cafe_nand.c 24.1 KB
Newer Older
D
David Woodhouse 已提交
1
/*
2
 * Driver for One Laptop Per Child ‘CAFÉ’ controller, aka Marvell 88ALP01
3 4 5 6 7
 *
 * Copyright © 2006 Red Hat, Inc.
 * Copyright © 2006 David Woodhouse <dwmw2@infradead.org>
 */

8
#define DEBUG
9 10 11 12 13

#include <linux/device.h>
#undef DEBUG
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
14
#include <linux/rslib.h>
15 16 17
#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
18
#include <linux/dma-mapping.h>
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
#include <asm/io.h>

#define CAFE_NAND_CTRL1		0x00
#define CAFE_NAND_CTRL2		0x04
#define CAFE_NAND_CTRL3		0x08
#define CAFE_NAND_STATUS	0x0c
#define CAFE_NAND_IRQ		0x10
#define CAFE_NAND_IRQ_MASK	0x14
#define CAFE_NAND_DATA_LEN	0x18
#define CAFE_NAND_ADDR1		0x1c
#define CAFE_NAND_ADDR2		0x20
#define CAFE_NAND_TIMING1	0x24
#define CAFE_NAND_TIMING2	0x28
#define CAFE_NAND_TIMING3	0x2c
#define CAFE_NAND_NONMEM	0x30
34
#define CAFE_NAND_ECC_RESULT	0x3C
35 36 37
#define CAFE_NAND_DMA_CTRL	0x40
#define CAFE_NAND_DMA_ADDR0	0x44
#define CAFE_NAND_DMA_ADDR1	0x48
38 39 40 41
#define CAFE_NAND_ECC_SYN01	0x50
#define CAFE_NAND_ECC_SYN23	0x54
#define CAFE_NAND_ECC_SYN45	0x58
#define CAFE_NAND_ECC_SYN67	0x5c
42 43 44
#define CAFE_NAND_READ_DATA	0x1000
#define CAFE_NAND_WRITE_DATA	0x2000

45 46 47 48 49
#define CAFE_GLOBAL_CTRL	0x3004
#define CAFE_GLOBAL_IRQ		0x3008
#define CAFE_GLOBAL_IRQ_MASK	0x300c
#define CAFE_NAND_RESET		0x3034

50 51 52
/* Missing from the datasheet: bit 19 of CTRL1 sets CE0 vs. CE1 */
#define CTRL1_CHIPSELECT	(1<<19)

53 54 55 56
struct cafe_priv {
	struct nand_chip nand;
	struct pci_dev *pdev;
	void __iomem *mmio;
57
	struct rs_control *rs;
58 59 60 61 62 63 64 65 66 67
	uint32_t ctl1;
	uint32_t ctl2;
	int datalen;
	int nr_data;
	int data_pos;
	int page_addr;
	dma_addr_t dmaaddr;
	unsigned char *dmabuf;
};

68
static int usedma = 1;
69 70
module_param(usedma, int, 0644);

71 72 73 74 75 76
static int skipbbt = 0;
module_param(skipbbt, int, 0644);

static int debug = 0;
module_param(debug, int, 0644);

77 78 79
static int regdebug = 0;
module_param(regdebug, int, 0644);

80
static int checkecc = 1;
81 82
module_param(checkecc, int, 0644);

83 84 85
static int numtimings;
static int timing[3];
module_param_array(timing, int, &numtimings, 0644);
86

87
/* Hrm. Why isn't this already conditional on something in the struct device? */
88 89
#define cafe_dev_dbg(dev, args...) do { if (debug) dev_dbg(dev, ##args); } while(0)

90 91 92
/* Make it easier to switch to PIO if we need to */
#define cafe_readl(cafe, addr)			readl((cafe)->mmio + CAFE_##addr)
#define cafe_writel(cafe, datum, addr)		writel(datum, (cafe)->mmio + CAFE_##addr)
93

94 95 96
static int cafe_device_ready(struct mtd_info *mtd)
{
	struct cafe_priv *cafe = mtd->priv;
97 98
	int result = !!(cafe_readl(cafe, NAND_STATUS) | 0x40000000);
	uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
99

100
	cafe_writel(cafe, irqs, NAND_IRQ);
101

102
	cafe_dev_dbg(&cafe->pdev->dev, "NAND device is%s ready, IRQ %x (%x) (%x,%x)\n",
103 104
		result?"":" not", irqs, cafe_readl(cafe, NAND_IRQ),
		cafe_readl(cafe, GLOBAL_IRQ), cafe_readl(cafe, GLOBAL_IRQ_MASK));
105

