abituguru.c 52.5 KB
Newer Older
1
/*
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
 * abituguru.c Copyright (c) 2005-2006 Hans de Goede <hdegoede@redhat.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */
18
/*
19 20 21 22
 * This driver supports the sensor part of the first and second revision of
 * the custom Abit uGuru chip found on Abit uGuru motherboards. Note: because
 * of lack of specs the CPU/RAM voltage & frequency control is not supported!
 */
23 24 25

#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

26
#include <linux/module.h>
A
Al Viro 已提交
27
#include <linux/sched.h>
28 29 30 31 32
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/jiffies.h>
#include <linux/mutex.h>
#include <linux/err.h>
33
#include <linux/delay.h>
34 35 36
#include <linux/platform_device.h>
#include <linux/hwmon.h>
#include <linux/hwmon-sysfs.h>
37
#include <linux/dmi.h>
38
#include <linux/io.h>
39 40 41 42 43 44

/* Banks */
#define ABIT_UGURU_ALARM_BANK			0x20 /* 1x 3 bytes */
#define ABIT_UGURU_SENSOR_BANK1			0x21 /* 16x volt and temp */
#define ABIT_UGURU_FAN_PWM			0x24 /* 3x 5 bytes */
#define ABIT_UGURU_SENSOR_BANK2			0x26 /* fans */
H
Hans de Goede 已提交
45 46
/* max nr of sensors in bank1, a bank1 sensor can be in, temp or nc */
#define ABIT_UGURU_MAX_BANK1_SENSORS		16
47 48 49 50
/*
 * Warning if you increase one of the 2 MAX defines below to 10 or higher you
 * should adjust the belonging _NAMES_LENGTH macro for the 2 digit number!
 */
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
/* max nr of sensors in bank2, currently mb's with max 6 fans are known */
#define ABIT_UGURU_MAX_BANK2_SENSORS		6
/* max nr of pwm outputs, currently mb's with max 5 pwm outputs are known */
#define ABIT_UGURU_MAX_PWMS			5
/* uGuru sensor bank 1 flags */			     /* Alarm if: */
#define ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE	0x01 /*  temp over warn */
#define ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE	0x02 /*  volt over max */
#define ABIT_UGURU_VOLT_LOW_ALARM_ENABLE	0x04 /*  volt under min */
#define ABIT_UGURU_TEMP_HIGH_ALARM_FLAG		0x10 /* temp is over warn */
#define ABIT_UGURU_VOLT_HIGH_ALARM_FLAG		0x20 /* volt is over max */
#define ABIT_UGURU_VOLT_LOW_ALARM_FLAG		0x40 /* volt is under min */
/* uGuru sensor bank 2 flags */			     /* Alarm if: */
#define ABIT_UGURU_FAN_LOW_ALARM_ENABLE		0x01 /*   fan under min */
/* uGuru sensor bank common flags */
#define ABIT_UGURU_BEEP_ENABLE			0x08 /* beep if alarm */
#define ABIT_UGURU_SHUTDOWN_ENABLE		0x80 /* shutdown if alarm */
/* uGuru fan PWM (speed control) flags */
#define ABIT_UGURU_FAN_PWM_ENABLE		0x80 /* enable speed control */
/* Values used for conversion */
#define ABIT_UGURU_FAN_MAX			15300 /* RPM */
/* Bank1 sensor types */
#define ABIT_UGURU_IN_SENSOR			0
#define ABIT_UGURU_TEMP_SENSOR			1
#define ABIT_UGURU_NC				2
75 76 77 78 79
/*
 * In many cases we need to wait for the uGuru to reach a certain status, most
 * of the time it will reach this status within 30 - 90 ISA reads, and thus we
 * can best busy wait. This define gives the total amount of reads to try.
 */
80
#define ABIT_UGURU_WAIT_TIMEOUT			125
81 82 83 84 85
/*
 * However sometimes older versions of the uGuru seem to be distracted and they
 * do not respond for a long time. To handle this we sleep before each of the
 * last ABIT_UGURU_WAIT_TIMEOUT_SLEEP tries.
 */
86
#define ABIT_UGURU_WAIT_TIMEOUT_SLEEP		5
87 88 89 90
/*
 * Normally all expected status in abituguru_ready, are reported after the
 * first read, but sometimes not and we need to poll.
 */
91
#define ABIT_UGURU_READY_TIMEOUT		5
92 93 94
/* Maximum 3 retries on timedout reads/writes, delay 200 ms before retrying */
#define ABIT_UGURU_MAX_RETRIES			3
#define ABIT_UGURU_RETRY_DELAY			(HZ/5)
H
Hans de Goede 已提交
95
/* Maximum 2 timeouts in abituguru_update_device, iow 3 in a row is an error */
96
#define ABIT_UGURU_MAX_TIMEOUTS			2
H
Hans de Goede 已提交
97 98
/* utility macros */
#define ABIT_UGURU_NAME				"abituguru"
99 100 101 102 103 104
#define ABIT_UGURU_DEBUG(level, format, arg...)		\
	do {						\
		if (level <= verbose)			\
			pr_debug(format , ## arg);	\
	} while (0)

H
Hans de Goede 已提交
105
/* Macros to help calculate the sysfs_names array length */
106 107 108 109
/*
 * sum of strlen of: in??_input\0, in??_{min,max}\0, in??_{min,max}_alarm\0,
 * in??_{min,max}_alarm_enable\0, in??_beep\0, in??_shutdown\0
 */
H
Hans de Goede 已提交
110
#define ABITUGURU_IN_NAMES_LENGTH	(11 + 2 * 9 + 2 * 15 + 2 * 22 + 10 + 14)
111 112 113 114
/*
 * sum of strlen of: temp??_input\0, temp??_max\0, temp??_crit\0,
 * temp??_alarm\0, temp??_alarm_enable\0, temp??_beep\0, temp??_shutdown\0
 */
H
Hans de Goede 已提交
115
#define ABITUGURU_TEMP_NAMES_LENGTH	(13 + 11 + 12 + 13 + 20 + 12 + 16)
116 117 118 119
/*
 * sum of strlen of: fan?_input\0, fan?_min\0, fan?_alarm\0,
 * fan?_alarm_enable\0, fan?_beep\0, fan?_shutdown\0
 */
H
Hans de Goede 已提交
120
#define ABITUGURU_FAN_NAMES_LENGTH	(11 + 9 + 11 + 18 + 10 + 14)
121 122 123 124
/*
 * sum of strlen of: pwm?_enable\0, pwm?_auto_channels_temp\0,
 * pwm?_auto_point{1,2}_pwm\0, pwm?_auto_point{1,2}_temp\0
 */
H
Hans de Goede 已提交
125 126 127 128 129 130 131
#define ABITUGURU_PWM_NAMES_LENGTH	(12 + 24 + 2 * 21 + 2 * 22)
/* IN_NAMES_LENGTH > TEMP_NAMES_LENGTH so assume all bank1 sensors are in */
#define ABITUGURU_SYSFS_NAMES_LENGTH	( \
	ABIT_UGURU_MAX_BANK1_SENSORS * ABITUGURU_IN_NAMES_LENGTH + \
	ABIT_UGURU_MAX_BANK2_SENSORS * ABITUGURU_FAN_NAMES_LENGTH + \
	ABIT_UGURU_MAX_PWMS * ABITUGURU_PWM_NAMES_LENGTH)

132 133 134 135 136 137
/*
 * All the macros below are named identical to the oguru and oguru2 programs
 * reverse engineered by Olle Sandberg, hence the names might not be 100%
 * logical. I could come up with better names, but I prefer keeping the names
 * identical so that this driver can be compared with his work more easily.
 */
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
/* Two i/o-ports are used by uGuru */
#define ABIT_UGURU_BASE				0x00E0
/* Used to tell uGuru what to read and to read the actual data */
#define ABIT_UGURU_CMD				0x00
/* Mostly used to check if uGuru is busy */
#define ABIT_UGURU_DATA				0x04
#define ABIT_UGURU_REGION_LENGTH		5
/* uGuru status' */
#define ABIT_UGURU_STATUS_WRITE			0x00 /* Ready to be written */
#define ABIT_UGURU_STATUS_READ			0x01 /* Ready to be read */
#define ABIT_UGURU_STATUS_INPUT			0x08 /* More input */
#define ABIT_UGURU_STATUS_READY			0x09 /* Ready to be written */

/* Constants */
/* in (Volt) sensors go up to 3494 mV, temp to 255000 millidegrees Celsius */
static const int abituguru_bank1_max_value[2] = { 3494, 255000 };
154 155 156 157
/*
 * Min / Max allowed values for sensor2 (fan) alarm threshold, these values
 * correspond to 300-3000 RPM
 */
158 159
static const u8 abituguru_bank2_min_threshold = 5;
static const u8 abituguru_bank2_max_threshold = 50;
160 161 162 163
/*
 * Register 0 is a bitfield, 1 and 2 are pwm settings (255 = 100%), 3 and 4
 * are temperature trip points.
 */
164
static const int abituguru_pwm_settings_multiplier[5] = { 0, 1, 1, 1000, 1000 };
165 166 167 168 169
/*
 * Min / Max allowed values for pwm_settings. Note: pwm1 (CPU fan) is a
 * special case the minium allowed pwm% setting for this is 30% (77) on
 * some MB's this special case is handled in the code!
 */
170 171 172 173 174
static const u8 abituguru_pwm_min[5] = { 0, 170, 170, 25, 25 };
static const u8 abituguru_pwm_max[5] = { 0, 255, 255, 75, 75 };


