qspinlock.c 13.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/*
 * Queued spinlock
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * (C) Copyright 2013-2015 Hewlett-Packard Development Company, L.P.
 * (C) Copyright 2013-2014 Red Hat, Inc.
 * (C) Copyright 2015 Intel Corp.
17
 * (C) Copyright 2015 Hewlett-Packard Enterprise Development LP
18
 *
19
 * Authors: Waiman Long <waiman.long@hpe.com>
20 21
 *          Peter Zijlstra <peterz@infradead.org>
 */
22 23 24

#ifndef _GEN_PV_LOCK_SLOWPATH

25 26 27 28 29 30
#include <linux/smp.h>
#include <linux/bug.h>
#include <linux/cpumask.h>
#include <linux/percpu.h>
#include <linux/hardirq.h>
#include <linux/mutex.h>
31
#include <linux/prefetch.h>
32
#include <asm/byteorder.h>
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
#include <asm/qspinlock.h>

/*
 * The basic principle of a queue-based spinlock can best be understood
 * by studying a classic queue-based spinlock implementation called the
 * MCS lock. The paper below provides a good description for this kind
 * of lock.
 *
 * http://www.cise.ufl.edu/tr/DOC/REP-1992-71.pdf
 *
 * This queued spinlock implementation is based on the MCS lock, however to make
 * it fit the 4 bytes we assume spinlock_t to be, and preserve its existing
 * API, we must modify it somehow.
 *
 * In particular; where the traditional MCS lock consists of a tail pointer
 * (8 bytes) and needs the next pointer (another 8 bytes) of its own node to
 * unlock the next pending (next->locked), we compress both these: {tail,
 * next->locked} into a single u32 value.
 *
 * Since a spinlock disables recursion of its own context and there is a limit
 * to the contexts that can nest; namely: task, softirq, hardirq, nmi. As there
 * are at most 4 nesting levels, it can be encoded by a 2-bit number. Now
 * we can encode the tail by combining the 2-bit nesting level with the cpu
 * number. With one byte for the lock value and 3 bytes for the tail, only a
 * 32-bit word is now needed. Even though we only need 1 bit for the lock,
 * we extend it to a full byte to achieve better performance for architectures
 * that support atomic byte write.
 *
 * We also change the first spinner to spin on the lock bit instead of its
 * node; whereby avoiding the need to carry a node from lock to unlock, and
 * preserving existing lock API. This also makes the unlock code simpler and
 * faster.
65 66 67 68
 *
 * N.B. The current implementation only supports architectures that allow
 *      atomic operations on smaller 8-bit and 16-bit data types.
 *
69 70 71 72
 */

#include "mcs_spinlock.h"

73 74 75 76 77 78
#ifdef CONFIG_PARAVIRT_SPINLOCKS
#define MAX_NODES	8
#else
#define MAX_NODES	4
#endif

79 80 81 82 83
/*
 * Per-CPU queue node structures; we can never have more than 4 nested
 * contexts: task, softirq, hardirq, nmi.
 *
 * Exactly fits one 64-byte cacheline on a 64-bit architecture.
84 85
 *
 * PV doubles the storage and uses the second cacheline for PV state.
86
 */
87
static DEFINE_PER_CPU_ALIGNED(struct mcs_spinlock, mcs_nodes[MAX_NODES]);
88 89 90 91 92 93

/*
 * We must be able to distinguish between no-tail and the tail at 0:0,
 * therefore increment the cpu number by one.
 */

94
static inline __pure u32 encode_tail(int cpu, int idx)
95 96 97 98 99 100 101 102 103 104 105 106
{
	u32 tail;

#ifdef CONFIG_DEBUG_SPINLOCK
	BUG_ON(idx > 3);
#endif
	tail  = (cpu + 1) << _Q_TAIL_CPU_OFFSET;
	tail |= idx << _Q_TAIL_IDX_OFFSET; /* assume < 4 */

	return tail;
}

107
static inline __pure struct mcs_spinlock *decode_tail(u32 tail)
108 109 110 111 112 113 114
{
	int cpu = (tail >> _Q_TAIL_CPU_OFFSET) - 1;
	int idx = (tail &  _Q_TAIL_IDX_MASK) >> _Q_TAIL_IDX_OFFSET;

	return per_cpu_ptr(&mcs_nodes[idx], cpu);
}

115 116
#define _Q_LOCKED_PENDING_MASK (_Q_LOCKED_MASK | _Q_PENDING_MASK)

