_size > EXT4_I(inode)->i_disksize)
			EXT4_I(inode)->i_disksize = new_i_size;
1327
		ret2 = generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1328
							page, fsdata);
1329 1330 1331
		copied = ret2;
		if (ret2 < 0)
			ret = ret2;
1332
	}
1333
	ret2 = ext4_journal_stop(handle);
1334 1335
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1336 1337

	return ret ? ret : copied;
1338 1339
}

N
Nick Piggin 已提交
1340 1341 1342 1343
static int ext4_writeback_write_end(struct file *file,
				struct address_space *mapping,
				loff_t pos, unsigned len, unsigned copied,
				struct page *page, void *fsdata)
1344
{
1345
	handle_t *handle = ext4_journal_current_handle();
1346
	struct inode *inode = mapping->host;
1347 1348 1349
	int ret = 0, ret2;
	loff_t new_i_size;

N
Nick Piggin 已提交
1350
	new_i_size = pos + copied;
1351 1352
	if (new_i_size > EXT4_I(inode)->i_disksize)
		EXT4_I(inode)->i_disksize = new_i_size;
1353

1354
	ret2 = generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1355
							page, fsdata);
1356 1357 1358
	copied = ret2;
	if (ret2 < 0)
		ret = ret2;
1359

1360
	ret2 = ext4_journal_stop(handle);
1361 1362
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1363 1364

	return ret ? ret : copied;
1365 1366
}

N
Nick Piggin 已提交
1367 1368 1369 1370
static int ext4_journalled_write_end(struct file *file,
				struct address_space *mapping,
				loff_t pos, unsigned len, unsigned copied,
				struct page *page, void *fsdata)
1371
{
1372
	handle_t *handle = ext4_journal_current_handle();
N
Nick Piggin 已提交
1373
	struct inode *inode = mapping->host;
1374 1375
	int ret = 0, ret2;
	int partial = 0;
N
Nick Piggin 已提交
1376
	unsigned from, to;
1377

N
Nick Piggin 已提交
1378 1379 1380 1381 1382 1383 1384 1385
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;

	if (copied < len) {
		if (!PageUptodate(page))
			copied = 0;
		page_zero_new_buffers(page, from+copied, to);
	}
1386 1387

	ret = walk_page_buffers(handle, page_buffers(page), from,
N
Nick Piggin 已提交
1388
				to, &partial, write_end_fn);
1389 1390
	if (!partial)
		SetPageUptodate(page);
N
Nick Piggin 已提交
1391 1392
	if (pos+copied > inode->i_size)
		i_size_write(inode, pos+copied);
1393 1394 1395 1396
	EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
	if (inode->i_size > EXT4_I(inode)->i_disksize) {
		EXT4_I(inode)->i_disksize = inode->i_size;
		ret2 = ext4_mark_inode_dirty(handle, inode);
1397 1398 1399
		if (!ret)
			ret = ret2;
	}
N
Nick Piggin 已提交
1400

1401
	unlock_page(page);
1402
	ret2 = ext4_journal_stop(handle);
1403 1404
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1405 1406 1407
	page_cache_release(page);

	return ret ? ret : copied;
1408 1409 1410 1411 1412 1413 1414
}

/*
 * bmap() is special.  It gets used by applications such as lilo and by
 * the swapper to find the on-disk block of a specific piece of data.
 *
 * Naturally, this is dangerous if the block concerned is still in the
1415
 * journal.  If somebody makes a swapfile on an ext4 data-journaling
1416 1417 1418 1419 1420 1421 1422 1423
 * filesystem and enables swap, then they may get a nasty shock when the
 * data getting swapped to that swapfile suddenly gets overwritten by
 * the original zero's written out previously to the journal and
 * awaiting writeback in the kernel's buffer cache.
 *
 * So, if we see any bmap calls here on a modified, data-journaled file,
 * take extra steps to flush any blocks which might be in the cache.
 */
1424
static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
1425 1426 1427 1428 1429
{
	struct inode *inode = mapping->host;
	journal_t *journal;
	int err;

1430
	if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
		/*
		 * This is a REALLY heavyweight approach, but the use of
		 * bmap on dirty files is expected to be extremely rare:
		 * only if we run lilo or swapon on a freshly made file
		 * do we expect this to happen.
		 *
		 * (bmap requires CAP_SYS_RAWIO so this does not
		 * represent an unprivileged user DOS attack --- we'd be
		 * in trouble if mortal users could trigger this path at
		 * will.)
		 *
1442
		 * NB. EXT4_STATE_JDATA is not set on files other than
1443 1444 1445 1446 1447 1448
		 * regular files.  If somebody wants to bmap a directory
		 * or symlink and gets confused because the buffer
		 * hasn't yet been flushed to disk, they deserve
		 * everything they get.
		 */

1449 1450
		EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
		journal = EXT4_JOURNAL(inode);
1451 1452 1453
		jbd2_journal_lock_updates(journal);
		err = jbd2_journal_flush(journal);
		jbd2_journal_unlock_updates(journal);
1454 1455 1456 1457 1458

		if (err)
			return 0;
	}

1459
	return generic_block_bmap(mapping,block,ext4_get_block);
1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
}

static int bget_one(handle_t *handle, struct buffer_head *bh)
{
	get_bh(bh);
	return 0;
}

static int bput_one(handle_t *handle, struct buffer_head *bh)
{
	put_bh(bh);
	return 0;
}

1474 1475 1476 1477 1478
static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
{
	return !buffer_mapped(bh) || buffer_delay(bh);
}

1479
/*
1480 1481 1482 1483 1484 1485 1486 1487
 * Note that we don't need to start a transaction unless we're journaling data
 * because we should have holes filled from ext4_page_mkwrite(). We even don't
 * need to file the inode to the transaction's list in ordered mode because if
 * we are writing back data added by write(), the inode is already there and if
 * we are writing back data modified via mmap(), noone guarantees in which
 * transaction the data will hit the disk. In case we are journaling data, we
 * cannot start transaction directly because transaction start ranks above page
 * lock so we have to do some magic.
1488
 *
1489
 * In all journaling modes block_write_full_page() will start the I/O.
1490 1491 1492
 *
 * Problem:
 *
1493 1494
 *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
 *		ext4_writepage()
1495 1496 1497
 *
 * Similar for:
 *
1498
 *	ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
1499
 *
1500
 * Same applies to ext4_get_block().  We will deadlock on various things like
1501
 * lock_journal and i_data_sem
1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
 *
 * Setting PF_MEMALLOC here doesn't work - too many internal memory
 * allocations fail.
 *
 * 16May01: If we're reentered then journal_current_handle() will be
 *	    non-zero. We simply *return*.
 *
 * 1 July 2001: @@@ FIXME:
 *   In journalled data mode, a data buffer may be metadata against the
 *   current transaction.  But the same file is part of a shared mapping
 *   and someone does a writepage() on it.
 *
 *   We will move the buffer onto the async_data list, but *after* it has
 *   been dirtied. So there's a small window where we have dirty data on
 *   BJ_Metadata.
 *
 *   Note that this only applies to the last partial page in the file.  The
 *   bit which block_write_full_page() uses prepare/commit for.  (That's
 *   broken code anyway: it's wrong for msync()).
 *
 *   It's a rare case: affects the final partial page, for journalled data
 *   where the file is subject to bith write() and writepage() in the same
 *   transction.  To fix it we'll need a custom block_write_full_page().
 *   We'll probably need that anyway for journalling writepage() output.
 *
 * We don't honour synchronous mounts for writepage().  That would be
 * disastrous.  Any write() or metadata operation will sync the fs for
 * us.
 *
 */
1532
static int __ext4_normal_writepage(struct page *page,
1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
				struct writeback_control *wbc)
{
	struct inode *inode = page->mapping->host;

	if (test_opt(inode->i_sb, NOBH))
		return nobh_writepage(page, ext4_get_block, wbc);
	else
		return block_write_full_page(page, ext4_get_block, wbc);
}


1544
static int ext4_normal_writepage(struct page *page,
1545 1546 1547
				struct writeback_control *wbc)
{
	struct inode *inode = page->mapping->host;
1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
	loff_t size = i_size_read(inode);
	loff_t len;

	J_ASSERT(PageLocked(page));
	J_ASSERT(page_has_buffers(page));
	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
	BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
				 ext4_bh_unmapped_or_delay));

	if (!ext4_journal_current_handle())
1561
		return __ext4_normal_writepage(page, wbc);
1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573

	redirty_page_for_writepage(wbc, page);
	unlock_page(page);
	return 0;
}

static int __ext4_journalled_writepage(struct page *page,
				struct writeback_control *wbc)
{
	struct address_space *mapping = page->mapping;
	struct inode *inode = mapping->host;
	struct buffer_head *page_bufs;
1574 1575 1576 1577
	handle_t *handle = NULL;
	int ret = 0;
	int err;

1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
	ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE, ext4_get_block);
	if (ret != 0)
		goto out_unlock;

	page_bufs = page_buffers(page);
	walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
								bget_one);
	/* As soon as we unlock the page, it can go away, but we have
	 * references to buffers so we are safe */
	unlock_page(page);
1588

1589
	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1590 1591
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
1592
		goto out;
1593 1594
	}

1595 1596
	ret = walk_page_buffers(handle, page_bufs, 0,
			PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
1597

1598 1599 1600 1601
	err = walk_page_buffers(handle, page_bufs, 0,
				PAGE_CACHE_SIZE, NULL, write_end_fn);
	if (ret == 0)
		ret = err;
1602
	err = ext4_journal_stop(handle);
1603 1604 1605
	if (!ret)
		ret = err;