/* Insmod parameters */
175
static bool force;
176 177
module_param(force, bool, 0);
MODULE_PARM_DESC(force, "Set to one to force detection.");
178 179 180 181 182 183 184 185
static int bank1_types[ABIT_UGURU_MAX_BANK1_SENSORS] = { -1, -1, -1, -1, -1,
	-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 };
module_param_array(bank1_types, int, NULL, 0);
MODULE_PARM_DESC(bank1_types, "Bank1 sensortype autodetection override:\n"
	"   -1 autodetect\n"
	"    0 volt sensor\n"
	"    1 temp sensor\n"
	"    2 not connected");
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
static int fan_sensors;
module_param(fan_sensors, int, 0);
MODULE_PARM_DESC(fan_sensors, "Number of fan sensors on the uGuru "
	"(0 = autodetect)");
static int pwms;
module_param(pwms, int, 0);
MODULE_PARM_DESC(pwms, "Number of PWMs on the uGuru "
	"(0 = autodetect)");

/* Default verbose is 2, since this driver is still in the testing phase */
static int verbose = 2;
module_param(verbose, int, 0644);
MODULE_PARM_DESC(verbose, "How verbose should the driver be? (0-3):\n"
	"   0 normal output\n"
	"   1 + verbose error reporting\n"
	"   2 + sensors type probing info\n"
	"   3 + retryable error reporting");


205 206 207 208 209
/*
 * For the Abit uGuru, we need to keep some data in memory.
 * The structure is dynamically allocated, at the same time when a new
 * abituguru device is allocated.
 */
210
struct abituguru_data {
211
	struct device *hwmon_dev;	/* hwmon registered device */
212 213 214 215
	struct mutex update_lock;	/* protect access to data and uGuru */
	unsigned long last_updated;	/* In jiffies */
	unsigned short addr;		/* uguru base address */
	char uguru_ready;		/* is the uguru in ready state? */
216 217 218 219 220 221 222 223 224 225 226 227
	unsigned char update_timeouts;	/*
					 * number of update timeouts since last
					 * successful update
					 */

	/*
	 * The sysfs attr and their names are generated automatically, for bank1
	 * we cannot use a predefined array because we don't know beforehand
	 * of a sensor is a volt or a temp sensor, for bank2 and the pwms its
	 * easier todo things the same way.  For in sensors we have 9 (temp 7)
	 * sysfs entries per sensor, for bank2 and pwms 6.
	 */
H
Hans de Goede 已提交
228 229
	struct sensor_device_attribute_2 sysfs_attr[
		ABIT_UGURU_MAX_BANK1_SENSORS * 9 +
230
		ABIT_UGURU_MAX_BANK2_SENSORS * 6 + ABIT_UGURU_MAX_PWMS * 6];
H
Hans de Goede 已提交
231 232
	/* Buffer to store the dynamically generated sysfs names */
	char sysfs_names[ABITUGURU_SYSFS_NAMES_LENGTH];
233 234

	/* Bank 1 data */
H
Hans de Goede 已提交
235 236 237 238
	/* number of and addresses of [0] in, [1] temp sensors */
	u8 bank1_sensors[2];
	u8 bank1_address[2][ABIT_UGURU_MAX_BANK1_SENSORS];
	u8 bank1_value[ABIT_UGURU_MAX_BANK1_SENSORS];
239 240 241 242
	/*
	 * This array holds 3 entries per sensor for the bank 1 sensor settings
	 * (flags, min, max for voltage / flags, warn, shutdown for temp).
	 */
H
Hans de Goede 已提交
243
	u8 bank1_settings[ABIT_UGURU_MAX_BANK1_SENSORS][3];
244 245 246 247
	/*
	 * Maximum value for each sensor used for scaling in mV/millidegrees
	 * Celsius.
	 */
H
Hans de Goede 已提交
248
	int bank1_max_value[ABIT_UGURU_MAX_BANK1_SENSORS];
249 250 251 252 253 254 255 256 257 258 259 260 261 262

	/* Bank 2 data, ABIT_UGURU_MAX_BANK2_SENSORS entries for bank2 */
	u8 bank2_sensors; /* actual number of bank2 sensors found */
	u8 bank2_value[ABIT_UGURU_MAX_BANK2_SENSORS];
	u8 bank2_settings[ABIT_UGURU_MAX_BANK2_SENSORS][2]; /* flags, min */

	/* Alarms 2 bytes for bank1, 1 byte for bank2 */
	u8 alarms[3];

	/* Fan PWM (speed control) 5 bytes per PWM */
	u8 pwms; /* actual number of pwms found */
	u8 pwm_settings[ABIT_UGURU_MAX_PWMS][5];
};

263 264 265 266
static const char *never_happen = "This should never happen.";
static const char *report_this =
	"Please report this to the abituguru maintainer (see MAINTAINERS)";

267 268 269 270 271 272 273 274 275
/* wait till the uguru is in the specified state */
static int abituguru_wait(struct abituguru_data *data, u8 state)
{
	int timeout = ABIT_UGURU_WAIT_TIMEOUT;

	while (inb_p(data->addr + ABIT_UGURU_DATA) != state) {
		timeout--;
		if (timeout == 0)
			return -EBUSY;
276 277 278 279
		/*
		 * sleep a bit before our last few tries, see the comment on
		 * this where ABIT_UGURU_WAIT_TIMEOUT_SLEEP is defined.
		 */
280 281
		if (timeout <= ABIT_UGURU_WAIT_TIMEOUT_SLEEP)
			msleep(0);
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
	}
	return 0;
}

/* Put the uguru in ready for input state */
static int abituguru_ready(struct abituguru_data *data)
{
	int timeout = ABIT_UGURU_READY_TIMEOUT;

	if (data->uguru_ready)
		return 0;

	/* Reset? / Prepare for next read/write cycle */
	outb(0x00, data->addr + ABIT_UGURU_DATA);

	/* Wait till the uguru is ready */
	if (abituguru_wait(data, ABIT_UGURU_STATUS_READY)) {
		ABIT_UGURU_DEBUG(1,
			"timeout exceeded waiting for ready state\n");
		return -EIO;
	}

	/* Cmd port MUST be read now and should contain 0xAC */
	while (inb_p(data->addr + ABIT_UGURU_CMD) != 0xAC) {
		timeout--;
		if (timeout == 0) {
			ABIT_UGURU_DEBUG(1,
			   "CMD reg does not hold 0xAC after ready command\n");
			return -EIO;
		}
312
		msleep(0);
313 314
	}

315 316 317 318
	/*
	 * After this the ABIT_UGURU_DATA port should contain
	 * ABIT_UGURU_STATUS_INPUT
	 */
319 320 321 322 323 324 325 326
	timeout = ABIT_UGURU_READY_TIMEOUT;
	while (inb_p(data->addr + ABIT_UGURU_DATA) != ABIT_UGURU_STATUS_INPUT) {
		timeout--;
		if (timeout == 0) {
			ABIT_UGURU_DEBUG(1,
				"state != more input after ready command\n");
			return -EIO;
		}
327
		msleep(0);
328 329 330 331 332 333
	}

	data->uguru_ready = 1;
	return 0;
}

334 335 336 337 338 339
/*
 * Send the bank and then sensor address to the uGuru for the next read/write
 * cycle. This function gets called as the first part of a read/write by
 * abituguru_read and abituguru_write. This function should never be
 * called by any other function.
 */
340 341 342
static int abituguru_send_address(struct abituguru_data *data,
	u8 bank_addr, u8 sensor_addr, int retries)
{
343 344 345 346
	/*
	 * assume the caller does error handling itself if it has not requested
	 * any retries, and thus be quiet.
	 */
347 348 349
	int report_errors = retries;

	for (;;) {
350 351 352 353
		/*
		 * Make sure the uguru is ready and then send the bank address,
		 * after this the uguru is no longer "ready".
		 */
354 355 356 357 358
		if (abituguru_ready(data) != 0)
			return -EIO;
		outb(bank_addr, data->addr + ABIT_UGURU_DATA);
		data->uguru_ready = 0;

