cafe_nand.c 22.5 KB
Newer Older
D
David Woodhouse 已提交
1
/*
2
 * Driver for One Laptop Per Child ‘CAFÉ’ controller, aka Marvell 88ALP01
3 4 5 6 7
 *
 * Copyright © 2006 Red Hat, Inc.
 * Copyright © 2006 David Woodhouse <dwmw2@infradead.org>
 */

8
#define DEBUG
9 10 11 12 13

#include <linux/device.h>
#undef DEBUG
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
14
#include <linux/rslib.h>
15 16 17
#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
18
#include <linux/dma-mapping.h>
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
#include <asm/io.h>

#define CAFE_NAND_CTRL1		0x00
#define CAFE_NAND_CTRL2		0x04
#define CAFE_NAND_CTRL3		0x08
#define CAFE_NAND_STATUS	0x0c
#define CAFE_NAND_IRQ		0x10
#define CAFE_NAND_IRQ_MASK	0x14
#define CAFE_NAND_DATA_LEN	0x18
#define CAFE_NAND_ADDR1		0x1c
#define CAFE_NAND_ADDR2		0x20
#define CAFE_NAND_TIMING1	0x24
#define CAFE_NAND_TIMING2	0x28
#define CAFE_NAND_TIMING3	0x2c
#define CAFE_NAND_NONMEM	0x30
34
#define CAFE_NAND_ECC_RESULT	0x3C
35 36 37
#define CAFE_NAND_DMA_CTRL	0x40
#define CAFE_NAND_DMA_ADDR0	0x44
#define CAFE_NAND_DMA_ADDR1	0x48
38 39 40 41
#define CAFE_NAND_ECC_SYN01	0x50
#define CAFE_NAND_ECC_SYN23	0x54
#define CAFE_NAND_ECC_SYN45	0x58
#define CAFE_NAND_ECC_SYN67	0x5c
42 43 44
#define CAFE_NAND_READ_DATA	0x1000
#define CAFE_NAND_WRITE_DATA	0x2000

45 46 47 48 49
#define CAFE_GLOBAL_CTRL	0x3004
#define CAFE_GLOBAL_IRQ		0x3008
#define CAFE_GLOBAL_IRQ_MASK	0x300c
#define CAFE_NAND_RESET		0x3034

50 51 52 53
struct cafe_priv {
	struct nand_chip nand;
	struct pci_dev *pdev;
	void __iomem *mmio;
54
	struct rs_control *rs;
55 56 57 58 59 60 61 62 63 64
	uint32_t ctl1;
	uint32_t ctl2;
	int datalen;
	int nr_data;
	int data_pos;
	int page_addr;
	dma_addr_t dmaaddr;
	unsigned char *dmabuf;
};

65
static int usedma = 1;
66 67
module_param(usedma, int, 0644);

68 69 70 71 72 73
static int skipbbt = 0;
module_param(skipbbt, int, 0644);

static int debug = 0;
module_param(debug, int, 0644);

74 75 76
static int regdebug = 0;
module_param(regdebug, int, 0644);

77
static int checkecc = 1;
78 79
module_param(checkecc, int, 0644);

80 81 82
static int numtimings;
static int timing[3];
module_param_array(timing, int, &numtimings, 0644);
83

84
/* Hrm. Why isn't this already conditional on something in the struct device? */
85 86
#define cafe_dev_dbg(dev, args...) do { if (debug) dev_dbg(dev, ##args); } while(0)

87 88 89
/* Make it easier to switch to PIO if we need to */
#define cafe_readl(cafe, addr)			readl((cafe)->mmio + CAFE_##addr)
#define cafe_writel(cafe, datum, addr)		writel(datum, (cafe)->mmio + CAFE_##addr)
90

91 92 93
static int cafe_device_ready(struct mtd_info *mtd)
{
	struct cafe_priv *cafe = mtd->priv;
94 95
	int result = !!(cafe_readl(cafe, NAND_STATUS) | 0x40000000);
	uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
96

