qspinlock.c 17.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/*
 * Queued spinlock
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * (C) Copyright 2013-2015 Hewlett-Packard Development Company, L.P.
 * (C) Copyright 2013-2014 Red Hat, Inc.
 * (C) Copyright 2015 Intel Corp.
17
 * (C) Copyright 2015 Hewlett-Packard Enterprise Development LP
18
 *
19
 * Authors: Waiman Long <waiman.long@hpe.com>
20 21
 *          Peter Zijlstra <peterz@infradead.org>
 */
22 23 24

#ifndef _GEN_PV_LOCK_SLOWPATH

25 26 27 28 29 30
#include <linux/smp.h>
#include <linux/bug.h>
#include <linux/cpumask.h>
#include <linux/percpu.h>
#include <linux/hardirq.h>
#include <linux/mutex.h>
31
#include <asm/byteorder.h>
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
#include <asm/qspinlock.h>

/*
 * The basic principle of a queue-based spinlock can best be understood
 * by studying a classic queue-based spinlock implementation called the
 * MCS lock. The paper below provides a good description for this kind
 * of lock.
 *
 * http://www.cise.ufl.edu/tr/DOC/REP-1992-71.pdf
 *
 * This queued spinlock implementation is based on the MCS lock, however to make
 * it fit the 4 bytes we assume spinlock_t to be, and preserve its existing
 * API, we must modify it somehow.
 *
 * In particular; where the traditional MCS lock consists of a tail pointer
 * (8 bytes) and needs the next pointer (another 8 bytes) of its own node to
 * unlock the next pending (next->locked), we compress both these: {tail,
 * next->locked} into a single u32 value.
 *
 * Since a spinlock disables recursion of its own context and there is a limit
 * to the contexts that can nest; namely: task, softirq, hardirq, nmi. As there
 * are at most 4 nesting levels, it can be encoded by a 2-bit number. Now
 * we can encode the tail by combining the 2-bit nesting level with the cpu
 * number. With one byte for the lock value and 3 bytes for the tail, only a
 * 32-bit word is now needed. Even though we only need 1 bit for the lock,
 * we extend it to a full byte to achieve better performance for architectures
 * that support atomic byte write.
 *
 * We also change the first spinner to spin on the lock bit instead of its
 * node; whereby avoiding the need to carry a node from lock to unlock, and
 * preserving existing lock API. This also makes the unlock code simpler and
 * faster.
64 65 66 67
 *
 * N.B. The current implementation only supports architectures that allow
 *      atomic operations on smaller 8-bit and 16-bit data types.
 *
68 69 70 71
 */

#include "mcs_spinlock.h"

72 73 74 75 76 77
#ifdef CONFIG_PARAVIRT_SPINLOCKS
#define MAX_NODES	8
#else
#define MAX_NODES	4
#endif

78 79 80 81 82
/*
 * Per-CPU queue node structures; we can never have more than 4 nested
 * contexts: task, softirq, hardirq, nmi.
 *
 * Exactly fits one 64-byte cacheline on a 64-bit architecture.
83 84
 *
 * PV doubles the storage and uses the second cacheline for PV state.
85
 */
86
static DEFINE_PER_CPU_ALIGNED(struct mcs_spinlock, mcs_nodes[MAX_NODES]);
87 88 89 90 91 92

/*
 * We must be able to distinguish between no-tail and the tail at 0:0,
 * therefore increment the cpu number by one.
 */

93
static inline __pure u32 encode_tail(int cpu, int idx)
94 95 96 97 98 99 100 101 102 103 104 105
{
	u32 tail;

#ifdef CONFIG_DEBUG_SPINLOCK
	BUG_ON(idx > 3);
#endif
	tail  = (cpu + 1) << _Q_TAIL_CPU_OFFSET;
	tail |= idx << _Q_TAIL_IDX_OFFSET; /* assume < 4 */

	return tail;
}

106
static inline __pure struct mcs_spinlock *decode_tail(u32 tail)
107 108 109 110 111 112 113
{
	int cpu = (tail >> _Q_TAIL_CPU_OFFSET) - 1;
	int idx = (tail &  _Q_TAIL_IDX_MASK) >> _Q_TAIL_IDX_OFFSET;

	return per_cpu_ptr(&mcs_nodes[idx], cpu);
}

114 115
#define _Q_LOCKED_PENDING_MASK (_Q_LOCKED_MASK | _Q_PENDING_MASK)

