mmu.c 28.5 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 *  linux/arch/arm/mm/mmu.c
 *
 *  Copyright (C) 1995-2005 Russell King
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
10
#include <linux/module.h>
11 12 13 14 15 16 17
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/bootmem.h>
#include <linux/mman.h>
#include <linux/nodemask.h>

18
#include <asm/cputype.h>
19
#include <asm/mach-types.h>
R
Russell King 已提交
20
#include <asm/sections.h>
21
#include <asm/cachetype.h>
22 23
#include <asm/setup.h>
#include <asm/sizes.h>
24
#include <asm/smp_plat.h>
25
#include <asm/tlb.h>
N
Nicolas Pitre 已提交
26
#include <asm/highmem.h>
27 28 29 30 31 32 33 34 35 36 37 38 39

#include <asm/mach/arch.h>
#include <asm/mach/map.h>

#include "mm.h"

DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);

/*
 * empty_zero_page is a special page that is used for
 * zero-initialized data and COW.
 */
struct page *empty_zero_page;
40
EXPORT_SYMBOL(empty_zero_page);
41 42 43 44 45 46

/*
 * The pmd table for the upper-most set of pages.
 */
pmd_t *top_pmd;

47 48 49 50 51 52 53 54
#define CPOLICY_UNCACHED	0
#define CPOLICY_BUFFERED	1
#define CPOLICY_WRITETHROUGH	2
#define CPOLICY_WRITEBACK	3
#define CPOLICY_WRITEALLOC	4

static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
static unsigned int ecc_mask __initdata = 0;
55
pgprot_t pgprot_user;
56 57
pgprot_t pgprot_kernel;

58
EXPORT_SYMBOL(pgprot_user);
59 60 61 62 63 64 65 66 67 68 69 70 71 72
EXPORT_SYMBOL(pgprot_kernel);

struct cachepolicy {
	const char	policy[16];
	unsigned int	cr_mask;
	unsigned int	pmd;
	unsigned int	pte;
};

static struct cachepolicy cache_policies[] __initdata = {
	{
		.policy		= "uncached",
		.cr_mask	= CR_W|CR_C,
		.pmd		= PMD_SECT_UNCACHED,
73
		.pte		= L_PTE_MT_UNCACHED,
74 75 76 77
	}, {
		.policy		= "buffered",
		.cr_mask	= CR_C,
		.pmd		= PMD_SECT_BUFFERED,
78
		.pte		= L_PTE_MT_BUFFERABLE,
79 80 81 82
	}, {
		.policy		= "writethrough",
		.cr_mask	= 0,
		.pmd		= PMD_SECT_WT,
83
		.pte		= L_PTE_MT_WRITETHROUGH,
84 85 86 87
	}, {
		.policy		= "writeback",
		.cr_mask	= 0,
		.pmd		= PMD_SECT_WB,
88
		.pte		= L_PTE_MT_WRITEBACK,
89 90 91 92
	}, {
		.policy		= "writealloc",
		.cr_mask	= 0,
		.pmd		= PMD_SECT_WBWA,
93
		.pte		= L_PTE_MT_WRITEALLOC,
94 95 96 97
	}
};

/*
S
Simon Arlott 已提交
98
 * These are useful for identifying cache coherency
99 100 101 102
 * problems by allowing the cache or the cache and
 * writebuffer to be turned off.  (Note: the write
 * buffer should not be on and the cache off).
 */
103
static int __init early_cachepolicy(char *p)
104 105 106 107 108 109
{
	int i;

	for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
		int len = strlen(cache_policies[i].policy);

110
		if (memcmp(p, cache_policies[i].policy, len) == 0) {
111 112 113 114 115 116 117 118
			cachepolicy = i;
			cr_alignment &= ~cache_policies[i].cr_mask;
			cr_no_alignment &= ~cache_policies[i].cr_mask;
			break;
		}
	}
	if (i == ARRAY_SIZE(cache_policies))
		printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
119 120 121 122 123 124 125
	/*
	 * This restriction is partly to do with the way we boot; it is
	 * unpredictable to have memory mapped using two different sets of
	 * memory attributes (shared, type, and cache attribs).  We can not
	 * change these attributes once the initial assembly has setup the
	 * page tables.
	 */
126 127 128 129
	if (cpu_architecture() >= CPU_ARCH_ARMv6) {
		printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
		cachepolicy = CPOLICY_WRITEBACK;
	}
130 131
	flush_cache_all();
	set_cr(cr_alignment);
132
	return 0;
133
}
134
early_param("cachepolicy", early_cachepolicy);
135