106 107 108 109 110 111 112 113 114 115 116 117
	return result;
}


static void cafe_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
{
	struct cafe_priv *cafe = mtd->priv;

	if (usedma)
		memcpy(cafe->dmabuf + cafe->datalen, buf, len);
	else
		memcpy_toio(cafe->mmio + CAFE_NAND_WRITE_DATA + cafe->datalen, buf, len);
118

119 120
	cafe->datalen += len;

121
	cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes to write buffer. datalen 0x%x\n",
122 123 124 125 126 127 128 129 130 131 132 133
		len, cafe->datalen);
}

static void cafe_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
{
	struct cafe_priv *cafe = mtd->priv;

	if (usedma)
		memcpy(buf, cafe->dmabuf + cafe->datalen, len);
	else
		memcpy_fromio(buf, cafe->mmio + CAFE_NAND_READ_DATA + cafe->datalen, len);

134
	cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes from position 0x%x in read buffer.\n",
135 136 137 138 139 140 141 142 143 144
		  len, cafe->datalen);
	cafe->datalen += len;
}

static uint8_t cafe_read_byte(struct mtd_info *mtd)
{
	struct cafe_priv *cafe = mtd->priv;
	uint8_t d;

	cafe_read_buf(mtd, &d, 1);
145
	cafe_dev_dbg(&cafe->pdev->dev, "Read %02x\n", d);
146 147 148 149 150 151 152 153 154 155 156 157

	return d;
}

static void cafe_nand_cmdfunc(struct mtd_info *mtd, unsigned command,
			      int column, int page_addr)
{
	struct cafe_priv *cafe = mtd->priv;
	int adrbytes = 0;
	uint32_t ctl1;
	uint32_t doneint = 0x80000000;

158
	cafe_dev_dbg(&cafe->pdev->dev, "cmdfunc %02x, 0x%x, 0x%x\n",
159 160 161 162
		command, column, page_addr);

	if (command == NAND_CMD_ERASE2 || command == NAND_CMD_PAGEPROG) {
		/* Second half of a command we already calculated */
163
		cafe_writel(cafe, cafe->ctl2 | 0x100 | command, NAND_CTRL2);
164
		ctl1 = cafe->ctl1;
165
		cafe->ctl2 &= ~(1<<30);
166
		cafe_dev_dbg(&cafe->pdev->dev, "Continue command, ctl1 %08x, #data %d\n",
167 168 169 170
			  cafe->ctl1, cafe->nr_data);
		goto do_command;
	}
	/* Reset ECC engine */
171
	cafe_writel(cafe, 0, NAND_CTRL2);
172 173 174 175 176 177 178 179 180 181 182 183

	/* Emulate NAND_CMD_READOOB on large-page chips */
	if (mtd->writesize > 512 &&
	    command == NAND_CMD_READOOB) {
		column += mtd->writesize;
		command = NAND_CMD_READ0;
	}

	/* FIXME: Do we need to send read command before sending data
	   for small-page chips, to position the buffer correctly? */

	if (column != -1) {
184
		cafe_writel(cafe, column, NAND_ADDR1);
185 186 187 188
		adrbytes = 2;
		if (page_addr != -1)
			goto write_adr2;
	} else if (page_addr != -1) {
189
		cafe_writel(cafe, page_addr & 0xffff, NAND_ADDR1);
190 191
		page_addr >>= 16;
	write_adr2:
192
		cafe_writel(cafe, page_addr, NAND_ADDR2);
193 194 195 196 197 198 199
		adrbytes += 2;
		if (mtd->size > mtd->writesize << 16)
			adrbytes++;
	}

	cafe->data_pos = cafe->datalen = 0;

200 201
	/* Set command valid bit, mask in the chip select bit  */
	ctl1 = 0x80000000 | command | (cafe->ctl1 & CTRL1_CHIPSELECT);
202 203 204 205 206

	/* Set RD or WR bits as appropriate */
	if (command == NAND_CMD_READID || command == NAND_CMD_STATUS) {
		ctl1 |= (1<<26); /* rd */
		/* Always 5 bytes, for now */
207
		cafe->datalen = 4;
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
		/* And one address cycle -- even for STATUS, since the controller doesn't work without */
		adrbytes = 1;
	} else if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 ||
		   command == NAND_CMD_READOOB || command == NAND_CMD_RNDOUT) {
		ctl1 |= 1<<26; /* rd */
		/* For now, assume just read to end of page */
		cafe->datalen = mtd->writesize + mtd->oobsize - column;
	} else if (command == NAND_CMD_SEQIN)
		ctl1 |= 1<<25; /* wr */