116 117 118 119
/*
 * By using the whole 2nd least significant byte for the pending bit, we
 * can allow better optimization of the lock acquisition for the pending
 * bit holder.
120 121 122
 *
 * This internal structure is also used by the set_locked function which
 * is not restricted to _Q_PENDING_BITS == 8.
123 124 125 126 127
 */
struct __qspinlock {
	union {
		atomic_t val;
#ifdef __LITTLE_ENDIAN
128 129 130 131 132
		struct {
			u8	locked;
			u8	pending;
		};
		struct {
133 134
			u16	locked_pending;
			u16	tail;
135
		};
136
#else
137
		struct {
138 139 140
			u16	tail;
			u16	locked_pending;
		};
141 142 143 144 145 146
		struct {
			u8	reserved[2];
			u8	pending;
			u8	locked;
		};
#endif
147 148 149
	};
};

150
#if _Q_PENDING_BITS == 8
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
/**
 * clear_pending_set_locked - take ownership and clear the pending bit.
 * @lock: Pointer to queued spinlock structure
 *
 * *,1,0 -> *,0,1
 *
 * Lock stealing is not allowed if this function is used.
 */
static __always_inline void clear_pending_set_locked(struct qspinlock *lock)
{
	struct __qspinlock *l = (void *)lock;

	WRITE_ONCE(l->locked_pending, _Q_LOCKED_VAL);
}

/*
 * xchg_tail - Put in the new queue tail code word & retrieve previous one
 * @lock : Pointer to queued spinlock structure
 * @tail : The new queue tail code word
 * Return: The previous queue tail code word
 *
 * xchg(lock, tail)
 *
 * p,*,* -> n,*,* ; prev = xchg(lock, node)
 */
static __always_inline u32 xchg_tail(struct qspinlock *lock, u32 tail)
{
	struct __qspinlock *l = (void *)lock;

180 181 182 183 184 185
	/*
	 * Use release semantics to make sure that the MCS node is properly
	 * initialized before changing the tail code.
	 */
	return (u32)xchg_release(&l->tail,
				 tail >> _Q_TAIL_OFFSET) << _Q_TAIL_OFFSET;
186 187 188 189
}

#else /* _Q_PENDING_BITS == 8 */

190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
/**
 * clear_pending_set_locked - take ownership and clear the pending bit.
 * @lock: Pointer to queued spinlock structure
 *
 * *,1,0 -> *,0,1
 */
static __always_inline void clear_pending_set_locked(struct qspinlock *lock)
{
	atomic_add(-_Q_PENDING_VAL + _Q_LOCKED_VAL, &lock->val);
}

/**
 * xchg_tail - Put in the new queue tail code word & retrieve previous one
 * @lock : Pointer to queued spinlock structure
 * @tail : The new queue tail code word
 * Return: The previous queue tail code word
 *
 * xchg(lock, tail)
 *
 * p,*,* -> n,*,* ; prev = xchg(lock, node)
 */
static __always_inline u32 xchg_tail(struct qspinlock *lock, u32 tail)
{
	u32 old, new, val = atomic_read(&lock->val);

	for (;;) {
		new = (val & _Q_LOCKED_PENDING_MASK) | tail;
217 218 219 220 221
		/*
		 * Use release semantics to make sure that the MCS node is
		 * properly initialized before changing the tail code.
		 */
		old = atomic_cmpxchg_release(&lock->val, val, new);
222 223 224 225 226 227 228
		if (old == val)
			break;

		val = old;
	}
	return old;
}
229
#endif /* _Q_PENDING_BITS == 8 */
230

231 232 233 234 235 236 237 238 239 240 241 242 243
/**
 * set_locked - Set the lock bit and own the lock
 * @lock: Pointer to queued spinlock structure
 *
 * *,*,0 -> *,0,1
 */
static __always_inline void set_locked(struct qspinlock *lock)
{
	struct __qspinlock *l = (void *)lock;

	WRITE_ONCE(l->locked, _Q_LOCKED_VAL);
}

244 245 246 247 248 249 250

/*
 * Generate the native code for queued_spin_unlock_slowpath(); provide NOPs for
 * all the PV callbacks.
 */

static __always_inline void __pv_init_node(struct mcs_spinlock *node) { }
251 252
static __always_inline void __pv_wait_node(struct mcs_spinlock *node,
					   struct mcs_spinlock *prev) { }
253 254
static __always_inline void __pv_kick_node(struct qspinlock *lock,
					   struct mcs_spinlock *node) { }
255 256 257
static __always_inline u32  __pv_wait_head_or_lock(struct qspinlock *lock,
						   struct mcs_spinlock *node)
						   { return 0; }
258 259 260 261 262 263

#define pv_enabled()		false

#define pv_init_node		__pv_init_node
#define pv_wait_node		__pv_wait_node
#define pv_kick_node		__pv_kick_node
264
#define pv_wait_head_or_lock	__pv_wait_head_or_lock
265 266 267 268 269