136
static int __init early_nocache(char *__unused)
137 138 139
{
	char *p = "buffered";
	printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
140 141
	early_cachepolicy(p);
	return 0;
142
}
143
early_param("nocache", early_nocache);
144

145
static int __init early_nowrite(char *__unused)
146 147 148
{
	char *p = "uncached";
	printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
149 150
	early_cachepolicy(p);
	return 0;
151
}
152
early_param("nowb", early_nowrite);
153

154
static int __init early_ecc(char *p)
155
{
156
	if (memcmp(p, "on", 2) == 0)
157
		ecc_mask = PMD_PROTECTION;
158
	else if (memcmp(p, "off", 3) == 0)
159
		ecc_mask = 0;
160
	return 0;
161
}
162
early_param("ecc", early_ecc);
163 164 165 166 167 168 169 170 171 172

static int __init noalign_setup(char *__unused)
{
	cr_alignment &= ~CR_A;
	cr_no_alignment &= ~CR_A;
	set_cr(cr_alignment);
	return 1;
}
__setup("noalign", noalign_setup);

173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
#ifndef CONFIG_SMP
void adjust_cr(unsigned long mask, unsigned long set)
{
	unsigned long flags;

	mask &= ~CR_A;

	set &= mask;

	local_irq_save(flags);

	cr_no_alignment = (cr_no_alignment & ~mask) | set;
	cr_alignment = (cr_alignment & ~mask) | set;

	set_cr((get_cr() & ~mask) | set);

	local_irq_restore(flags);
}
#endif

193
#define PROT_PTE_DEVICE		L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_WRITE
194
#define PROT_SECT_DEVICE	PMD_TYPE_SECT|PMD_SECT_AP_WRITE
195

196
static struct mem_type mem_types[] = {
197
	[MT_DEVICE] = {		  /* Strongly ordered / ARMv6 shared device */
198 199
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
				  L_PTE_SHARED,
200
		.prot_l1	= PMD_TYPE_TABLE,
201
		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_S,
202 203 204
		.domain		= DOMAIN_IO,
	},
	[MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
205
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
206
		.prot_l1	= PMD_TYPE_TABLE,
207
		.prot_sect	= PROT_SECT_DEVICE,
208 209 210
		.domain		= DOMAIN_IO,
	},
	[MT_DEVICE_CACHED] = {	  /* ioremap_cached */
211
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
212 213 214 215
		.prot_l1	= PMD_TYPE_TABLE,
		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_WB,
		.domain		= DOMAIN_IO,
	},	
216
	[MT_DEVICE_WC] = {	/* ioremap_wc */
217
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
218
		.prot_l1	= PMD_TYPE_TABLE,
219
		.prot_sect	= PROT_SECT_DEVICE,
220
		.domain		= DOMAIN_IO,
221
	},
222 223 224 225 226 227
	[MT_UNCACHED] = {
		.prot_pte	= PROT_PTE_DEVICE,
		.prot_l1	= PMD_TYPE_TABLE,
		.prot_sect	= PMD_TYPE_SECT | PMD_SECT_XN,
		.domain		= DOMAIN_IO,
	},
228
	[MT_CACHECLEAN] = {
229
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
230 231 232
		.domain    = DOMAIN_KERNEL,
	},
	[MT_MINICLEAN] = {
233
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
		.domain    = DOMAIN_KERNEL,
	},
	[MT_LOW_VECTORS] = {
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
				L_PTE_EXEC,
		.prot_l1   = PMD_TYPE_TABLE,
		.domain    = DOMAIN_USER,
	},
	[MT_HIGH_VECTORS] = {
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
				L_PTE_USER | L_PTE_EXEC,
		.prot_l1   = PMD_TYPE_TABLE,
		.domain    = DOMAIN_USER,
	},
	[MT_MEMORY] = {
249
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
250 251 252
		.domain    = DOMAIN_KERNEL,
	},
	[MT_ROM] = {
253
		.prot_sect = PMD_TYPE_SECT,
254 255
		.domain    = DOMAIN_KERNEL,
	},
256 257 258 259
	[MT_MEMORY_NONCACHED] = {
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
		.domain    = DOMAIN_KERNEL,
	},
260 261
};

262 263 264 265
const struct mem_type *get_mem_type(unsigned int type)
{
	return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
}
266
EXPORT_SYMBOL(get_mem_type);
267