359 360 361 362
		/*
		 * Wait till the uguru is ABIT_UGURU_STATUS_INPUT state again
		 * and send the sensor addr
		 */
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
		if (abituguru_wait(data, ABIT_UGURU_STATUS_INPUT)) {
			if (retries) {
				ABIT_UGURU_DEBUG(3, "timeout exceeded "
					"waiting for more input state, %d "
					"tries remaining\n", retries);
				set_current_state(TASK_UNINTERRUPTIBLE);
				schedule_timeout(ABIT_UGURU_RETRY_DELAY);
				retries--;
				continue;
			}
			if (report_errors)
				ABIT_UGURU_DEBUG(1, "timeout exceeded "
					"waiting for more input state "
					"(bank: %d)\n", (int)bank_addr);
			return -EBUSY;
		}
		outb(sensor_addr, data->addr + ABIT_UGURU_CMD);
		return 0;
	}
}

384 385 386 387
/*
 * Read count bytes from sensor sensor_addr in bank bank_addr and store the
 * result in buf, retry the send address part of the read retries times.
 */
388 389 390 391 392 393 394 395 396 397 398 399 400
static int abituguru_read(struct abituguru_data *data,
	u8 bank_addr, u8 sensor_addr, u8 *buf, int count, int retries)
{
	int i;

	/* Send the address */
	i = abituguru_send_address(data, bank_addr, sensor_addr, retries);
	if (i)
		return i;

	/* And read the data */
	for (i = 0; i < count; i++) {
		if (abituguru_wait(data, ABIT_UGURU_STATUS_READ)) {
401 402
			ABIT_UGURU_DEBUG(retries ? 1 : 3,
				"timeout exceeded waiting for "
403 404 405 406 407 408 409 410 411 412 413 414 415
				"read state (bank: %d, sensor: %d)\n",
				(int)bank_addr, (int)sensor_addr);
			break;
		}
		buf[i] = inb(data->addr + ABIT_UGURU_CMD);
	}

	/* Last put the chip back in ready state */
	abituguru_ready(data);

	return i;
}

416 417 418 419
/*
 * Write count bytes from buf to sensor sensor_addr in bank bank_addr, the send
 * address part of the write is always retried ABIT_UGURU_MAX_RETRIES times.
 */
420 421 422
static int abituguru_write(struct abituguru_data *data,
	u8 bank_addr, u8 sensor_addr, u8 *buf, int count)
{
423 424 425 426
	/*
	 * We use the ready timeout as we have to wait for 0xAC just like the
	 * ready function
	 */
427
	int i, timeout = ABIT_UGURU_READY_TIMEOUT;
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445

	/* Send the address */
	i = abituguru_send_address(data, bank_addr, sensor_addr,
		ABIT_UGURU_MAX_RETRIES);
	if (i)
		return i;

	/* And write the data */
	for (i = 0; i < count; i++) {
		if (abituguru_wait(data, ABIT_UGURU_STATUS_WRITE)) {
			ABIT_UGURU_DEBUG(1, "timeout exceeded waiting for "
				"write state (bank: %d, sensor: %d)\n",
				(int)bank_addr, (int)sensor_addr);
			break;
		}
		outb(buf[i], data->addr + ABIT_UGURU_CMD);
	}

446 447 448 449 450
	/*
	 * Now we need to wait till the chip is ready to be read again,
	 * so that we can read 0xAC as confirmation that our write has
	 * succeeded.
	 */
451 452 453 454 455 456 457 458
	if (abituguru_wait(data, ABIT_UGURU_STATUS_READ)) {
		ABIT_UGURU_DEBUG(1, "timeout exceeded waiting for read state "
			"after write (bank: %d, sensor: %d)\n", (int)bank_addr,
			(int)sensor_addr);
		return -EIO;
	}

	/* Cmd port MUST be read now and should contain 0xAC */
459 460 461 462 463 464 465 466 467
	while (inb_p(data->addr + ABIT_UGURU_CMD) != 0xAC) {
		timeout--;
		if (timeout == 0) {
			ABIT_UGURU_DEBUG(1, "CMD reg does not hold 0xAC after "
				"write (bank: %d, sensor: %d)\n",
				(int)bank_addr, (int)sensor_addr);
			return -EIO;
		}
		msleep(0);
468 469 470 471 472 473 474 475
	}

	/* Last put the chip back in ready state */
	abituguru_ready(data);

	return i;
}

476 477 478 479 480 481 482 483
/*
 * Detect sensor type. Temp and Volt sensors are enabled with
 * different masks and will ignore enable masks not meant for them.
 * This enables us to test what kind of sensor we're dealing with.
 * By setting the alarm thresholds so that we will always get an
 * alarm for sensor type X and then enabling the sensor as sensor type
 * X, if we then get an alarm it is a sensor of type X.
 */
B
Bill Pemberton 已提交
484
static int
485 486 487
abituguru_detect_bank1_sensor_type(struct abituguru_data *data,
				   u8 sensor_addr)
{
488
	u8 val, test_flag, buf[3];
489
	int i, ret = -ENODEV; /* error is the most common used retval :| */
490

491 492 493 494 495 496 497 498 499
	/* If overriden by the user return the user selected type */
	if (bank1_types[sensor_addr] >= ABIT_UGURU_IN_SENSOR &&
			bank1_types[sensor_addr] <= ABIT_UGURU_NC) {
		ABIT_UGURU_DEBUG(2, "assuming sensor type %d for bank1 sensor "
			"%d because of \"bank1_types\" module param\n",
			bank1_types[sensor_addr], (int)sensor_addr);
		return bank1_types[sensor_addr];
	}

500 501 502
	/* First read the sensor and the current settings */
	if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1, sensor_addr, &val,
			1, ABIT_UGURU_MAX_RETRIES) != 1)
H
Hans de Goede 已提交
503
		return -ENODEV;
504 505

	/* Test val is sane / usable for sensor type detection. */
506
	if ((val < 10u) || (val > 250u)) {
507
		pr_warn("bank1-sensor: %d reading (%d) too close to limits, "
508 509
			"unable to determine sensor type, skipping sensor\n",
			(int)sensor_addr, (int)val);
510 511 512 513 514
		/*
		 * assume no sensor is there for sensors for which we can't
		 * determine the sensor type because their reading is too close
		 * to their limits, this usually means no sensor is there.
		 */
515 516 517 518
		return ABIT_UGURU_NC;
	}

	ABIT_UGURU_DEBUG(2, "testing bank1 sensor %d\n", (int)sensor_addr);
519 520 521 522 523
	/*
	 * Volt sensor test, enable volt low alarm, set min value ridicously
	 * high, or vica versa if the reading is very high. If its a volt
	 * sensor this should always give us an alarm.
	 */
524 525 526 527 528 529 530 531 532 533 534 535
	if (val <= 240u) {
		buf[0] = ABIT_UGURU_VOLT_LOW_ALARM_ENABLE;
		buf[1] = 245;
		buf[2] = 250;
		test_flag = ABIT_UGURU_VOLT_LOW_ALARM_FLAG;
	} else {
		buf[0] = ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE;
		buf[1] = 5;
		buf[2] = 10;
		test_flag = ABIT_UGURU_VOLT_HIGH_ALARM_FLAG;
	}

536 537
	if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr,
			buf, 3) != 3)
538
		goto abituguru_detect_bank1_sensor_type_exit;
539 540 541 542
	/*
	 * Now we need 20 ms to give the uguru time to read the sensors
	 * and raise a voltage alarm
	 */
543 544 545 546 547
	set_current_state(TASK_UNINTERRUPTIBLE);
	schedule_timeout(HZ/50);
	/* Check for alarm and check the alarm is a volt low alarm. */
	if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, buf, 3,
			ABIT_UGURU_MAX_RETRIES) != 3)
548
		goto abituguru_detect_bank1_sensor_type_exit;
549 550 551 552
	if (buf[sensor_addr/8] & (0x01 << (sensor_addr % 8))) {
		if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1,
				sensor_addr, buf, 3,
				ABIT_UGURU_MAX_RETRIES) != 3)
553
			goto abituguru_detect_bank1_sensor_type_exit;
554
		if (buf[0] & test_flag) {
555
			ABIT_UGURU_DEBUG(2, "  found volt sensor\n");
556 557
			ret = ABIT_UGURU_IN_SENSOR;
			goto abituguru_detect_bank1_sensor_type_exit;
558 559
		} else
			ABIT_UGURU_DEBUG(2, "  alarm raised during volt "
560
				"sensor test, but volt range flag not set\n");
561 562 563 564
	} else
		ABIT_UGURU_DEBUG(2, "  alarm not raised during volt sensor "
			"test\n");