#ifdef CONFIG_PARAVIRT_SPINLOCKS
#define queued_spin_lock_slowpath	native_queued_spin_lock_slowpath
#endif

P
Peter Zijlstra 已提交
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
/*
 * Various notes on spin_is_locked() and spin_unlock_wait(), which are
 * 'interesting' functions:
 *
 * PROBLEM: some architectures have an interesting issue with atomic ACQUIRE
 * operations in that the ACQUIRE applies to the LOAD _not_ the STORE (ARM64,
 * PPC). Also qspinlock has a similar issue per construction, the setting of
 * the locked byte can be unordered acquiring the lock proper.
 *
 * This gets to be 'interesting' in the following cases, where the /should/s
 * end up false because of this issue.
 *
 *
 * CASE 1:
 *
 * So the spin_is_locked() correctness issue comes from something like:
 *
 *   CPU0				CPU1
 *
 *   global_lock();			local_lock(i)
 *     spin_lock(&G)			  spin_lock(&L[i])
 *     for (i)				  if (!spin_is_locked(&G)) {
 *       spin_unlock_wait(&L[i]);	    smp_acquire__after_ctrl_dep();
 *					    return;
 *					  }
 *					  // deal with fail
 *
 * Where it is important CPU1 sees G locked or CPU0 sees L[i] locked such
 * that there is exclusion between the two critical sections.
 *
 * The load from spin_is_locked(&G) /should/ be constrained by the ACQUIRE from
 * spin_lock(&L[i]), and similarly the load(s) from spin_unlock_wait(&L[i])
 * /should/ be constrained by the ACQUIRE from spin_lock(&G).
 *
 * Similarly, later stuff is constrained by the ACQUIRE from CTRL+RMB.
 *
 *
 * CASE 2:
 *
 * For spin_unlock_wait() there is a second correctness issue, namely:
 *
 *   CPU0				CPU1
 *
 *   flag = set;
 *   smp_mb();				spin_lock(&l)
 *   spin_unlock_wait(&l);		if (!flag)
 *					  // add to lockless list
 *					spin_unlock(&l);
 *   // iterate lockless list
 *
 * Which wants to ensure that CPU1 will stop adding bits to the list and CPU0
 * will observe the last entry on the list (if spin_unlock_wait() had ACQUIRE
 * semantics etc..)
 *
 * Where flag /should/ be ordered against the locked store of l.
 */

327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
/*
 * queued_spin_lock_slowpath() can (load-)ACQUIRE the lock before
 * issuing an _unordered_ store to set _Q_LOCKED_VAL.
 *
 * This means that the store can be delayed, but no later than the
 * store-release from the unlock. This means that simply observing
 * _Q_LOCKED_VAL is not sufficient to determine if the lock is acquired.
 *
 * There are two paths that can issue the unordered store:
 *
 *  (1) clear_pending_set_locked():	*,1,0 -> *,0,1
 *
 *  (2) set_locked():			t,0,0 -> t,0,1 ; t != 0
 *      atomic_cmpxchg_relaxed():	t,0,0 -> 0,0,1
 *
 * However, in both cases we have other !0 state we've set before to queue
 * ourseves:
 *
 * For (1) we have the atomic_cmpxchg_acquire() that set _Q_PENDING_VAL, our
 * load is constrained by that ACQUIRE to not pass before that, and thus must
 * observe the store.
 *
 * For (2) we have a more intersting scenario. We enqueue ourselves using
 * xchg_tail(), which ends up being a RELEASE. This in itself is not
 * sufficient, however that is followed by an smp_cond_acquire() on the same
 * word, giving a RELEASE->ACQUIRE ordering. This again constrains our load and
 * guarantees we must observe that store.
 *
 * Therefore both cases have other !0 state that is observable before the
 * unordered locked byte store comes through. This means we can use that to
 * wait for the lock store, and then wait for an unlock.
 */
#ifndef queued_spin_unlock_wait
void queued_spin_unlock_wait(struct qspinlock *lock)
{
	u32 val;

	for (;;) {
		val = atomic_read(&lock->val);

		if (!val) /* not locked, we're done */
			goto done;

		if (val & _Q_LOCKED_MASK) /* locked, go wait for unlock */
			break;

		/* not locked, but pending, wait until we observe the lock */
		cpu_relax();
	}

	/* any unlock is good */
	while (atomic_read(&lock->val) & _Q_LOCKED_MASK)
		cpu_relax();

done:
382
	smp_acquire__after_ctrl_dep();
383 384 385 386
}
EXPORT_SYMBOL(queued_spin_unlock_wait);
#endif