97
	cafe_writel(cafe, irqs, NAND_IRQ);
98

99
	cafe_dev_dbg(&cafe->pdev->dev, "NAND device is%s ready, IRQ %x (%x) (%x,%x)\n",
100 101
		result?"":" not", irqs, cafe_readl(cafe, NAND_IRQ),
		cafe_readl(cafe, GLOBAL_IRQ), cafe_readl(cafe, GLOBAL_IRQ_MASK));
102

103 104 105 106 107 108 109 110 111 112 113 114
	return result;
}


static void cafe_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
{
	struct cafe_priv *cafe = mtd->priv;

	if (usedma)
		memcpy(cafe->dmabuf + cafe->datalen, buf, len);
	else
		memcpy_toio(cafe->mmio + CAFE_NAND_WRITE_DATA + cafe->datalen, buf, len);
115

116 117
	cafe->datalen += len;

118
	cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes to write buffer. datalen 0x%x\n",
119 120 121 122 123 124 125 126 127 128 129 130
		len, cafe->datalen);
}

static void cafe_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
{
	struct cafe_priv *cafe = mtd->priv;

	if (usedma)
		memcpy(buf, cafe->dmabuf + cafe->datalen, len);
	else
		memcpy_fromio(buf, cafe->mmio + CAFE_NAND_READ_DATA + cafe->datalen, len);

131
	cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes from position 0x%x in read buffer.\n",
132 133 134 135 136 137 138 139 140 141
		  len, cafe->datalen);
	cafe->datalen += len;
}

static uint8_t cafe_read_byte(struct mtd_info *mtd)
{
	struct cafe_priv *cafe = mtd->priv;
	uint8_t d;

	cafe_read_buf(mtd, &d, 1);
142
	cafe_dev_dbg(&cafe->pdev->dev, "Read %02x\n", d);
143 144 145 146 147 148 149 150 151 152 153 154

	return d;
}

static void cafe_nand_cmdfunc(struct mtd_info *mtd, unsigned command,
			      int column, int page_addr)
{
	struct cafe_priv *cafe = mtd->priv;
	int adrbytes = 0;
	uint32_t ctl1;
	uint32_t doneint = 0x80000000;

155
	cafe_dev_dbg(&cafe->pdev->dev, "cmdfunc %02x, 0x%x, 0x%x\n",
156 157 158 159
		command, column, page_addr);

	if (command == NAND_CMD_ERASE2 || command == NAND_CMD_PAGEPROG) {
		/* Second half of a command we already calculated */
160
		cafe_writel(cafe, cafe->ctl2 | 0x100 | command, NAND_CTRL2);
161
		ctl1 = cafe->ctl1;
162
		cafe->ctl2 &= ~(1<<30);
163
		cafe_dev_dbg(&cafe->pdev->dev, "Continue command, ctl1 %08x, #data %d\n",
164 165 166 167
			  cafe->ctl1, cafe->nr_data);
		goto do_command;
	}
	/* Reset ECC engine */
168
	cafe_writel(cafe, 0, NAND_CTRL2);
169 170 171 172 173 174 175 176 177 178 179 180

	/* Emulate NAND_CMD_READOOB on large-page chips */
	if (mtd->writesize > 512 &&
	    command == NAND_CMD_READOOB) {
		column += mtd->writesize;
		command = NAND_CMD_READ0;
	}

	/* FIXME: Do we need to send read command before sending data
	   for small-page chips, to position the buffer correctly? */

	if (column != -1) {
181
		cafe_writel(cafe, column, NAND_ADDR1);
182 183 184 185
		adrbytes = 2;
		if (page_addr != -1)
			goto write_adr2;
	} else if (page_addr != -1) {
186
		cafe_writel(cafe, page_addr & 0xffff, NAND_ADDR1);
187 188
		page_addr >>= 16;
	write_adr2:
189
		cafe_writel(cafe, page_addr, NAND_ADDR2);
190 191 192 193 194 195 196 197 198 199 200 201 202 203
		adrbytes += 2;
		if (mtd->size > mtd->writesize << 16)
			adrbytes++;
	}

	cafe->data_pos = cafe->datalen = 0;

	/* Set command valid bit */
	ctl1 = 0x80000000 | command;