117
#if _Q_PENDING_BITS == 8
118 119 120 121 122 123 124 125 126 127
/**
 * clear_pending_set_locked - take ownership and clear the pending bit.
 * @lock: Pointer to queued spinlock structure
 *
 * *,1,0 -> *,0,1
 *
 * Lock stealing is not allowed if this function is used.
 */
static __always_inline void clear_pending_set_locked(struct qspinlock *lock)
{
128
	WRITE_ONCE(lock->locked_pending, _Q_LOCKED_VAL);
129 130 131 132 133 134 135 136
}

/*
 * xchg_tail - Put in the new queue tail code word & retrieve previous one
 * @lock : Pointer to queued spinlock structure
 * @tail : The new queue tail code word
 * Return: The previous queue tail code word
 *
137
 * xchg(lock, tail), which heads an address dependency
138 139 140 141 142
 *
 * p,*,* -> n,*,* ; prev = xchg(lock, node)
 */
static __always_inline u32 xchg_tail(struct qspinlock *lock, u32 tail)
{
143 144 145 146
	/*
	 * Use release semantics to make sure that the MCS node is properly
	 * initialized before changing the tail code.
	 */
147
	return (u32)xchg_release(&lock->tail,
148
				 tail >> _Q_TAIL_OFFSET) << _Q_TAIL_OFFSET;
149 150 151 152
}

#else /* _Q_PENDING_BITS == 8 */

153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
/**
 * clear_pending_set_locked - take ownership and clear the pending bit.
 * @lock: Pointer to queued spinlock structure
 *
 * *,1,0 -> *,0,1
 */
static __always_inline void clear_pending_set_locked(struct qspinlock *lock)
{
	atomic_add(-_Q_PENDING_VAL + _Q_LOCKED_VAL, &lock->val);
}

/**
 * xchg_tail - Put in the new queue tail code word & retrieve previous one
 * @lock : Pointer to queued spinlock structure
 * @tail : The new queue tail code word
 * Return: The previous queue tail code word
 *
 * xchg(lock, tail)
 *
 * p,*,* -> n,*,* ; prev = xchg(lock, node)
 */
static __always_inline u32 xchg_tail(struct qspinlock *lock, u32 tail)
{
	u32 old, new, val = atomic_read(&lock->val);

	for (;;) {
		new = (val & _Q_LOCKED_PENDING_MASK) | tail;
180 181 182 183 184
		/*
		 * Use release semantics to make sure that the MCS node is
		 * properly initialized before changing the tail code.
		 */
		old = atomic_cmpxchg_release(&lock->val, val, new);
185 186 187 188 189 190 191
		if (old == val)
			break;

		val = old;
	}
	return old;
}
192
#endif /* _Q_PENDING_BITS == 8 */
193

194 195 196 197 198 199 200 201
/**
 * set_locked - Set the lock bit and own the lock
 * @lock: Pointer to queued spinlock structure
 *
 * *,*,0 -> *,0,1
 */
static __always_inline void set_locked(struct qspinlock *lock)
{
202
	WRITE_ONCE(lock->locked, _Q_LOCKED_VAL);
203 204
}

205 206 207 208 209 210 211

/*
 * Generate the native code for queued_spin_unlock_slowpath(); provide NOPs for
 * all the PV callbacks.
 */

static __always_inline void __pv_init_node(struct mcs_spinlock *node) { }
212 213
static __always_inline void __pv_wait_node(struct mcs_spinlock *node,
					   struct mcs_spinlock *prev) { }
214 215
static __always_inline void __pv_kick_node(struct qspinlock *lock,
					   struct mcs_spinlock *node) { }
216 217 218
static __always_inline u32  __pv_wait_head_or_lock(struct qspinlock *lock,
						   struct mcs_spinlock *node)
						   { return 0; }
219 220 221 222 223 224

#define pv_enabled()		false

#define pv_init_node		__pv_init_node
#define pv_wait_node		__pv_wait_node
#define pv_kick_node		__pv_kick_node
225
#define pv_wait_head_or_lock	__pv_wait_head_or_lock
226 227 228 229 230 231 232

#ifdef CONFIG_PARAVIRT_SPINLOCKS
#define queued_spin_lock_slowpath	native_queued_spin_lock_slowpath
#endif