387 388
#endif /* _GEN_PV_LOCK_SLOWPATH */

389 390 391 392 393
/**
 * queued_spin_lock_slowpath - acquire the queued spinlock
 * @lock: Pointer to queued spinlock structure
 * @val: Current value of the queued spinlock 32-bit word
 *
394
 * (queue tail, pending bit, lock value)
395
 *
396 397 398 399 400 401 402 403 404 405 406 407 408
 *              fast     :    slow                                  :    unlock
 *                       :                                          :
 * uncontended  (0,0,0) -:--> (0,0,1) ------------------------------:--> (*,*,0)
 *                       :       | ^--------.------.             /  :
 *                       :       v           \      \            |  :
 * pending               :    (0,1,1) +--> (0,1,0)   \           |  :
 *                       :       | ^--'              |           |  :
 *                       :       v                   |           |  :
 * uncontended           :    (n,x,y) +--> (n,0,0) --'           |  :
 *   queue               :       | ^--'                          |  :
 *                       :       v                               |  :
 * contended             :    (*,x,y) +--> (*,0,0) ---> (*,0,1) -'  :
 *   queue               :         ^--'                             :
409 410 411 412 413 414 415 416 417
 */
void queued_spin_lock_slowpath(struct qspinlock *lock, u32 val)
{
	struct mcs_spinlock *prev, *next, *node;
	u32 new, old, tail;
	int idx;

	BUILD_BUG_ON(CONFIG_NR_CPUS >= (1U << _Q_TAIL_CPU_BITS));

418 419 420
	if (pv_enabled())
		goto queue;

421
	if (virt_spin_lock(lock))
422 423
		return;

424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
	/*
	 * wait for in-progress pending->locked hand-overs
	 *
	 * 0,1,0 -> 0,0,1
	 */
	if (val == _Q_PENDING_VAL) {
		while ((val = atomic_read(&lock->val)) == _Q_PENDING_VAL)
			cpu_relax();
	}

	/*
	 * trylock || pending
	 *
	 * 0,0,0 -> 0,0,1 ; trylock
	 * 0,0,1 -> 0,1,1 ; pending
	 */
	for (;;) {
		/*
		 * If we observe any contention; queue.
		 */
		if (val & ~_Q_LOCKED_MASK)
			goto queue;

		new = _Q_LOCKED_VAL;
		if (val == new)
			new |= _Q_PENDING_VAL;

451 452 453 454 455
		/*
		 * Acquire semantic is required here as the function may
		 * return immediately if the lock was free.
		 */
		old = atomic_cmpxchg_acquire(&lock->val, val, new);
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
		if (old == val)
			break;

		val = old;
	}

	/*
	 * we won the trylock
	 */
	if (new == _Q_LOCKED_VAL)
		return;

	/*
	 * we're pending, wait for the owner to go away.
	 *
	 * *,1,1 -> *,1,0
472 473 474 475 476
	 *
	 * this wait loop must be a load-acquire such that we match the
	 * store-release that clears the locked bit and create lock
	 * sequentiality; this is because not all clear_pending_set_locked()
	 * implementations imply full barriers.
477
	 */
478
	smp_cond_load_acquire(&lock->val.counter, !(VAL & _Q_LOCKED_MASK));
479 480 481 482 483 484

	/*
	 * take ownership and clear the pending bit.
	 *
	 * *,1,0 -> *,0,1
	 */
485
	clear_pending_set_locked(lock);
486 487 488 489 490 491 492
	return;

	/*
	 * End of pending bit optimistic spinning and beginning of MCS
	 * queuing.
	 */
queue:
493 494 495 496 497 498 499
	node = this_cpu_ptr(&mcs_nodes[0]);
	idx = node->count++;
	tail = encode_tail(smp_processor_id(), idx);

	node += idx;
	node->locked = 0;
	node->next = NULL;
500
	pv_init_node(node);
501 502

	/*
503 504 505
	 * We touched a (possibly) cold cacheline in the per-cpu queue node;
	 * attempt the trylock once more in the hope someone let go while we
	 * weren't watching.
506
	 */
507 508
	if (queued_spin_trylock(lock))
		goto release;
509 510

	/*
511 512 513 514
	 * We have already touched the queueing cacheline; don't bother with
	 * pending stuff.
	 *
	 * p,*,* -> n,*,*
515 516
	 *
	 * RELEASE, such that the stores to @node must be complete.
517
	 */
518
	old = xchg_tail(lock, tail);
519
	next = NULL;
520 521 522 523 524