268 269 270 271 272 273 274
/*
 * Adjust the PMD section entries according to the CPU in use.
 */
static void __init build_mem_type_table(void)
{
	struct cachepolicy *cp;
	unsigned int cr = get_cr();
275
	unsigned int user_pgprot, kern_pgprot, vecs_pgprot;
276 277 278
	int cpu_arch = cpu_architecture();
	int i;

279
	if (cpu_arch < CPU_ARCH_ARMv6) {
280
#if defined(CONFIG_CPU_DCACHE_DISABLE)
281 282
		if (cachepolicy > CPOLICY_BUFFERED)
			cachepolicy = CPOLICY_BUFFERED;
283
#elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
284 285
		if (cachepolicy > CPOLICY_WRITETHROUGH)
			cachepolicy = CPOLICY_WRITETHROUGH;
286
#endif
287
	}
288 289 290 291 292
	if (cpu_arch < CPU_ARCH_ARMv5) {
		if (cachepolicy >= CPOLICY_WRITEALLOC)
			cachepolicy = CPOLICY_WRITEBACK;
		ecc_mask = 0;
	}
293 294 295
#ifdef CONFIG_SMP
	cachepolicy = CPOLICY_WRITEALLOC;
#endif
296

297
	/*
298 299 300
	 * Strip out features not present on earlier architectures.
	 * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
	 * without extended page tables don't have the 'Shared' bit.
301
	 */
302 303 304 305 306 307
	if (cpu_arch < CPU_ARCH_ARMv5)
		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
			mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
	if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
			mem_types[i].prot_sect &= ~PMD_SECT_S;
308 309

	/*
310 311 312
	 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
	 * "update-able on write" bit on ARM610).  However, Xscale and
	 * Xscale3 require this bit to be cleared.
313
	 */
314
	if (cpu_is_xscale() || cpu_is_xsc3()) {
315
		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
316
			mem_types[i].prot_sect &= ~PMD_BIT4;
317 318 319 320
			mem_types[i].prot_l1 &= ~PMD_BIT4;
		}
	} else if (cpu_arch < CPU_ARCH_ARMv6) {
		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
321 322
			if (mem_types[i].prot_l1)
				mem_types[i].prot_l1 |= PMD_BIT4;
323 324 325 326
			if (mem_types[i].prot_sect)
				mem_types[i].prot_sect |= PMD_BIT4;
		}
	}
327

328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
	/*
	 * Mark the device areas according to the CPU/architecture.
	 */
	if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
		if (!cpu_is_xsc3()) {
			/*
			 * Mark device regions on ARMv6+ as execute-never
			 * to prevent speculative instruction fetches.
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
		}
		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
			/*
			 * For ARMv7 with TEX remapping,
			 * - shared device is SXCB=1100
			 * - nonshared device is SXCB=0100
			 * - write combine device mem is SXCB=0001
			 * (Uncached Normal memory)
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
		} else if (cpu_is_xsc3()) {
			/*
			 * For Xscale3,
			 * - shared device is TEXCB=00101
			 * - nonshared device is TEXCB=01000
			 * - write combine device mem is TEXCB=00100
			 * (Inner/Outer Uncacheable in xsc3 parlance)
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
		} else {
			/*
			 * For ARMv6 and ARMv7 without TEX remapping,
			 * - shared device is TEXCB=00001
			 * - nonshared device is TEXCB=01000
			 * - write combine device mem is TEXCB=00100
			 * (Uncached Normal in ARMv6 parlance).
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
		}
	} else {
		/*
		 * On others, write combining is "Uncached/Buffered"
		 */
		mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
	}

	/*
	 * Now deal with the memory-type mappings
	 */
386
	cp = &cache_policies[cachepolicy];
387 388 389 390 391 392 393 394 395
	vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;

#ifndef CONFIG_SMP
	/*
	 * Only use write-through for non-SMP systems
	 */
	if (cpu_arch >= CPU_ARCH_ARMv5 && cachepolicy > CPOLICY_WRITETHROUGH)
		vecs_pgprot = cache_policies[CPOLICY_WRITETHROUGH].pte;
#endif
396 397 398 399 400

	/*
	 * Enable CPU-specific coherency if supported.
	 * (Only available on XSC3 at the moment.)
	 */
401 402
	if (arch_is_coherent() && cpu_is_xsc3())
		mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421

	/*
	 * ARMv6 and above have extended page tables.
	 */
	if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
		/*
		 * Mark cache clean areas and XIP ROM read only
		 * from SVC mode and no access from userspace.
		 */
		mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
		mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;

