uv_hub.h 25.7 KB
Newer Older
1 2 3 4 5 6 7
/*
 * This file is subject to the terms and conditions of the GNU General Public
 * License.  See the file "COPYING" in the main directory of this archive
 * for more details.
 *
 * SGI UV architectural definitions
 *
8
 * Copyright (C) 2007-2014 Silicon Graphics, Inc. All rights reserved.
9 10
 */

11 12
#ifndef _ASM_X86_UV_UV_HUB_H
#define _ASM_X86_UV_UV_HUB_H
13

14
#ifdef CONFIG_X86_64
15 16
#include <linux/numa.h>
#include <linux/percpu.h>
17
#include <linux/timer.h>
18
#include <linux/io.h>
19
#include <linux/topology.h>
20 21
#include <asm/types.h>
#include <asm/percpu.h>
22
#include <asm/uv/uv_mmrs.h>
23
#include <asm/uv/bios.h>
24 25
#include <asm/irq_vectors.h>
#include <asm/io_apic.h>
26 27 28 29 30


/*
 * Addressing Terminology
 *
31 32 33 34
 *	M       - The low M bits of a physical address represent the offset
 *		  into the blade local memory. RAM memory on a blade is physically
 *		  contiguous (although various IO spaces may punch holes in
 *		  it)..
35
 *
36 37
 *	N	- Number of bits in the node portion of a socket physical
 *		  address.
38
 *
39 40 41 42 43
 *	NASID   - network ID of a router, Mbrick or Cbrick. Nasid values of
 *		  routers always have low bit of 1, C/MBricks have low bit
 *		  equal to 0. Most addressing macros that target UV hub chips
 *		  right shift the NASID by 1 to exclude the always-zero bit.
 *		  NASIDs contain up to 15 bits.
44 45 46 47
 *
 *	GNODE   - NASID right shifted by 1 bit. Most mmrs contain gnodes instead
 *		  of nasids.
 *
48 49
 *	PNODE   - the low N bits of the GNODE. The PNODE is the most useful variant
 *		  of the nasid for socket usage.
50
 *
51 52 53 54 55 56 57
 *	GPA	- (global physical address) a socket physical address converted
 *		  so that it can be used by the GRU as a global address. Socket
 *		  physical addresses 1) need additional NASID (node) bits added
 *		  to the high end of the address, and 2) unaliased if the
 *		  partition does not have a physical address 0. In addition, on
 *		  UV2 rev 1, GPAs need the gnode left shifted to bits 39 or 40.
 *
58 59 60 61 62 63 64 65
 *
 *  NumaLink Global Physical Address Format:
 *  +--------------------------------+---------------------+
 *  |00..000|      GNODE             |      NodeOffset     |
 *  +--------------------------------+---------------------+
 *          |<-------53 - M bits --->|<--------M bits ----->
 *
 *	M - number of node offset bits (35 .. 40)
66 67 68
 *
 *
 *  Memory/UV-HUB Processor Socket Address Format:
69 70 71 72
 *  +----------------+---------------+---------------------+
 *  |00..000000000000|   PNODE       |      NodeOffset     |
 *  +----------------+---------------+---------------------+
 *                   <--- N bits --->|<--------M bits ----->
73
 *
74 75
 *	M - number of node offset bits (35 .. 40)
 *	N - number of PNODE bits (0 .. 10)
76 77 78
 *
 *		Note: M + N cannot currently exceed 44 (x86_64) or 46 (IA64).
 *		The actual values are configuration dependent and are set at
79 80
 *		boot time. M & N values are set by the hardware/BIOS at boot.
 *
81 82
 *
 * APICID format
83 84 85
 *	NOTE!!!!!! This is the current format of the APICID. However, code
 *	should assume that this will change in the future. Use functions
 *	in this file for all APICID bit manipulations and conversion.
86
 *
87 88
 *		1111110000000000
 *		5432109876543210
89 90 91
 *		pppppppppplc0cch	Nehalem-EX (12 bits in hdw reg)
 *		ppppppppplcc0cch	Westmere-EX (12 bits in hdw reg)
 *		pppppppppppcccch	SandyBridge (15 bits in hdw reg)
92 93
 *		sssssssssss
 *
94
 *			p  = pnode bits
95 96 97
 *			l =  socket number on board
 *			c  = core
 *			h  = hyperthread
98
 *			s  = bits that are in the SOCKET_ID CSR
99
 *
100
 *	Note: Processor may support fewer bits in the APICID register. The ACPI
101 102
 *	      tables hold all 16 bits. Software needs to be aware of this.
 *
103 104 105
 *	      Unless otherwise specified, all references to APICID refer to
 *	      the FULL value contained in ACPI tables, not the subset in the
 *	      processor APICID register.
106 107 108 109 110 111 112 113 114 115
 */