	/* Set RD or WR bits as appropriate */
	if (command == NAND_CMD_READID || command == NAND_CMD_STATUS) {
		ctl1 |= (1<<26); /* rd */
		/* Always 5 bytes, for now */
204
		cafe->datalen = 4;
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
		/* And one address cycle -- even for STATUS, since the controller doesn't work without */
		adrbytes = 1;
	} else if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 ||
		   command == NAND_CMD_READOOB || command == NAND_CMD_RNDOUT) {
		ctl1 |= 1<<26; /* rd */
		/* For now, assume just read to end of page */
		cafe->datalen = mtd->writesize + mtd->oobsize - column;
	} else if (command == NAND_CMD_SEQIN)
		ctl1 |= 1<<25; /* wr */

	/* Set number of address bytes */
	if (adrbytes)
		ctl1 |= ((adrbytes-1)|8) << 27;

	if (command == NAND_CMD_SEQIN || command == NAND_CMD_ERASE1) {
D
David Woodhouse 已提交
220
		/* Ignore the first command of a pair; the hardware
221 222
		   deals with them both at once, later */
		cafe->ctl1 = ctl1;
223
		cafe_dev_dbg(&cafe->pdev->dev, "Setup for delayed command, ctl1 %08x, dlen %x\n",
224 225 226 227 228
			  cafe->ctl1, cafe->datalen);
		return;
	}
	/* RNDOUT and READ0 commands need a following byte */
	if (command == NAND_CMD_RNDOUT)
229
		cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_RNDOUTSTART, NAND_CTRL2);
230
	else if (command == NAND_CMD_READ0 && mtd->writesize > 512)
231
		cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_READSTART, NAND_CTRL2);
232 233

 do_command:
D
David Woodhouse 已提交
234
	cafe_dev_dbg(&cafe->pdev->dev, "dlen %x, ctl1 %x, ctl2 %x\n",
235
		cafe->datalen, ctl1, cafe_readl(cafe, NAND_CTRL2));
236

237
	/* NB: The datasheet lies -- we really should be subtracting 1 here */
238 239
	cafe_writel(cafe, cafe->datalen, NAND_DATA_LEN);
	cafe_writel(cafe, 0x90000000, NAND_IRQ);
240 241 242 243 244 245 246 247 248 249
	if (usedma && (ctl1 & (3<<25))) {
		uint32_t dmactl = 0xc0000000 + cafe->datalen;
		/* If WR or RD bits set, set up DMA */
		if (ctl1 & (1<<26)) {
			/* It's a read */
			dmactl |= (1<<29);
			/* ... so it's done when the DMA is done, not just
			   the command. */
			doneint = 0x10000000;
		}
250
		cafe_writel(cafe, dmactl, NAND_DMA_CTRL);
251 252 253
	}
	cafe->datalen = 0;

254 255 256 257 258
	if (unlikely(regdebug)) {
		int i;
		printk("About to write command %08x to register 0\n", ctl1);
		for (i=4; i< 0x5c; i+=4)
			printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
259
	}
260

261
	cafe_writel(cafe, ctl1, NAND_CTRL1);
262 263 264 265 266
	/* Apply this short delay always to ensure that we do wait tWB in
	 * any case on any machine. */
	ndelay(100);

	if (1) {
267
		int c;
268 269
		uint32_t irqs;

270
		for (c = 500000; c != 0; c--) {
271
			irqs = cafe_readl(cafe, NAND_IRQ);
272 273 274
			if (irqs & doneint)
				break;
			udelay(1);
275 276
			if (!(c % 100000))
				cafe_dev_dbg(&cafe->pdev->dev, "Wait for ready, IRQ %x\n", irqs);
277 278
			cpu_relax();
		}
279
		cafe_writel(cafe, doneint, NAND_IRQ);
280
		cafe_dev_dbg(&cafe->pdev->dev, "Command %x completed after %d usec, irqs %x (%x)\n",
281
			     command, 500000-c, irqs, cafe_readl(cafe, NAND_IRQ));
282 283
	}