1606 1607 1608 1609 1610 1611
	walk_page_buffers(handle, page_bufs, 0,
				PAGE_CACHE_SIZE, NULL, bput_one);
	EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
	goto out;

out_unlock:
1612
	unlock_page(page);
1613
out:
1614 1615 1616
	return ret;
}

1617
static int ext4_journalled_writepage(struct page *page,
1618 1619 1620
				struct writeback_control *wbc)
{
	struct inode *inode = page->mapping->host;
1621 1622
	loff_t size = i_size_read(inode);
	loff_t len;
1623

1624 1625 1626 1627 1628 1629 1630 1631
	J_ASSERT(PageLocked(page));
	J_ASSERT(page_has_buffers(page));
	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
	BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
				 ext4_bh_unmapped_or_delay));
1632

1633
	if (ext4_journal_current_handle())
1634 1635
		goto no_write;

1636
	if (PageChecked(page)) {
1637 1638 1639 1640 1641
		/*
		 * It's mmapped pagecache.  Add buffers and journal it.  There
		 * doesn't seem much point in redirtying the page here.
		 */
		ClearPageChecked(page);
1642
		return __ext4_journalled_writepage(page, wbc);
1643 1644 1645 1646 1647 1648
	} else {
		/*
		 * It may be a page full of checkpoint-mode buffers.  We don't
		 * really know unless we go poke around in the buffer_heads.
		 * But block_write_full_page will do the right thing.
		 */
1649
		return block_write_full_page(page, ext4_get_block, wbc);
1650 1651 1652 1653
	}
no_write:
	redirty_page_for_writepage(wbc, page);
	unlock_page(page);
1654
	return 0;
1655 1656
}

1657
static int ext4_readpage(struct file *file, struct page *page)
1658
{
1659
	return mpage_readpage(page, ext4_get_block);
1660 1661 1662
}

static int
1663
ext4_readpages(struct file *file, struct address_space *mapping,
1664 1665
		struct list_head *pages, unsigned nr_pages)
{
1666
	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
1667 1668
}

1669
static void ext4_invalidatepage(struct page *page, unsigned long offset)
1670
{
1671
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
1672 1673 1674 1675 1676 1677 1678

	/*
	 * If it's a full truncate we just forget about the pending dirtying
	 */
	if (offset == 0)
		ClearPageChecked(page);

1679
	jbd2_journal_invalidatepage(journal, page, offset);
1680 1681
}

1682
static int ext4_releasepage(struct page *page, gfp_t wait)
1683
{
1684
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
1685 1686 1687 1688

	WARN_ON(PageChecked(page));
	if (!page_has_buffers(page))
		return 0;
1689
	return jbd2_journal_try_to_free_buffers(journal, page, wait);
1690 1691 1692 1693 1694 1695 1696 1697
}

/*
 * If the O_DIRECT write will extend the file then add this inode to the
 * orphan list.  So recovery will truncate it back to the original size
 * if the machine crashes during the write.
 *
 * If the O_DIRECT write is intantiating holes inside i_size and the machine
J
Jan Kara 已提交
1698 1699
 * crashes then stale disk data _may_ be exposed inside the file. But current
 * VFS code falls back into buffered path in that case so we are safe.
1700
 */
1701
static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
1702 1703 1704 1705 1706
			const struct iovec *iov, loff_t offset,
			unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
1707
	struct ext4_inode_info *ei = EXT4_I(inode);
J
Jan Kara 已提交
1708
	handle_t *handle;
1709 1710 1711 1712 1713 1714 1715 1716
	ssize_t ret;
	int orphan = 0;
	size_t count = iov_length(iov, nr_segs);

	if (rw == WRITE) {
		loff_t final_size = offset + count;

		if (final_size > inode->i_size) {
J
Jan Kara 已提交
1717 1718 1719 1720 1721 1722
			/* Credits for sb + inode write */
			handle = ext4_journal_start(inode, 2);
			if (IS_ERR(handle)) {
				ret = PTR_ERR(handle);
				goto out;
			}
1723
			ret = ext4_orphan_add(handle, inode);
J
Jan Kara 已提交
1724 1725 1726 1727
			if (ret) {
				ext4_journal_stop(handle);
				goto out;
			}
1728 1729
			orphan = 1;
			ei->i_disksize = inode->i_size;
J
Jan Kara 已提交
1730
			ext4_journal_stop(handle);
1731 1732 1733 1734 1735
		}
	}

	ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
				 offset, nr_segs,
1736
				 ext4_get_block, NULL);
1737

J
Jan Kara 已提交
1738
	if (orphan) {
1739 1740
		int err;

J
Jan Kara 已提交
1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
		/* Credits for sb + inode write */
		handle = ext4_journal_start(inode, 2);
		if (IS_ERR(handle)) {
			/* This is really bad luck. We've written the data
			 * but cannot extend i_size. Bail out and pretend
			 * the write failed... */
			ret = PTR_ERR(handle);
			goto out;
		}
		if (inode->i_nlink)
1751
			ext4_orphan_del(handle, inode);
J
Jan Kara 已提交
1752
		if (ret > 0) {
1753 1754 1755 1756 1757 1758 1759 1760
			loff_t end = offset + ret;
			if (end > inode->i_size) {
				ei->i_disksize = end;
				i_size_write(inode, end);
				/*
				 * We're going to return a positive `ret'
				 * here due to non-zero-length I/O, so there's
				 * no way of reporting error returns from
1761
				 * ext4_mark_inode_dirty() to userspace.  So
1762 1763
				 * ignore it.
				 */
1764
				ext4_mark_inode_dirty(handle, inode);
1765 1766
			}
		}
1767
		err = ext4_journal_stop(handle);
1768 1769 1770 1771 1772 1773 1774 1775
		if (ret == 0)
			ret = err;
	}
out:
	return ret;
}

/*
1776
 * Pages can be marked dirty completely asynchronously from ext4's journalling
1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787
 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
 * much here because ->set_page_dirty is called under VFS locks.  The page is
 * not necessarily locked.
 *
 * We cannot just dirty the page and leave attached buffers clean, because the
 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
 * or jbddirty because all the journalling code will explode.
 *
 * So what we do is to mark the page "pending dirty" and next time writepage
 * is called, propagate that into the buffers appropriately.
 */
1788
static int ext4_journalled_set_page_dirty(struct page *page)
1789 1790 1791 1792 1793
{
	SetPageChecked(page);
	return __set_page_dirty_nobuffers(page);
}

1794 1795 1796
static const struct address_space_operations ext4_ordered_aops = {
	.readpage	= ext4_readpage,
	.readpages	= ext4_readpages,
1797
	.writepage	= ext4_normal_writepage,
1798
	.sync_page	= block_sync_page,
N
Nick Piggin 已提交
1799 1800
	.write_begin	= ext4_write_begin,
	.write_end	= ext4_ordered_write_end,
1801 1802 1803 1804
	.bmap		= ext4_bmap,
	.invalidatepage	= ext4_invalidatepage,
	.releasepage	= ext4_releasepage,
	.direct_IO	= ext4_direct_IO,
1805 1806 1807
	.migratepage	= buffer_migrate_page,
};

1808 1809 1810
static const struct address_space_operations ext4_writeback_aops = {
	.readpage	= ext4_readpage,
	.readpages	= ext4_readpages,
1811
	.writepage	= ext4_normal_writepage,
1812
	.sync_page	= block_sync_page,
N
Nick Piggin 已提交
1813 1814
	.write_begin	= ext4_write_begin,
	.write_end	= ext4_writeback_write_end,
1815 1816 1817 1818
	.bmap		= ext4_bmap,
	.invalidatepage	= ext4_invalidatepage,
	.releasepage	= ext4_releasepage,
	.direct_IO	= ext4_direct_IO,
1819 1820 1821
	.migratepage	= buffer_migrate_page,
};

1822 1823 1824 1825
static const struct address_space_operations ext4_journalled_aops = {
	.readpage	= ext4_readpage,
	.readpages	= ext4_readpages,
	.writepage	= ext4_journalled_writepage,
1826
	.sync_page	= block_sync_page,
N
Nick Piggin 已提交
1827 1828
	.write_begin	= ext4_write_begin,
	.write_end	= ext4_journalled_write_end,
1829 1830 1831 1832
	.set_page_dirty	= ext4_journalled_set_page_dirty,
	.bmap		= ext4_bmap,
	.invalidatepage	= ext4_invalidatepage,
	.releasepage	= ext4_releasepage,
1833 1834
};

1835
void ext4_set_aops(struct inode *inode)
1836
{
1837 1838 1839 1840
	if (ext4_should_order_data(inode))
		inode->i_mapping->a_ops = &ext4_ordered_aops;
	else if (ext4_should_writeback_data(inode))
		inode->i_mapping->a_ops = &ext4_writeback_aops;
1841
	else
1842
		inode->i_mapping->a_ops = &ext4_journalled_aops;
1843 1844 1845
}

/*
1846
 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
1847 1848 1849 1850
 * up to the end of the block which corresponds to `from'.
 * This required during truncate. We need to physically zero the tail end
 * of that block so it doesn't yield old data if the file is later grown.
 */
1851
int ext4_block_truncate_page(handle_t *handle,
1852 1853
		struct address_space *mapping, loff_t from)
{
1854
	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
1855
	unsigned offset = from & (PAGE_CACHE_SIZE-1);
A
Aneesh Kumar K.V 已提交
1856 1857
	unsigned blocksize, length, pos;
	ext4_lblk_t iblock;
1858 1859
	struct inode *inode = mapping->host;
	struct buffer_head *bh;
1860
	struct page *page;
1861 1862
	int err = 0;

1863 1864 1865 1866
	page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
	if (!page)
		return -EINVAL;

1867 1868 1869 1870 1871 1872 1873 1874 1875
	blocksize = inode->i_sb->s_blocksize;
	length = blocksize - (offset & (blocksize - 1));
	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);

	/*
	 * For "nobh" option,  we can only work if we don't need to
	 * read-in the page - otherwise we create buffers to do the IO.
	 */
	if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
1876
	     ext4_should_writeback_data(inode) && PageUptodate(page)) {
1877
		zero_user(page, offset, length);
1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901
		set_page_dirty(page);
		goto unlock;
	}

	if (!page_has_buffers(page))
		create_empty_buffers(page, blocksize, 0);