/*
 * Maximum number of bricks in all partitions and in all coherency domains.
 * This is the total number of bricks accessible in the numalink fabric. It
 * includes all C & M bricks. Routers are NOT included.
 *
 * This value is also the value of the maximum number of non-router NASIDs
 * in the numalink fabric.
 *
116
 * NOTE: a brick may contain 1 or 2 OS nodes. Don't get these confused.
117 118 119 120 121 122 123 124 125 126 127 128
 */
#define UV_MAX_NUMALINK_BLADES	16384

/*
 * Maximum number of C/Mbricks within a software SSI (hardware may support
 * more).
 */
#define UV_MAX_SSI_BLADES	256

/*
 * The largest possible NASID of a C or M brick (+ 2)
 */
129
#define UV_MAX_NASID_VALUE	(UV_MAX_NUMALINK_BLADES * 2)
130

131
/* System Controller Interface Reg info */
132 133 134 135 136 137 138 139 140 141
struct uv_scir_s {
	struct timer_list timer;
	unsigned long	offset;
	unsigned long	last;
	unsigned long	idle_on;
	unsigned long	idle_off;
	unsigned char	state;
	unsigned char	enabled;
};

142 143 144 145 146 147 148 149
/* GAM (globally addressed memory) range table */
struct uv_gam_range_s {
	u32	limit;		/* PA bits 56:26 (GAM_RANGE_SHFT) */
	u16	nasid;		/* node's global physical address */
	s8	base;		/* entry index of node's base addr */
	u8	reserved;
};

150 151
/*
 * The following defines attributes of the HUB chip. These attributes are
152 153 154
 * frequently referenced and are kept in a common per hub struct.
 * After setup, the struct is read only, so it should be readily
 * available in the L3 cache on the cpu socket for the node.
155 156
 */
struct uv_hub_info_s {
157
	unsigned long		global_mmr_base;
158
	unsigned long		global_mmr_shift;
159
	unsigned long		gpa_mask;
160 161 162
	unsigned short		*socket_to_node;
	unsigned short		*socket_to_pnode;
	unsigned short		*pnode_to_socket;
163
	struct uv_gam_range_s	*gr_table;
164 165
	unsigned short		min_socket;
	unsigned short		min_pnode;
166 167 168
	unsigned char		m_val;
	unsigned char		n_val;
	unsigned char		gr_table_len;
169 170
	unsigned char		hub_revision;
	unsigned char		apic_pnode_shift;
171
	unsigned char		gpa_shift;
172 173
	unsigned char		m_shift;
	unsigned char		n_lshift;
174
	unsigned int		gnode_extra;
175 176 177
	unsigned long		gnode_upper;
	unsigned long		lowmem_remap_top;
	unsigned long		lowmem_remap_base;
178 179
	unsigned long		global_gru_base;
	unsigned long		global_gru_shift;
180 181 182 183
	unsigned short		pnode;
	unsigned short		pnode_mask;
	unsigned short		coherency_domain_number;
	unsigned short		numa_blade_id;
184 185 186
	unsigned short		nr_possible_cpus;
	unsigned short		nr_online_cpus;
	short			memory_nid;
187
};
188

189 190 191 192 193 194 195 196 197 198 199
/* CPU specific info with a pointer to the hub common info struct */
struct uv_cpu_info_s {
	void			*p_uv_hub_info;
	unsigned char		blade_cpu_id;
	struct uv_scir_s	scir;
};
DECLARE_PER_CPU(struct uv_cpu_info_s, __uv_cpu_info);

#define uv_cpu_info		this_cpu_ptr(&__uv_cpu_info)
#define uv_cpu_info_per(cpu)	(&per_cpu(__uv_cpu_info, cpu))

200 201 202
#define	uv_scir_info		(&uv_cpu_info->scir)
#define	uv_cpu_scir_info(cpu)	(&uv_cpu_info_per(cpu)->scir)

203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
/* Node specific hub common info struct */
extern void **__uv_hub_info_list;
static inline struct uv_hub_info_s *uv_hub_info_list(int node)
{
	return (struct uv_hub_info_s *)__uv_hub_info_list[node];
}

static inline struct uv_hub_info_s *_uv_hub_info(void)
{
	return (struct uv_hub_info_s *)uv_cpu_info->p_uv_hub_info;
}
#define	uv_hub_info	_uv_hub_info()

static inline struct uv_hub_info_s *uv_cpu_hub_info(int cpu)
{
	return (struct uv_hub_info_s *)uv_cpu_info_per(cpu)->p_uv_hub_info;
}

#define	UV_HUB_INFO_VERSION	0x7150
extern int uv_hub_info_version(void);
static inline int uv_hub_info_check(int version)
{
	if (uv_hub_info_version() == version)
		return 0;

	pr_crit("UV: uv_hub_info version(%x) mismatch, expecting(%x)\n",
		uv_hub_info_version(), version);