284
	WARN_ON(cafe->ctl2 & (1<<30));
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301

	switch (command) {

	case NAND_CMD_CACHEDPROG:
	case NAND_CMD_PAGEPROG:
	case NAND_CMD_ERASE1:
	case NAND_CMD_ERASE2:
	case NAND_CMD_SEQIN:
	case NAND_CMD_RNDIN:
	case NAND_CMD_STATUS:
	case NAND_CMD_DEPLETE1:
	case NAND_CMD_RNDOUT:
	case NAND_CMD_STATUS_ERROR:
	case NAND_CMD_STATUS_ERROR0:
	case NAND_CMD_STATUS_ERROR1:
	case NAND_CMD_STATUS_ERROR2:
	case NAND_CMD_STATUS_ERROR3:
302
		cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
303 304 305
		return;
	}
	nand_wait_ready(mtd);
306
	cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
307 308 309 310 311
}

static void cafe_select_chip(struct mtd_info *mtd, int chipnr)
{
	//struct cafe_priv *cafe = mtd->priv;
312
	//	cafe_dev_dbg(&cafe->pdev->dev, "select_chip %d\n", chipnr);
313
}
314

315
static int cafe_nand_interrupt(int irq, void *id)
316 317 318
{
	struct mtd_info *mtd = id;
	struct cafe_priv *cafe = mtd->priv;
319 320
	uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
	cafe_writel(cafe, irqs & ~0x90000000, NAND_IRQ);
321 322 323
	if (!irqs)
		return IRQ_NONE;

324
	cafe_dev_dbg(&cafe->pdev->dev, "irq, bits %x (%x)\n", irqs, cafe_readl(cafe, NAND_IRQ));
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
	return IRQ_HANDLED;
}

static void cafe_nand_bug(struct mtd_info *mtd)
{
	BUG();
}

static int cafe_nand_write_oob(struct mtd_info *mtd,
			       struct nand_chip *chip, int page)
{
	int status = 0;

	chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
	chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
	status = chip->waitfunc(mtd, chip);

	return status & NAND_STATUS_FAIL ? -EIO : 0;
}

/* Don't use -- use nand_read_oob_std for now */
static int cafe_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
			      int page, int sndcmd)
{
	chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
	return 1;
}
/**
 * cafe_nand_read_page_syndrome - {REPLACABLE] hardware ecc syndrom based page read
 * @mtd:	mtd info structure
 * @chip:	nand chip info structure
 * @buf:	buffer to store read data
 *
 * The hw generator calculates the error syndrome automatically. Therefor
 * we need a special oob layout and handling.
 */
static int cafe_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
			       uint8_t *buf)
{
	struct cafe_priv *cafe = mtd->priv;

368
	cafe_dev_dbg(&cafe->pdev->dev, "ECC result %08x SYN1,2 %08x\n",
369 370
		     cafe_readl(cafe, NAND_ECC_RESULT),
		     cafe_readl(cafe, NAND_ECC_SYN01));
371 372 373 374

	chip->read_buf(mtd, buf, mtd->writesize);
	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);

375
	if (checkecc && cafe_readl(cafe, NAND_ECC_RESULT) & (1<<18)) {
376 377 378 379
		unsigned short syn[8], pat[4];
		int pos[4];
		u8 *oob = chip->oob_poi;
		int i, n;
380 381

		for (i=0; i<8; i+=2) {
382
			uint32_t tmp = cafe_readl(cafe, NAND_ECC_SYN01 + (i*2));
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
			syn[i] = cafe->rs->index_of[tmp & 0xfff];
			syn[i+1] = cafe->rs->index_of[(tmp >> 16) & 0xfff];
		}

		n = decode_rs16(cafe->rs, NULL, NULL, 1367, syn, 0, pos, 0,
		                pat);

		for (i = 0; i < n; i++) {
			int p = pos[i];