#ifdef CONFIG_SMP
		/*
		 * Mark memory with the "shared" attribute for SMP systems
		 */
		user_pgprot |= L_PTE_SHARED;
		kern_pgprot |= L_PTE_SHARED;
422
		vecs_pgprot |= L_PTE_SHARED;
423
		mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
424
		mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
425 426 427
#endif
	}

428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
	/*
	 * Non-cacheable Normal - intended for memory areas that must
	 * not cause dirty cache line writebacks when used
	 */
	if (cpu_arch >= CPU_ARCH_ARMv6) {
		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
			/* Non-cacheable Normal is XCB = 001 */
			mem_types[MT_MEMORY_NONCACHED].prot_sect |=
				PMD_SECT_BUFFERED;
		} else {
			/* For both ARMv6 and non-TEX-remapping ARMv7 */
			mem_types[MT_MEMORY_NONCACHED].prot_sect |=
				PMD_SECT_TEX(1);
		}
	} else {
		mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
	}

446 447
	for (i = 0; i < 16; i++) {
		unsigned long v = pgprot_val(protection_map[i]);
448
		protection_map[i] = __pgprot(v | user_pgprot);
449 450
	}

451 452
	mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
	mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
453

454
	pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
455
	pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
R
Russell King 已提交
456
				 L_PTE_DIRTY | L_PTE_WRITE | kern_pgprot);
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473

	mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
	mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
	mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
	mem_types[MT_ROM].prot_sect |= cp->pmd;

	switch (cp->pmd) {
	case PMD_SECT_WT:
		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
		break;
	case PMD_SECT_WB:
	case PMD_SECT_WBWA:
		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
		break;
	}
	printk("Memory policy: ECC %sabled, Data cache %s\n",
		ecc_mask ? "en" : "dis", cp->policy);
474 475 476 477 478 479 480 481

	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
		struct mem_type *t = &mem_types[i];
		if (t->prot_l1)
			t->prot_l1 |= PMD_DOMAIN(t->domain);
		if (t->prot_sect)
			t->prot_sect |= PMD_DOMAIN(t->domain);
	}
482 483 484 485
}

#define vectors_base()	(vectors_high() ? 0xffff0000 : 0)

486 487 488
static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
				  unsigned long end, unsigned long pfn,
				  const struct mem_type *type)
489
{
490
	pte_t *pte;
491

492 493 494 495
	if (pmd_none(*pmd)) {
		pte = alloc_bootmem_low_pages(2 * PTRS_PER_PTE * sizeof(pte_t));
		__pmd_populate(pmd, __pa(pte) | type->prot_l1);
	}
496

497 498
	pte = pte_offset_kernel(pmd, addr);
	do {
499
		set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
500 501
		pfn++;
	} while (pte++, addr += PAGE_SIZE, addr != end);
502 503
}

504 505 506
static void __init alloc_init_section(pgd_t *pgd, unsigned long addr,
				      unsigned long end, unsigned long phys,
				      const struct mem_type *type)
507
{
508
	pmd_t *pmd = pmd_offset(pgd, addr);
509

510 511 512 513 514 515 516 517
	/*
	 * Try a section mapping - end, addr and phys must all be aligned
	 * to a section boundary.  Note that PMDs refer to the individual
	 * L1 entries, whereas PGDs refer to a group of L1 entries making
	 * up one logical pointer to an L2 table.
	 */
	if (((addr | end | phys) & ~SECTION_MASK) == 0) {
		pmd_t *p = pmd;
518

519 520 521 522 523 524 525
		if (addr & SECTION_SIZE)
			pmd++;

		do {
			*pmd = __pmd(phys | type->prot_sect);
			phys += SECTION_SIZE;
		} while (pmd++, addr += SECTION_SIZE, addr != end);
526

527 528 529 530 531 532 533 534
		flush_pmd_entry(p);
	} else {
		/*
		 * No need to loop; pte's aren't interested in the
		 * individual L1 entries.
		 */
		alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
	}
535 536
}

537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
static void __init create_36bit_mapping(struct map_desc *md,
					const struct mem_type *type)
{
	unsigned long phys, addr, length, end;
	pgd_t *pgd;

	addr = md->virtual;
	phys = (unsigned long)__pfn_to_phys(md->pfn);
	length = PAGE_ALIGN(md->length);

	if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
		printk(KERN_ERR "MM: CPU does not support supersection "
		       "mapping for 0x%08llx at 0x%08lx\n",
		       __pfn_to_phys((u64)md->pfn), addr);
		return;
	}