	BUG();	/* Catastrophic - cannot continue on unknown UV system */
}
#define	_uv_hub_info_check()	uv_hub_info_check(UV_HUB_INFO_VERSION)

235
/*
236
 * HUB revision ranges for each UV HUB architecture.
237 238 239 240 241
 * This is a software convention - NOT the hardware revision numbers in
 * the hub chip.
 */
#define UV1_HUB_REVISION_BASE		1
#define UV2_HUB_REVISION_BASE		3
242
#define UV3_HUB_REVISION_BASE		5
243
#define UV4_HUB_REVISION_BASE		7
244
#define UV4A_HUB_REVISION_BASE		8	/* UV4 (fixed) rev 2 */
245

246
#ifdef	UV1_HUB_IS_SUPPORTED
247 248 249 250
static inline int is_uv1_hub(void)
{
	return uv_hub_info->hub_revision < UV2_HUB_REVISION_BASE;
}
251 252 253 254 255 256
#else
static inline int is_uv1_hub(void)
{
	return 0;
}
#endif
257

258
#ifdef	UV2_HUB_IS_SUPPORTED
259
static inline int is_uv2_hub(void)
260 261 262 263
{
	return ((uv_hub_info->hub_revision >= UV2_HUB_REVISION_BASE) &&
		(uv_hub_info->hub_revision < UV3_HUB_REVISION_BASE));
}
264 265 266 267 268 269
#else
static inline int is_uv2_hub(void)
{
	return 0;
}
#endif
270

271
#ifdef	UV3_HUB_IS_SUPPORTED
272 273
static inline int is_uv3_hub(void)
{
274 275
	return ((uv_hub_info->hub_revision >= UV3_HUB_REVISION_BASE) &&
		(uv_hub_info->hub_revision < UV4_HUB_REVISION_BASE));
276
}
277 278 279 280 281 282
#else
static inline int is_uv3_hub(void)
{
	return 0;
}
#endif
283

284 285 286 287 288 289 290 291 292 293 294 295 296
/* First test "is UV4A", then "is UV4" */
#ifdef	UV4A_HUB_IS_SUPPORTED
static inline int is_uv4a_hub(void)
{
	return (uv_hub_info->hub_revision >= UV4A_HUB_REVISION_BASE);
}
#else
static inline int is_uv4a_hub(void)
{
	return 0;
}
#endif

297 298 299 300 301 302 303 304 305 306 307 308
#ifdef	UV4_HUB_IS_SUPPORTED
static inline int is_uv4_hub(void)
{
	return uv_hub_info->hub_revision >= UV4_HUB_REVISION_BASE;
}
#else
static inline int is_uv4_hub(void)
{
	return 0;
}
#endif

309
static inline int is_uvx_hub(void)
310
{
311 312 313 314
	if (uv_hub_info->hub_revision >= UV2_HUB_REVISION_BASE)
		return uv_hub_info->hub_revision;

	return 0;
315 316
}

317
static inline int is_uv_hub(void)
318
{
319 320 321 322
#ifdef	UV1_HUB_IS_SUPPORTED
	return uv_hub_info->hub_revision;
#endif
	return is_uvx_hub();
323 324
}

325 326 327 328 329 330 331 332 333 334 335 336
union uvh_apicid {
    unsigned long       v;
    struct uvh_apicid_s {
        unsigned long   local_apic_mask  : 24;
        unsigned long   local_apic_shift :  5;
        unsigned long   unused1          :  3;
        unsigned long   pnode_mask       : 24;
        unsigned long   pnode_shift      :  5;
        unsigned long   unused2          :  3;
    } s;
};

337 338
/*
 * Local & Global MMR space macros.
339 340 341 342 343
 *	Note: macros are intended to be used ONLY by inline functions
 *	in this file - not by other kernel code.
 *		n -  NASID (full 15-bit global nasid)
 *		g -  GNODE (full 15-bit global nasid, right shifted 1)
 *		p -  PNODE (local part of nsids, right shifted 1)
344
 */
345
#define UV_NASID_TO_PNODE(n)		(((n) >> 1) & uv_hub_info->pnode_mask)
346 347
#define UV_PNODE_TO_GNODE(p)		((p) |uv_hub_info->gnode_extra)
#define UV_PNODE_TO_NASID(p)		(UV_PNODE_TO_GNODE(p) << 1)
348

349 350 351 352 353 354 355 356 357 358
#define UV1_LOCAL_MMR_BASE		0xf4000000UL
#define UV1_GLOBAL_MMR32_BASE		0xf8000000UL
#define UV1_LOCAL_MMR_SIZE		(64UL * 1024 * 1024)
#define UV1_GLOBAL_MMR32_SIZE		(64UL * 1024 * 1024)