	/* Find the buffer that contains "offset" */
	bh = page_buffers(page);
	pos = blocksize;
	while (offset >= pos) {
		bh = bh->b_this_page;
		iblock++;
		pos += blocksize;
	}

	err = 0;
	if (buffer_freed(bh)) {
		BUFFER_TRACE(bh, "freed: skip");
		goto unlock;
	}

	if (!buffer_mapped(bh)) {
		BUFFER_TRACE(bh, "unmapped");
1902
		ext4_get_block(inode, iblock, bh, 0);
1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
		/* unmapped? It's a hole - nothing to do */
		if (!buffer_mapped(bh)) {
			BUFFER_TRACE(bh, "still unmapped");
			goto unlock;
		}
	}

	/* Ok, it's mapped. Make sure it's up-to-date */
	if (PageUptodate(page))
		set_buffer_uptodate(bh);

	if (!buffer_uptodate(bh)) {
		err = -EIO;
		ll_rw_block(READ, 1, &bh);
		wait_on_buffer(bh);
		/* Uhhuh. Read error. Complain and punt. */
		if (!buffer_uptodate(bh))
			goto unlock;
	}

1923
	if (ext4_should_journal_data(inode)) {
1924
		BUFFER_TRACE(bh, "get write access");
1925
		err = ext4_journal_get_write_access(handle, bh);
1926 1927 1928 1929
		if (err)
			goto unlock;
	}

1930
	zero_user(page, offset, length);
1931 1932 1933 1934

	BUFFER_TRACE(bh, "zeroed end of block");

	err = 0;
1935 1936
	if (ext4_should_journal_data(inode)) {
		err = ext4_journal_dirty_metadata(handle, bh);
1937
	} else {
1938
		if (ext4_should_order_data(inode))
1939
			err = ext4_jbd2_file_inode(handle, inode);
1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962
		mark_buffer_dirty(bh);
	}

unlock:
	unlock_page(page);
	page_cache_release(page);
	return err;
}

/*
 * Probably it should be a library function... search for first non-zero word
 * or memcmp with zero_page, whatever is better for particular architecture.
 * Linus?
 */
static inline int all_zeroes(__le32 *p, __le32 *q)
{
	while (p < q)
		if (*p++)
			return 0;
	return 1;
}

/**
1963
 *	ext4_find_shared - find the indirect blocks for partial truncation.
1964 1965
 *	@inode:	  inode in question
 *	@depth:	  depth of the affected branch
1966
 *	@offsets: offsets of pointers in that branch (see ext4_block_to_path)
1967 1968 1969
 *	@chain:	  place to store the pointers to partial indirect blocks
 *	@top:	  place to the (detached) top of branch
 *
1970
 *	This is a helper function used by ext4_truncate().
1971 1972 1973 1974 1975 1976 1977
 *
 *	When we do truncate() we may have to clean the ends of several
 *	indirect blocks but leave the blocks themselves alive. Block is
 *	partially truncated if some data below the new i_size is refered
 *	from it (and it is on the path to the first completely truncated
 *	data block, indeed).  We have to free the top of that path along
 *	with everything to the right of the path. Since no allocation
1978
 *	past the truncation point is possible until ext4_truncate()
1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
 *	finishes, we may safely do the latter, but top of branch may
 *	require special attention - pageout below the truncation point
 *	might try to populate it.
 *
 *	We atomically detach the top of branch from the tree, store the
 *	block number of its root in *@top, pointers to buffer_heads of
 *	partially truncated blocks - in @chain[].bh and pointers to
 *	their last elements that should not be removed - in
 *	@chain[].p. Return value is the pointer to last filled element
 *	of @chain.
 *
 *	The work left to caller to do the actual freeing of subtrees:
 *		a) free the subtree starting from *@top
 *		b) free the subtrees whose roots are stored in
 *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
 *		c) free the subtrees growing from the inode past the @chain[0].
 *			(no partially truncated stuff there).  */

1997
static Indirect *ext4_find_shared(struct inode *inode, int depth,
A
Aneesh Kumar K.V 已提交
1998
			ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
1999 2000 2001 2002 2003 2004 2005 2006
{
	Indirect *partial, *p;
	int k, err;

	*top = 0;
	/* Make k index the deepest non-null offest + 1 */
	for (k = depth; k > 1 && !offsets[k-1]; k--)
		;
2007
	partial = ext4_get_branch(inode, k, offsets, chain, &err);
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029
	/* Writer: pointers */
	if (!partial)
		partial = chain + k-1;
	/*
	 * If the branch acquired continuation since we've looked at it -
	 * fine, it should all survive and (new) top doesn't belong to us.
	 */
	if (!partial->key && *partial->p)
		/* Writer: end */
		goto no_top;
	for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
		;
	/*
	 * OK, we've found the last block that must survive. The rest of our
	 * branch should be detached before unlocking. However, if that rest
	 * of branch is all ours and does not grow immediately from the inode
	 * it's easier to cheat and just decrement partial->p.
	 */
	if (p == chain + k - 1 && p > chain) {
		p->p--;
	} else {
		*top = *p->p;
2030
		/* Nope, don't do this in ext4.  Must leave the tree intact */
2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052
#if 0
		*p->p = 0;
#endif
	}
	/* Writer: end */

	while(partial > p) {
		brelse(partial->bh);
		partial--;
	}
no_top:
	return partial;
}

/*
 * Zero a number of block pointers in either an inode or an indirect block.
 * If we restart the transaction we must again get write access to the
 * indirect block for further modification.
 *
 * We release `count' blocks on disk, but (last - first) may be greater
 * than `count' because there can be holes in there.
 */
2053 2054
static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
		struct buffer_head *bh, ext4_fsblk_t block_to_free,
2055 2056 2057 2058 2059
		unsigned long count, __le32 *first, __le32 *last)
{
	__le32 *p;
	if (try_to_extend_transaction(handle, inode)) {
		if (bh) {
2060 2061
			BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
			ext4_journal_dirty_metadata(handle, bh);
2062
		}
2063 2064
		ext4_mark_inode_dirty(handle, inode);
		ext4_journal_test_restart(handle, inode);
2065 2066
		if (bh) {
			BUFFER_TRACE(bh, "retaking write access");
2067
			ext4_journal_get_write_access(handle, bh);
2068 2069 2070 2071 2072
		}
	}

	/*
	 * Any buffers which are on the journal will be in memory. We find
2073
	 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
2074
	 * on them.  We've already detached each block from the file, so
2075
	 * bforget() in jbd2_journal_forget() should be safe.
2076
	 *
2077
	 * AKPM: turn on bforget in jbd2_journal_forget()!!!
2078 2079 2080 2081
	 */
	for (p = first; p < last; p++) {
		u32 nr = le32_to_cpu(*p);
		if (nr) {
A
Aneesh Kumar K.V 已提交
2082
			struct buffer_head *tbh;
2083 2084

			*p = 0;
A
Aneesh Kumar K.V 已提交
2085 2086
			tbh = sb_find_get_block(inode->i_sb, nr);
			ext4_forget(handle, 0, inode, tbh, nr);
2087 2088 2089
		}
	}

2090
	ext4_free_blocks(handle, inode, block_to_free, count, 0);
2091 2092 2093
}

/**
2094
 * ext4_free_data - free a list of data blocks
2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
 * @handle:	handle for this transaction
 * @inode:	inode we are dealing with
 * @this_bh:	indirect buffer_head which contains *@first and *@last
 * @first:	array of block numbers
 * @last:	points immediately past the end of array
 *
 * We are freeing all blocks refered from that array (numbers are stored as
 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
 *
 * We accumulate contiguous runs of blocks to free.  Conveniently, if these
 * blocks are contiguous then releasing them at one time will only affect one
 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
 * actually use a lot of journal space.
 *
 * @this_bh will be %NULL if @first and @last point into the inode's direct
 * block pointers.
 */
2112
static void ext4_free_data(handle_t *handle, struct inode *inode,
2113 2114 2115
			   struct buffer_head *this_bh,
			   __le32 *first, __le32 *last)
{
2116
	ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
2117 2118 2119 2120
	unsigned long count = 0;	    /* Number of blocks in the run */
	__le32 *block_to_free_p = NULL;	    /* Pointer into inode/ind
					       corresponding to
					       block_to_free */
2121
	ext4_fsblk_t nr;		    /* Current block # */
2122 2123 2124 2125 2126 2127
	__le32 *p;			    /* Pointer into inode/ind
					       for current block */
	int err;

	if (this_bh) {				/* For indirect block */
		BUFFER_TRACE(this_bh, "get_write_access");
2128
		err = ext4_journal_get_write_access(handle, this_bh);
2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145
		/* Important: if we can't update the indirect pointers
		 * to the blocks, we can't free them. */
		if (err)
			return;
	}

	for (p = first; p < last; p++) {
		nr = le32_to_cpu(*p);
		if (nr) {
			/* accumulate blocks to free if they're contiguous */
			if (count == 0) {
				block_to_free = nr;
				block_to_free_p = p;
				count = 1;
			} else if (nr == block_to_free + count) {
				count++;
			} else {
2146
				ext4_clear_blocks(handle, inode, this_bh,
2147 2148 2149 2150 2151 2152 2153 2154 2155 2156
						  block_to_free,
						  count, block_to_free_p, p);
				block_to_free = nr;
				block_to_free_p = p;
				count = 1;
			}
		}
	}

	if (count > 0)
2157
		ext4_clear_blocks(handle, inode, this_bh, block_to_free,
2158 2159 2160
				  count, block_to_free_p, p);

	if (this_bh) {
2161
		BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata");
2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176