	/*
	 * if there was a previous node; link it and wait until reaching the
	 * head of the waitqueue.
	 */
525
	if (old & _Q_TAIL_MASK) {
526
		prev = decode_tail(old);
527 528 529 530 531 532 533 534 535
		/*
		 * The above xchg_tail() is also a load of @lock which generates,
		 * through decode_tail(), a pointer.
		 *
		 * The address dependency matches the RELEASE of xchg_tail()
		 * such that the access to @prev must happen after.
		 */
		smp_read_barrier_depends();

536 537
		WRITE_ONCE(prev->next, node);

538
		pv_wait_node(node, prev);
539
		arch_mcs_spin_lock_contended(&node->locked);
540 541 542 543 544 545 546 547 548 549

		/*
		 * While waiting for the MCS lock, the next pointer may have
		 * been set by another lock waiter. We optimistically load
		 * the next pointer & prefetch the cacheline for writing
		 * to reduce latency in the upcoming MCS unlock operation.
		 */
		next = READ_ONCE(node->next);
		if (next)
			prefetchw(next);
550 551 552
	}

	/*
553 554
	 * we're at the head of the waitqueue, wait for the owner & pending to
	 * go away.
555
	 *
556
	 * *,x,y -> *,0,0
557 558 559 560 561 562
	 *
	 * this wait loop must use a load-acquire such that we match the
	 * store-release that clears the locked bit and create lock
	 * sequentiality; this is because the set_locked() function below
	 * does not imply a full barrier.
	 *
563 564
	 * The PV pv_wait_head_or_lock function, if active, will acquire
	 * the lock and return a non-zero value. So we have to skip the
565
	 * smp_cond_load_acquire() call. As the next PV queue head hasn't been
566 567 568 569 570 571
	 * designated yet, there is no way for the locked value to become
	 * _Q_SLOW_VAL. So both the set_locked() and the
	 * atomic_cmpxchg_relaxed() calls will be safe.
	 *
	 * If PV isn't active, 0 will be returned instead.
	 *
572
	 */
573 574 575
	if ((val = pv_wait_head_or_lock(lock, node)))
		goto locked;

576
	val = smp_cond_load_acquire(&lock->val.counter, !(VAL & _Q_LOCKED_PENDING_MASK));
577

578
locked:
579 580 581
	/*
	 * claim the lock:
	 *
582 583
	 * n,0,0 -> 0,0,1 : lock, uncontended
	 * *,0,0 -> *,0,1 : lock, contended
584 585 586 587
	 *
	 * If the queue head is the only one in the queue (lock value == tail),
	 * clear the tail code and grab the lock. Otherwise, we only need
	 * to grab the lock.
588 589
	 */
	for (;;) {
590 591
		/* In the PV case we might already have _Q_LOCKED_VAL set */
		if ((val & _Q_TAIL_MASK) != tail) {
592
			set_locked(lock);
593
			break;
594
		}
595
		/*
596 597 598
		 * The smp_cond_load_acquire() call above has provided the
		 * necessary acquire semantics required for locking. At most
		 * two iterations of this loop may be ran.
599 600
		 */
		old = atomic_cmpxchg_relaxed(&lock->val, val, _Q_LOCKED_VAL);
601 602
		if (old == val)
			goto release;	/* No contention */
603 604 605 606 607

		val = old;
	}

	/*
608
	 * contended path; wait for next if not observed yet, release.
609
	 */
610 611 612 613
	if (!next) {
		while (!(next = READ_ONCE(node->next)))
			cpu_relax();
	}
614

615
	arch_mcs_spin_unlock_contended(&next->locked);
616
	pv_kick_node(lock, next);
617 618 619 620 621

release:
	/*
	 * release the node
	 */
622
	__this_cpu_dec(mcs_nodes[0].count);
623 624
}
EXPORT_SYMBOL(queued_spin_lock_slowpath);
625 626 627 628 629 630 631 632 633 634 635 636 637

/*
 * Generate the paravirt code for queued_spin_unlock_slowpath().
 */
#if !defined(_GEN_PV_LOCK_SLOWPATH) && defined(CONFIG_PARAVIRT_SPINLOCKS)
#define _GEN_PV_LOCK_SLOWPATH

#undef  pv_enabled
#define pv_enabled()	true

#undef pv_init_node
#undef pv_wait_node
#undef pv_kick_node
638
#undef pv_wait_head_or_lock
639 640 641 642 643 644 645 646

#undef  queued_spin_lock_slowpath
#define queued_spin_lock_slowpath	__pv_queued_spin_lock_slowpath

#include "qspinlock_paravirt.h"
#include "qspinlock.c"

#endif