uv_hub.h 11.8 KB
Newer Older
1 2 3 4 5 6 7
/*
 * This file is subject to the terms and conditions of the GNU General Public
 * License.  See the file "COPYING" in the main directory of this archive
 * for more details.
 *
 * SGI UV architectural definitions
 *
8
 * Copyright (C) 2007-2008 Silicon Graphics, Inc. All rights reserved.
9 10
 */

11 12
#ifndef _ASM_X86_UV_UV_HUB_H
#define _ASM_X86_UV_UV_HUB_H
13 14 15

#include <linux/numa.h>
#include <linux/percpu.h>
16
#include <linux/timer.h>
17 18 19 20 21 22 23
#include <asm/types.h>
#include <asm/percpu.h>


/*
 * Addressing Terminology
 *
24 25 26 27
 *	M       - The low M bits of a physical address represent the offset
 *		  into the blade local memory. RAM memory on a blade is physically
 *		  contiguous (although various IO spaces may punch holes in
 *		  it)..
28
 *
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
 * 	N	- Number of bits in the node portion of a socket physical
 * 		  address.
 *
 * 	NASID   - network ID of a router, Mbrick or Cbrick. Nasid values of
 * 	 	  routers always have low bit of 1, C/MBricks have low bit
 * 		  equal to 0. Most addressing macros that target UV hub chips
 * 		  right shift the NASID by 1 to exclude the always-zero bit.
 * 		  NASIDs contain up to 15 bits.
 *
 *	GNODE   - NASID right shifted by 1 bit. Most mmrs contain gnodes instead
 *		  of nasids.
 *
 * 	PNODE   - the low N bits of the GNODE. The PNODE is the most useful variant
 * 		  of the nasid for socket usage.
 *
 *
 *  NumaLink Global Physical Address Format:
 *  +--------------------------------+---------------------+
 *  |00..000|      GNODE             |      NodeOffset     |
 *  +--------------------------------+---------------------+
 *          |<-------53 - M bits --->|<--------M bits ----->
 *
 *	M - number of node offset bits (35 .. 40)
52 53 54
 *
 *
 *  Memory/UV-HUB Processor Socket Address Format:
55 56 57 58
 *  +----------------+---------------+---------------------+
 *  |00..000000000000|   PNODE       |      NodeOffset     |
 *  +----------------+---------------+---------------------+
 *                   <--- N bits --->|<--------M bits ----->
59
 *
60 61
 *	M - number of node offset bits (35 .. 40)
 *	N - number of PNODE bits (0 .. 10)
62 63 64
 *
 *		Note: M + N cannot currently exceed 44 (x86_64) or 46 (IA64).
 *		The actual values are configuration dependent and are set at
65 66
 *		boot time. M & N values are set by the hardware/BIOS at boot.
 *
67 68 69 70 71 72 73 74
 *
 * APICID format
 * 	NOTE!!!!!! This is the current format of the APICID. However, code
 * 	should assume that this will change in the future. Use functions
 * 	in this file for all APICID bit manipulations and conversion.
 *
 * 		1111110000000000
 * 		5432109876543210
75
 *		pppppppppplc0cch
76 77
 *		sssssssssss
 *
78
 *			p  = pnode bits
79 80 81
 *			l =  socket number on board
 *			c  = core
 *			h  = hyperthread
82
 *			s  = bits that are in the SOCKET_ID CSR
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
 *
 *	Note: Processor only supports 12 bits in the APICID register. The ACPI
 *	      tables hold all 16 bits. Software needs to be aware of this.
 *
 * 	      Unless otherwise specified, all references to APICID refer to
 * 	      the FULL value contained in ACPI tables, not the subset in the
 * 	      processor APICID register.
 */


/*
 * Maximum number of bricks in all partitions and in all coherency domains.
 * This is the total number of bricks accessible in the numalink fabric. It
 * includes all C & M bricks. Routers are NOT included.
 *
 * This value is also the value of the maximum number of non-router NASIDs
 * in the numalink fabric.
 *
101
 * NOTE: a brick may contain 1 or 2 OS nodes. Don't get these confused.
102 103 104 105 106 107 108 109 110 111 112 113 114 115
 */
#define UV_MAX_NUMALINK_BLADES	16384