		/*
		 * The buffer head should have an attached journal head at this
		 * point. However, if the data is corrupted and an indirect
		 * block pointed to itself, it would have been detached when
		 * the block was cleared. Check for this instead of OOPSing.
		 */
		if (bh2jh(this_bh))
			ext4_journal_dirty_metadata(handle, this_bh);
		else
			ext4_error(inode->i_sb, __func__,
				   "circular indirect block detected, "
				   "inode=%lu, block=%llu",
				   inode->i_ino,
				   (unsigned long long) this_bh->b_blocknr);
2177 2178 2179 2180
	}
}

/**
2181
 *	ext4_free_branches - free an array of branches
2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192
 *	@handle: JBD handle for this transaction
 *	@inode:	inode we are dealing with
 *	@parent_bh: the buffer_head which contains *@first and *@last
 *	@first:	array of block numbers
 *	@last:	pointer immediately past the end of array
 *	@depth:	depth of the branches to free
 *
 *	We are freeing all blocks refered from these branches (numbers are
 *	stored as little-endian 32-bit) and updating @inode->i_blocks
 *	appropriately.
 */
2193
static void ext4_free_branches(handle_t *handle, struct inode *inode,
2194 2195 2196
			       struct buffer_head *parent_bh,
			       __le32 *first, __le32 *last, int depth)
{
2197
	ext4_fsblk_t nr;
2198 2199 2200 2201 2202 2203 2204
	__le32 *p;

	if (is_handle_aborted(handle))
		return;

	if (depth--) {
		struct buffer_head *bh;
2205
		int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219
		p = last;
		while (--p >= first) {
			nr = le32_to_cpu(*p);
			if (!nr)
				continue;		/* A hole */

			/* Go read the buffer for the next level down */
			bh = sb_bread(inode->i_sb, nr);

			/*
			 * A read failure? Report error and clear slot
			 * (should be rare).
			 */
			if (!bh) {
2220
				ext4_error(inode->i_sb, "ext4_free_branches",
2221
					   "Read failure, inode=%lu, block=%llu",
2222 2223 2224 2225 2226 2227
					   inode->i_ino, nr);
				continue;
			}

			/* This zaps the entire block.  Bottom up. */
			BUFFER_TRACE(bh, "free child branches");
2228
			ext4_free_branches(handle, inode, bh,
2229 2230 2231 2232 2233 2234 2235 2236
					   (__le32*)bh->b_data,
					   (__le32*)bh->b_data + addr_per_block,
					   depth);

			/*
			 * We've probably journalled the indirect block several
			 * times during the truncate.  But it's no longer
			 * needed and we now drop it from the transaction via
2237
			 * jbd2_journal_revoke().
2238 2239 2240
			 *
			 * That's easy if it's exclusively part of this
			 * transaction.  But if it's part of the committing
2241
			 * transaction then jbd2_journal_forget() will simply
2242
			 * brelse() it.  That means that if the underlying
2243
			 * block is reallocated in ext4_get_block(),
2244 2245 2246 2247 2248 2249 2250 2251
			 * unmap_underlying_metadata() will find this block
			 * and will try to get rid of it.  damn, damn.
			 *
			 * If this block has already been committed to the
			 * journal, a revoke record will be written.  And
			 * revoke records must be emitted *before* clearing
			 * this block's bit in the bitmaps.
			 */
2252
			ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272

			/*
			 * Everything below this this pointer has been
			 * released.  Now let this top-of-subtree go.
			 *
			 * We want the freeing of this indirect block to be
			 * atomic in the journal with the updating of the
			 * bitmap block which owns it.  So make some room in
			 * the journal.
			 *
			 * We zero the parent pointer *after* freeing its
			 * pointee in the bitmaps, so if extend_transaction()
			 * for some reason fails to put the bitmap changes and
			 * the release into the same transaction, recovery
			 * will merely complain about releasing a free block,
			 * rather than leaking blocks.
			 */
			if (is_handle_aborted(handle))
				return;
			if (try_to_extend_transaction(handle, inode)) {
2273 2274
				ext4_mark_inode_dirty(handle, inode);
				ext4_journal_test_restart(handle, inode);
2275 2276
			}

2277
			ext4_free_blocks(handle, inode, nr, 1, 1);
2278 2279 2280 2281 2282 2283 2284

			if (parent_bh) {
				/*
				 * The block which we have just freed is
				 * pointed to by an indirect block: journal it
				 */
				BUFFER_TRACE(parent_bh, "get_write_access");
2285
				if (!ext4_journal_get_write_access(handle,
2286 2287 2288
								   parent_bh)){
					*p = 0;
					BUFFER_TRACE(parent_bh,
2289 2290
					"call ext4_journal_dirty_metadata");
					ext4_journal_dirty_metadata(handle,
2291 2292 2293 2294 2295 2296 2297
								    parent_bh);
				}
			}
		}
	} else {
		/* We have reached the bottom of the tree. */
		BUFFER_TRACE(parent_bh, "free data blocks");
2298
		ext4_free_data(handle, inode, parent_bh, first, last);
2299 2300 2301
	}
}

2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314
int ext4_can_truncate(struct inode *inode)
{
	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
		return 0;
	if (S_ISREG(inode->i_mode))
		return 1;
	if (S_ISDIR(inode->i_mode))
		return 1;
	if (S_ISLNK(inode->i_mode))
		return !ext4_inode_is_fast_symlink(inode);
	return 0;
}

2315
/*
2316
 * ext4_truncate()
2317
 *
2318 2319
 * We block out ext4_get_block() block instantiations across the entire
 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
 * simultaneously on behalf of the same inode.
 *
 * As we work through the truncate and commmit bits of it to the journal there
 * is one core, guiding principle: the file's tree must always be consistent on
 * disk.  We must be able to restart the truncate after a crash.
 *
 * The file's tree may be transiently inconsistent in memory (although it
 * probably isn't), but whenever we close off and commit a journal transaction,
 * the contents of (the filesystem + the journal) must be consistent and
 * restartable.  It's pretty simple, really: bottom up, right to left (although
 * left-to-right works OK too).
 *
 * Note that at recovery time, journal replay occurs *before* the restart of
 * truncate against the orphan inode list.
 *
 * The committed inode has the new, desired i_size (which is the same as
2336
 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
2337
 * that this inode's truncate did not complete and it will again call
2338 2339
 * ext4_truncate() to have another go.  So there will be instantiated blocks
 * to the right of the truncation point in a crashed ext4 filesystem.  But
2340
 * that's fine - as long as they are linked from the inode, the post-crash
2341
 * ext4_truncate() run will find them and release them.
2342
 */
2343
void ext4_truncate(struct inode *inode)
2344 2345
{
	handle_t *handle;
2346
	struct ext4_inode_info *ei = EXT4_I(inode);
2347
	__le32 *i_data = ei->i_data;
2348
	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
2349
	struct address_space *mapping = inode->i_mapping;
A
Aneesh Kumar K.V 已提交
2350
	ext4_lblk_t offsets[4];
2351 2352 2353 2354
	Indirect chain[4];
	Indirect *partial;
	__le32 nr = 0;
	int n;
A
Aneesh Kumar K.V 已提交
2355
	ext4_lblk_t last_block;
2356 2357
	unsigned blocksize = inode->i_sb->s_blocksize;

2358
	if (!ext4_can_truncate(inode))
2359 2360
		return;

A
Aneesh Kumar K.V 已提交
2361
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
2362
		ext4_ext_truncate(inode);
A
Aneesh Kumar K.V 已提交
2363 2364
		return;
	}
A
Alex Tomas 已提交
2365

2366
	handle = start_transaction(inode);
2367
	if (IS_ERR(handle))
2368 2369 2370
		return;		/* AKPM: return what? */

	last_block = (inode->i_size + blocksize-1)
2371
					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
2372

2373 2374 2375
	if (inode->i_size & (blocksize - 1))
		if (ext4_block_truncate_page(handle, mapping, inode->i_size))
			goto out_stop;
2376

2377
	n = ext4_block_to_path(inode, last_block, offsets, NULL);
2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389
	if (n == 0)
		goto out_stop;	/* error */

	/*
	 * OK.  This truncate is going to happen.  We add the inode to the
	 * orphan list, so that if this truncate spans multiple transactions,
	 * and we crash, we will resume the truncate when the filesystem
	 * recovers.  It also marks the inode dirty, to catch the new size.
	 *
	 * Implication: the file must always be in a sane, consistent
	 * truncatable state while each transaction commits.
	 */
2390
	if (ext4_orphan_add(handle, inode))
2391 2392 2393 2394 2395 2396 2397
		goto out_stop;

	/*
	 * The orphan list entry will now protect us from any crash which
	 * occurs before the truncate completes, so it is now safe to propagate
	 * the new, shorter inode size (held for now in i_size) into the
	 * on-disk inode. We do this via i_disksize, which is the value which
2398
	 * ext4 *really* writes onto the disk inode.
2399 2400 2401 2402
	 */
	ei->i_disksize = inode->i_size;

	/*
2403
	 * From here we block out all ext4_get_block() callers who want to
2404 2405
	 * modify the block allocation tree.
	 */
2406
	down_write(&ei->i_data_sem);
2407 2408

	if (n == 1) {		/* direct blocks */
2409 2410
		ext4_free_data(handle, inode, NULL, i_data+offsets[0],
			       i_data + EXT4_NDIR_BLOCKS);
2411 2412 2413
		goto do_indirects;
	}