	/* N.B.	ARMv6 supersections are only defined to work with domain 0.
	 *	Since domain assignments can in fact be arbitrary, the
	 *	'domain == 0' check below is required to insure that ARMv6
	 *	supersections are only allocated for domain 0 regardless
	 *	of the actual domain assignments in use.
	 */
	if (type->domain) {
		printk(KERN_ERR "MM: invalid domain in supersection "
		       "mapping for 0x%08llx at 0x%08lx\n",
		       __pfn_to_phys((u64)md->pfn), addr);
		return;
	}

	if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
		printk(KERN_ERR "MM: cannot create mapping for "
		       "0x%08llx at 0x%08lx invalid alignment\n",
		       __pfn_to_phys((u64)md->pfn), addr);
		return;
	}

	/*
	 * Shift bits [35:32] of address into bits [23:20] of PMD
	 * (See ARMv6 spec).
	 */
	phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);

	pgd = pgd_offset_k(addr);
	end = addr + length;
	do {
		pmd_t *pmd = pmd_offset(pgd, addr);
		int i;

		for (i = 0; i < 16; i++)
			*pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);

		addr += SUPERSECTION_SIZE;
		phys += SUPERSECTION_SIZE;
		pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
	} while (addr != end);
}

595 596 597 598 599 600 601 602 603
/*
 * Create the page directory entries and any necessary
 * page tables for the mapping specified by `md'.  We
 * are able to cope here with varying sizes and address
 * offsets, and we take full advantage of sections and
 * supersections.
 */
void __init create_mapping(struct map_desc *md)
{
604
	unsigned long phys, addr, length, end;
605
	const struct mem_type *type;
606
	pgd_t *pgd;
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621

	if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
		printk(KERN_WARNING "BUG: not creating mapping for "
		       "0x%08llx at 0x%08lx in user region\n",
		       __pfn_to_phys((u64)md->pfn), md->virtual);
		return;
	}

	if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
	    md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {
		printk(KERN_WARNING "BUG: mapping for 0x%08llx at 0x%08lx "
		       "overlaps vmalloc space\n",
		       __pfn_to_phys((u64)md->pfn), md->virtual);
	}

622
	type = &mem_types[md->type];
623 624 625 626

	/*
	 * Catch 36-bit addresses
	 */
627 628 629
	if (md->pfn >= 0x100000) {
		create_36bit_mapping(md, type);
		return;
630 631
	}

632
	addr = md->virtual & PAGE_MASK;
633
	phys = (unsigned long)__pfn_to_phys(md->pfn);
634
	length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
635

636
	if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
637 638
		printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not "
		       "be mapped using pages, ignoring.\n",
639
		       __pfn_to_phys(md->pfn), addr);
640 641 642
		return;
	}

643 644 645 646
	pgd = pgd_offset_k(addr);
	end = addr + length;
	do {
		unsigned long next = pgd_addr_end(addr, end);
647

648
		alloc_init_section(pgd, addr, next, phys, type);
649

650 651 652
		phys += next - addr;
		addr = next;
	} while (pgd++, addr != end);
653 654 655 656 657 658 659 660 661 662 663 664 665
}

/*
 * Create the architecture specific mappings
 */
void __init iotable_init(struct map_desc *io_desc, int nr)
{
	int i;

	for (i = 0; i < nr; i++)
		create_mapping(io_desc + i);
}

666 667 668 669 670 671 672
static unsigned long __initdata vmalloc_reserve = SZ_128M;

/*
 * vmalloc=size forces the vmalloc area to be exactly 'size'
 * bytes. This can be used to increase (or decrease) the vmalloc
 * area - the default is 128m.
 */
673
static int __init early_vmalloc(char *arg)
674
{
675
	vmalloc_reserve = memparse(arg, NULL);
676 677 678 679 680 681 682

	if (vmalloc_reserve < SZ_16M) {
		vmalloc_reserve = SZ_16M;
		printk(KERN_WARNING
			"vmalloc area too small, limiting to %luMB\n",
			vmalloc_reserve >> 20);
	}
683 684 685 686 687 688 689

	if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
		vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
		printk(KERN_WARNING
			"vmalloc area is too big, limiting to %luMB\n",
			vmalloc_reserve >> 20);
	}
690
	return 0;
691
}
692
early_param("vmalloc", early_vmalloc);
693 694 695

#define VMALLOC_MIN	(void *)(VMALLOC_END - vmalloc_reserve)

696
static void __init sanity_check_meminfo(void)
697
{
R
Russell King 已提交
698
	int i, j, highmem = 0;
699

700
	for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
701 702
		struct membank *bank = &meminfo.bank[j];
		*bank = meminfo.bank[i];
703