#define UV2_LOCAL_MMR_BASE		0xfa000000UL
#define UV2_GLOBAL_MMR32_BASE		0xfc000000UL
#define UV2_LOCAL_MMR_SIZE		(32UL * 1024 * 1024)
#define UV2_GLOBAL_MMR32_SIZE		(32UL * 1024 * 1024)

359 360 361 362 363
#define UV3_LOCAL_MMR_BASE		0xfa000000UL
#define UV3_GLOBAL_MMR32_BASE		0xfc000000UL
#define UV3_LOCAL_MMR_SIZE		(32UL * 1024 * 1024)
#define UV3_GLOBAL_MMR32_SIZE		(32UL * 1024 * 1024)

364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
#define UV4_LOCAL_MMR_BASE		0xfa000000UL
#define UV4_GLOBAL_MMR32_BASE		0xfc000000UL
#define UV4_LOCAL_MMR_SIZE		(32UL * 1024 * 1024)
#define UV4_GLOBAL_MMR32_SIZE		(16UL * 1024 * 1024)

#define UV_LOCAL_MMR_BASE		(				\
					is_uv1_hub() ? UV1_LOCAL_MMR_BASE : \
					is_uv2_hub() ? UV2_LOCAL_MMR_BASE : \
					is_uv3_hub() ? UV3_LOCAL_MMR_BASE : \
					/*is_uv4_hub*/ UV4_LOCAL_MMR_BASE)

#define UV_GLOBAL_MMR32_BASE		(				\
					is_uv1_hub() ? UV1_GLOBAL_MMR32_BASE : \
					is_uv2_hub() ? UV2_GLOBAL_MMR32_BASE : \
					is_uv3_hub() ? UV3_GLOBAL_MMR32_BASE : \
					/*is_uv4_hub*/ UV4_GLOBAL_MMR32_BASE)

#define UV_LOCAL_MMR_SIZE		(				\
					is_uv1_hub() ? UV1_LOCAL_MMR_SIZE : \
					is_uv2_hub() ? UV2_LOCAL_MMR_SIZE : \
					is_uv3_hub() ? UV3_LOCAL_MMR_SIZE : \
					/*is_uv4_hub*/ UV4_LOCAL_MMR_SIZE)

#define UV_GLOBAL_MMR32_SIZE		(				\
					is_uv1_hub() ? UV1_GLOBAL_MMR32_SIZE : \
					is_uv2_hub() ? UV2_GLOBAL_MMR32_SIZE : \
					is_uv3_hub() ? UV3_GLOBAL_MMR32_SIZE : \
					/*is_uv4_hub*/ UV4_GLOBAL_MMR32_SIZE)

393 394
#define UV_GLOBAL_MMR64_BASE		(uv_hub_info->global_mmr_base)

395 396
#define UV_GLOBAL_GRU_MMR_BASE		0x4000000

397
#define UV_GLOBAL_MMR32_PNODE_SHIFT	15
398 399
#define _UV_GLOBAL_MMR64_PNODE_SHIFT	26
#define UV_GLOBAL_MMR64_PNODE_SHIFT	(uv_hub_info->global_mmr_shift)
400

401
#define UV_GLOBAL_MMR32_PNODE_BITS(p)	((p) << (UV_GLOBAL_MMR32_PNODE_SHIFT))
402

403
#define UV_GLOBAL_MMR64_PNODE_BITS(p)					\
404
	(((unsigned long)(p)) << UV_GLOBAL_MMR64_PNODE_SHIFT)
405

406
#define UVH_APICID		0x002D0E00L
407 408
#define UV_APIC_PNODE_SHIFT	6

409 410
#define UV_APICID_HIBIT_MASK	0xffff0000

411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
/* Local Bus from cpu's perspective */
#define LOCAL_BUS_BASE		0x1c00000
#define LOCAL_BUS_SIZE		(4 * 1024 * 1024)

/*
 * System Controller Interface Reg
 *
 * Note there are NO leds on a UV system.  This register is only
 * used by the system controller to monitor system-wide operation.
 * There are 64 regs per node.  With Nahelem cpus (2 cores per node,
 * 8 cpus per core, 2 threads per cpu) there are 32 cpu threads on
 * a node.
 *
 * The window is located at top of ACPI MMR space
 */
#define SCIR_WINDOW_COUNT	64
#define SCIR_LOCAL_MMR_BASE	(LOCAL_BUS_BASE + \
				 LOCAL_BUS_SIZE - \
				 SCIR_WINDOW_COUNT)

#define SCIR_CPU_HEARTBEAT	0x01	/* timer interrupt */
#define SCIR_CPU_ACTIVITY	0x02	/* not idle */
#define SCIR_CPU_HB_INTERVAL	(HZ)	/* once per second */

435 436 437 438
/* Loop through all installed blades */
#define for_each_possible_blade(bid)		\
	for ((bid) = 0; (bid) < uv_num_possible_blades(); (bid)++)