565 566 567 568 569
	/*
	 * Temp sensor test, enable sensor as a temp sensor, set beep value
	 * ridicously low (but not too low, otherwise uguru ignores it).
	 * If its a temp sensor this should always give us an alarm.
	 */
570 571 572 573 574
	buf[0] = ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE;
	buf[1] = 5;
	buf[2] = 10;
	if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr,
			buf, 3) != 3)
575
		goto abituguru_detect_bank1_sensor_type_exit;
576 577 578 579
	/*
	 * Now we need 50 ms to give the uguru time to read the sensors
	 * and raise a temp alarm
	 */
580 581 582 583 584
	set_current_state(TASK_UNINTERRUPTIBLE);
	schedule_timeout(HZ/20);
	/* Check for alarm and check the alarm is a temp high alarm. */
	if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, buf, 3,
			ABIT_UGURU_MAX_RETRIES) != 3)
585
		goto abituguru_detect_bank1_sensor_type_exit;
586 587 588 589
	if (buf[sensor_addr/8] & (0x01 << (sensor_addr % 8))) {
		if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1,
				sensor_addr, buf, 3,
				ABIT_UGURU_MAX_RETRIES) != 3)
590
			goto abituguru_detect_bank1_sensor_type_exit;
591 592
		if (buf[0] & ABIT_UGURU_TEMP_HIGH_ALARM_FLAG) {
			ABIT_UGURU_DEBUG(2, "  found temp sensor\n");
593 594
			ret = ABIT_UGURU_TEMP_SENSOR;
			goto abituguru_detect_bank1_sensor_type_exit;
595 596 597 598 599 600 601
		} else
			ABIT_UGURU_DEBUG(2, "  alarm raised during temp "
				"sensor test, but temp high flag not set\n");
	} else
		ABIT_UGURU_DEBUG(2, "  alarm not raised during temp sensor "
			"test\n");

602 603
	ret = ABIT_UGURU_NC;
abituguru_detect_bank1_sensor_type_exit:
604 605 606 607 608
	/*
	 * Restore original settings, failing here is really BAD, it has been
	 * reported that some BIOS-es hang when entering the uGuru menu with
	 * invalid settings present in the uGuru, so we try this 3 times.
	 */
609 610 611 612 613 614
	for (i = 0; i < 3; i++)
		if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2,
				sensor_addr, data->bank1_settings[sensor_addr],
				3) == 3)
			break;
	if (i == 3) {
615 616
		pr_err("Fatal error could not restore original settings. %s %s\n",
		       never_happen, report_this);
H
Hans de Goede 已提交
617
		return -ENODEV;
618
	}
619 620 621
	return ret;
}

622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
/*
 * These functions try to find out how many sensors there are in bank2 and how
 * many pwms there are. The purpose of this is to make sure that we don't give
 * the user the possibility to change settings for non-existent sensors / pwm.
 * The uGuru will happily read / write whatever memory happens to be after the
 * memory storing the PWM settings when reading/writing to a PWM which is not
 * there. Notice even if we detect a PWM which doesn't exist we normally won't
 * write to it, unless the user tries to change the settings.
 *
 * Although the uGuru allows reading (settings) from non existing bank2
 * sensors, my version of the uGuru does seem to stop writing to them, the
 * write function above aborts in this case with:
 * "CMD reg does not hold 0xAC after write"
 *
 * Notice these 2 tests are non destructive iow read-only tests, otherwise
 * they would defeat their purpose. Although for the bank2_sensors detection a
 * read/write test would be feasible because of the reaction above, I've
 * however opted to stay on the safe side.
 */
B
Bill Pemberton 已提交
641
static void
642 643 644 645
abituguru_detect_no_bank2_sensors(struct abituguru_data *data)
{
	int i;

646
	if (fan_sensors > 0 && fan_sensors <= ABIT_UGURU_MAX_BANK2_SENSORS) {
647 648 649 650 651 652 653 654 655
		data->bank2_sensors = fan_sensors;
		ABIT_UGURU_DEBUG(2, "assuming %d fan sensors because of "
			"\"fan_sensors\" module param\n",
			(int)data->bank2_sensors);
		return;
	}

	ABIT_UGURU_DEBUG(2, "detecting number of fan sensors\n");
	for (i = 0; i < ABIT_UGURU_MAX_BANK2_SENSORS; i++) {
656 657 658 659 660 661 662 663
		/*
		 * 0x89 are the known used bits:
		 * -0x80 enable shutdown
		 * -0x08 enable beep
		 * -0x01 enable alarm
		 * All other bits should be 0, but on some motherboards
		 * 0x40 (bit 6) is also high for some of the fans??
		 */
664
		if (data->bank2_settings[i][0] & ~0xC9) {
665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
			ABIT_UGURU_DEBUG(2, "  bank2 sensor %d does not seem "
				"to be a fan sensor: settings[0] = %02X\n",
				i, (unsigned int)data->bank2_settings[i][0]);
			break;
		}

		/* check if the threshold is within the allowed range */
		if (data->bank2_settings[i][1] <
				abituguru_bank2_min_threshold) {
			ABIT_UGURU_DEBUG(2, "  bank2 sensor %d does not seem "
				"to be a fan sensor: the threshold (%d) is "
				"below the minimum (%d)\n", i,
				(int)data->bank2_settings[i][1],
				(int)abituguru_bank2_min_threshold);
			break;
		}
		if (data->bank2_settings[i][1] >
				abituguru_bank2_max_threshold) {
			ABIT_UGURU_DEBUG(2, "  bank2 sensor %d does not seem "
				"to be a fan sensor: the threshold (%d) is "
				"above the maximum (%d)\n", i,
				(int)data->bank2_settings[i][1],
				(int)abituguru_bank2_max_threshold);
			break;
		}
	}

	data->bank2_sensors = i;
	ABIT_UGURU_DEBUG(2, " found: %d fan sensors\n",
		(int)data->bank2_sensors);
}

B
Bill Pemberton 已提交
697
static void
698 699 700 701
abituguru_detect_no_pwms(struct abituguru_data *data)
{
	int i, j;

702
	if (pwms > 0 && pwms <= ABIT_UGURU_MAX_PWMS) {
703 704 705 706 707 708 709 710
		data->pwms = pwms;
		ABIT_UGURU_DEBUG(2, "assuming %d PWM outputs because of "
			"\"pwms\" module param\n", (int)data->pwms);
		return;
	}

	ABIT_UGURU_DEBUG(2, "detecting number of PWM outputs\n");
	for (i = 0; i < ABIT_UGURU_MAX_PWMS; i++) {
711 712 713 714 715
		/*
		 * 0x80 is the enable bit and the low
		 * nibble is which temp sensor to use,
		 * the other bits should be 0
		 */
716 717 718 719 720 721 722
		if (data->pwm_settings[i][0] & ~0x8F) {
			ABIT_UGURU_DEBUG(2, "  pwm channel %d does not seem "
				"to be a pwm channel: settings[0] = %02X\n",
				i, (unsigned int)data->pwm_settings[i][0]);
			break;
		}

723 724 725 726
		/*
		 * the low nibble must correspond to one of the temp sensors
		 * we've found
		 */
727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
		for (j = 0; j < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR];
				j++) {
			if (data->bank1_address[ABIT_UGURU_TEMP_SENSOR][j] ==
					(data->pwm_settings[i][0] & 0x0F))
				break;
		}
		if (j == data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]) {
			ABIT_UGURU_DEBUG(2, "  pwm channel %d does not seem "
				"to be a pwm channel: %d is not a valid temp "
				"sensor address\n", i,
				data->pwm_settings[i][0] & 0x0F);
			break;
		}

		/* check if all other settings are within the allowed range */
		for (j = 1; j < 5; j++) {
			u8 min;
			/* special case pwm1 min pwm% */
			if ((i == 0) && ((j == 1) || (j == 2)))
				min = 77;
			else
				min = abituguru_pwm_min[j];
			if (data->pwm_settings[i][j] < min) {
				ABIT_UGURU_DEBUG(2, "  pwm channel %d does "
					"not seem to be a pwm channel: "
					"setting %d (%d) is below the minimum "
					"value (%d)\n", i, j,
					(int)data->pwm_settings[i][j],
					(int)min);
				goto abituguru_detect_no_pwms_exit;
			}
			if (data->pwm_settings[i][j] > abituguru_pwm_max[j]) {
				ABIT_UGURU_DEBUG(2, "  pwm channel %d does "
					"not seem to be a pwm channel: "
					"setting %d (%d) is above the maximum "
					"value (%d)\n", i, j,
					(int)data->pwm_settings[i][j],
					(int)abituguru_pwm_max[j]);
				goto abituguru_detect_no_pwms_exit;
			}
		}

		/* check that min temp < max temp and min pwm < max pwm */
		if (data->pwm_settings[i][1] >= data->pwm_settings[i][2]) {
			ABIT_UGURU_DEBUG(2, "  pwm channel %d does not seem "
				"to be a pwm channel: min pwm (%d) >= "
				"max pwm (%d)\n", i,
				(int)data->pwm_settings[i][1],
				(int)data->pwm_settings[i][2]);
			break;
		}
		if (data->pwm_settings[i][3] >= data->pwm_settings[i][4]) {
			ABIT_UGURU_DEBUG(2, "  pwm channel %d does not seem "
				"to be a pwm channel: min temp (%d) >= "
				"max temp (%d)\n", i,
				(int)data->pwm_settings[i][3],
				(int)data->pwm_settings[i][4]);
			break;
		}
	}

abituguru_detect_no_pwms_exit:
	data->pwms = i;
	ABIT_UGURU_DEBUG(2, " found: %d PWM outputs\n", (int)data->pwms);
}