	/* Set number of address bytes */
	if (adrbytes)
		ctl1 |= ((adrbytes-1)|8) << 27;

	if (command == NAND_CMD_SEQIN || command == NAND_CMD_ERASE1) {
D
David Woodhouse 已提交
223
		/* Ignore the first command of a pair; the hardware
224 225
		   deals with them both at once, later */
		cafe->ctl1 = ctl1;
226
		cafe_dev_dbg(&cafe->pdev->dev, "Setup for delayed command, ctl1 %08x, dlen %x\n",
227 228 229 230 231
			  cafe->ctl1, cafe->datalen);
		return;
	}
	/* RNDOUT and READ0 commands need a following byte */
	if (command == NAND_CMD_RNDOUT)
232
		cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_RNDOUTSTART, NAND_CTRL2);
233
	else if (command == NAND_CMD_READ0 && mtd->writesize > 512)
234
		cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_READSTART, NAND_CTRL2);
235 236

 do_command:
D
David Woodhouse 已提交
237
	cafe_dev_dbg(&cafe->pdev->dev, "dlen %x, ctl1 %x, ctl2 %x\n",
238
		cafe->datalen, ctl1, cafe_readl(cafe, NAND_CTRL2));
239

240
	/* NB: The datasheet lies -- we really should be subtracting 1 here */
241 242
	cafe_writel(cafe, cafe->datalen, NAND_DATA_LEN);
	cafe_writel(cafe, 0x90000000, NAND_IRQ);
243 244 245 246 247 248 249 250 251 252
	if (usedma && (ctl1 & (3<<25))) {
		uint32_t dmactl = 0xc0000000 + cafe->datalen;
		/* If WR or RD bits set, set up DMA */
		if (ctl1 & (1<<26)) {
			/* It's a read */
			dmactl |= (1<<29);
			/* ... so it's done when the DMA is done, not just
			   the command. */
			doneint = 0x10000000;
		}
253
		cafe_writel(cafe, dmactl, NAND_DMA_CTRL);
254 255 256
	}
	cafe->datalen = 0;

257 258 259 260 261
	if (unlikely(regdebug)) {
		int i;
		printk("About to write command %08x to register 0\n", ctl1);
		for (i=4; i< 0x5c; i+=4)
			printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
262
	}
263

264
	cafe_writel(cafe, ctl1, NAND_CTRL1);
265 266 267 268 269
	/* Apply this short delay always to ensure that we do wait tWB in
	 * any case on any machine. */
	ndelay(100);

	if (1) {
270
		int c;
271 272
		uint32_t irqs;

273
		for (c = 500000; c != 0; c--) {
274
			irqs = cafe_readl(cafe, NAND_IRQ);
275 276 277
			if (irqs & doneint)
				break;
			udelay(1);
278 279
			if (!(c % 100000))
				cafe_dev_dbg(&cafe->pdev->dev, "Wait for ready, IRQ %x\n", irqs);
280 281
			cpu_relax();
		}
282
		cafe_writel(cafe, doneint, NAND_IRQ);
283
		cafe_dev_dbg(&cafe->pdev->dev, "Command %x completed after %d usec, irqs %x (%x)\n",
284
			     command, 500000-c, irqs, cafe_readl(cafe, NAND_IRQ));
285 286
	}

287
	WARN_ON(cafe->ctl2 & (1<<30));
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304

	switch (command) {

	case NAND_CMD_CACHEDPROG:
	case NAND_CMD_PAGEPROG:
	case NAND_CMD_ERASE1:
	case NAND_CMD_ERASE2:
	case NAND_CMD_SEQIN:
	case NAND_CMD_RNDIN:
	case NAND_CMD_STATUS:
	case NAND_CMD_DEPLETE1:
	case NAND_CMD_RNDOUT:
	case NAND_CMD_STATUS_ERROR:
	case NAND_CMD_STATUS_ERROR0:
	case NAND_CMD_STATUS_ERROR1:
	case NAND_CMD_STATUS_ERROR2:
	case NAND_CMD_STATUS_ERROR3:
305
		cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
306 307 308
		return;
	}
	nand_wait_ready(mtd);
309
	cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
310 311 312 313
}

static void cafe_select_chip(struct mtd_info *mtd, int chipnr)
{
314 315 316 317 318 319 320 321 322 323
	struct cafe_priv *cafe = mtd->priv;

	cafe_dev_dbg(&cafe->pdev->dev, "select_chip %d\n", chipnr);