439 440 441
/*
 * Macros for converting between kernel virtual addresses, socket local physical
 * addresses, and UV global physical addresses.
442 443
 *	Note: use the standard __pa() & __va() macros for converting
 *	      between socket virtual and socket physical addresses.
444 445
 */

446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
/* global bits offset - number of local address bits in gpa for this UV arch */
static inline unsigned int uv_gpa_shift(void)
{
	return uv_hub_info->gpa_shift;
}
#define	_uv_gpa_shift

/* Find node that has the address range that contains global address  */
static inline struct uv_gam_range_s *uv_gam_range(unsigned long pa)
{
	struct uv_gam_range_s *gr = uv_hub_info->gr_table;
	unsigned long pal = (pa & uv_hub_info->gpa_mask) >> UV_GAM_RANGE_SHFT;
	int i, num = uv_hub_info->gr_table_len;

	if (gr) {
		for (i = 0; i < num; i++, gr++) {
			if (pal < gr->limit)
				return gr;
		}
	}
	pr_crit("UV: GAM Range for 0x%lx not found at %p!\n", pa, gr);
	BUG();
}

/* Return base address of node that contains global address  */
static inline unsigned long uv_gam_range_base(unsigned long pa)
{
	struct uv_gam_range_s *gr = uv_gam_range(pa);
	int base = gr->base;

	if (base < 0)
		return 0UL;

	return uv_hub_info->gr_table[base].limit;
}

/* socket phys RAM --> UV global NASID (UV4+) */
static inline unsigned long uv_soc_phys_ram_to_nasid(unsigned long paddr)
{
	return uv_gam_range(paddr)->nasid;
}
#define	_uv_soc_phys_ram_to_nasid

/* socket virtual --> UV global NASID (UV4+) */
static inline unsigned long uv_gpa_nasid(void *v)
{
	return uv_soc_phys_ram_to_nasid(__pa(v));
}

495 496 497
/* socket phys RAM --> UV global physical address */
static inline unsigned long uv_soc_phys_ram_to_gpa(unsigned long paddr)
{
498 499
	unsigned int m_val = uv_hub_info->m_val;

500
	if (paddr < uv_hub_info->lowmem_remap_top)
501
		paddr |= uv_hub_info->lowmem_remap_base;
502 503 504

	if (m_val) {
		paddr |= uv_hub_info->gnode_upper;
505 506 507 508
		paddr = ((paddr << uv_hub_info->m_shift)
						>> uv_hub_info->m_shift) |
			((paddr >> uv_hub_info->m_val)
						<< uv_hub_info->n_lshift);
509
	} else {
510 511
		paddr |= uv_soc_phys_ram_to_nasid(paddr)
						<< uv_hub_info->gpa_shift;
512
	}
513
	return paddr;
514 515 516 517 518
}

/* socket virtual --> UV global physical address */
static inline unsigned long uv_gpa(void *v)
{
519
	return uv_soc_phys_ram_to_gpa(__pa(v));
520
}
521

R
Robin Holt 已提交
522 523 524 525 526 527 528
/* Top two bits indicate the requested address is in MMR space.  */
static inline int
uv_gpa_in_mmr_space(unsigned long gpa)
{
	return (gpa >> 62) == 0x3UL;
}

529 530 531
/* UV global physical address --> socket phys RAM */
static inline unsigned long uv_gpa_to_soc_phys_ram(unsigned long gpa)
{
532
	unsigned long paddr;
533 534
	unsigned long remap_base = uv_hub_info->lowmem_remap_base;
	unsigned long remap_top =  uv_hub_info->lowmem_remap_top;
535 536 537 538 539
	unsigned int m_val = uv_hub_info->m_val;

	if (m_val)
		gpa = ((gpa << uv_hub_info->m_shift) >> uv_hub_info->m_shift) |
			((gpa >> uv_hub_info->n_lshift) << uv_hub_info->m_val);
540

541
	paddr = gpa & uv_hub_info->gpa_mask;
542 543 544 545 546
	if (paddr >= remap_base && paddr < remap_base + remap_top)
		paddr -= remap_base;
	return paddr;
}

547
/* gpa -> gnode */
548 549
static inline unsigned long uv_gpa_to_gnode(unsigned long gpa)
{
550 551 552 553 554 555
	unsigned int n_lshift = uv_hub_info->n_lshift;

	if (n_lshift)
		return gpa >> n_lshift;

	return uv_gam_range(gpa)->nasid >> 1;
556 557 558 559 560
}

/* gpa -> pnode */
static inline int uv_gpa_to_pnode(unsigned long gpa)
{
561
	return uv_gpa_to_gnode(gpa) & uv_hub_info->pnode_mask;
562
}
563