/*
 * Maximum number of C/Mbricks within a software SSI (hardware may support
 * more).
 */
#define UV_MAX_SSI_BLADES	256

/*
 * The largest possible NASID of a C or M brick (+ 2)
 */
#define UV_MAX_NASID_VALUE	(UV_MAX_NUMALINK_NODES * 2)

116 117 118 119 120 121 122 123 124 125
struct uv_scir_s {
	struct timer_list timer;
	unsigned long	offset;
	unsigned long	last;
	unsigned long	idle_on;
	unsigned long	idle_off;
	unsigned char	state;
	unsigned char	enabled;
};

126 127 128 129 130 131
/*
 * The following defines attributes of the HUB chip. These attributes are
 * frequently referenced and are kept in the per-cpu data areas of each cpu.
 * They are kept together in a struct to minimize cache misses.
 */
struct uv_hub_info_s {
132 133 134 135 136 137 138 139 140 141 142 143 144
	unsigned long		global_mmr_base;
	unsigned long		gpa_mask;
	unsigned long		gnode_upper;
	unsigned long		lowmem_remap_top;
	unsigned long		lowmem_remap_base;
	unsigned short		pnode;
	unsigned short		pnode_mask;
	unsigned short		coherency_domain_number;
	unsigned short		numa_blade_id;
	unsigned char		blade_processor_id;
	unsigned char		m_val;
	unsigned char		n_val;
	struct uv_scir_s	scir;
145
};
146

147 148 149 150 151 152 153 154
DECLARE_PER_CPU(struct uv_hub_info_s, __uv_hub_info);
#define uv_hub_info 		(&__get_cpu_var(__uv_hub_info))
#define uv_cpu_hub_info(cpu)	(&per_cpu(__uv_hub_info, cpu))

/*
 * Local & Global MMR space macros.
 * 	Note: macros are intended to be used ONLY by inline functions
 * 	in this file - not by other kernel code.
155 156 157
 * 		n -  NASID (full 15-bit global nasid)
 * 		g -  GNODE (full 15-bit global nasid, right shifted 1)
 * 		p -  PNODE (local part of nsids, right shifted 1)
158
 */
159 160
#define UV_NASID_TO_PNODE(n)		(((n) >> 1) & uv_hub_info->pnode_mask)
#define UV_PNODE_TO_NASID(p)		(((p) << 1) | uv_hub_info->gnode_upper)
161 162 163 164

#define UV_LOCAL_MMR_BASE		0xf4000000UL
#define UV_GLOBAL_MMR32_BASE		0xf8000000UL
#define UV_GLOBAL_MMR64_BASE		(uv_hub_info->global_mmr_base)
165 166
#define UV_LOCAL_MMR_SIZE		(64UL * 1024 * 1024)
#define UV_GLOBAL_MMR32_SIZE		(64UL * 1024 * 1024)
167

168 169
#define UV_GLOBAL_MMR32_PNODE_SHIFT	15
#define UV_GLOBAL_MMR64_PNODE_SHIFT	26
170

171
#define UV_GLOBAL_MMR32_PNODE_BITS(p)	((p) << (UV_GLOBAL_MMR32_PNODE_SHIFT))
172

173 174 175 176 177
#define UV_GLOBAL_MMR64_PNODE_BITS(p)					\
	((unsigned long)(p) << UV_GLOBAL_MMR64_PNODE_SHIFT)

#define UV_APIC_PNODE_SHIFT	6

178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
/* Local Bus from cpu's perspective */
#define LOCAL_BUS_BASE		0x1c00000
#define LOCAL_BUS_SIZE		(4 * 1024 * 1024)