	/* Mask the appropriate bit into the stored value of ctl1
	   which will be used by cafe_nand_cmdfunc() */
	if (chipnr)
		cafe->ctl1 |= CTRL1_CHIPSELECT;
	else
		cafe->ctl1 &= ~CTRL1_CHIPSELECT;
324
}
325

326
static int cafe_nand_interrupt(int irq, void *id)
327 328 329
{
	struct mtd_info *mtd = id;
	struct cafe_priv *cafe = mtd->priv;
330 331
	uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
	cafe_writel(cafe, irqs & ~0x90000000, NAND_IRQ);
332 333 334
	if (!irqs)
		return IRQ_NONE;

335
	cafe_dev_dbg(&cafe->pdev->dev, "irq, bits %x (%x)\n", irqs, cafe_readl(cafe, NAND_IRQ));
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
	return IRQ_HANDLED;
}

static void cafe_nand_bug(struct mtd_info *mtd)
{
	BUG();
}

static int cafe_nand_write_oob(struct mtd_info *mtd,
			       struct nand_chip *chip, int page)
{
	int status = 0;

	chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
	chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
	status = chip->waitfunc(mtd, chip);

	return status & NAND_STATUS_FAIL ? -EIO : 0;
}

/* Don't use -- use nand_read_oob_std for now */
static int cafe_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
			      int page, int sndcmd)
{
	chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
	return 1;
}
/**
 * cafe_nand_read_page_syndrome - {REPLACABLE] hardware ecc syndrom based page read
 * @mtd:	mtd info structure
 * @chip:	nand chip info structure
 * @buf:	buffer to store read data
 *
 * The hw generator calculates the error syndrome automatically. Therefor
 * we need a special oob layout and handling.
 */
static int cafe_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
			       uint8_t *buf)
{
	struct cafe_priv *cafe = mtd->priv;

379
	cafe_dev_dbg(&cafe->pdev->dev, "ECC result %08x SYN1,2 %08x\n",
380 381
		     cafe_readl(cafe, NAND_ECC_RESULT),
		     cafe_readl(cafe, NAND_ECC_SYN01));
382 383 384 385

	chip->read_buf(mtd, buf, mtd->writesize);
	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);

386
	if (checkecc && cafe_readl(cafe, NAND_ECC_RESULT) & (1<<18)) {
387 388 389 390
		unsigned short syn[8], pat[4];
		int pos[4];
		u8 *oob = chip->oob_poi;
		int i, n;
391 392

		for (i=0; i<8; i+=2) {
393
			uint32_t tmp = cafe_readl(cafe, NAND_ECC_SYN01 + (i*2));
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
			syn[i] = cafe->rs->index_of[tmp & 0xfff];
			syn[i+1] = cafe->rs->index_of[(tmp >> 16) & 0xfff];
		}

		n = decode_rs16(cafe->rs, NULL, NULL, 1367, syn, 0, pos, 0,
		                pat);

		for (i = 0; i < n; i++) {
			int p = pos[i];

			/* The 12-bit symbols are mapped to bytes here */

			if (p > 1374) {
				/* out of range */
				n = -1374;
			} else if (p == 0) {
				/* high four bits do not correspond to data */
				if (pat[i] > 0xff)
					n = -2048;
				else
					buf[0] ^= pat[i];
			} else if (p == 1365) {
				buf[2047] ^= pat[i] >> 4;
				oob[0] ^= pat[i] << 4;
			} else if (p > 1365) {
				if ((p & 1) == 1) {
					oob[3*p/2 - 2048] ^= pat[i] >> 4;
					oob[3*p/2 - 2047] ^= pat[i] << 4;
				} else {
					oob[3*p/2 - 2049] ^= pat[i] >> 8;
					oob[3*p/2 - 2048] ^= pat[i];
				}
			} else if ((p & 1) == 1) {
				buf[3*p/2] ^= pat[i] >> 4;
				buf[3*p/2 + 1] ^= pat[i] << 4;
			} else {
				buf[3*p/2 - 1] ^= pat[i] >> 8;
				buf[3*p/2] ^= pat[i];
			}
D
David Woodhouse 已提交
433
		}
434