704
#ifdef CONFIG_HIGHMEM
R
Russell King 已提交
705 706 707 708 709 710
		if (__va(bank->start) > VMALLOC_MIN ||
		    __va(bank->start) < (void *)PAGE_OFFSET)
			highmem = 1;

		bank->highmem = highmem;

711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
		/*
		 * Split those memory banks which are partially overlapping
		 * the vmalloc area greatly simplifying things later.
		 */
		if (__va(bank->start) < VMALLOC_MIN &&
		    bank->size > VMALLOC_MIN - __va(bank->start)) {
			if (meminfo.nr_banks >= NR_BANKS) {
				printk(KERN_CRIT "NR_BANKS too low, "
						 "ignoring high memory\n");
			} else {
				memmove(bank + 1, bank,
					(meminfo.nr_banks - i) * sizeof(*bank));
				meminfo.nr_banks++;
				i++;
				bank[1].size -= VMALLOC_MIN - __va(bank->start);
				bank[1].start = __pa(VMALLOC_MIN - 1) + 1;
R
Russell King 已提交
727
				bank[1].highmem = highmem = 1;
728 729 730 731 732
				j++;
			}
			bank->size = VMALLOC_MIN - __va(bank->start);
		}
#else
733 734
		bank->highmem = highmem;

735 736 737 738
		/*
		 * Check whether this memory bank would entirely overlap
		 * the vmalloc area.
		 */
739
		if (__va(bank->start) >= VMALLOC_MIN ||
740
		    __va(bank->start) < (void *)PAGE_OFFSET) {
741 742 743 744 745
			printk(KERN_NOTICE "Ignoring RAM at %.8lx-%.8lx "
			       "(vmalloc region overlap).\n",
			       bank->start, bank->start + bank->size - 1);
			continue;
		}
746

747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
		/*
		 * Check whether this memory bank would partially overlap
		 * the vmalloc area.
		 */
		if (__va(bank->start + bank->size) > VMALLOC_MIN ||
		    __va(bank->start + bank->size) < __va(bank->start)) {
			unsigned long newsize = VMALLOC_MIN - __va(bank->start);
			printk(KERN_NOTICE "Truncating RAM at %.8lx-%.8lx "
			       "to -%.8lx (vmalloc region overlap).\n",
			       bank->start, bank->start + bank->size - 1,
			       bank->start + newsize - 1);
			bank->size = newsize;
		}
#endif
		j++;
762
	}
763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
#ifdef CONFIG_HIGHMEM
	if (highmem) {
		const char *reason = NULL;

		if (cache_is_vipt_aliasing()) {
			/*
			 * Interactions between kmap and other mappings
			 * make highmem support with aliasing VIPT caches
			 * rather difficult.
			 */
			reason = "with VIPT aliasing cache";
#ifdef CONFIG_SMP
		} else if (tlb_ops_need_broadcast()) {
			/*
			 * kmap_high needs to occasionally flush TLB entries,
			 * however, if the TLB entries need to be broadcast
			 * we may deadlock:
			 *  kmap_high(irqs off)->flush_all_zero_pkmaps->
			 *  flush_tlb_kernel_range->smp_call_function_many
			 *   (must not be called with irqs off)
			 */
			reason = "without hardware TLB ops broadcasting";
#endif
		}
		if (reason) {
			printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
				reason);
			while (j > 0 && meminfo.bank[j - 1].highmem)
				j--;
		}
	}
#endif
795
	meminfo.nr_banks = j;
796 797
}

798
static inline void prepare_page_table(void)
799 800 801 802 803 804
{
	unsigned long addr;

	/*
	 * Clear out all the mappings below the kernel image.
	 */
805
	for (addr = 0; addr < MODULES_VADDR; addr += PGDIR_SIZE)
806 807 808 809
		pmd_clear(pmd_off_k(addr));

#ifdef CONFIG_XIP_KERNEL
	/* The XIP kernel is mapped in the module area -- skip over it */
R
Russell King 已提交
810
	addr = ((unsigned long)_etext + PGDIR_SIZE - 1) & PGDIR_MASK;
811 812 813 814 815 816 817 818
#endif
	for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE)
		pmd_clear(pmd_off_k(addr));

	/*
	 * Clear out all the kernel space mappings, except for the first
	 * memory bank, up to the end of the vmalloc region.
	 */
819
	for (addr = __phys_to_virt(bank_phys_end(&meminfo.bank[0]));
820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
	     addr < VMALLOC_END; addr += PGDIR_SIZE)
		pmd_clear(pmd_off_k(addr));
}