564
/* gpa -> node offset */
565 566
static inline unsigned long uv_gpa_to_offset(unsigned long gpa)
{
567 568 569 570 571 572
	unsigned int m_shift = uv_hub_info->m_shift;

	if (m_shift)
		return (gpa << m_shift) >> m_shift;

	return (gpa & uv_hub_info->gpa_mask) - uv_gam_range_base(gpa);
573 574
}

575 576
/* Convert socket to node */
static inline int _uv_socket_to_node(int socket, unsigned short *s2nid)
577
{
578
	return s2nid ? s2nid[socket - uv_hub_info->min_socket] : socket;
579
}
580

581 582
static inline int uv_socket_to_node(int socket)
{
583 584
	return _uv_socket_to_node(socket, uv_hub_info->socket_to_node);
}
585

586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
/* pnode, offset --> socket virtual */
static inline void *uv_pnode_offset_to_vaddr(int pnode, unsigned long offset)
{
	unsigned int m_val = uv_hub_info->m_val;
	unsigned long base;
	unsigned short sockid, node, *p2s;

	if (m_val)
		return __va(((unsigned long)pnode << m_val) | offset);

	p2s = uv_hub_info->pnode_to_socket;
	sockid = p2s ? p2s[pnode - uv_hub_info->min_pnode] : pnode;
	node = uv_socket_to_node(sockid);

	/* limit address of previous socket is our base, except node 0 is 0 */
	if (!node)
		return __va((unsigned long)offset);

	base = (unsigned long)(uv_hub_info->gr_table[node - 1].limit);
	return __va(base << UV_GAM_RANGE_SHFT | offset);
606 607 608
}

/* Extract/Convert a PNODE from an APICID (full apicid, not processor subset) */
609
static inline int uv_apicid_to_pnode(int apicid)
610
{
611 612 613 614
	int pnode = apicid >> uv_hub_info->apic_pnode_shift;
	unsigned short *s2pn = uv_hub_info->socket_to_pnode;

	return s2pn ? s2pn[pnode - uv_hub_info->min_socket] : pnode;
615 616
}

617
/* Convert an apicid to the socket number on the blade */
618 619 620 621 622 623 624 625
static inline int uv_apicid_to_socket(int apicid)
{
	if (is_uv1_hub())
		return (apicid >> (uv_hub_info->apic_pnode_shift - 1)) & 1;
	else
		return 0;
}

626 627 628 629
/*
 * Access global MMRs using the low memory MMR32 space. This region supports
 * faster MMR access but not all MMRs are accessible in this space.
 */
630
static inline unsigned long *uv_global_mmr32_address(int pnode, unsigned long offset)
631 632
{
	return __va(UV_GLOBAL_MMR32_BASE |
633
		       UV_GLOBAL_MMR32_PNODE_BITS(pnode) | offset);
634 635
}

636
static inline void uv_write_global_mmr32(int pnode, unsigned long offset, unsigned long val)
637
{
638
	writeq(val, uv_global_mmr32_address(pnode, offset));
639 640
}

641
static inline unsigned long uv_read_global_mmr32(int pnode, unsigned long offset)
642
{
643
	return readq(uv_global_mmr32_address(pnode, offset));
644 645 646 647 648 649
}

/*
 * Access Global MMR space using the MMR space located at the top of physical
 * memory.
 */
650
static inline volatile void __iomem *uv_global_mmr64_address(int pnode, unsigned long offset)
651 652
{
	return __va(UV_GLOBAL_MMR64_BASE |
653
		    UV_GLOBAL_MMR64_PNODE_BITS(pnode) | offset);
654 655
}

656
static inline void uv_write_global_mmr64(int pnode, unsigned long offset, unsigned long val)
657
{
658
	writeq(val, uv_global_mmr64_address(pnode, offset));
659 660
}

661
static inline unsigned long uv_read_global_mmr64(int pnode, unsigned long offset)
662
{
663
	return readq(uv_global_mmr64_address(pnode, offset));
664 665
}

666 667 668 669 670 671 672 673 674 675
static inline void uv_write_global_mmr8(int pnode, unsigned long offset, unsigned char val)
{
	writeb(val, uv_global_mmr64_address(pnode, offset));
}

static inline unsigned char uv_read_global_mmr8(int pnode, unsigned long offset)
{
	return readb(uv_global_mmr64_address(pnode, offset));
}

676
/*
677
 * Access hub local MMRs. Faster than using global space but only local MMRs
678 679 680 681 682 683 684 685 686
 * are accessible.
 */
static inline unsigned long *uv_local_mmr_address(unsigned long offset)
{
	return __va(UV_LOCAL_MMR_BASE | offset);
}

static inline unsigned long uv_read_local_mmr(unsigned long offset)
{
687
	return readq(uv_local_mmr_address(offset));
688 689 690 691
}

static inline void uv_write_local_mmr(unsigned long offset, unsigned long val)
{
692
	writeq(val, uv_local_mmr_address(offset));
693 694
}