2414
	partial = ext4_find_shared(inode, n, offsets, chain, &nr);
2415 2416 2417 2418
	/* Kill the top of shared branch (not detached) */
	if (nr) {
		if (partial == chain) {
			/* Shared branch grows from the inode */
2419
			ext4_free_branches(handle, inode, NULL,
2420 2421 2422 2423 2424 2425 2426 2427 2428
					   &nr, &nr+1, (chain+n-1) - partial);
			*partial->p = 0;
			/*
			 * We mark the inode dirty prior to restart,
			 * and prior to stop.  No need for it here.
			 */
		} else {
			/* Shared branch grows from an indirect block */
			BUFFER_TRACE(partial->bh, "get_write_access");
2429
			ext4_free_branches(handle, inode, partial->bh,
2430 2431 2432 2433 2434 2435
					partial->p,
					partial->p+1, (chain+n-1) - partial);
		}
	}
	/* Clear the ends of indirect blocks on the shared branch */
	while (partial > chain) {
2436
		ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
2437 2438 2439 2440 2441 2442 2443 2444 2445 2446
				   (__le32*)partial->bh->b_data+addr_per_block,
				   (chain+n-1) - partial);
		BUFFER_TRACE(partial->bh, "call brelse");
		brelse (partial->bh);
		partial--;
	}
do_indirects:
	/* Kill the remaining (whole) subtrees */
	switch (offsets[0]) {
	default:
2447
		nr = i_data[EXT4_IND_BLOCK];
2448
		if (nr) {
2449 2450
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
			i_data[EXT4_IND_BLOCK] = 0;
2451
		}
2452 2453
	case EXT4_IND_BLOCK:
		nr = i_data[EXT4_DIND_BLOCK];
2454
		if (nr) {
2455 2456
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
			i_data[EXT4_DIND_BLOCK] = 0;
2457
		}
2458 2459
	case EXT4_DIND_BLOCK:
		nr = i_data[EXT4_TIND_BLOCK];
2460
		if (nr) {
2461 2462
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
			i_data[EXT4_TIND_BLOCK] = 0;
2463
		}
2464
	case EXT4_TIND_BLOCK:
2465 2466 2467
		;
	}

2468
	ext4_discard_reservation(inode);
2469

2470
	up_write(&ei->i_data_sem);
K
Kalpak Shah 已提交
2471
	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
2472
	ext4_mark_inode_dirty(handle, inode);
2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484

	/*
	 * In a multi-transaction truncate, we only make the final transaction
	 * synchronous
	 */
	if (IS_SYNC(inode))
		handle->h_sync = 1;
out_stop:
	/*
	 * If this was a simple ftruncate(), and the file will remain alive
	 * then we need to clear up the orphan record which we created above.
	 * However, if this was a real unlink then we were called by
2485
	 * ext4_delete_inode(), and we allow that function to clean up the
2486 2487 2488
	 * orphan info for us.
	 */
	if (inode->i_nlink)
2489
		ext4_orphan_del(handle, inode);
2490

2491
	ext4_journal_stop(handle);
2492 2493
}

2494 2495
static ext4_fsblk_t ext4_get_inode_block(struct super_block *sb,
		unsigned long ino, struct ext4_iloc *iloc)
2496
{
2497
	ext4_group_t block_group;
2498
	unsigned long offset;
2499
	ext4_fsblk_t block;
A
Akinobu Mita 已提交
2500
	struct ext4_group_desc *gdp;
2501

2502
	if (!ext4_valid_inum(sb, ino)) {
2503 2504 2505 2506 2507 2508 2509 2510
		/*
		 * This error is already checked for in namei.c unless we are
		 * looking at an NFS filehandle, in which case no error
		 * report is needed
		 */
		return 0;
	}

2511
	block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
A
Akinobu Mita 已提交
2512 2513
	gdp = ext4_get_group_desc(sb, block_group, NULL);
	if (!gdp)
2514 2515 2516 2517 2518
		return 0;

	/*
	 * Figure out the offset within the block group inode table
	 */
2519 2520
	offset = ((ino - 1) % EXT4_INODES_PER_GROUP(sb)) *
		EXT4_INODE_SIZE(sb);
2521 2522
	block = ext4_inode_table(sb, gdp) +
		(offset >> EXT4_BLOCK_SIZE_BITS(sb));
2523 2524

	iloc->block_group = block_group;
2525
	iloc->offset = offset & (EXT4_BLOCK_SIZE(sb) - 1);
2526 2527 2528 2529
	return block;
}

/*
2530
 * ext4_get_inode_loc returns with an extra refcount against the inode's
2531 2532 2533 2534
 * underlying buffer_head on success. If 'in_mem' is true, we have all
 * data in memory that is needed to recreate the on-disk version of this
 * inode.
 */
2535 2536
static int __ext4_get_inode_loc(struct inode *inode,
				struct ext4_iloc *iloc, int in_mem)
2537
{
2538
	ext4_fsblk_t block;
2539 2540
	struct buffer_head *bh;

2541
	block = ext4_get_inode_block(inode->i_sb, inode->i_ino, iloc);
2542 2543 2544 2545 2546
	if (!block)
		return -EIO;

	bh = sb_getblk(inode->i_sb, block);
	if (!bh) {
2547
		ext4_error (inode->i_sb, "ext4_get_inode_loc",
2548
				"unable to read inode block - "
2549
				"inode=%lu, block=%llu",
2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567
				 inode->i_ino, block);
		return -EIO;
	}
	if (!buffer_uptodate(bh)) {
		lock_buffer(bh);
		if (buffer_uptodate(bh)) {
			/* someone brought it uptodate while we waited */
			unlock_buffer(bh);
			goto has_buffer;
		}

		/*
		 * If we have all information of the inode in memory and this
		 * is the only valid inode in the block, we need not read the
		 * block.
		 */
		if (in_mem) {
			struct buffer_head *bitmap_bh;
2568
			struct ext4_group_desc *desc;
2569 2570
			int inodes_per_buffer;
			int inode_offset, i;
2571
			ext4_group_t block_group;
2572 2573 2574
			int start;

			block_group = (inode->i_ino - 1) /
2575
					EXT4_INODES_PER_GROUP(inode->i_sb);
2576
			inodes_per_buffer = bh->b_size /
2577
				EXT4_INODE_SIZE(inode->i_sb);
2578
			inode_offset = ((inode->i_ino - 1) %
2579
					EXT4_INODES_PER_GROUP(inode->i_sb));
2580 2581 2582
			start = inode_offset & ~(inodes_per_buffer - 1);

			/* Is the inode bitmap in cache? */
2583
			desc = ext4_get_group_desc(inode->i_sb,
2584 2585 2586 2587 2588
						block_group, NULL);
			if (!desc)
				goto make_io;

			bitmap_bh = sb_getblk(inode->i_sb,
2589
				ext4_inode_bitmap(inode->i_sb, desc));
2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604
			if (!bitmap_bh)
				goto make_io;

			/*
			 * If the inode bitmap isn't in cache then the
			 * optimisation may end up performing two reads instead
			 * of one, so skip it.
			 */
			if (!buffer_uptodate(bitmap_bh)) {
				brelse(bitmap_bh);
				goto make_io;
			}
			for (i = start; i < start + inodes_per_buffer; i++) {
				if (i == inode_offset)
					continue;
2605
				if (ext4_test_bit(i, bitmap_bh->b_data))
2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628
					break;
			}
			brelse(bitmap_bh);
			if (i == start + inodes_per_buffer) {
				/* all other inodes are free, so skip I/O */
				memset(bh->b_data, 0, bh->b_size);
				set_buffer_uptodate(bh);
				unlock_buffer(bh);
				goto has_buffer;
			}
		}

make_io:
		/*
		 * There are other valid inodes in the buffer, this inode
		 * has in-inode xattrs, or we don't have this inode in memory.
		 * Read the block from disk.
		 */
		get_bh(bh);
		bh->b_end_io = end_buffer_read_sync;
		submit_bh(READ_META, bh);
		wait_on_buffer(bh);
		if (!buffer_uptodate(bh)) {
2629
			ext4_error(inode->i_sb, "ext4_get_inode_loc",
2630
					"unable to read inode block - "
2631
					"inode=%lu, block=%llu",
2632 2633 2634 2635 2636 2637 2638 2639 2640 2641
					inode->i_ino, block);
			brelse(bh);
			return -EIO;
		}
	}
has_buffer:
	iloc->bh = bh;
	return 0;
}

2642
int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
2643 2644
{
	/* We have all inode data except xattrs in memory here. */
2645 2646
	return __ext4_get_inode_loc(inode, iloc,
		!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
2647 2648
}

2649
void ext4_set_inode_flags(struct inode *inode)
2650
{
2651
	unsigned int flags = EXT4_I(inode)->i_flags;
2652 2653

	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
2654
	if (flags & EXT4_SYNC_FL)
2655
		inode->i_flags |= S_SYNC;
2656
	if (flags & EXT4_APPEND_FL)
2657
		inode->i_flags |= S_APPEND;
2658
	if (flags & EXT4_IMMUTABLE_FL)
2659
		inode->i_flags |= S_IMMUTABLE;
2660
	if (flags & EXT4_NOATIME_FL)
2661
		inode->i_flags |= S_NOATIME;
2662
	if (flags & EXT4_DIRSYNC_FL)
2663 2664 2665
		inode->i_flags |= S_DIRSYNC;
}

2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683
/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
void ext4_get_inode_flags(struct ext4_inode_info *ei)
{
	unsigned int flags = ei->vfs_inode.i_flags;

	ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
			EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
	if (flags & S_SYNC)
		ei->i_flags |= EXT4_SYNC_FL;
	if (flags & S_APPEND)
		ei->i_flags |= EXT4_APPEND_FL;
	if (flags & S_IMMUTABLE)
		ei->i_flags |= EXT4_IMMUTABLE_FL;
	if (flags & S_NOATIME)
		ei->i_flags |= EXT4_NOATIME_FL;
	if (flags & S_DIRSYNC)
		ei->i_flags |= EXT4_DIRSYNC_FL;
}
2684 2685 2686 2687
static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
					struct ext4_inode_info *ei)
{
	blkcnt_t i_blocks ;
A
Aneesh Kumar K.V 已提交
2688 2689
	struct inode *inode = &(ei->vfs_inode);
	struct super_block *sb = inode->i_sb;
2690 2691 2692 2693 2694 2695