/*
 * Reserve the various regions of node 0
 */
void __init reserve_node_zero(pg_data_t *pgdat)
{
	unsigned long res_size = 0;

	/*
	 * Register the kernel text and data with bootmem.
	 * Note that this can only be in node 0.
	 */
#ifdef CONFIG_XIP_KERNEL
R
Russell King 已提交
836
	reserve_bootmem_node(pgdat, __pa(_data), _end - _data,
837
			BOOTMEM_DEFAULT);
838
#else
R
Russell King 已提交
839
	reserve_bootmem_node(pgdat, __pa(_stext), _end - _stext,
840
			BOOTMEM_DEFAULT);
841 842 843 844 845 846 847
#endif

	/*
	 * Reserve the page tables.  These are already in use,
	 * and can only be in node 0.
	 */
	reserve_bootmem_node(pgdat, __pa(swapper_pg_dir),
848
			     PTRS_PER_PGD * sizeof(pgd_t), BOOTMEM_DEFAULT);
849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867

	/*
	 * Hmm... This should go elsewhere, but we really really need to
	 * stop things allocating the low memory; ideally we need a better
	 * implementation of GFP_DMA which does not assume that DMA-able
	 * memory starts at zero.
	 */
	if (machine_is_integrator() || machine_is_cintegrator())
		res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;

	/*
	 * These should likewise go elsewhere.  They pre-reserve the
	 * screen memory region at the start of main system memory.
	 */
	if (machine_is_edb7211())
		res_size = 0x00020000;
	if (machine_is_p720t())
		res_size = 0x00014000;

868 869 870
	/* H1940 and RX3715 need to reserve this for suspend */

	if (machine_is_h1940() || machine_is_rx3715()) {
871 872 873 874
		reserve_bootmem_node(pgdat, 0x30003000, 0x1000,
				BOOTMEM_DEFAULT);
		reserve_bootmem_node(pgdat, 0x30081000, 0x1000,
				BOOTMEM_DEFAULT);
875 876
	}

877 878 879 880 881 882 883
	if (machine_is_palmld() || machine_is_palmtx()) {
		reserve_bootmem_node(pgdat, 0xa0000000, 0x1000,
				BOOTMEM_EXCLUSIVE);
		reserve_bootmem_node(pgdat, 0xa0200000, 0x1000,
				BOOTMEM_EXCLUSIVE);
	}

884
	if (machine_is_treo680() || machine_is_centro()) {
885 886 887 888 889 890
		reserve_bootmem_node(pgdat, 0xa0000000, 0x1000,
				BOOTMEM_EXCLUSIVE);
		reserve_bootmem_node(pgdat, 0xa2000000, 0x1000,
				BOOTMEM_EXCLUSIVE);
	}

891 892 893 894
	if (machine_is_palmt5())
		reserve_bootmem_node(pgdat, 0xa0200000, 0x1000,
				BOOTMEM_EXCLUSIVE);

895 896 897 898 899 900 901 902 903 904 905 906 907 908
	/*
	 * U300 - This platform family can share physical memory
	 * between two ARM cpus, one running Linux and the other
	 * running another OS.
	 */
	if (machine_is_u300()) {
#ifdef CONFIG_MACH_U300_SINGLE_RAM
#if ((CONFIG_MACH_U300_ACCESS_MEM_SIZE & 1) == 1) &&	\
	CONFIG_MACH_U300_2MB_ALIGNMENT_FIX
		res_size = 0x00100000;
#endif
#endif
	}

909 910 911 912 913 914 915 916
#ifdef CONFIG_SA1111
	/*
	 * Because of the SA1111 DMA bug, we want to preserve our
	 * precious DMA-able memory...
	 */
	res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
#endif
	if (res_size)
917 918
		reserve_bootmem_node(pgdat, PHYS_OFFSET, res_size,
				BOOTMEM_DEFAULT);
919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947
}

/*
 * Set up device the mappings.  Since we clear out the page tables for all
 * mappings above VMALLOC_END, we will remove any debug device mappings.
 * This means you have to be careful how you debug this function, or any
 * called function.  This means you can't use any function or debugging
 * method which may touch any device, otherwise the kernel _will_ crash.
 */
static void __init devicemaps_init(struct machine_desc *mdesc)
{
	struct map_desc map;
	unsigned long addr;
	void *vectors;

	/*
	 * Allocate the vector page early.
	 */
	vectors = alloc_bootmem_low_pages(PAGE_SIZE);

	for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE)
		pmd_clear(pmd_off_k(addr));