			/* The 12-bit symbols are mapped to bytes here */

			if (p > 1374) {
				/* out of range */
				n = -1374;
			} else if (p == 0) {
				/* high four bits do not correspond to data */
				if (pat[i] > 0xff)
					n = -2048;
				else
					buf[0] ^= pat[i];
			} else if (p == 1365) {
				buf[2047] ^= pat[i] >> 4;
				oob[0] ^= pat[i] << 4;
			} else if (p > 1365) {
				if ((p & 1) == 1) {
					oob[3*p/2 - 2048] ^= pat[i] >> 4;
					oob[3*p/2 - 2047] ^= pat[i] << 4;
				} else {
					oob[3*p/2 - 2049] ^= pat[i] >> 8;
					oob[3*p/2 - 2048] ^= pat[i];
				}
			} else if ((p & 1) == 1) {
				buf[3*p/2] ^= pat[i] >> 4;
				buf[3*p/2 + 1] ^= pat[i] << 4;
			} else {
				buf[3*p/2 - 1] ^= pat[i] >> 8;
				buf[3*p/2] ^= pat[i];
			}
D
David Woodhouse 已提交
422
		}
423

424
		if (n < 0) {
425 426
			dev_dbg(&cafe->pdev->dev, "Failed to correct ECC at %08x\n",
				cafe_readl(cafe, NAND_ADDR2) * 2048);
427
			for (i = 0; i < 0x5c; i += 4)
428
				printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
429 430
			mtd->ecc_stats.failed++;
		} else {
431 432
			dev_dbg(&cafe->pdev->dev, "Corrected %d symbol errors\n", n);
			mtd->ecc_stats.corrected += n;
433 434 435
		}
	}

436 437 438
	return 0;
}

439 440 441 442 443 444
static struct nand_ecclayout cafe_oobinfo_2048 = {
	.eccbytes = 14,
	.eccpos = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13},
	.oobfree = {{14, 50}}
};

D
David Woodhouse 已提交
445
/* Ick. The BBT code really ought to be able to work this bit out
446 447 448 449 450 451 452
   for itself from the above, at least for the 2KiB case */
static uint8_t cafe_bbt_pattern_2048[] = { 'B', 'b', 't', '0' };
static uint8_t cafe_mirror_pattern_2048[] = { '1', 't', 'b', 'B' };

static uint8_t cafe_bbt_pattern_512[] = { 0xBB };
static uint8_t cafe_mirror_pattern_512[] = { 0xBC };

453 454 455 456 457 458 459 460

static struct nand_bbt_descr cafe_bbt_main_descr_2048 = {
	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
	.offs =	14,
	.len = 4,
	.veroffs = 18,
	.maxblocks = 4,
461
	.pattern = cafe_bbt_pattern_2048
462 463 464 465 466 467 468 469 470
};

static struct nand_bbt_descr cafe_bbt_mirror_descr_2048 = {
	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
	.offs =	14,
	.len = 4,
	.veroffs = 18,
	.maxblocks = 4,
471
	.pattern = cafe_mirror_pattern_2048
472 473 474 475 476 477 478 479
};

static struct nand_ecclayout cafe_oobinfo_512 = {
	.eccbytes = 14,
	.eccpos = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13},
	.oobfree = {{14, 2}}
};

480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
static struct nand_bbt_descr cafe_bbt_main_descr_512 = {
	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
	.offs =	14,
	.len = 1,
	.veroffs = 15,
	.maxblocks = 4,
	.pattern = cafe_bbt_pattern_512
};

static struct nand_bbt_descr cafe_bbt_mirror_descr_512 = {
	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
	.offs =	14,
	.len = 1,
	.veroffs = 15,
	.maxblocks = 4,
	.pattern = cafe_mirror_pattern_512
};


501 502 503 504 505 506
static void cafe_nand_write_page_lowlevel(struct mtd_info *mtd,
					  struct nand_chip *chip, const uint8_t *buf)
{
	struct cafe_priv *cafe = mtd->priv;

	chip->write_buf(mtd, buf, mtd->writesize);
507
	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
508 509

	/* Set up ECC autogeneration */
510
	cafe->ctl2 |= (1<<30);
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
}

static int cafe_nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
				const uint8_t *buf, int page, int cached, int raw)
{
	int status;

	chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);

	if (unlikely(raw))
		chip->ecc.write_page_raw(mtd, chip, buf);
	else
		chip->ecc.write_page(mtd, chip, buf);