	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
		/* we are using combined 48 bit field */
		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
					le32_to_cpu(raw_inode->i_blocks_lo);
A
Aneesh Kumar K.V 已提交
2696 2697 2698 2699 2700 2701
		if (ei->i_flags & EXT4_HUGE_FILE_FL) {
			/* i_blocks represent file system block size */
			return i_blocks  << (inode->i_blkbits - 9);
		} else {
			return i_blocks;
		}
2702 2703 2704 2705
	} else {
		return le32_to_cpu(raw_inode->i_blocks_lo);
	}
}
2706

2707
struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
2708
{
2709 2710
	struct ext4_iloc iloc;
	struct ext4_inode *raw_inode;
2711
	struct ext4_inode_info *ei;
2712
	struct buffer_head *bh;
2713 2714
	struct inode *inode;
	long ret;
2715 2716
	int block;

2717 2718 2719 2720 2721 2722 2723
	inode = iget_locked(sb, ino);
	if (!inode)
		return ERR_PTR(-ENOMEM);
	if (!(inode->i_state & I_NEW))
		return inode;

	ei = EXT4_I(inode);
2724 2725 2726
#ifdef CONFIG_EXT4DEV_FS_POSIX_ACL
	ei->i_acl = EXT4_ACL_NOT_CACHED;
	ei->i_default_acl = EXT4_ACL_NOT_CACHED;
2727 2728 2729
#endif
	ei->i_block_alloc_info = NULL;

2730 2731
	ret = __ext4_get_inode_loc(inode, &iloc, 0);
	if (ret < 0)
2732 2733
		goto bad_inode;
	bh = iloc.bh;
2734
	raw_inode = ext4_raw_inode(&iloc);
2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753
	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
	if(!(test_opt (inode->i_sb, NO_UID32))) {
		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
	}
	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);

	ei->i_state = 0;
	ei->i_dir_start_lookup = 0;
	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
	/* We now have enough fields to check if the inode was active or not.
	 * This is needed because nfsd might try to access dead inodes
	 * the test is that same one that e2fsck uses
	 * NeilBrown 1999oct15
	 */
	if (inode->i_nlink == 0) {
		if (inode->i_mode == 0 ||
2754
		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
2755 2756
			/* this inode is deleted */
			brelse (bh);
2757
			ret = -ESTALE;
2758 2759 2760 2761 2762 2763 2764 2765
			goto bad_inode;
		}
		/* The only unlinked inodes we let through here have
		 * valid i_mode and are being read by the orphan
		 * recovery code: that's fine, we're about to complete
		 * the process of deleting those. */
	}
	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
2766
	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
2767
	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
2768
	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
2769
	    cpu_to_le32(EXT4_OS_HURD)) {
B
Badari Pulavarty 已提交
2770 2771
		ei->i_file_acl |=
			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
2772
	}
2773
	inode->i_size = ext4_isize(raw_inode);
2774 2775 2776 2777 2778 2779 2780
	ei->i_disksize = inode->i_size;
	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
	ei->i_block_group = iloc.block_group;
	/*
	 * NOTE! The in-memory inode i_data array is in little-endian order
	 * even on big-endian machines: we do NOT byteswap the block numbers!
	 */
2781
	for (block = 0; block < EXT4_N_BLOCKS; block++)
2782 2783 2784
		ei->i_data[block] = raw_inode->i_block[block];
	INIT_LIST_HEAD(&ei->i_orphan);

2785
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
2786
		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
2787
		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
2788 2789
		    EXT4_INODE_SIZE(inode->i_sb)) {
			brelse (bh);
2790
			ret = -EIO;
2791
			goto bad_inode;
2792
		}
2793 2794
		if (ei->i_extra_isize == 0) {
			/* The extra space is currently unused. Use it. */
2795 2796
			ei->i_extra_isize = sizeof(struct ext4_inode) -
					    EXT4_GOOD_OLD_INODE_SIZE;
2797 2798
		} else {
			__le32 *magic = (void *)raw_inode +
2799
					EXT4_GOOD_OLD_INODE_SIZE +
2800
					ei->i_extra_isize;
2801 2802
			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
				 ei->i_state |= EXT4_STATE_XATTR;
2803 2804 2805 2806
		}
	} else
		ei->i_extra_isize = 0;

K
Kalpak Shah 已提交
2807 2808 2809 2810 2811
	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);

2812 2813 2814 2815 2816 2817 2818
	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			inode->i_version |=
			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
	}

2819
	if (S_ISREG(inode->i_mode)) {
2820 2821 2822
		inode->i_op = &ext4_file_inode_operations;
		inode->i_fop = &ext4_file_operations;
		ext4_set_aops(inode);
2823
	} else if (S_ISDIR(inode->i_mode)) {
2824 2825
		inode->i_op = &ext4_dir_inode_operations;
		inode->i_fop = &ext4_dir_operations;
2826
	} else if (S_ISLNK(inode->i_mode)) {
2827 2828
		if (ext4_inode_is_fast_symlink(inode))
			inode->i_op = &ext4_fast_symlink_inode_operations;
2829
		else {
2830 2831
			inode->i_op = &ext4_symlink_inode_operations;
			ext4_set_aops(inode);
2832 2833
		}
	} else {
2834
		inode->i_op = &ext4_special_inode_operations;
2835 2836 2837 2838 2839 2840 2841 2842
		if (raw_inode->i_block[0])
			init_special_inode(inode, inode->i_mode,
			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
		else
			init_special_inode(inode, inode->i_mode,
			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
	}
	brelse (iloc.bh);
2843
	ext4_set_inode_flags(inode);
2844 2845
	unlock_new_inode(inode);
	return inode;
2846 2847

bad_inode:
2848 2849
	iget_failed(inode);
	return ERR_PTR(ret);
2850 2851
}

2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865
static int ext4_inode_blocks_set(handle_t *handle,
				struct ext4_inode *raw_inode,
				struct ext4_inode_info *ei)
{
	struct inode *inode = &(ei->vfs_inode);
	u64 i_blocks = inode->i_blocks;
	struct super_block *sb = inode->i_sb;
	int err = 0;

	if (i_blocks <= ~0U) {
		/*
		 * i_blocks can be represnted in a 32 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
2866
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
2867
		raw_inode->i_blocks_high = 0;
A
Aneesh Kumar K.V 已提交
2868
		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
2869 2870 2871 2872 2873 2874 2875 2876 2877 2878
	} else if (i_blocks <= 0xffffffffffffULL) {
		/*
		 * i_blocks can be represented in a 48 bit variable
		 * as multiple of 512 bytes
		 */
		err = ext4_update_rocompat_feature(handle, sb,
					    EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
		if (err)
			goto  err_out;
		/* i_block is stored in the split  48 bit fields */
A
Aneesh Kumar K.V 已提交
2879
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
2880
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
A
Aneesh Kumar K.V 已提交
2881
		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
2882
	} else {
A
Aneesh Kumar K.V 已提交
2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
		/*
		 * i_blocks should be represented in a 48 bit variable
		 * as multiple of  file system block size
		 */
		err = ext4_update_rocompat_feature(handle, sb,
					    EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
		if (err)
			goto  err_out;
		ei->i_flags |= EXT4_HUGE_FILE_FL;
		/* i_block is stored in file system block size */
		i_blocks = i_blocks >> (inode->i_blkbits - 9);
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
2896 2897 2898 2899 2900
	}
err_out:
	return err;
}

2901 2902 2903 2904 2905 2906 2907
/*
 * Post the struct inode info into an on-disk inode location in the
 * buffer-cache.  This gobbles the caller's reference to the
 * buffer_head in the inode location struct.
 *
 * The caller must have write access to iloc->bh.
 */
2908
static int ext4_do_update_inode(handle_t *handle,
2909
				struct inode *inode,
2910
				struct ext4_iloc *iloc)
2911
{
2912 2913
	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
	struct ext4_inode_info *ei = EXT4_I(inode);
2914 2915 2916 2917 2918
	struct buffer_head *bh = iloc->bh;
	int err = 0, rc, block;

	/* For fields not not tracking in the in-memory inode,
	 * initialise them to zero for new inodes. */
2919 2920
	if (ei->i_state & EXT4_STATE_NEW)
		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
2921

2922
	ext4_get_inode_flags(ei);
2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948
	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
	if(!(test_opt(inode->i_sb, NO_UID32))) {
		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
/*
 * Fix up interoperability with old kernels. Otherwise, old inodes get
 * re-used with the upper 16 bits of the uid/gid intact
 */
		if(!ei->i_dtime) {
			raw_inode->i_uid_high =
				cpu_to_le16(high_16_bits(inode->i_uid));
			raw_inode->i_gid_high =
				cpu_to_le16(high_16_bits(inode->i_gid));
		} else {
			raw_inode->i_uid_high = 0;
			raw_inode->i_gid_high = 0;
		}
	} else {
		raw_inode->i_uid_low =
			cpu_to_le16(fs_high2lowuid(inode->i_uid));
		raw_inode->i_gid_low =
			cpu_to_le16(fs_high2lowgid(inode->i_gid));
		raw_inode->i_uid_high = 0;
		raw_inode->i_gid_high = 0;
	}
	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
K
Kalpak Shah 已提交
2949 2950 2951 2952 2953 2954

	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);