695 696
static inline unsigned char uv_read_local_mmr8(unsigned long offset)
{
697
	return readb(uv_local_mmr_address(offset));
698 699 700 701
}

static inline void uv_write_local_mmr8(unsigned long offset, unsigned char val)
{
702
	writeb(val, uv_local_mmr_address(offset));
703 704
}

705 706 707
/* Blade-local cpu number of current cpu. Numbered 0 .. <# cpus on the blade> */
static inline int uv_blade_processor_id(void)
{
708
	return uv_cpu_info->blade_cpu_id;
709 710
}

711 712 713 714 715 716 717
/* Blade-local cpu number of cpu N. Numbered 0 .. <# cpus on the blade> */
static inline int uv_cpu_blade_processor_id(int cpu)
{
	return uv_cpu_info_per(cpu)->blade_cpu_id;
}
#define _uv_cpu_blade_processor_id 1	/* indicate function available */

718 719 720 721 722 723
/* Blade number to Node number (UV1..UV4 is 1:1) */
static inline int uv_blade_to_node(int blade)
{
	return blade;
}

724 725 726 727 728 729
/* Blade number of current cpu. Numnbered 0 .. <#blades -1> */
static inline int uv_numa_blade_id(void)
{
	return uv_hub_info->numa_blade_id;
}

730 731 732 733 734 735
/*
 * Convert linux node number to the UV blade number.
 * .. Currently for UV1 thru UV4 the node and the blade are identical.
 * .. If this changes then you MUST check references to this function!
 */
static inline int uv_node_to_blade_id(int nid)
736
{
737
	return nid;
738 739
}

740 741
/* Convert a cpu number to the the UV blade number */
static inline int uv_cpu_to_blade_id(int cpu)
742
{
743
	return uv_node_to_blade_id(cpu_to_node(cpu));
744 745
}

746 747
/* Convert a blade id to the PNODE of the blade */
static inline int uv_blade_to_pnode(int bid)
748
{
749
	return uv_hub_info_list(uv_blade_to_node(bid))->pnode;
750 751
}

752 753 754
/* Nid of memory node on blade. -1 if no blade-local memory */
static inline int uv_blade_to_memory_nid(int bid)
{
755
	return uv_hub_info_list(uv_blade_to_node(bid))->memory_nid;
756 757
}

758 759 760
/* Determine the number of possible cpus on a blade */
static inline int uv_blade_nr_possible_cpus(int bid)
{
761
	return uv_hub_info_list(uv_blade_to_node(bid))->nr_possible_cpus;
762 763 764 765 766
}

/* Determine the number of online cpus on a blade */
static inline int uv_blade_nr_online_cpus(int bid)
{
767
	return uv_hub_info_list(uv_blade_to_node(bid))->nr_online_cpus;
768 769
}

770 771
/* Convert a cpu id to the PNODE of the blade containing the cpu */
static inline int uv_cpu_to_pnode(int cpu)
772
{
773
	return uv_cpu_hub_info(cpu)->pnode;
774 775
}

776 777
/* Convert a linux node number to the PNODE of the blade */
static inline int uv_node_to_pnode(int nid)
778
{
779
	return uv_hub_info_list(nid)->pnode;
780 781 782
}

/* Maximum possible number of blades */
783
extern short uv_possible_blades;
784 785 786 787 788
static inline int uv_num_possible_blades(void)
{
	return uv_possible_blades;
}

789 790
/* Per Hub NMI support */
extern void uv_nmi_setup(void);
791
extern void uv_nmi_setup_hubless(void);
792

793 794 795 796 797 798 799 800 801 802 803 804 805
/* BIOS/Kernel flags exchange MMR */
#define UVH_BIOS_KERNEL_MMR		UVH_SCRATCH5
#define UVH_BIOS_KERNEL_MMR_ALIAS	UVH_SCRATCH5_ALIAS
#define UVH_BIOS_KERNEL_MMR_ALIAS_2	UVH_SCRATCH5_ALIAS_2

/* TSC sync valid, set by BIOS */
#define UVH_TSC_SYNC_MMR	UVH_BIOS_KERNEL_MMR
#define UVH_TSC_SYNC_SHIFT	10
#define UVH_TSC_SYNC_SHIFT_UV2K	16	/* UV2/3k have different bits */
#define UVH_TSC_SYNC_MASK	3	/* 0011 */
#define UVH_TSC_SYNC_VALID	3	/* 0011 */
#define UVH_TSC_SYNC_INVALID	2	/* 0010 */

806
/* BMC sets a bit this MMR non-zero before sending an NMI */
807 808
#define UVH_NMI_MMR		UVH_BIOS_KERNEL_MMR
#define UVH_NMI_MMR_CLEAR	UVH_BIOS_KERNEL_MMR_ALIAS
809
#define UVH_NMI_MMR_SHIFT	63
810
#define UVH_NMI_MMR_TYPE	"SCRATCH5"
811 812 813 814