#endif /* _GEN_PV_LOCK_SLOWPATH */

233 234 235 236 237
/**
 * queued_spin_lock_slowpath - acquire the queued spinlock
 * @lock: Pointer to queued spinlock structure
 * @val: Current value of the queued spinlock 32-bit word
 *
238
 * (queue tail, pending bit, lock value)
239
 *
240 241 242 243 244 245 246 247 248 249 250 251 252
 *              fast     :    slow                                  :    unlock
 *                       :                                          :
 * uncontended  (0,0,0) -:--> (0,0,1) ------------------------------:--> (*,*,0)
 *                       :       | ^--------.------.             /  :
 *                       :       v           \      \            |  :
 * pending               :    (0,1,1) +--> (0,1,0)   \           |  :
 *                       :       | ^--'              |           |  :
 *                       :       v                   |           |  :
 * uncontended           :    (n,x,y) +--> (n,0,0) --'           |  :
 *   queue               :       | ^--'                          |  :
 *                       :       v                               |  :
 * contended             :    (*,x,y) +--> (*,0,0) ---> (*,0,1) -'  :
 *   queue               :         ^--'                             :
253 254 255 256 257 258 259 260 261
 */
void queued_spin_lock_slowpath(struct qspinlock *lock, u32 val)
{
	struct mcs_spinlock *prev, *next, *node;
	u32 new, old, tail;
	int idx;

	BUILD_BUG_ON(CONFIG_NR_CPUS >= (1U << _Q_TAIL_CPU_BITS));

262 263 264
	if (pv_enabled())
		goto queue;

265
	if (virt_spin_lock(lock))
266 267
		return;

268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
	/*
	 * wait for in-progress pending->locked hand-overs
	 *
	 * 0,1,0 -> 0,0,1
	 */
	if (val == _Q_PENDING_VAL) {
		while ((val = atomic_read(&lock->val)) == _Q_PENDING_VAL)
			cpu_relax();
	}

	/*
	 * trylock || pending
	 *
	 * 0,0,0 -> 0,0,1 ; trylock
	 * 0,0,1 -> 0,1,1 ; pending
	 */
	for (;;) {
		/*
		 * If we observe any contention; queue.
		 */
		if (val & ~_Q_LOCKED_MASK)
			goto queue;

		new = _Q_LOCKED_VAL;
		if (val == new)
			new |= _Q_PENDING_VAL;

295 296 297 298 299
		/*
		 * Acquire semantic is required here as the function may
		 * return immediately if the lock was free.
		 */
		old = atomic_cmpxchg_acquire(&lock->val, val, new);
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
		if (old == val)
			break;

		val = old;
	}

	/*
	 * we won the trylock
	 */
	if (new == _Q_LOCKED_VAL)
		return;

	/*
	 * we're pending, wait for the owner to go away.
	 *
	 * *,1,1 -> *,1,0
316 317 318 319 320
	 *
	 * this wait loop must be a load-acquire such that we match the
	 * store-release that clears the locked bit and create lock
	 * sequentiality; this is because not all clear_pending_set_locked()
	 * implementations imply full barriers.
321
	 */
322
	smp_cond_load_acquire(&lock->val.counter, !(VAL & _Q_LOCKED_MASK));
323 324 325 326 327 328

	/*
	 * take ownership and clear the pending bit.
	 *
	 * *,1,0 -> *,0,1
	 */
329
	clear_pending_set_locked(lock);
330 331 332 333 334 335 336
	return;

	/*
	 * End of pending bit optimistic spinning and beginning of MCS
	 * queuing.
	 */
queue:
337 338 339 340 341
	node = this_cpu_ptr(&mcs_nodes[0]);
	idx = node->count++;
	tail = encode_tail(smp_processor_id(), idx);

	node += idx;
342 343 344 345 346 347 348 349

	/*
	 * Ensure that we increment the head node->count before initialising
	 * the actual node. If the compiler is kind enough to reorder these
	 * stores, then an IRQ could overwrite our assignments.
	 */
	barrier();

350 351
	node->locked = 0;
	node->next = NULL;
352
	pv_init_node(node);
353 354

	/*
355 356 357
	 * We touched a (possibly) cold cacheline in the per-cpu queue node;
	 * attempt the trylock once more in the hope someone let go while we
	 * weren't watching.
358
	 */
359 360
	if (queued_spin_trylock(lock))
		goto release;
361 362

	/*
363 364 365 366
	 * We have already touched the queueing cacheline; don't bother with
	 * pending stuff.
	 *
	 * p,*,* -> n,*,*
367 368
	 *
	 * RELEASE, such that the stores to @node must be complete.
369
	 */
370
	old = xchg_tail(lock, tail);
371
	next = NULL;
372 373 374 375 376