2955 2956
	if (ext4_inode_blocks_set(handle, raw_inode, ei))
		goto out_brelse;
2957
	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
2958 2959
	/* clear the migrate flag in the raw_inode */
	raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
2960 2961
	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_HURD))
B
Badari Pulavarty 已提交
2962 2963
		raw_inode->i_file_acl_high =
			cpu_to_le16(ei->i_file_acl >> 32);
2964
	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980
	ext4_isize_set(raw_inode, ei->i_disksize);
	if (ei->i_disksize > 0x7fffffffULL) {
		struct super_block *sb = inode->i_sb;
		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
				EXT4_SB(sb)->s_es->s_rev_level ==
				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
			/* If this is the first large file
			 * created, add a flag to the superblock.
			 */
			err = ext4_journal_get_write_access(handle,
					EXT4_SB(sb)->s_sbh);
			if (err)
				goto out_brelse;
			ext4_update_dynamic_rev(sb);
			EXT4_SET_RO_COMPAT_FEATURE(sb,
2981
					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
2982 2983 2984 2985
			sb->s_dirt = 1;
			handle->h_sync = 1;
			err = ext4_journal_dirty_metadata(handle,
					EXT4_SB(sb)->s_sbh);
2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999
		}
	}
	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
		if (old_valid_dev(inode->i_rdev)) {
			raw_inode->i_block[0] =
				cpu_to_le32(old_encode_dev(inode->i_rdev));
			raw_inode->i_block[1] = 0;
		} else {
			raw_inode->i_block[0] = 0;
			raw_inode->i_block[1] =
				cpu_to_le32(new_encode_dev(inode->i_rdev));
			raw_inode->i_block[2] = 0;
		}
3000
	} else for (block = 0; block < EXT4_N_BLOCKS; block++)
3001 3002
		raw_inode->i_block[block] = ei->i_data[block];

3003 3004 3005 3006 3007
	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
	if (ei->i_extra_isize) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			raw_inode->i_version_hi =
			cpu_to_le32(inode->i_version >> 32);
3008
		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
3009 3010
	}

3011

3012 3013
	BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
	rc = ext4_journal_dirty_metadata(handle, bh);
3014 3015
	if (!err)
		err = rc;
3016
	ei->i_state &= ~EXT4_STATE_NEW;
3017 3018 3019

out_brelse:
	brelse (bh);
3020
	ext4_std_error(inode->i_sb, err);
3021 3022 3023 3024
	return err;
}

/*
3025
 * ext4_write_inode()
3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041
 *
 * We are called from a few places:
 *
 * - Within generic_file_write() for O_SYNC files.
 *   Here, there will be no transaction running. We wait for any running
 *   trasnaction to commit.
 *
 * - Within sys_sync(), kupdate and such.
 *   We wait on commit, if tol to.
 *
 * - Within prune_icache() (PF_MEMALLOC == true)
 *   Here we simply return.  We can't afford to block kswapd on the
 *   journal commit.
 *
 * In all cases it is actually safe for us to return without doing anything,
 * because the inode has been copied into a raw inode buffer in
3042
 * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058
 * knfsd.
 *
 * Note that we are absolutely dependent upon all inode dirtiers doing the
 * right thing: they *must* call mark_inode_dirty() after dirtying info in
 * which we are interested.
 *
 * It would be a bug for them to not do this.  The code:
 *
 *	mark_inode_dirty(inode)
 *	stuff();
 *	inode->i_size = expr;
 *
 * is in error because a kswapd-driven write_inode() could occur while
 * `stuff()' is running, and the new i_size will be lost.  Plus the inode
 * will no longer be on the superblock's dirty inode list.
 */
3059
int ext4_write_inode(struct inode *inode, int wait)
3060 3061 3062 3063
{
	if (current->flags & PF_MEMALLOC)
		return 0;

3064
	if (ext4_journal_current_handle()) {
M
Mingming Cao 已提交
3065
		jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
3066 3067 3068 3069 3070 3071 3072
		dump_stack();
		return -EIO;
	}

	if (!wait)
		return 0;

3073
	return ext4_force_commit(inode->i_sb);
3074 3075 3076
}

/*
3077
 * ext4_setattr()
3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090
 *
 * Called from notify_change.
 *
 * We want to trap VFS attempts to truncate the file as soon as
 * possible.  In particular, we want to make sure that when the VFS
 * shrinks i_size, we put the inode on the orphan list and modify
 * i_disksize immediately, so that during the subsequent flushing of
 * dirty pages and freeing of disk blocks, we can guarantee that any
 * commit will leave the blocks being flushed in an unused state on
 * disk.  (On recovery, the inode will get truncated and the blocks will
 * be freed, so we have a strong guarantee that no future commit will
 * leave these blocks visible to the user.)
 *
3091 3092 3093 3094 3095 3096 3097 3098
 * Another thing we have to assure is that if we are in ordered mode
 * and inode is still attached to the committing transaction, we must
 * we start writeout of all the dirty pages which are being truncated.
 * This way we are sure that all the data written in the previous
 * transaction are already on disk (truncate waits for pages under
 * writeback).
 *
 * Called with inode->i_mutex down.
3099
 */
3100
int ext4_setattr(struct dentry *dentry, struct iattr *attr)
3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115
{
	struct inode *inode = dentry->d_inode;
	int error, rc = 0;
	const unsigned int ia_valid = attr->ia_valid;

	error = inode_change_ok(inode, attr);
	if (error)
		return error;

	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
		handle_t *handle;

		/* (user+group)*(old+new) structure, inode write (sb,
		 * inode block, ? - but truncate inode update has it) */
3116 3117
		handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
					EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
3118 3119 3120 3121 3122 3123
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
		error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
		if (error) {
3124
			ext4_journal_stop(handle);
3125 3126 3127 3128 3129 3130 3131 3132
			return error;
		}
		/* Update corresponding info in inode so that everything is in
		 * one transaction */
		if (attr->ia_valid & ATTR_UID)
			inode->i_uid = attr->ia_uid;
		if (attr->ia_valid & ATTR_GID)
			inode->i_gid = attr->ia_gid;
3133 3134
		error = ext4_mark_inode_dirty(handle, inode);
		ext4_journal_stop(handle);
3135 3136
	}

3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147
	if (attr->ia_valid & ATTR_SIZE) {
		if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);

			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
				error = -EFBIG;
				goto err_out;
			}
		}
	}

3148 3149 3150 3151
	if (S_ISREG(inode->i_mode) &&
	    attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
		handle_t *handle;

3152
		handle = ext4_journal_start(inode, 3);
3153 3154 3155 3156 3157
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}

3158 3159 3160
		error = ext4_orphan_add(handle, inode);
		EXT4_I(inode)->i_disksize = attr->ia_size;
		rc = ext4_mark_inode_dirty(handle, inode);
3161 3162
		if (!error)
			error = rc;
3163
		ext4_journal_stop(handle);
3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179

		if (ext4_should_order_data(inode)) {
			error = ext4_begin_ordered_truncate(inode,
							    attr->ia_size);
			if (error) {
				/* Do as much error cleanup as possible */
				handle = ext4_journal_start(inode, 3);
				if (IS_ERR(handle)) {
					ext4_orphan_del(NULL, inode);
					goto err_out;
				}
				ext4_orphan_del(handle, inode);
				ext4_journal_stop(handle);
				goto err_out;
			}
		}
3180 3181 3182 3183
	}

	rc = inode_setattr(inode, attr);

3184
	/* If inode_setattr's call to ext4_truncate failed to get a
3185 3186 3187
	 * transaction handle at all, we need to clean up the in-core
	 * orphan list manually. */
	if (inode->i_nlink)
3188
		ext4_orphan_del(NULL, inode);
3189 3190

	if (!rc && (ia_valid & ATTR_MODE))
3191
		rc = ext4_acl_chmod(inode);
3192 3193

err_out:
3194
	ext4_std_error(inode->i_sb, error);
3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212
	if (!error)
		error = rc;
	return error;
}


/*
 * How many blocks doth make a writepage()?
 *
 * With N blocks per page, it may be:
 * N data blocks
 * 2 indirect block
 * 2 dindirect
 * 1 tindirect
 * N+5 bitmap blocks (from the above)
 * N+5 group descriptor summary blocks
 * 1 inode block
 * 1 superblock.
3213
 * 2 * EXT4_SINGLEDATA_TRANS_BLOCKS for the quote files
3214
 *
3215
 * 3 * (N + 5) + 2 + 2 * EXT4_SINGLEDATA_TRANS_BLOCKS
3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227
 *
 * With ordered or writeback data it's the same, less the N data blocks.
 *
 * If the inode's direct blocks can hold an integral number of pages then a
 * page cannot straddle two indirect blocks, and we can only touch one indirect
 * and dindirect block, and the "5" above becomes "3".
 *
 * This still overestimates under most circumstances.  If we were to pass the
 * start and end offsets in here as well we could do block_to_path() on each
 * block and work out the exact number of indirects which are touched.  Pah.
 */

A
Alex Tomas 已提交
3228
int ext4_writepage_trans_blocks(struct inode *inode)
3229
{
3230 3231
	int bpp = ext4_journal_blocks_per_page(inode);
	int indirects = (EXT4_NDIR_BLOCKS % bpp) ? 5 : 3;
3232 3233
	int ret;

A
Alex Tomas 已提交
3234 3235 3236
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
		return ext4_ext_writepage_trans_blocks(inode, bpp);

3237
	if (ext4_should_journal_data(inode))
3238 3239 3240 3241 3242 3243 3244
		ret = 3 * (bpp + indirects) + 2;
	else
		ret = 2 * (bpp + indirects) + 2;

#ifdef CONFIG_QUOTA
	/* We know that structure was already allocated during DQUOT_INIT so
	 * we will be updating only the data blocks + inodes */
3245
	ret += 2*EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb);
3246 3247 3248 3249 3250 3251
#endif

	return ret;
}

/*
3252
 * The caller must have previously called ext4_reserve_inode_write().
3253 3254
 * Give this, we know that the caller already has write access to iloc->bh.
 */
3255 3256
int ext4_mark_iloc_dirty(handle_t *handle,
		struct inode *inode, struct ext4_iloc *iloc)
3257 3258 3259
{
	int err = 0;

3260 3261 3262
	if (test_opt(inode->i_sb, I_VERSION))
		inode_inc_iversion(inode);

3263 3264 3265
	/* the do_update_inode consumes one bh->b_count */
	get_bh(iloc->bh);