	/*
	 * Cached progamming disabled for now, Not sure if its worth the
	 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s)
	 */
	cached = 0;

	if (!cached || !(chip->options & NAND_CACHEPRG)) {

		chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
		status = chip->waitfunc(mtd, chip);
		/*
		 * See if operation failed and additional status checks are
		 * available
		 */
		if ((status & NAND_STATUS_FAIL) && (chip->errstat))
			status = chip->errstat(mtd, chip, FL_WRITING, status,
					       page);

		if (status & NAND_STATUS_FAIL)
			return -EIO;
	} else {
		chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
		status = chip->waitfunc(mtd, chip);
	}

#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
	/* Send command to read back the data */
	chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);

	if (chip->verify_buf(mtd, buf, mtd->writesize))
		return -EIO;
#endif
	return 0;
}

560 561 562 563
static int cafe_nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
{
	return 0;
}
564

565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
/* F_2[X]/(X**6+X+1)  */
static unsigned short __devinit gf64_mul(u8 a, u8 b)
{
	u8 c;
	unsigned int i;

	c = 0;
	for (i = 0; i < 6; i++) {
		if (a & 1)
			c ^= b;
		a >>= 1;
		b <<= 1;
		if ((b & 0x40) != 0)
			b ^= 0x43;
	}

	return c;
}

/* F_64[X]/(X**2+X+A**-1) with A the generator of F_64[X]  */
static u16 __devinit gf4096_mul(u16 a, u16 b)
{
	u8 ah, al, bh, bl, ch, cl;

	ah = a >> 6;
	al = a & 0x3f;
	bh = b >> 6;
	bl = b & 0x3f;

	ch = gf64_mul(ah ^ al, bh ^ bl) ^ gf64_mul(al, bl);
	cl = gf64_mul(gf64_mul(ah, bh), 0x21) ^ gf64_mul(al, bl);

	return (ch << 6) ^ cl;
}

static int __devinit cafe_mul(int x)
{
	if (x == 0)
		return 1;
	return gf4096_mul(x, 0xe01);
}

607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
static int __devinit cafe_nand_probe(struct pci_dev *pdev,
				     const struct pci_device_id *ent)
{
	struct mtd_info *mtd;
	struct cafe_priv *cafe;
	uint32_t ctrl;
	int err = 0;

	err = pci_enable_device(pdev);
	if (err)
		return err;

	pci_set_master(pdev);

	mtd = kzalloc(sizeof(*mtd) + sizeof(struct cafe_priv), GFP_KERNEL);
	if (!mtd) {
		dev_warn(&pdev->dev, "failed to alloc mtd_info\n");
		return  -ENOMEM;
	}
	cafe = (void *)(&mtd[1]);

	mtd->priv = cafe;
	mtd->owner = THIS_MODULE;

	cafe->pdev = pdev;
	cafe->mmio = pci_iomap(pdev, 0, 0);
	if (!cafe->mmio) {
		dev_warn(&pdev->dev, "failed to iomap\n");
		err = -ENOMEM;
		goto out_free_mtd;
	}
	cafe->dmabuf = dma_alloc_coherent(&cafe->pdev->dev, 2112 + sizeof(struct nand_buffers),
					  &cafe->dmaaddr, GFP_KERNEL);
	if (!cafe->dmabuf) {
		err = -ENOMEM;
		goto out_ior;
	}
	cafe->nand.buffers = (void *)cafe->dmabuf + 2112;

646 647 648 649 650 651
	cafe->rs = init_rs_non_canonical(12, &cafe_mul, 0, 1, 8);
	if (!cafe->rs) {
		err = -ENOMEM;
		goto out_ior;
	}

652 653 654 655 656 657 658 659 660 661 662
	cafe->nand.cmdfunc = cafe_nand_cmdfunc;
	cafe->nand.dev_ready = cafe_device_ready;
	cafe->nand.read_byte = cafe_read_byte;
	cafe->nand.read_buf = cafe_read_buf;
	cafe->nand.write_buf = cafe_write_buf;
	cafe->nand.select_chip = cafe_select_chip;

	cafe->nand.chip_delay = 0;