/*
 * System Controller Interface Reg
 *
 * Note there are NO leds on a UV system.  This register is only
 * used by the system controller to monitor system-wide operation.
 * There are 64 regs per node.  With Nahelem cpus (2 cores per node,
 * 8 cpus per core, 2 threads per cpu) there are 32 cpu threads on
 * a node.
 *
 * The window is located at top of ACPI MMR space
 */
#define SCIR_WINDOW_COUNT	64
#define SCIR_LOCAL_MMR_BASE	(LOCAL_BUS_BASE + \
				 LOCAL_BUS_SIZE - \
				 SCIR_WINDOW_COUNT)

#define SCIR_CPU_HEARTBEAT	0x01	/* timer interrupt */
#define SCIR_CPU_ACTIVITY	0x02	/* not idle */
#define SCIR_CPU_HB_INTERVAL	(HZ)	/* once per second */

202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
/*
 * Macros for converting between kernel virtual addresses, socket local physical
 * addresses, and UV global physical addresses.
 * 	Note: use the standard __pa() & __va() macros for converting
 * 	      between socket virtual and socket physical addresses.
 */

/* socket phys RAM --> UV global physical address */
static inline unsigned long uv_soc_phys_ram_to_gpa(unsigned long paddr)
{
	if (paddr < uv_hub_info->lowmem_remap_top)
		paddr += uv_hub_info->lowmem_remap_base;
	return paddr | uv_hub_info->gnode_upper;
}


/* socket virtual --> UV global physical address */
static inline unsigned long uv_gpa(void *v)
{
	return __pa(v) | uv_hub_info->gnode_upper;
}

/* socket virtual --> UV global physical address */
static inline void *uv_vgpa(void *v)
{
	return (void *)uv_gpa(v);
}

/* UV global physical address --> socket virtual */
static inline void *uv_va(unsigned long gpa)
{
	return __va(gpa & uv_hub_info->gpa_mask);
}

/* pnode, offset --> socket virtual */
static inline void *uv_pnode_offset_to_vaddr(int pnode, unsigned long offset)
{
	return __va(((unsigned long)pnode << uv_hub_info->m_val) | offset);
}
241 242 243


/*
244
 * Extract a PNODE from an APICID (full apicid, not processor subset)
245
 */
246
static inline int uv_apicid_to_pnode(int apicid)
247
{
248
	return (apicid >> UV_APIC_PNODE_SHIFT);
249 250 251 252 253 254
}

/*
 * Access global MMRs using the low memory MMR32 space. This region supports
 * faster MMR access but not all MMRs are accessible in this space.
 */
255
static inline unsigned long *uv_global_mmr32_address(int pnode,
256 257 258
				unsigned long offset)
{
	return __va(UV_GLOBAL_MMR32_BASE |
259
		       UV_GLOBAL_MMR32_PNODE_BITS(pnode) | offset);
260 261
}

262
static inline void uv_write_global_mmr32(int pnode, unsigned long offset,
263 264
				 unsigned long val)
{
265
	*uv_global_mmr32_address(pnode, offset) = val;
266 267
}

268
static inline unsigned long uv_read_global_mmr32(int pnode,
269 270
						 unsigned long offset)
{
271
	return *uv_global_mmr32_address(pnode, offset);
272 273 274 275 276 277
}

/*
 * Access Global MMR space using the MMR space located at the top of physical
 * memory.
 */
278
static inline unsigned long *uv_global_mmr64_address(int pnode,
279 280 281
				unsigned long offset)
{
	return __va(UV_GLOBAL_MMR64_BASE |
282
		    UV_GLOBAL_MMR64_PNODE_BITS(pnode) | offset);
283 284
}

285
static inline void uv_write_global_mmr64(int pnode, unsigned long offset,
286 287
				unsigned long val)
{
288
	*uv_global_mmr64_address(pnode, offset) = val;
289 290
}

291
static inline unsigned long uv_read_global_mmr64(int pnode,
292 293
						 unsigned long offset)
{
294
	return *uv_global_mmr64_address(pnode, offset);
295 296 297
}