435
		if (n < 0) {
436 437
			dev_dbg(&cafe->pdev->dev, "Failed to correct ECC at %08x\n",
				cafe_readl(cafe, NAND_ADDR2) * 2048);
438
			for (i = 0; i < 0x5c; i += 4)
439
				printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
440 441
			mtd->ecc_stats.failed++;
		} else {
442 443
			dev_dbg(&cafe->pdev->dev, "Corrected %d symbol errors\n", n);
			mtd->ecc_stats.corrected += n;
444 445 446
		}
	}

447 448 449
	return 0;
}

450 451 452 453 454 455
static struct nand_ecclayout cafe_oobinfo_2048 = {
	.eccbytes = 14,
	.eccpos = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13},
	.oobfree = {{14, 50}}
};

D
David Woodhouse 已提交
456
/* Ick. The BBT code really ought to be able to work this bit out
457 458 459 460 461 462 463
   for itself from the above, at least for the 2KiB case */
static uint8_t cafe_bbt_pattern_2048[] = { 'B', 'b', 't', '0' };
static uint8_t cafe_mirror_pattern_2048[] = { '1', 't', 'b', 'B' };

static uint8_t cafe_bbt_pattern_512[] = { 0xBB };
static uint8_t cafe_mirror_pattern_512[] = { 0xBC };

464 465 466

static struct nand_bbt_descr cafe_bbt_main_descr_2048 = {
	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
467
		| NAND_BBT_2BIT | NAND_BBT_VERSION,
468 469 470 471
	.offs =	14,
	.len = 4,
	.veroffs = 18,
	.maxblocks = 4,
472
	.pattern = cafe_bbt_pattern_2048
473 474 475 476
};

static struct nand_bbt_descr cafe_bbt_mirror_descr_2048 = {
	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
477
		| NAND_BBT_2BIT | NAND_BBT_VERSION,
478 479 480 481
	.offs =	14,
	.len = 4,
	.veroffs = 18,
	.maxblocks = 4,
482
	.pattern = cafe_mirror_pattern_2048
483 484 485 486 487 488 489 490
};

static struct nand_ecclayout cafe_oobinfo_512 = {
	.eccbytes = 14,
	.eccpos = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13},
	.oobfree = {{14, 2}}
};

491 492
static struct nand_bbt_descr cafe_bbt_main_descr_512 = {
	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
493
		| NAND_BBT_2BIT | NAND_BBT_VERSION,
494 495 496 497 498 499 500 501 502
	.offs =	14,
	.len = 1,
	.veroffs = 15,
	.maxblocks = 4,
	.pattern = cafe_bbt_pattern_512
};

static struct nand_bbt_descr cafe_bbt_mirror_descr_512 = {
	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
503
		| NAND_BBT_2BIT | NAND_BBT_VERSION,
504 505 506 507 508 509 510 511
	.offs =	14,
	.len = 1,
	.veroffs = 15,
	.maxblocks = 4,
	.pattern = cafe_mirror_pattern_512
};


512 513 514 515 516 517
static void cafe_nand_write_page_lowlevel(struct mtd_info *mtd,
					  struct nand_chip *chip, const uint8_t *buf)
{
	struct cafe_priv *cafe = mtd->priv;

	chip->write_buf(mtd, buf, mtd->writesize);
518
	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
519 520

	/* Set up ECC autogeneration */
521
	cafe->ctl2 |= (1<<30);
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
}

static int cafe_nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
				const uint8_t *buf, int page, int cached, int raw)
{
	int status;

	chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);

	if (unlikely(raw))
		chip->ecc.write_page_raw(mtd, chip, buf);
	else
		chip->ecc.write_page(mtd, chip, buf);

	/*
	 * Cached progamming disabled for now, Not sure if its worth the
	 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s)
	 */
	cached = 0;

	if (!cached || !(chip->options & NAND_CACHEPRG)) {

		chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
		status = chip->waitfunc(mtd, chip);
		/*
		 * See if operation failed and additional status checks are
		 * available
		 */
		if ((status & NAND_STATUS_FAIL) && (chip->errstat))
			status = chip->errstat(mtd, chip, FL_WRITING, status,
					       page);

		if (status & NAND_STATUS_FAIL)
			return -EIO;
	} else {
		chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
		status = chip->waitfunc(mtd, chip);
	}

#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
	/* Send command to read back the data */
	chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);

	if (chip->verify_buf(mtd, buf, mtd->writesize))
		return -EIO;
#endif
	return 0;
}