	/* Enable the following for a flash based bad block table */
	cafe->nand.options = NAND_USE_FLASH_BBT | NAND_NO_AUTOINCR | NAND_OWN_BUFFERS;
663 664 665 666 667

	if (skipbbt) {
		cafe->nand.options |= NAND_SKIP_BBTSCAN;
		cafe->nand.block_bad = cafe_nand_block_bad;
	}
D
David Woodhouse 已提交
668

669 670 671 672 673 674
	if (numtimings && numtimings != 3) {
		dev_warn(&cafe->pdev->dev, "%d timing register values ignored; precisely three are required\n", numtimings);
	}

	if (numtimings == 3) {
		cafe_dev_dbg(&cafe->pdev->dev, "Using provided timings (%08x %08x %08x)\n",
675
			     timing[0], timing[1], timing[2]);
676
	} else {
677 678 679
		timing[0] = cafe_readl(cafe, NAND_TIMING1);
		timing[1] = cafe_readl(cafe, NAND_TIMING2);
		timing[2] = cafe_readl(cafe, NAND_TIMING3);
680

681 682 683
		if (timing[0] | timing[1] | timing[2]) {
			cafe_dev_dbg(&cafe->pdev->dev, "Timing registers already set (%08x %08x %08x)\n",
				     timing[0], timing[1], timing[2]);
684 685
		} else {
			dev_warn(&cafe->pdev->dev, "Timing registers unset; using most conservative defaults\n");
686
			timing[0] = timing[1] = timing[2] = 0xffffffff;
687 688 689
		}
	}

690
	/* Start off by resetting the NAND controller completely */
691 692
	cafe_writel(cafe, 1, NAND_RESET);
	cafe_writel(cafe, 0, NAND_RESET);
693

694 695 696
	cafe_writel(cafe, timing[0], NAND_TIMING1);
	cafe_writel(cafe, timing[1], NAND_TIMING2);
	cafe_writel(cafe, timing[2], NAND_TIMING3);
697

698
	cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK);
699 700
	err = request_irq(pdev->irq, &cafe_nand_interrupt, IRQF_SHARED,
			  "CAFE NAND", mtd);
701 702 703 704
	if (err) {
		dev_warn(&pdev->dev, "Could not register IRQ %d\n", pdev->irq);
		goto out_free_dma;
	}
705

706
	/* Disable master reset, enable NAND clock */
707
	ctrl = cafe_readl(cafe, GLOBAL_CTRL);
708 709
	ctrl &= 0xffffeff0;
	ctrl |= 0x00007000;
710 711 712
	cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL);
	cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL);
	cafe_writel(cafe, 0, NAND_DMA_CTRL);
713

714 715
	cafe_writel(cafe, 0x7006, GLOBAL_CTRL);
	cafe_writel(cafe, 0x700a, GLOBAL_CTRL);
716 717

	/* Set up DMA address */
718
	cafe_writel(cafe, cafe->dmaaddr & 0xffffffff, NAND_DMA_ADDR0);
719
	if (sizeof(cafe->dmaaddr) > 4)
720
		/* Shift in two parts to shut the compiler up */
721
		cafe_writel(cafe, (cafe->dmaaddr >> 16) >> 16, NAND_DMA_ADDR1);
722
	else
723
		cafe_writel(cafe, 0, NAND_DMA_ADDR1);
724

725
	cafe_dev_dbg(&cafe->pdev->dev, "Set DMA address to %x (virt %p)\n",
726
		cafe_readl(cafe, NAND_DMA_ADDR0), cafe->dmabuf);
727 728

	/* Enable NAND IRQ in global IRQ mask register */
729
	cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK);
730
	cafe_dev_dbg(&cafe->pdev->dev, "Control %x, IRQ mask %x\n",
731
		cafe_readl(cafe, GLOBAL_CTRL), cafe_readl(cafe, GLOBAL_IRQ_MASK));
732 733