793 794 795 796 797
/*
 * Following are the sysfs callback functions. These functions expect:
 * sensor_device_attribute_2->index:   sensor address/offset in the bank
 * sensor_device_attribute_2->nr:      register offset, bitmask or NA.
 */
798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
static struct abituguru_data *abituguru_update_device(struct device *dev);

static ssize_t show_bank1_value(struct device *dev,
	struct device_attribute *devattr, char *buf)
{
	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
	struct abituguru_data *data = abituguru_update_device(dev);
	if (!data)
		return -EIO;
	return sprintf(buf, "%d\n", (data->bank1_value[attr->index] *
		data->bank1_max_value[attr->index] + 128) / 255);
}

static ssize_t show_bank1_setting(struct device *dev,
	struct device_attribute *devattr, char *buf)
{
	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
	struct abituguru_data *data = dev_get_drvdata(dev);
	return sprintf(buf, "%d\n",
		(data->bank1_settings[attr->index][attr->nr] *
		data->bank1_max_value[attr->index] + 128) / 255);
}

static ssize_t show_bank2_value(struct device *dev,
	struct device_attribute *devattr, char *buf)
{
	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
	struct abituguru_data *data = abituguru_update_device(dev);
	if (!data)
		return -EIO;
	return sprintf(buf, "%d\n", (data->bank2_value[attr->index] *
		ABIT_UGURU_FAN_MAX + 128) / 255);
}

static ssize_t show_bank2_setting(struct device *dev,
	struct device_attribute *devattr, char *buf)
{
	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
	struct abituguru_data *data = dev_get_drvdata(dev);
	return sprintf(buf, "%d\n",
		(data->bank2_settings[attr->index][attr->nr] *
		ABIT_UGURU_FAN_MAX + 128) / 255);
}

static ssize_t store_bank1_setting(struct device *dev, struct device_attribute
	*devattr, const char *buf, size_t count)
{
	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
	struct abituguru_data *data = dev_get_drvdata(dev);
847 848 849 850 851 852 853 854 855
	unsigned long val;
	ssize_t ret;

	ret = kstrtoul(buf, 10, &val);
	if (ret)
		return ret;

	ret = count;
	val = (val * 255 + data->bank1_max_value[attr->index] / 2) /
856
		data->bank1_max_value[attr->index];
857 858
	if (val > 255)
		return -EINVAL;
859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879

	mutex_lock(&data->update_lock);
	if (data->bank1_settings[attr->index][attr->nr] != val) {
		u8 orig_val = data->bank1_settings[attr->index][attr->nr];
		data->bank1_settings[attr->index][attr->nr] = val;
		if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2,
				attr->index, data->bank1_settings[attr->index],
				3) <= attr->nr) {
			data->bank1_settings[attr->index][attr->nr] = orig_val;
			ret = -EIO;
		}
	}
	mutex_unlock(&data->update_lock);
	return ret;
}

static ssize_t store_bank2_setting(struct device *dev, struct device_attribute
	*devattr, const char *buf, size_t count)
{
	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
	struct abituguru_data *data = dev_get_drvdata(dev);
880 881 882 883 884 885 886 887 888
	unsigned long val;
	ssize_t ret;

	ret = kstrtoul(buf, 10, &val);
	if (ret)
		return ret;

	ret = count;
	val = (val * 255 + ABIT_UGURU_FAN_MAX / 2) / ABIT_UGURU_FAN_MAX;
889 890

	/* this check can be done before taking the lock */
891 892
	if (val < abituguru_bank2_min_threshold ||
			val > abituguru_bank2_max_threshold)
893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916
		return -EINVAL;

	mutex_lock(&data->update_lock);
	if (data->bank2_settings[attr->index][attr->nr] != val) {
		u8 orig_val = data->bank2_settings[attr->index][attr->nr];
		data->bank2_settings[attr->index][attr->nr] = val;
		if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK2 + 2,
				attr->index, data->bank2_settings[attr->index],
				2) <= attr->nr) {
			data->bank2_settings[attr->index][attr->nr] = orig_val;
			ret = -EIO;
		}
	}
	mutex_unlock(&data->update_lock);
	return ret;
}

static ssize_t show_bank1_alarm(struct device *dev,
	struct device_attribute *devattr, char *buf)
{
	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
	struct abituguru_data *data = abituguru_update_device(dev);
	if (!data)
		return -EIO;
917 918 919 920 921 922 923
	/*
	 * See if the alarm bit for this sensor is set, and if the
	 * alarm matches the type of alarm we're looking for (for volt
	 * it can be either low or high). The type is stored in a few
	 * readonly bits in the settings part of the relevant sensor.
	 * The bitmask of the type is passed to us in attr->nr.
	 */
924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970
	if ((data->alarms[attr->index / 8] & (0x01 << (attr->index % 8))) &&
			(data->bank1_settings[attr->index][0] & attr->nr))
		return sprintf(buf, "1\n");
	else
		return sprintf(buf, "0\n");
}

static ssize_t show_bank2_alarm(struct device *dev,
	struct device_attribute *devattr, char *buf)
{
	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
	struct abituguru_data *data = abituguru_update_device(dev);
	if (!data)
		return -EIO;
	if (data->alarms[2] & (0x01 << attr->index))
		return sprintf(buf, "1\n");
	else
		return sprintf(buf, "0\n");
}

static ssize_t show_bank1_mask(struct device *dev,
	struct device_attribute *devattr, char *buf)
{
	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
	struct abituguru_data *data = dev_get_drvdata(dev);
	if (data->bank1_settings[attr->index][0] & attr->nr)
		return sprintf(buf, "1\n");
	else
		return sprintf(buf, "0\n");
}

static ssize_t show_bank2_mask(struct device *dev,
	struct device_attribute *devattr, char *buf)
{
	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
	struct abituguru_data *data = dev_get_drvdata(dev);
	if (data->bank2_settings[attr->index][0] & attr->nr)
		return sprintf(buf, "1\n");
	else
		return sprintf(buf, "0\n");
}

static ssize_t store_bank1_mask(struct device *dev,
	struct device_attribute *devattr, const char *buf, size_t count)
{
	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
	struct abituguru_data *data = dev_get_drvdata(dev);
971
	ssize_t ret;
972
	u8 orig_val;
973 974 975 976 977
	unsigned long mask;

	ret = kstrtoul(buf, 10, &mask);
	if (ret)
		return ret;
978

979
	ret = count;
980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003
	mutex_lock(&data->update_lock);
	orig_val = data->bank1_settings[attr->index][0];

	if (mask)
		data->bank1_settings[attr->index][0] |= attr->nr;
	else
		data->bank1_settings[attr->index][0] &= ~attr->nr;

	if ((data->bank1_settings[attr->index][0] != orig_val) &&
			(abituguru_write(data,
			ABIT_UGURU_SENSOR_BANK1 + 2, attr->index,
			data->bank1_settings[attr->index], 3) < 1)) {
		data->bank1_settings[attr->index][0] = orig_val;
		ret = -EIO;
	}
	mutex_unlock(&data->update_lock);
	return ret;
}

static ssize_t store_bank2_mask(struct device *dev,
	struct device_attribute *devattr, const char *buf, size_t count)
{
	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
	struct abituguru_data *data = dev_get_drvdata(dev);
1004
	ssize_t ret;
1005
	u8 orig_val;
1006
	unsigned long mask;
1007

1008 1009 1010 1011 1012
	ret = kstrtoul(buf, 10, &mask);
	if (ret)
		return ret;

	ret = count;
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
	mutex_lock(&data->update_lock);
	orig_val = data->bank2_settings[attr->index][0];

	if (mask)
		data->bank2_settings[attr->index][0] |= attr->nr;
	else
		data->bank2_settings[attr->index][0] &= ~attr->nr;

	if ((data->bank2_settings[attr->index][0] != orig_val) &&
			(abituguru_write(data,
			ABIT_UGURU_SENSOR_BANK2 + 2, attr->index,
			data->bank2_settings[attr->index], 2) < 1)) {
		data->bank2_settings[attr->index][0] = orig_val;
		ret = -EIO;
	}
	mutex_unlock(&data->update_lock);
	return ret;
}

/* Fan PWM (speed control) */
static ssize_t show_pwm_setting(struct device *dev,
	struct device_attribute *devattr, char *buf)
{
	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
	struct abituguru_data *data = dev_get_drvdata(dev);
	return sprintf(buf, "%d\n", data->pwm_settings[attr->index][attr->nr] *
		abituguru_pwm_settings_multiplier[attr->nr]);
}

static ssize_t store_pwm_setting(struct device *dev, struct device_attribute
	*devattr, const char *buf, size_t count)
{
	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
	struct abituguru_data *data = dev_get_drvdata(dev);
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
	u8 min;
	unsigned long val;
	ssize_t ret;

	ret = kstrtoul(buf, 10, &val);
	if (ret)
		return ret;

	ret = count;
	val = (val + abituguru_pwm_settings_multiplier[attr->nr] / 2) /
				abituguru_pwm_settings_multiplier[attr->nr];
1058 1059 1060 1061 1062 1063 1064 1065