	/*
	 * Map the kernel if it is XIP.
	 * It is always first in the modulearea.
	 */
#ifdef CONFIG_XIP_KERNEL
	map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
948
	map.virtual = MODULES_VADDR;
R
Russell King 已提交
949
	map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
	map.type = MT_ROM;
	create_mapping(&map);
#endif

	/*
	 * Map the cache flushing regions.
	 */
#ifdef FLUSH_BASE
	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
	map.virtual = FLUSH_BASE;
	map.length = SZ_1M;
	map.type = MT_CACHECLEAN;
	create_mapping(&map);
#endif
#ifdef FLUSH_BASE_MINICACHE
	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
	map.virtual = FLUSH_BASE_MINICACHE;
	map.length = SZ_1M;
	map.type = MT_MINICLEAN;
	create_mapping(&map);
#endif

	/*
	 * Create a mapping for the machine vectors at the high-vectors
	 * location (0xffff0000).  If we aren't using high-vectors, also
	 * create a mapping at the low-vectors virtual address.
	 */
	map.pfn = __phys_to_pfn(virt_to_phys(vectors));
	map.virtual = 0xffff0000;
	map.length = PAGE_SIZE;
	map.type = MT_HIGH_VECTORS;
	create_mapping(&map);

	if (!vectors_high()) {
		map.virtual = 0;
		map.type = MT_LOW_VECTORS;
		create_mapping(&map);
	}

	/*
	 * Ask the machine support to map in the statically mapped devices.
	 */
	if (mdesc->map_io)
		mdesc->map_io();

	/*
	 * Finally flush the caches and tlb to ensure that we're in a
	 * consistent state wrt the writebuffer.  This also ensures that
	 * any write-allocated cache lines in the vector page are written
	 * back.  After this point, we can start to touch devices again.
	 */
	local_flush_tlb_all();
	flush_cache_all();
}

N
Nicolas Pitre 已提交
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
static void __init kmap_init(void)
{
#ifdef CONFIG_HIGHMEM
	pmd_t *pmd = pmd_off_k(PKMAP_BASE);
	pte_t *pte = alloc_bootmem_low_pages(2 * PTRS_PER_PTE * sizeof(pte_t));
	BUG_ON(!pmd_none(*pmd) || !pte);
	__pmd_populate(pmd, __pa(pte) | _PAGE_KERNEL_TABLE);
	pkmap_page_table = pte + PTRS_PER_PTE;
#endif
}

1016 1017 1018 1019
/*
 * paging_init() sets up the page tables, initialises the zone memory
 * maps, and sets up the zero page, bad page and bad page tables.
 */
1020
void __init paging_init(struct machine_desc *mdesc)
1021 1022 1023 1024
{
	void *zero_page;

	build_mem_type_table();
1025 1026 1027
	sanity_check_meminfo();
	prepare_page_table();
	bootmem_init();
1028
	devicemaps_init(mdesc);
N
Nicolas Pitre 已提交
1029
	kmap_init();
1030 1031 1032 1033

	top_pmd = pmd_off_k(0xffff0000);

	/*
1034 1035
	 * allocate the zero page.  Note that this always succeeds and
	 * returns a zeroed result.
1036 1037 1038
	 */
	zero_page = alloc_bootmem_low_pages(PAGE_SIZE);
	empty_zero_page = virt_to_page(zero_page);
1039
	__flush_dcache_page(NULL, empty_zero_page);
1040
}
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070

/*
 * In order to soft-boot, we need to insert a 1:1 mapping in place of
 * the user-mode pages.  This will then ensure that we have predictable
 * results when turning the mmu off
 */
void setup_mm_for_reboot(char mode)
{
	unsigned long base_pmdval;
	pgd_t *pgd;
	int i;

	if (current->mm && current->mm->pgd)
		pgd = current->mm->pgd;
	else
		pgd = init_mm.pgd;

	base_pmdval = PMD_SECT_AP_WRITE | PMD_SECT_AP_READ | PMD_TYPE_SECT;
	if (cpu_architecture() <= CPU_ARCH_ARMv5TEJ && !cpu_is_xscale())
		base_pmdval |= PMD_BIT4;

	for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++, pgd++) {
		unsigned long pmdval = (i << PGDIR_SHIFT) | base_pmdval;
		pmd_t *pmd;

		pmd = pmd_off(pgd, i << PGDIR_SHIFT);
		pmd[0] = __pmd(pmdval);
		pmd[1] = __pmd(pmdval + (1 << (PGDIR_SHIFT - 1)));
		flush_pmd_entry(pmd);
	}
1071 1072

	local_flush_tlb_all();
1073
}