571 572 573 574
static int cafe_nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
{
	return 0;
}
575

576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
/* F_2[X]/(X**6+X+1)  */
static unsigned short __devinit gf64_mul(u8 a, u8 b)
{
	u8 c;
	unsigned int i;

	c = 0;
	for (i = 0; i < 6; i++) {
		if (a & 1)
			c ^= b;
		a >>= 1;
		b <<= 1;
		if ((b & 0x40) != 0)
			b ^= 0x43;
	}

	return c;
}

/* F_64[X]/(X**2+X+A**-1) with A the generator of F_64[X]  */
static u16 __devinit gf4096_mul(u16 a, u16 b)
{
	u8 ah, al, bh, bl, ch, cl;

	ah = a >> 6;
	al = a & 0x3f;
	bh = b >> 6;
	bl = b & 0x3f;

	ch = gf64_mul(ah ^ al, bh ^ bl) ^ gf64_mul(al, bl);
	cl = gf64_mul(gf64_mul(ah, bh), 0x21) ^ gf64_mul(al, bl);

	return (ch << 6) ^ cl;
}

static int __devinit cafe_mul(int x)
{
	if (x == 0)
		return 1;
	return gf4096_mul(x, 0xe01);
}

618 619 620 621 622 623 624 625
static int __devinit cafe_nand_probe(struct pci_dev *pdev,
				     const struct pci_device_id *ent)
{
	struct mtd_info *mtd;
	struct cafe_priv *cafe;
	uint32_t ctrl;
	int err = 0;

626 627 628 629 630
	/* Very old versions shared the same PCI ident for all three
	   functions on the chip. Verify the class too... */
	if ((pdev->class >> 8) != PCI_CLASS_MEMORY_FLASH)
		return -ENODEV;

631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
	err = pci_enable_device(pdev);
	if (err)
		return err;

	pci_set_master(pdev);

	mtd = kzalloc(sizeof(*mtd) + sizeof(struct cafe_priv), GFP_KERNEL);
	if (!mtd) {
		dev_warn(&pdev->dev, "failed to alloc mtd_info\n");
		return  -ENOMEM;
	}
	cafe = (void *)(&mtd[1]);

	mtd->priv = cafe;
	mtd->owner = THIS_MODULE;

	cafe->pdev = pdev;
	cafe->mmio = pci_iomap(pdev, 0, 0);
	if (!cafe->mmio) {
		dev_warn(&pdev->dev, "failed to iomap\n");
		err = -ENOMEM;
		goto out_free_mtd;
	}
	cafe->dmabuf = dma_alloc_coherent(&cafe->pdev->dev, 2112 + sizeof(struct nand_buffers),
					  &cafe->dmaaddr, GFP_KERNEL);
	if (!cafe->dmabuf) {
		err = -ENOMEM;
		goto out_ior;
	}
	cafe->nand.buffers = (void *)cafe->dmabuf + 2112;

662 663 664 665 666 667
	cafe->rs = init_rs_non_canonical(12, &cafe_mul, 0, 1, 8);
	if (!cafe->rs) {
		err = -ENOMEM;
		goto out_ior;
	}

668 669 670 671 672 673 674 675 676 677 678
	cafe->nand.cmdfunc = cafe_nand_cmdfunc;
	cafe->nand.dev_ready = cafe_device_ready;
	cafe->nand.read_byte = cafe_read_byte;
	cafe->nand.read_buf = cafe_read_buf;
	cafe->nand.write_buf = cafe_write_buf;
	cafe->nand.select_chip = cafe_select_chip;

	cafe->nand.chip_delay = 0;

	/* Enable the following for a flash based bad block table */
	cafe->nand.options = NAND_USE_FLASH_BBT | NAND_NO_AUTOINCR | NAND_OWN_BUFFERS;
679 680 681 682 683

	if (skipbbt) {
		cafe->nand.options |= NAND_SKIP_BBTSCAN;
		cafe->nand.block_bad = cafe_nand_block_bad;
	}
D
David Woodhouse 已提交
684

685 686 687 688 689 690
	if (numtimings && numtimings != 3) {
		dev_warn(&cafe->pdev->dev, "%d timing register values ignored; precisely three are required\n", numtimings);
	}

	if (numtimings == 3) {
		cafe_dev_dbg(&cafe->pdev->dev, "Using provided timings (%08x %08x %08x)\n",
691
			     timing[0], timing[1], timing[2]);
692
	} else {
693 694 695
		timing[0] = cafe_readl(cafe, NAND_TIMING1);
		timing[1] = cafe_readl(cafe, NAND_TIMING2);
		timing[2] = cafe_readl(cafe, NAND_TIMING3);
696