/*
298
 * Access hub local MMRs. Faster than using global space but only local MMRs
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
 * are accessible.
 */
static inline unsigned long *uv_local_mmr_address(unsigned long offset)
{
	return __va(UV_LOCAL_MMR_BASE | offset);
}

static inline unsigned long uv_read_local_mmr(unsigned long offset)
{
	return *uv_local_mmr_address(offset);
}

static inline void uv_write_local_mmr(unsigned long offset, unsigned long val)
{
	*uv_local_mmr_address(offset) = val;
}

316 317 318 319 320 321 322 323 324 325
static inline unsigned char uv_read_local_mmr8(unsigned long offset)
{
	return *((unsigned char *)uv_local_mmr_address(offset));
}

static inline void uv_write_local_mmr8(unsigned long offset, unsigned char val)
{
	*((unsigned char *)uv_local_mmr_address(offset)) = val;
}

326
/*
327
 * Structures and definitions for converting between cpu, node, pnode, and blade
328 329 330
 * numbers.
 */
struct uv_blade_info {
331
	unsigned short	nr_possible_cpus;
332
	unsigned short	nr_online_cpus;
333
	unsigned short	pnode;
334
};
335
extern struct uv_blade_info *uv_blade_info;
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
extern short *uv_node_to_blade;
extern short *uv_cpu_to_blade;
extern short uv_possible_blades;

/* Blade-local cpu number of current cpu. Numbered 0 .. <# cpus on the blade> */
static inline int uv_blade_processor_id(void)
{
	return uv_hub_info->blade_processor_id;
}

/* Blade number of current cpu. Numnbered 0 .. <#blades -1> */
static inline int uv_numa_blade_id(void)
{
	return uv_hub_info->numa_blade_id;
}

/* Convert a cpu number to the the UV blade number */
static inline int uv_cpu_to_blade_id(int cpu)
{
	return uv_cpu_to_blade[cpu];
}

/* Convert linux node number to the UV blade number */
static inline int uv_node_to_blade_id(int nid)
{
	return uv_node_to_blade[nid];
}

364 365
/* Convert a blade id to the PNODE of the blade */
static inline int uv_blade_to_pnode(int bid)
366
{
367
	return uv_blade_info[bid].pnode;
368 369 370 371 372
}

/* Determine the number of possible cpus on a blade */
static inline int uv_blade_nr_possible_cpus(int bid)
{
373
	return uv_blade_info[bid].nr_possible_cpus;
374 375 376 377 378 379 380 381
}

/* Determine the number of online cpus on a blade */
static inline int uv_blade_nr_online_cpus(int bid)
{
	return uv_blade_info[bid].nr_online_cpus;
}

382 383
/* Convert a cpu id to the PNODE of the blade containing the cpu */
static inline int uv_cpu_to_pnode(int cpu)
384
{
385
	return uv_blade_info[uv_cpu_to_blade_id(cpu)].pnode;
386 387
}

388 389
/* Convert a linux node number to the PNODE of the blade */
static inline int uv_node_to_pnode(int nid)
390
{
391
	return uv_blade_info[uv_node_to_blade_id(nid)].pnode;
392 393 394 395 396 397 398 399
}

/* Maximum possible number of blades */
static inline int uv_num_possible_blades(void)
{
	return uv_possible_blades;
}

400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
/* Update SCIR state */
static inline void uv_set_scir_bits(unsigned char value)
{
	if (uv_hub_info->scir.state != value) {
		uv_hub_info->scir.state = value;
		uv_write_local_mmr8(uv_hub_info->scir.offset, value);
	}
}
static inline void uv_set_cpu_scir_bits(int cpu, unsigned char value)
{
	if (uv_cpu_hub_info(cpu)->scir.state != value) {
		uv_cpu_hub_info(cpu)->scir.state = value;
		uv_write_local_mmr8(uv_cpu_hub_info(cpu)->scir.offset, value);
	}
}
415

416
#endif /* _ASM_X86_UV_UV_HUB_H */