	/*
	 * if there was a previous node; link it and wait until reaching the
	 * head of the waitqueue.
	 */
377
	if (old & _Q_TAIL_MASK) {
378
		prev = decode_tail(old);
379

380
		/*
381 382 383 384 385
		 * We must ensure that the stores to @node are observed before
		 * the write to prev->next. The address dependency from
		 * xchg_tail is not sufficient to ensure this because the read
		 * component of xchg_tail is unordered with respect to the
		 * initialisation of @node.
386
		 */
387
		smp_store_release(&prev->next, node);
388

389
		pv_wait_node(node, prev);
390
		arch_mcs_spin_lock_contended(&node->locked);
391 392 393 394 395 396 397 398 399 400

		/*
		 * While waiting for the MCS lock, the next pointer may have
		 * been set by another lock waiter. We optimistically load
		 * the next pointer & prefetch the cacheline for writing
		 * to reduce latency in the upcoming MCS unlock operation.
		 */
		next = READ_ONCE(node->next);
		if (next)
			prefetchw(next);
401 402 403
	}

	/*
404 405
	 * we're at the head of the waitqueue, wait for the owner & pending to
	 * go away.
406
	 *
407
	 * *,x,y -> *,0,0
408 409 410 411 412 413
	 *
	 * this wait loop must use a load-acquire such that we match the
	 * store-release that clears the locked bit and create lock
	 * sequentiality; this is because the set_locked() function below
	 * does not imply a full barrier.
	 *
414 415
	 * The PV pv_wait_head_or_lock function, if active, will acquire
	 * the lock and return a non-zero value. So we have to skip the
416
	 * smp_cond_load_acquire() call. As the next PV queue head hasn't been
417 418 419 420 421 422
	 * designated yet, there is no way for the locked value to become
	 * _Q_SLOW_VAL. So both the set_locked() and the
	 * atomic_cmpxchg_relaxed() calls will be safe.
	 *
	 * If PV isn't active, 0 will be returned instead.
	 *
423
	 */
424 425 426
	if ((val = pv_wait_head_or_lock(lock, node)))
		goto locked;

427
	val = smp_cond_load_acquire(&lock->val.counter, !(VAL & _Q_LOCKED_PENDING_MASK));
428

429
locked:
430 431 432
	/*
	 * claim the lock:
	 *
433 434
	 * n,0,0 -> 0,0,1 : lock, uncontended
	 * *,0,0 -> *,0,1 : lock, contended
435 436 437 438
	 *
	 * If the queue head is the only one in the queue (lock value == tail),
	 * clear the tail code and grab the lock. Otherwise, we only need
	 * to grab the lock.
439 440
	 */
	for (;;) {
441 442
		/* In the PV case we might already have _Q_LOCKED_VAL set */
		if ((val & _Q_TAIL_MASK) != tail) {
443
			set_locked(lock);
444
			break;
445
		}
446
		/*
447 448 449
		 * The smp_cond_load_acquire() call above has provided the
		 * necessary acquire semantics required for locking. At most
		 * two iterations of this loop may be ran.
450 451
		 */
		old = atomic_cmpxchg_relaxed(&lock->val, val, _Q_LOCKED_VAL);
452 453
		if (old == val)
			goto release;	/* No contention */
454 455 456 457 458

		val = old;
	}

	/*
459
	 * contended path; wait for next if not observed yet, release.
460
	 */
461 462 463 464
	if (!next) {
		while (!(next = READ_ONCE(node->next)))
			cpu_relax();
	}
465

466
	arch_mcs_spin_unlock_contended(&next->locked);
467
	pv_kick_node(lock, next);
468 469 470 471 472

release:
	/*
	 * release the node
	 */
473
	__this_cpu_dec(mcs_nodes[0].count);
474 475
}
EXPORT_SYMBOL(queued_spin_lock_slowpath);
476 477 478 479 480 481 482 483 484 485 486 487 488

/*
 * Generate the paravirt code for queued_spin_unlock_slowpath().
 */
#if !defined(_GEN_PV_LOCK_SLOWPATH) && defined(CONFIG_PARAVIRT_SPINLOCKS)
#define _GEN_PV_LOCK_SLOWPATH

#undef  pv_enabled
#define pv_enabled()	true

#undef pv_init_node
#undef pv_wait_node
#undef pv_kick_node
489
#undef pv_wait_head_or_lock
490 491 492 493 494 495 496 497

#undef  queued_spin_lock_slowpath
#define queued_spin_lock_slowpath	__pv_queued_spin_lock_slowpath

#include "qspinlock_paravirt.h"
#include "qspinlock.c"

#endif