697 698 699
		if (timing[0] | timing[1] | timing[2]) {
			cafe_dev_dbg(&cafe->pdev->dev, "Timing registers already set (%08x %08x %08x)\n",
				     timing[0], timing[1], timing[2]);
700 701
		} else {
			dev_warn(&cafe->pdev->dev, "Timing registers unset; using most conservative defaults\n");
702
			timing[0] = timing[1] = timing[2] = 0xffffffff;
703 704 705
		}
	}

706
	/* Start off by resetting the NAND controller completely */
707 708
	cafe_writel(cafe, 1, NAND_RESET);
	cafe_writel(cafe, 0, NAND_RESET);
709

710 711 712
	cafe_writel(cafe, timing[0], NAND_TIMING1);
	cafe_writel(cafe, timing[1], NAND_TIMING2);
	cafe_writel(cafe, timing[2], NAND_TIMING3);
713

714
	cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK);
715 716
	err = request_irq(pdev->irq, &cafe_nand_interrupt, IRQF_SHARED,
			  "CAFE NAND", mtd);
717 718 719 720
	if (err) {
		dev_warn(&pdev->dev, "Could not register IRQ %d\n", pdev->irq);
		goto out_free_dma;
	}
721

722
	/* Disable master reset, enable NAND clock */
723
	ctrl = cafe_readl(cafe, GLOBAL_CTRL);
724 725
	ctrl &= 0xffffeff0;
	ctrl |= 0x00007000;
726 727 728
	cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL);
	cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL);
	cafe_writel(cafe, 0, NAND_DMA_CTRL);
729

730 731
	cafe_writel(cafe, 0x7006, GLOBAL_CTRL);
	cafe_writel(cafe, 0x700a, GLOBAL_CTRL);
732 733

	/* Set up DMA address */
734
	cafe_writel(cafe, cafe->dmaaddr & 0xffffffff, NAND_DMA_ADDR0);
735
	if (sizeof(cafe->dmaaddr) > 4)
736
		/* Shift in two parts to shut the compiler up */
737
		cafe_writel(cafe, (cafe->dmaaddr >> 16) >> 16, NAND_DMA_ADDR1);
738
	else
739
		cafe_writel(cafe, 0, NAND_DMA_ADDR1);
740

741
	cafe_dev_dbg(&cafe->pdev->dev, "Set DMA address to %x (virt %p)\n",
742
		cafe_readl(cafe, NAND_DMA_ADDR0), cafe->dmabuf);
743 744

	/* Enable NAND IRQ in global IRQ mask register */
745
	cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK);
746
	cafe_dev_dbg(&cafe->pdev->dev, "Control %x, IRQ mask %x\n",
747
		cafe_readl(cafe, GLOBAL_CTRL), cafe_readl(cafe, GLOBAL_IRQ_MASK));
748 749

	/* Scan to find existence of the device */
750
	if (nand_scan_ident(mtd, 2)) {
751 752 753 754 755 756 757 758 759
		err = -ENXIO;
		goto out_irq;
	}

	cafe->ctl2 = 1<<27; /* Reed-Solomon ECC */
	if (mtd->writesize == 2048)
		cafe->ctl2 |= 1<<29; /* 2KiB page size */

	/* Set up ECC according to the type of chip we found */
760
	if (mtd->writesize == 2048) {
761 762 763
		cafe->nand.ecc.layout = &cafe_oobinfo_2048;
		cafe->nand.bbt_td = &cafe_bbt_main_descr_2048;
		cafe->nand.bbt_md = &cafe_bbt_mirror_descr_2048;
764 765 766 767
	} else if (mtd->writesize == 512) {
		cafe->nand.ecc.layout = &cafe_oobinfo_512;
		cafe->nand.bbt_td = &cafe_bbt_main_descr_512;
		cafe->nand.bbt_md = &cafe_bbt_mirror_descr_512;
768
	} else {
769
		printk(KERN_WARNING "Unexpected NAND flash writesize %d. Aborting\n",
770
		       mtd->writesize);
771
		goto out_irq;
772
	}
773 774 775 776 777 778 779 780 781 782 783
	cafe->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
	cafe->nand.ecc.size = mtd->writesize;
	cafe->nand.ecc.bytes = 14;
	cafe->nand.ecc.hwctl  = (void *)cafe_nand_bug;
	cafe->nand.ecc.calculate = (void *)cafe_nand_bug;
	cafe->nand.ecc.correct  = (void *)cafe_nand_bug;
	cafe->nand.write_page = cafe_nand_write_page;
	cafe->nand.ecc.write_page = cafe_nand_write_page_lowlevel;
	cafe->nand.ecc.write_oob = cafe_nand_write_oob;
	cafe->nand.ecc.read_page = cafe_nand_read_page;
	cafe->nand.ecc.read_oob = cafe_nand_read_oob;
784 785 786 787 788 789 790 791 792 793 794