	/* special case pwm1 min pwm% */
	if ((attr->index == 0) && ((attr->nr == 1) || (attr->nr == 2)))
		min = 77;
	else
		min = abituguru_pwm_min[attr->nr];

	/* this check can be done before taking the lock */
1066
	if (val < min || val > abituguru_pwm_max[attr->nr])
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
		return -EINVAL;

	mutex_lock(&data->update_lock);
	/* this check needs to be done after taking the lock */
	if ((attr->nr & 1) &&
			(val >= data->pwm_settings[attr->index][attr->nr + 1]))
		ret = -EINVAL;
	else if (!(attr->nr & 1) &&
			(val <= data->pwm_settings[attr->index][attr->nr - 1]))
		ret = -EINVAL;
	else if (data->pwm_settings[attr->index][attr->nr] != val) {
		u8 orig_val = data->pwm_settings[attr->index][attr->nr];
		data->pwm_settings[attr->index][attr->nr] = val;
		if (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1,
				attr->index, data->pwm_settings[attr->index],
				5) <= attr->nr) {
			data->pwm_settings[attr->index][attr->nr] =
				orig_val;
			ret = -EIO;
		}
	}
	mutex_unlock(&data->update_lock);
	return ret;
}

static ssize_t show_pwm_sensor(struct device *dev,
	struct device_attribute *devattr, char *buf)
{
	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
	struct abituguru_data *data = dev_get_drvdata(dev);
	int i;
1098 1099 1100 1101
	/*
	 * We need to walk to the temp sensor addresses to find what
	 * the userspace id of the configured temp sensor is.
	 */
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
	for (i = 0; i < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]; i++)
		if (data->bank1_address[ABIT_UGURU_TEMP_SENSOR][i] ==
				(data->pwm_settings[attr->index][0] & 0x0F))
			return sprintf(buf, "%d\n", i+1);

	return -ENXIO;
}

static ssize_t store_pwm_sensor(struct device *dev, struct device_attribute
	*devattr, const char *buf, size_t count)
{
	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
	struct abituguru_data *data = dev_get_drvdata(dev);
1115 1116 1117 1118 1119 1120 1121 1122
	ssize_t ret;
	unsigned long val;
	u8 orig_val;
	u8 address;

	ret = kstrtoul(buf, 10, &val);
	if (ret)
		return ret;
1123

1124 1125 1126 1127 1128
	if (val == 0 || val > data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR])
		return -EINVAL;

	val -= 1;
	ret = count;
1129
	mutex_lock(&data->update_lock);
1130 1131 1132 1133 1134 1135 1136 1137 1138
	orig_val = data->pwm_settings[attr->index][0];
	address = data->bank1_address[ABIT_UGURU_TEMP_SENSOR][val];
	data->pwm_settings[attr->index][0] &= 0xF0;
	data->pwm_settings[attr->index][0] |= address;
	if (data->pwm_settings[attr->index][0] != orig_val) {
		if (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1, attr->index,
				    data->pwm_settings[attr->index], 5) < 1) {
			data->pwm_settings[attr->index][0] = orig_val;
			ret = -EIO;
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
		}
	}
	mutex_unlock(&data->update_lock);
	return ret;
}

static ssize_t show_pwm_enable(struct device *dev,
	struct device_attribute *devattr, char *buf)
{
	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
	struct abituguru_data *data = dev_get_drvdata(dev);
	int res = 0;
	if (data->pwm_settings[attr->index][0] & ABIT_UGURU_FAN_PWM_ENABLE)
		res = 2;
	return sprintf(buf, "%d\n", res);
}

static ssize_t store_pwm_enable(struct device *dev, struct device_attribute
	*devattr, const char *buf, size_t count)
{
	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
	struct abituguru_data *data = dev_get_drvdata(dev);
1161 1162 1163 1164 1165 1166 1167
	u8 orig_val;
	ssize_t ret;
	unsigned long user_val;

	ret = kstrtoul(buf, 10, &user_val);
	if (ret)
		return ret;
1168

1169
	ret = count;
1170 1171 1172
	mutex_lock(&data->update_lock);
	orig_val = data->pwm_settings[attr->index][0];
	switch (user_val) {
1173 1174 1175 1176 1177 1178 1179 1180 1181
	case 0:
		data->pwm_settings[attr->index][0] &=
			~ABIT_UGURU_FAN_PWM_ENABLE;
		break;
	case 2:
		data->pwm_settings[attr->index][0] |= ABIT_UGURU_FAN_PWM_ENABLE;
		break;
	default:
		ret = -EINVAL;
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
	}
	if ((data->pwm_settings[attr->index][0] != orig_val) &&
			(abituguru_write(data, ABIT_UGURU_FAN_PWM + 1,
			attr->index, data->pwm_settings[attr->index],
			5) < 1)) {
		data->pwm_settings[attr->index][0] = orig_val;
		ret = -EIO;
	}
	mutex_unlock(&data->update_lock);
	return ret;
}

static ssize_t show_name(struct device *dev,
	struct device_attribute *devattr, char *buf)
{
	return sprintf(buf, "%s\n", ABIT_UGURU_NAME);
}

/* Sysfs attr templates, the real entries are generated automatically. */
static const
struct sensor_device_attribute_2 abituguru_sysfs_bank1_templ[2][9] = {
	{
	SENSOR_ATTR_2(in%d_input, 0444, show_bank1_value, NULL, 0, 0),
	SENSOR_ATTR_2(in%d_min, 0644, show_bank1_setting,
		store_bank1_setting, 1, 0),
	SENSOR_ATTR_2(in%d_min_alarm, 0444, show_bank1_alarm, NULL,
		ABIT_UGURU_VOLT_LOW_ALARM_FLAG, 0),
	SENSOR_ATTR_2(in%d_max, 0644, show_bank1_setting,
		store_bank1_setting, 2, 0),
	SENSOR_ATTR_2(in%d_max_alarm, 0444, show_bank1_alarm, NULL,
		ABIT_UGURU_VOLT_HIGH_ALARM_FLAG, 0),
	SENSOR_ATTR_2(in%d_beep, 0644, show_bank1_mask,
		store_bank1_mask, ABIT_UGURU_BEEP_ENABLE, 0),
	SENSOR_ATTR_2(in%d_shutdown, 0644, show_bank1_mask,
		store_bank1_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0),
	SENSOR_ATTR_2(in%d_min_alarm_enable, 0644, show_bank1_mask,
		store_bank1_mask, ABIT_UGURU_VOLT_LOW_ALARM_ENABLE, 0),
	SENSOR_ATTR_2(in%d_max_alarm_enable, 0644, show_bank1_mask,
		store_bank1_mask, ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE, 0),
	}, {
	SENSOR_ATTR_2(temp%d_input, 0444, show_bank1_value, NULL, 0, 0),
	SENSOR_ATTR_2(temp%d_alarm, 0444, show_bank1_alarm, NULL,
		ABIT_UGURU_TEMP_HIGH_ALARM_FLAG, 0),
	SENSOR_ATTR_2(temp%d_max, 0644, show_bank1_setting,
		store_bank1_setting, 1, 0),
	SENSOR_ATTR_2(temp%d_crit, 0644, show_bank1_setting,
		store_bank1_setting, 2, 0),
	SENSOR_ATTR_2(temp%d_beep, 0644, show_bank1_mask,
		store_bank1_mask, ABIT_UGURU_BEEP_ENABLE, 0),
	SENSOR_ATTR_2(temp%d_shutdown, 0644, show_bank1_mask,
		store_bank1_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0),
	SENSOR_ATTR_2(temp%d_alarm_enable, 0644, show_bank1_mask,
		store_bank1_mask, ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE, 0),
	}
};

static const struct sensor_device_attribute_2 abituguru_sysfs_fan_templ[6] = {
	SENSOR_ATTR_2(fan%d_input, 0444, show_bank2_value, NULL, 0, 0),
	SENSOR_ATTR_2(fan%d_alarm, 0444, show_bank2_alarm, NULL, 0, 0),
	SENSOR_ATTR_2(fan%d_min, 0644, show_bank2_setting,
		store_bank2_setting, 1, 0),
	SENSOR_ATTR_2(fan%d_beep, 0644, show_bank2_mask,
		store_bank2_mask, ABIT_UGURU_BEEP_ENABLE, 0),
	SENSOR_ATTR_2(fan%d_shutdown, 0644, show_bank2_mask,
		store_bank2_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0),
	SENSOR_ATTR_2(fan%d_alarm_enable, 0644, show_bank2_mask,
		store_bank2_mask, ABIT_UGURU_FAN_LOW_ALARM_ENABLE, 0),
};

static const struct sensor_device_attribute_2 abituguru_sysfs_pwm_templ[6] = {
	SENSOR_ATTR_2(pwm%d_enable, 0644, show_pwm_enable,
		store_pwm_enable, 0, 0),
	SENSOR_ATTR_2(pwm%d_auto_channels_temp, 0644, show_pwm_sensor,
		store_pwm_sensor, 0, 0),
	SENSOR_ATTR_2(pwm%d_auto_point1_pwm, 0644, show_pwm_setting,
		store_pwm_setting, 1, 0),
	SENSOR_ATTR_2(pwm%d_auto_point2_pwm, 0644, show_pwm_setting,
		store_pwm_setting, 2, 0),
	SENSOR_ATTR_2(pwm%d_auto_point1_temp, 0644, show_pwm_setting,
		store_pwm_setting, 3, 0),
	SENSOR_ATTR_2(pwm%d_auto_point2_temp, 0644, show_pwm_setting,
		store_pwm_setting, 4, 0),
};