/* Newer SMM NMI handler, not present in all systems */
#define UVH_NMI_MMRX		UVH_EVENT_OCCURRED0
#define UVH_NMI_MMRX_CLEAR	UVH_EVENT_OCCURRED0_ALIAS
815
#define UVH_NMI_MMRX_SHIFT	UVH_EVENT_OCCURRED0_EXTIO_INT0_SHFT
816
#define UVH_NMI_MMRX_TYPE	"EXTIO_INT0"
817 818 819 820 821

/* Non-zero indicates newer SMM NMI handler present */
#define UVH_NMI_MMRX_SUPPORTED	UVH_EXTIO_INT0_BROADCAST

/* Indicates to BIOS that we want to use the newer SMM NMI handler */
822
#define UVH_NMI_MMRX_REQ	UVH_BIOS_KERNEL_MMR_ALIAS_2
823 824 825 826 827 828 829 830 831
#define UVH_NMI_MMRX_REQ_SHIFT	62

struct uv_hub_nmi_s {
	raw_spinlock_t	nmi_lock;
	atomic_t	in_nmi;		/* flag this node in UV NMI IRQ */
	atomic_t	cpu_owner;	/* last locker of this struct */
	atomic_t	read_mmr_count;	/* count of MMR reads */
	atomic_t	nmi_count;	/* count of true UV NMIs */
	unsigned long	nmi_value;	/* last value read from NMI MMR */
832 833
	bool		hub_present;	/* false means UV hubless system */
	bool		pch_owner;	/* indicates this hub owns PCH */
834 835 836 837
};

struct uv_cpu_nmi_s {
	struct uv_hub_nmi_s	*hub;
C
Christoph Lameter 已提交
838 839
	int			state;
	int			pinging;
840 841 842 843
	int			queries;
	int			pings;
};

C
Christoph Lameter 已提交
844 845
DECLARE_PER_CPU(struct uv_cpu_nmi_s, uv_cpu_nmi);

846
#define uv_hub_nmi			this_cpu_read(uv_cpu_nmi.hub)
C
Christoph Lameter 已提交
847
#define uv_cpu_nmi_per(cpu)		(per_cpu(uv_cpu_nmi, cpu))
848 849 850 851 852 853 854 855
#define uv_hub_nmi_per(cpu)		(uv_cpu_nmi_per(cpu).hub)

/* uv_cpu_nmi_states */
#define	UV_NMI_STATE_OUT		0
#define	UV_NMI_STATE_IN			1
#define	UV_NMI_STATE_DUMP		2
#define	UV_NMI_STATE_DUMP_DONE		3

856 857 858
/* Update SCIR state */
static inline void uv_set_scir_bits(unsigned char value)
{
859 860 861
	if (uv_scir_info->state != value) {
		uv_scir_info->state = value;
		uv_write_local_mmr8(uv_scir_info->offset, value);
862 863
	}
}
864

865 866 867 868 869
static inline unsigned long uv_scir_offset(int apicid)
{
	return SCIR_LOCAL_MMR_BASE | (apicid & 0x3f);
}

870 871
static inline void uv_set_cpu_scir_bits(int cpu, unsigned char value)
{
872
	if (uv_cpu_scir_info(cpu)->state != value) {
873
		uv_write_global_mmr8(uv_cpu_to_pnode(cpu),
874 875
				uv_cpu_scir_info(cpu)->offset, value);
		uv_cpu_scir_info(cpu)->state = value;
876 877
	}
}
878

879
extern unsigned int uv_apicid_hibits;
880 881
static unsigned long uv_hub_ipi_value(int apicid, int vector, int mode)
{
882
	apicid |= uv_apicid_hibits;
883 884 885 886 887 888
	return (1UL << UVH_IPI_INT_SEND_SHFT) |
			((apicid) << UVH_IPI_INT_APIC_ID_SHFT) |
			(mode << UVH_IPI_INT_DELIVERY_MODE_SHFT) |
			(vector << UVH_IPI_INT_VECTOR_SHFT);
}

889 890 891
static inline void uv_hub_send_ipi(int pnode, int apicid, int vector)
{
	unsigned long val;
892 893 894 895
	unsigned long dmode = dest_Fixed;

	if (vector == NMI_VECTOR)
		dmode = dest_NMI;
896

897
	val = uv_hub_ipi_value(apicid, vector, dmode);
898 899 900
	uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
}

901 902
/*
 * Get the minimum revision number of the hub chips within the partition.
903
 * (See UVx_HUB_REVISION_BASE above for specific values.)
904 905 906
 */
static inline int uv_get_min_hub_revision_id(void)
{
907
	return uv_hub_info->hub_revision;
908 909
}

910
#endif /* CONFIG_X86_64 */
911
#endif /* _ASM_X86_UV_UV_HUB_H */