3266
	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
3267
	err = ext4_do_update_inode(handle, inode, iloc);
3268 3269 3270 3271 3272 3273 3274 3275 3276 3277
	put_bh(iloc->bh);
	return err;
}

/*
 * On success, We end up with an outstanding reference count against
 * iloc->bh.  This _must_ be cleaned up later.
 */

int
3278 3279
ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
			 struct ext4_iloc *iloc)
3280 3281 3282
{
	int err = 0;
	if (handle) {
3283
		err = ext4_get_inode_loc(inode, iloc);
3284 3285
		if (!err) {
			BUFFER_TRACE(iloc->bh, "get_write_access");
3286
			err = ext4_journal_get_write_access(handle, iloc->bh);
3287 3288 3289 3290 3291 3292
			if (err) {
				brelse(iloc->bh);
				iloc->bh = NULL;
			}
		}
	}
3293
	ext4_std_error(inode->i_sb, err);
3294 3295 3296
	return err;
}

3297 3298 3299 3300
/*
 * Expand an inode by new_extra_isize bytes.
 * Returns 0 on success or negative error number on failure.
 */
A
Aneesh Kumar K.V 已提交
3301 3302 3303 3304
static int ext4_expand_extra_isize(struct inode *inode,
				   unsigned int new_extra_isize,
				   struct ext4_iloc iloc,
				   handle_t *handle)
3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331
{
	struct ext4_inode *raw_inode;
	struct ext4_xattr_ibody_header *header;
	struct ext4_xattr_entry *entry;

	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
		return 0;

	raw_inode = ext4_raw_inode(&iloc);

	header = IHDR(inode, raw_inode);
	entry = IFIRST(header);

	/* No extended attributes present */
	if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
		header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
			new_extra_isize);
		EXT4_I(inode)->i_extra_isize = new_extra_isize;
		return 0;
	}

	/* try to expand with EAs present */
	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
					  raw_inode, handle);
}

3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352
/*
 * What we do here is to mark the in-core inode as clean with respect to inode
 * dirtiness (it may still be data-dirty).
 * This means that the in-core inode may be reaped by prune_icache
 * without having to perform any I/O.  This is a very good thing,
 * because *any* task may call prune_icache - even ones which
 * have a transaction open against a different journal.
 *
 * Is this cheating?  Not really.  Sure, we haven't written the
 * inode out, but prune_icache isn't a user-visible syncing function.
 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
 * we start and wait on commits.
 *
 * Is this efficient/effective?  Well, we're being nice to the system
 * by cleaning up our inodes proactively so they can be reaped
 * without I/O.  But we are potentially leaving up to five seconds'
 * worth of inodes floating about which prune_icache wants us to
 * write out.  One way to fix that would be to get prune_icache()
 * to do a write_super() to free up some memory.  It has the desired
 * effect.
 */
3353
int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
3354
{
3355
	struct ext4_iloc iloc;
3356 3357 3358
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	static unsigned int mnt_count;
	int err, ret;
3359 3360

	might_sleep();
3361
	err = ext4_reserve_inode_write(handle, inode, &iloc);
3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377
	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
	    !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
		/*
		 * We need extra buffer credits since we may write into EA block
		 * with this same handle. If journal_extend fails, then it will
		 * only result in a minor loss of functionality for that inode.
		 * If this is felt to be critical, then e2fsck should be run to
		 * force a large enough s_min_extra_isize.
		 */
		if ((jbd2_journal_extend(handle,
			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
			ret = ext4_expand_extra_isize(inode,
						      sbi->s_want_extra_isize,
						      iloc, handle);
			if (ret) {
				EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
A
Aneesh Kumar K.V 已提交
3378 3379
				if (mnt_count !=
					le16_to_cpu(sbi->s_es->s_mnt_count)) {
3380
					ext4_warning(inode->i_sb, __func__,
3381 3382 3383
					"Unable to expand inode %lu. Delete"
					" some EAs or run e2fsck.",
					inode->i_ino);
A
Aneesh Kumar K.V 已提交
3384 3385
					mnt_count =
					  le16_to_cpu(sbi->s_es->s_mnt_count);
3386 3387 3388 3389
				}
			}
		}
	}
3390
	if (!err)
3391
		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
3392 3393 3394 3395
	return err;
}

/*
3396
 * ext4_dirty_inode() is called from __mark_inode_dirty()
3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408
 *
 * We're really interested in the case where a file is being extended.
 * i_size has been changed by generic_commit_write() and we thus need
 * to include the updated inode in the current transaction.
 *
 * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
 * are allocated to the file.
 *
 * If the inode is marked synchronous, we don't honour that here - doing
 * so would cause a commit on atime updates, which we don't bother doing.
 * We handle synchronous inodes at the highest possible level.
 */
3409
void ext4_dirty_inode(struct inode *inode)
3410
{
3411
	handle_t *current_handle = ext4_journal_current_handle();
3412 3413
	handle_t *handle;

3414
	handle = ext4_journal_start(inode, 2);
3415 3416 3417 3418 3419 3420
	if (IS_ERR(handle))
		goto out;
	if (current_handle &&
		current_handle->h_transaction != handle->h_transaction) {
		/* This task has a transaction open against a different fs */
		printk(KERN_EMERG "%s: transactions do not match!\n",
3421
		       __func__);
3422 3423 3424
	} else {
		jbd_debug(5, "marking dirty.  outer handle=%p\n",
				current_handle);
3425
		ext4_mark_inode_dirty(handle, inode);
3426
	}
3427
	ext4_journal_stop(handle);
3428 3429 3430 3431 3432 3433 3434 3435
out:
	return;
}

#if 0
/*
 * Bind an inode's backing buffer_head into this transaction, to prevent
 * it from being flushed to disk early.  Unlike
3436
 * ext4_reserve_inode_write, this leaves behind no bh reference and
3437 3438 3439
 * returns no iloc structure, so the caller needs to repeat the iloc
 * lookup to mark the inode dirty later.
 */
3440
static int ext4_pin_inode(handle_t *handle, struct inode *inode)
3441
{
3442
	struct ext4_iloc iloc;
3443 3444 3445

	int err = 0;
	if (handle) {
3446
		err = ext4_get_inode_loc(inode, &iloc);
3447 3448
		if (!err) {
			BUFFER_TRACE(iloc.bh, "get_write_access");
3449
			err = jbd2_journal_get_write_access(handle, iloc.bh);
3450
			if (!err)
3451
				err = ext4_journal_dirty_metadata(handle,
3452 3453 3454 3455
								  iloc.bh);
			brelse(iloc.bh);
		}
	}
3456
	ext4_std_error(inode->i_sb, err);
3457 3458 3459 3460
	return err;
}
#endif

3461
int ext4_change_inode_journal_flag(struct inode *inode, int val)
3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476
{
	journal_t *journal;
	handle_t *handle;
	int err;

	/*
	 * We have to be very careful here: changing a data block's
	 * journaling status dynamically is dangerous.  If we write a
	 * data block to the journal, change the status and then delete
	 * that block, we risk forgetting to revoke the old log record
	 * from the journal and so a subsequent replay can corrupt data.
	 * So, first we make sure that the journal is empty and that
	 * nobody is changing anything.
	 */

3477
	journal = EXT4_JOURNAL(inode);
3478
	if (is_journal_aborted(journal))
3479 3480
		return -EROFS;

3481 3482
	jbd2_journal_lock_updates(journal);
	jbd2_journal_flush(journal);
3483 3484 3485 3486 3487 3488 3489 3490 3491 3492

	/*
	 * OK, there are no updates running now, and all cached data is
	 * synced to disk.  We are now in a completely consistent state
	 * which doesn't have anything in the journal, and we know that
	 * no filesystem updates are running, so it is safe to modify
	 * the inode's in-core data-journaling state flag now.
	 */

	if (val)
3493
		EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
3494
	else
3495 3496
		EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
	ext4_set_aops(inode);
3497

3498
	jbd2_journal_unlock_updates(journal);
3499 3500 3501

	/* Finally we can mark the inode as dirty. */

3502
	handle = ext4_journal_start(inode, 1);
3503 3504 3505
	if (IS_ERR(handle))
		return PTR_ERR(handle);

3506
	err = ext4_mark_inode_dirty(handle, inode);
3507
	handle->h_sync = 1;
3508 3509
	ext4_journal_stop(handle);
	ext4_std_error(inode->i_sb, err);
3510 3511 3512

	return err;
}
3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573

static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
{
	return !buffer_mapped(bh);
}

int ext4_page_mkwrite(struct vm_area_struct *vma, struct page *page)
{
	loff_t size;
	unsigned long len;
	int ret = -EINVAL;
	struct file *file = vma->vm_file;
	struct inode *inode = file->f_path.dentry->d_inode;
	struct address_space *mapping = inode->i_mapping;

	/*
	 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
	 * get i_mutex because we are already holding mmap_sem.
	 */
	down_read(&inode->i_alloc_sem);
	size = i_size_read(inode);
	if (page->mapping != mapping || size <= page_offset(page)
	    || !PageUptodate(page)) {
		/* page got truncated from under us? */
		goto out_unlock;
	}
	ret = 0;
	if (PageMappedToDisk(page))
		goto out_unlock;

	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;

	if (page_has_buffers(page)) {
		/* return if we have all the buffers mapped */
		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
				       ext4_bh_unmapped))
			goto out_unlock;
	}
	/*
	 * OK, we need to fill the hole... Do write_begin write_end
	 * to do block allocation/reservation.We are not holding
	 * inode.i__mutex here. That allow * parallel write_begin,
	 * write_end call. lock_page prevent this from happening
	 * on the same page though
	 */
	ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
			len, AOP_FLAG_UNINTERRUPTIBLE, &page, NULL);
	if (ret < 0)
		goto out_unlock;
	ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
			len, len, page, NULL);
	if (ret < 0)
		goto out_unlock;
	ret = 0;
out_unlock:
	up_read(&inode->i_alloc_sem);
	return ret;
}