H
Hans de Goede 已提交
1266
static struct sensor_device_attribute_2 abituguru_sysfs_attr[] = {
1267 1268 1269
	SENSOR_ATTR_2(name, 0444, show_name, NULL, 0, 0),
};

B
Bill Pemberton 已提交
1270
static int abituguru_probe(struct platform_device *pdev)
1271 1272
{
	struct abituguru_data *data;
H
Hans de Goede 已提交
1273
	int i, j, used, sysfs_names_free, sysfs_attr_i, res = -ENODEV;
1274 1275
	char *sysfs_filename;

1276 1277 1278 1279
	/*
	 * El weirdo probe order, to keep the sysfs order identical to the
	 * BIOS and window-appliction listing order.
	 */
H
Hans de Goede 已提交
1280 1281 1282
	const u8 probe_order[ABIT_UGURU_MAX_BANK1_SENSORS] = {
		0x00, 0x01, 0x03, 0x04, 0x0A, 0x08, 0x0E, 0x02,
		0x09, 0x06, 0x05, 0x0B, 0x0F, 0x0D, 0x07, 0x0C };
1283

1284 1285
	data = devm_kzalloc(&pdev->dev, sizeof(struct abituguru_data),
			    GFP_KERNEL);
1286
	if (!data)
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
		return -ENOMEM;

	data->addr = platform_get_resource(pdev, IORESOURCE_IO, 0)->start;
	mutex_init(&data->update_lock);
	platform_set_drvdata(pdev, data);

	/* See if the uGuru is ready */
	if (inb_p(data->addr + ABIT_UGURU_DATA) == ABIT_UGURU_STATUS_INPUT)
		data->uguru_ready = 1;

1297 1298 1299 1300 1301
	/*
	 * Completely read the uGuru this has 2 purposes:
	 * - testread / see if one really is there.
	 * - make an in memory copy of all the uguru settings for future use.
	 */
1302
	if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0,
H
Hans de Goede 已提交
1303 1304
			data->alarms, 3, ABIT_UGURU_MAX_RETRIES) != 3)
		goto abituguru_probe_error;
1305

H
Hans de Goede 已提交
1306
	for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) {
1307 1308
		if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1, i,
				&data->bank1_value[i], 1,
H
Hans de Goede 已提交
1309 1310
				ABIT_UGURU_MAX_RETRIES) != 1)
			goto abituguru_probe_error;
1311 1312
		if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1+1, i,
				data->bank1_settings[i], 3,
H
Hans de Goede 已提交
1313 1314
				ABIT_UGURU_MAX_RETRIES) != 3)
			goto abituguru_probe_error;
1315
	}
1316 1317 1318 1319 1320 1321 1322
	/*
	 * Note: We don't know how many bank2 sensors / pwms there really are,
	 * but in order to "detect" this we need to read the maximum amount
	 * anyways. If we read sensors/pwms not there we'll just read crap
	 * this can't hurt. We need the detection because we don't want
	 * unwanted writes, which will hurt!
	 */
1323 1324 1325
	for (i = 0; i < ABIT_UGURU_MAX_BANK2_SENSORS; i++) {
		if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK2, i,
				&data->bank2_value[i], 1,
H
Hans de Goede 已提交
1326 1327
				ABIT_UGURU_MAX_RETRIES) != 1)
			goto abituguru_probe_error;
1328 1329
		if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK2+1, i,
				data->bank2_settings[i], 2,
H
Hans de Goede 已提交
1330 1331
				ABIT_UGURU_MAX_RETRIES) != 2)
			goto abituguru_probe_error;
1332 1333 1334 1335
	}
	for (i = 0; i < ABIT_UGURU_MAX_PWMS; i++) {
		if (abituguru_read(data, ABIT_UGURU_FAN_PWM, i,
				data->pwm_settings[i], 5,
H
Hans de Goede 已提交
1336 1337
				ABIT_UGURU_MAX_RETRIES) != 5)
			goto abituguru_probe_error;
1338 1339 1340 1341
	}
	data->last_updated = jiffies;

	/* Detect sensor types and fill the sysfs attr for bank1 */
H
Hans de Goede 已提交
1342 1343 1344 1345
	sysfs_attr_i = 0;
	sysfs_filename = data->sysfs_names;
	sysfs_names_free = ABITUGURU_SYSFS_NAMES_LENGTH;
	for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) {
1346
		res = abituguru_detect_bank1_sensor_type(data, probe_order[i]);
H
Hans de Goede 已提交
1347 1348
		if (res < 0)
			goto abituguru_probe_error;
1349 1350 1351
		if (res == ABIT_UGURU_NC)
			continue;

H
Hans de Goede 已提交
1352
		/* res 1 (temp) sensors have 7 sysfs entries, 0 (in) 9 */
1353
		for (j = 0; j < (res ? 7 : 9); j++) {
H
Hans de Goede 已提交
1354 1355 1356 1357
			used = snprintf(sysfs_filename, sysfs_names_free,
				abituguru_sysfs_bank1_templ[res][j].dev_attr.
				attr.name, data->bank1_sensors[res] + res)
				+ 1;
1358 1359 1360 1361 1362
			data->sysfs_attr[sysfs_attr_i] =
				abituguru_sysfs_bank1_templ[res][j];
			data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name =
				sysfs_filename;
			data->sysfs_attr[sysfs_attr_i].index = probe_order[i];
H
Hans de Goede 已提交
1363 1364
			sysfs_filename += used;
			sysfs_names_free -= used;
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
			sysfs_attr_i++;
		}
		data->bank1_max_value[probe_order[i]] =
			abituguru_bank1_max_value[res];
		data->bank1_address[res][data->bank1_sensors[res]] =
			probe_order[i];
		data->bank1_sensors[res]++;
	}
	/* Detect number of sensors and fill the sysfs attr for bank2 (fans) */
	abituguru_detect_no_bank2_sensors(data);
	for (i = 0; i < data->bank2_sensors; i++) {
H
Hans de Goede 已提交
1376 1377 1378 1379
		for (j = 0; j < ARRAY_SIZE(abituguru_sysfs_fan_templ); j++) {
			used = snprintf(sysfs_filename, sysfs_names_free,
				abituguru_sysfs_fan_templ[j].dev_attr.attr.name,
				i + 1) + 1;
1380 1381 1382 1383 1384
			data->sysfs_attr[sysfs_attr_i] =
				abituguru_sysfs_fan_templ[j];
			data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name =
				sysfs_filename;
			data->sysfs_attr[sysfs_attr_i].index = i;
H
Hans de Goede 已提交
1385 1386
			sysfs_filename += used;
			sysfs_names_free -= used;
1387 1388 1389 1390 1391 1392
			sysfs_attr_i++;
		}
	}
	/* Detect number of sensors and fill the sysfs attr for pwms */
	abituguru_detect_no_pwms(data);
	for (i = 0; i < data->pwms; i++) {
H
Hans de Goede 已提交
1393 1394 1395 1396
		for (j = 0; j < ARRAY_SIZE(abituguru_sysfs_pwm_templ); j++) {
			used = snprintf(sysfs_filename, sysfs_names_free,
				abituguru_sysfs_pwm_templ[j].dev_attr.attr.name,
				i + 1) + 1;
1397 1398 1399 1400 1401
			data->sysfs_attr[sysfs_attr_i] =
				abituguru_sysfs_pwm_templ[j];
			data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name =
				sysfs_filename;
			data->sysfs_attr[sysfs_attr_i].index = i;
H
Hans de Goede 已提交
1402 1403
			sysfs_filename += used;
			sysfs_names_free -= used;
1404 1405 1406
			sysfs_attr_i++;
		}
	}
H
Hans de Goede 已提交
1407 1408
	/* Fail safe check, this should never happen! */
	if (sysfs_names_free < 0) {
1409 1410
		pr_err("Fatal error ran out of space for sysfs attr names. %s %s",
		       never_happen, report_this);
H
Hans de Goede 已提交
1411 1412
		res = -ENAMETOOLONG;
		goto abituguru_probe_error;
1413
	}
1414
	pr_info("found Abit uGuru\n");
1415 1416