	err = nand_scan_tail(mtd);
	if (err)
		goto out_irq;

	pci_set_drvdata(pdev, mtd);
	add_mtd_device(mtd);
	goto out;

 out_irq:
	/* Disable NAND IRQ in global IRQ mask register */
795
	cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
	free_irq(pdev->irq, mtd);
 out_free_dma:
	dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
 out_ior:
	pci_iounmap(pdev, cafe->mmio);
 out_free_mtd:
	kfree(mtd);
 out:
	return err;
}

static void __devexit cafe_nand_remove(struct pci_dev *pdev)
{
	struct mtd_info *mtd = pci_get_drvdata(pdev);
	struct cafe_priv *cafe = mtd->priv;

	del_mtd_device(mtd);
	/* Disable NAND IRQ in global IRQ mask register */
814
	cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
815 816
	free_irq(pdev->irq, mtd);
	nand_release(mtd);
817
	free_rs(cafe->rs);
818 819 820 821 822 823
	pci_iounmap(pdev, cafe->mmio);
	dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
	kfree(mtd);
}

static struct pci_device_id cafe_nand_tbl[] = {
824 825
	{ 0x11ab, 0x4100, PCI_ANY_ID, PCI_ANY_ID },
	{ }
826 827 828 829
};

MODULE_DEVICE_TABLE(pci, cafe_nand_tbl);

830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868
static int cafe_nand_resume(struct pci_dev *pdev)
{
	uint32_t ctrl;
	struct mtd_info *mtd = pci_get_drvdata(pdev);
	struct cafe_priv *cafe = mtd->priv;

       /* Start off by resetting the NAND controller completely */
	cafe_writel(cafe, 1, NAND_RESET);
	cafe_writel(cafe, 0, NAND_RESET);
	cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK);

	/* Restore timing configuration */
	cafe_writel(cafe, timing[0], NAND_TIMING1);
	cafe_writel(cafe, timing[1], NAND_TIMING2);
	cafe_writel(cafe, timing[2], NAND_TIMING3);

        /* Disable master reset, enable NAND clock */
	ctrl = cafe_readl(cafe, GLOBAL_CTRL);
	ctrl &= 0xffffeff0;
	ctrl |= 0x00007000;
	cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL);
	cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL);
	cafe_writel(cafe, 0, NAND_DMA_CTRL);
	cafe_writel(cafe, 0x7006, GLOBAL_CTRL);
	cafe_writel(cafe, 0x700a, GLOBAL_CTRL);

	/* Set up DMA address */
	cafe_writel(cafe, cafe->dmaaddr & 0xffffffff, NAND_DMA_ADDR0);
	if (sizeof(cafe->dmaaddr) > 4)
	/* Shift in two parts to shut the compiler up */
		cafe_writel(cafe, (cafe->dmaaddr >> 16) >> 16, NAND_DMA_ADDR1);
	else
		cafe_writel(cafe, 0, NAND_DMA_ADDR1);

	/* Enable NAND IRQ in global IRQ mask register */
	cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK);
	return 0;
}

869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890
static struct pci_driver cafe_nand_pci_driver = {
	.name = "CAFÉ NAND",
	.id_table = cafe_nand_tbl,
	.probe = cafe_nand_probe,
	.remove = __devexit_p(cafe_nand_remove),
	.resume = cafe_nand_resume,
};

static int cafe_nand_init(void)
{
	return pci_register_driver(&cafe_nand_pci_driver);
}

static void cafe_nand_exit(void)
{
	pci_unregister_driver(&cafe_nand_pci_driver);
}
module_init(cafe_nand_init);
module_exit(cafe_nand_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
891
MODULE_DESCRIPTION("NAND flash driver for OLPC CAFÉ chip");