	/* Scan to find existence of the device */
734 735 736 737 738 739 740 741 742 743
	if (nand_scan_ident(mtd, 1)) {
		err = -ENXIO;
		goto out_irq;
	}

	cafe->ctl2 = 1<<27; /* Reed-Solomon ECC */
	if (mtd->writesize == 2048)
		cafe->ctl2 |= 1<<29; /* 2KiB page size */

	/* Set up ECC according to the type of chip we found */
744
	if (mtd->writesize == 2048) {
745 746 747
		cafe->nand.ecc.layout = &cafe_oobinfo_2048;
		cafe->nand.bbt_td = &cafe_bbt_main_descr_2048;
		cafe->nand.bbt_md = &cafe_bbt_mirror_descr_2048;
748 749 750 751
	} else if (mtd->writesize == 512) {
		cafe->nand.ecc.layout = &cafe_oobinfo_512;
		cafe->nand.bbt_td = &cafe_bbt_main_descr_512;
		cafe->nand.bbt_md = &cafe_bbt_mirror_descr_512;
752
	} else {
753
		printk(KERN_WARNING "Unexpected NAND flash writesize %d. Aborting\n",
754
		       mtd->writesize);
755
		goto out_irq;
756
	}
757 758 759 760 761 762 763 764 765 766 767
	cafe->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
	cafe->nand.ecc.size = mtd->writesize;
	cafe->nand.ecc.bytes = 14;
	cafe->nand.ecc.hwctl  = (void *)cafe_nand_bug;
	cafe->nand.ecc.calculate = (void *)cafe_nand_bug;
	cafe->nand.ecc.correct  = (void *)cafe_nand_bug;
	cafe->nand.write_page = cafe_nand_write_page;
	cafe->nand.ecc.write_page = cafe_nand_write_page_lowlevel;
	cafe->nand.ecc.write_oob = cafe_nand_write_oob;
	cafe->nand.ecc.read_page = cafe_nand_read_page;
	cafe->nand.ecc.read_oob = cafe_nand_read_oob;
768 769 770 771 772 773 774 775 776 777 778

	err = nand_scan_tail(mtd);
	if (err)
		goto out_irq;

	pci_set_drvdata(pdev, mtd);
	add_mtd_device(mtd);
	goto out;

 out_irq:
	/* Disable NAND IRQ in global IRQ mask register */
779
	cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
	free_irq(pdev->irq, mtd);
 out_free_dma:
	dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
 out_ior:
	pci_iounmap(pdev, cafe->mmio);
 out_free_mtd:
	kfree(mtd);
 out:
	return err;
}

static void __devexit cafe_nand_remove(struct pci_dev *pdev)
{
	struct mtd_info *mtd = pci_get_drvdata(pdev);
	struct cafe_priv *cafe = mtd->priv;

	del_mtd_device(mtd);
	/* Disable NAND IRQ in global IRQ mask register */
798
	cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
799 800
	free_irq(pdev->irq, mtd);
	nand_release(mtd);
801
	free_rs(cafe->rs);
802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
	pci_iounmap(pdev, cafe->mmio);
	dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
	kfree(mtd);
}

static struct pci_device_id cafe_nand_tbl[] = {
	{ 0x11ab, 0x4100, PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_MEMORY_FLASH << 8, 0xFFFF0 }
};

MODULE_DEVICE_TABLE(pci, cafe_nand_tbl);

static struct pci_driver cafe_nand_pci_driver = {
	.name = "CAFÉ NAND",
	.id_table = cafe_nand_tbl,
	.probe = cafe_nand_probe,
	.remove = __devexit_p(cafe_nand_remove),
#ifdef CONFIG_PMx
	.suspend = cafe_nand_suspend,
	.resume = cafe_nand_resume,
#endif
};

static int cafe_nand_init(void)
{
	return pci_register_driver(&cafe_nand_pci_driver);
}

static void cafe_nand_exit(void)
{
	pci_unregister_driver(&cafe_nand_pci_driver);
}
module_init(cafe_nand_init);
module_exit(cafe_nand_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
838
MODULE_DESCRIPTION("NAND flash driver for OLPC CAFÉ chip");