	/* Register sysfs hooks */
1417 1418 1419 1420
	for (i = 0; i < sysfs_attr_i; i++) {
		res = device_create_file(&pdev->dev,
					 &data->sysfs_attr[i].dev_attr);
		if (res)
1421
			goto abituguru_probe_error;
1422 1423 1424 1425 1426
	}
	for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++) {
		res = device_create_file(&pdev->dev,
					 &abituguru_sysfs_attr[i].dev_attr);
		if (res)
1427
			goto abituguru_probe_error;
1428
	}
1429

1430 1431
	data->hwmon_dev = hwmon_device_register(&pdev->dev);
	if (!IS_ERR(data->hwmon_dev))
1432
		return 0; /* success */
H
Hans de Goede 已提交
1433

1434
	res = PTR_ERR(data->hwmon_dev);
H
Hans de Goede 已提交
1435
abituguru_probe_error:
1436 1437 1438 1439 1440
	for (i = 0; data->sysfs_attr[i].dev_attr.attr.name; i++)
		device_remove_file(&pdev->dev, &data->sysfs_attr[i].dev_attr);
	for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++)
		device_remove_file(&pdev->dev,
			&abituguru_sysfs_attr[i].dev_attr);
H
Hans de Goede 已提交
1441
	return res;
1442 1443
}

B
Bill Pemberton 已提交
1444
static int abituguru_remove(struct platform_device *pdev)
1445
{
1446
	int i;
1447 1448
	struct abituguru_data *data = platform_get_drvdata(pdev);

1449
	hwmon_device_unregister(data->hwmon_dev);
1450 1451 1452 1453 1454
	for (i = 0; data->sysfs_attr[i].dev_attr.attr.name; i++)
		device_remove_file(&pdev->dev, &data->sysfs_attr[i].dev_attr);
	for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++)
		device_remove_file(&pdev->dev,
			&abituguru_sysfs_attr[i].dev_attr);
1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468

	return 0;
}

static struct abituguru_data *abituguru_update_device(struct device *dev)
{
	int i, err;
	struct abituguru_data *data = dev_get_drvdata(dev);
	/* fake a complete successful read if no update necessary. */
	char success = 1;

	mutex_lock(&data->update_lock);
	if (time_after(jiffies, data->last_updated + HZ)) {
		success = 0;
1469 1470 1471
		err = abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0,
				     data->alarms, 3, 0);
		if (err != 3)
1472
			goto LEAVE_UPDATE;
H
Hans de Goede 已提交
1473
		for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) {
1474 1475 1476
			err = abituguru_read(data, ABIT_UGURU_SENSOR_BANK1,
					     i, &data->bank1_value[i], 1, 0);
			if (err != 1)
1477
				goto LEAVE_UPDATE;
1478 1479 1480
			err = abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1,
					     i, data->bank1_settings[i], 3, 0);
			if (err != 3)
1481 1482
				goto LEAVE_UPDATE;
		}
1483 1484 1485 1486
		for (i = 0; i < data->bank2_sensors; i++) {
			err = abituguru_read(data, ABIT_UGURU_SENSOR_BANK2, i,
					     &data->bank2_value[i], 1, 0);
			if (err != 1)
1487
				goto LEAVE_UPDATE;
1488
		}
1489 1490 1491 1492 1493
		/* success! */
		success = 1;
		data->update_timeouts = 0;
LEAVE_UPDATE:
		/* handle timeout condition */
1494
		if (!success && (err == -EBUSY || err >= 0)) {
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
			/* No overflow please */
			if (data->update_timeouts < 255u)
				data->update_timeouts++;
			if (data->update_timeouts <= ABIT_UGURU_MAX_TIMEOUTS) {
				ABIT_UGURU_DEBUG(3, "timeout exceeded, will "
					"try again next update\n");
				/* Just a timeout, fake a successful read */
				success = 1;
			} else
				ABIT_UGURU_DEBUG(1, "timeout exceeded %d "
					"times waiting for more input state\n",
					(int)data->update_timeouts);
		}
		/* On success set last_updated */
		if (success)
			data->last_updated = jiffies;
	}
	mutex_unlock(&data->update_lock);

	if (success)
		return data;
	else
		return NULL;
}

1520 1521
#ifdef CONFIG_PM_SLEEP
static int abituguru_suspend(struct device *dev)
1522
{
1523
	struct abituguru_data *data = dev_get_drvdata(dev);
1524 1525 1526 1527
	/*
	 * make sure all communications with the uguru are done and no new
	 * ones are started
	 */
1528 1529 1530 1531
	mutex_lock(&data->update_lock);
	return 0;
}

1532
static int abituguru_resume(struct device *dev)
1533
{
1534
	struct abituguru_data *data = dev_get_drvdata(dev);
1535 1536 1537 1538 1539 1540
	/* See if the uGuru is still ready */
	if (inb_p(data->addr + ABIT_UGURU_DATA) != ABIT_UGURU_STATUS_INPUT)
		data->uguru_ready = 0;
	mutex_unlock(&data->update_lock);
	return 0;
}
1541 1542

static SIMPLE_DEV_PM_OPS(abituguru_pm, abituguru_suspend, abituguru_resume);
1543
#define ABIT_UGURU_PM	(&abituguru_pm)
1544
#else
1545
#define ABIT_UGURU_PM	NULL
1546 1547
#endif /* CONFIG_PM */

1548 1549 1550 1551
static struct platform_driver abituguru_driver = {
	.driver = {
		.owner	= THIS_MODULE,
		.name	= ABIT_UGURU_NAME,
1552
		.pm	= ABIT_UGURU_PM,
1553
	},
1554
	.probe		= abituguru_probe,
B
Bill Pemberton 已提交
1555
	.remove		= abituguru_remove,
1556 1557 1558 1559
};

static int __init abituguru_detect(void)
{
1560 1561 1562 1563 1564 1565 1566 1567
	/*
	 * See if there is an uguru there. After a reboot uGuru will hold 0x00
	 * at DATA and 0xAC, when this driver has already been loaded once
	 * DATA will hold 0x08. For most uGuru's CMD will hold 0xAC in either
	 * scenario but some will hold 0x00.
	 * Some uGuru's initially hold 0x09 at DATA and will only hold 0x08
	 * after reading CMD first, so CMD must be read first!
	 */
1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
	u8 cmd_val = inb_p(ABIT_UGURU_BASE + ABIT_UGURU_CMD);
	u8 data_val = inb_p(ABIT_UGURU_BASE + ABIT_UGURU_DATA);
	if (((data_val == 0x00) || (data_val == 0x08)) &&
	    ((cmd_val == 0x00) || (cmd_val == 0xAC)))
		return ABIT_UGURU_BASE;

	ABIT_UGURU_DEBUG(2, "no Abit uGuru found, data = 0x%02X, cmd = "
		"0x%02X\n", (unsigned int)data_val, (unsigned int)cmd_val);

	if (force) {
1578
		pr_info("Assuming Abit uGuru is present because of \"force\" parameter\n");
1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591
		return ABIT_UGURU_BASE;
	}

	/* No uGuru found */
	return -ENODEV;
}

static struct platform_device *abituguru_pdev;

static int __init abituguru_init(void)
{
	int address, err;
	struct resource res = { .flags = IORESOURCE_IO };
1592
	const char *board_vendor = dmi_get_system_info(DMI_BOARD_VENDOR);
1593 1594 1595 1596 1597 1598

	/* safety check, refuse to load on non Abit motherboards */
	if (!force && (!board_vendor ||
			strcmp(board_vendor, "http://www.abit.com.tw/")))
		return -ENODEV;

1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
	address = abituguru_detect();
	if (address < 0)
		return address;

	err = platform_driver_register(&abituguru_driver);
	if (err)
		goto exit;

	abituguru_pdev = platform_device_alloc(ABIT_UGURU_NAME, address);
	if (!abituguru_pdev) {
1609
		pr_err("Device allocation failed\n");
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
		err = -ENOMEM;
		goto exit_driver_unregister;
	}

	res.start = address;
	res.end = address + ABIT_UGURU_REGION_LENGTH - 1;
	res.name = ABIT_UGURU_NAME;

	err = platform_device_add_resources(abituguru_pdev, &res, 1);
	if (err) {
1620
		pr_err("Device resource addition failed (%d)\n", err);
1621 1622 1623 1624 1625
		goto exit_device_put;
	}

	err = platform_device_add(abituguru_pdev);
	if (err) {
1626
		pr_err("Device addition failed (%d)\n", err);
1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
		goto exit_device_put;
	}

	return 0;

exit_device_put:
	platform_device_put(abituguru_pdev);
exit_driver_unregister:
	platform_driver_unregister(&abituguru_driver);
exit:
	return err;
}

static void __exit abituguru_exit(void)
{
	platform_device_unregister(abituguru_pdev);
	platform_driver_unregister(&abituguru_driver);
}

1646
MODULE_AUTHOR("Hans de Goede <hdegoede@redhat.com>");
1647 1648 1649 1650 1651
MODULE_DESCRIPTION("Abit uGuru Sensor device");
MODULE_LICENSE("GPL");

module_init(abituguru_init);
module_exit(abituguru_exit);