abituguru.c 52.6 KB
Newer Older
1
/*
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
 * abituguru.c Copyright (c) 2005-2006 Hans de Goede <hdegoede@redhat.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */
18
/*
19 20 21 22
 * This driver supports the sensor part of the first and second revision of
 * the custom Abit uGuru chip found on Abit uGuru motherboards. Note: because
 * of lack of specs the CPU/RAM voltage & frequency control is not supported!
 */
23 24 25

#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

26
#include <linux/module.h>
A
Al Viro 已提交
27
#include <linux/sched.h>
28 29 30 31 32
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/jiffies.h>
#include <linux/mutex.h>
#include <linux/err.h>
33
#include <linux/delay.h>
34 35 36
#include <linux/platform_device.h>
#include <linux/hwmon.h>
#include <linux/hwmon-sysfs.h>
37
#include <linux/dmi.h>
38
#include <linux/io.h>
39 40 41 42 43 44

/* Banks */
#define ABIT_UGURU_ALARM_BANK			0x20 /* 1x 3 bytes */
#define ABIT_UGURU_SENSOR_BANK1			0x21 /* 16x volt and temp */
#define ABIT_UGURU_FAN_PWM			0x24 /* 3x 5 bytes */
#define ABIT_UGURU_SENSOR_BANK2			0x26 /* fans */
H
Hans de Goede 已提交
45 46
/* max nr of sensors in bank1, a bank1 sensor can be in, temp or nc */
#define ABIT_UGURU_MAX_BANK1_SENSORS		16
47 48 49 50
/*
 * Warning if you increase one of the 2 MAX defines below to 10 or higher you
 * should adjust the belonging _NAMES_LENGTH macro for the 2 digit number!
 */
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
/* max nr of sensors in bank2, currently mb's with max 6 fans are known */
#define ABIT_UGURU_MAX_BANK2_SENSORS		6
/* max nr of pwm outputs, currently mb's with max 5 pwm outputs are known */
#define ABIT_UGURU_MAX_PWMS			5
/* uGuru sensor bank 1 flags */			     /* Alarm if: */
#define ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE	0x01 /*  temp over warn */
#define ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE	0x02 /*  volt over max */
#define ABIT_UGURU_VOLT_LOW_ALARM_ENABLE	0x04 /*  volt under min */
#define ABIT_UGURU_TEMP_HIGH_ALARM_FLAG		0x10 /* temp is over warn */
#define ABIT_UGURU_VOLT_HIGH_ALARM_FLAG		0x20 /* volt is over max */
#define ABIT_UGURU_VOLT_LOW_ALARM_FLAG		0x40 /* volt is under min */
/* uGuru sensor bank 2 flags */			     /* Alarm if: */
#define ABIT_UGURU_FAN_LOW_ALARM_ENABLE		0x01 /*   fan under min */
/* uGuru sensor bank common flags */
#define ABIT_UGURU_BEEP_ENABLE			0x08 /* beep if alarm */
#define ABIT_UGURU_SHUTDOWN_ENABLE		0x80 /* shutdown if alarm */
/* uGuru fan PWM (speed control) flags */
#define ABIT_UGURU_FAN_PWM_ENABLE		0x80 /* enable speed control */
/* Values used for conversion */
#define ABIT_UGURU_FAN_MAX			15300 /* RPM */
/* Bank1 sensor types */
#define ABIT_UGURU_IN_SENSOR			0
#define ABIT_UGURU_TEMP_SENSOR			1
#define ABIT_UGURU_NC				2
75 76 77 78 79
/*
 * In many cases we need to wait for the uGuru to reach a certain status, most
 * of the time it will reach this status within 30 - 90 ISA reads, and thus we
 * can best busy wait. This define gives the total amount of reads to try.
 */
80
#define ABIT_UGURU_WAIT_TIMEOUT			125
81 82 83 84 85
/*
 * However sometimes older versions of the uGuru seem to be distracted and they
 * do not respond for a long time. To handle this we sleep before each of the
 * last ABIT_UGURU_WAIT_TIMEOUT_SLEEP tries.
 */
86
#define ABIT_UGURU_WAIT_TIMEOUT_SLEEP		5
87 88 89 90
/*
 * Normally all expected status in abituguru_ready, are reported after the
 * first read, but sometimes not and we need to poll.
 */
91
#define ABIT_UGURU_READY_TIMEOUT		5
92 93 94
/* Maximum 3 retries on timedout reads/writes, delay 200 ms before retrying */
#define ABIT_UGURU_MAX_RETRIES			3
#define ABIT_UGURU_RETRY_DELAY			(HZ/5)
H
Hans de Goede 已提交
95
/* Maximum 2 timeouts in abituguru_update_device, iow 3 in a row is an error */
96
#define ABIT_UGURU_MAX_TIMEOUTS			2
H
Hans de Goede 已提交
97 98 99 100 101 102
/* utility macros */
#define ABIT_UGURU_NAME				"abituguru"
#define ABIT_UGURU_DEBUG(level, format, arg...)				\
	if (level <= verbose)						\
		printk(KERN_DEBUG ABIT_UGURU_NAME ": "	format , ## arg)
/* Macros to help calculate the sysfs_names array length */
103 104 105 106
/*
 * sum of strlen of: in??_input\0, in??_{min,max}\0, in??_{min,max}_alarm\0,
 * in??_{min,max}_alarm_enable\0, in??_beep\0, in??_shutdown\0
 */
H
Hans de Goede 已提交
107
#define ABITUGURU_IN_NAMES_LENGTH	(11 + 2 * 9 + 2 * 15 + 2 * 22 + 10 + 14)
108 109 110 111
/*
 * sum of strlen of: temp??_input\0, temp??_max\0, temp??_crit\0,
 * temp??_alarm\0, temp??_alarm_enable\0, temp??_beep\0, temp??_shutdown\0
 */
H
Hans de Goede 已提交
112
#define ABITUGURU_TEMP_NAMES_LENGTH	(13 + 11 + 12 + 13 + 20 + 12 + 16)
113 114 115 116
/*
 * sum of strlen of: fan?_input\0, fan?_min\0, fan?_alarm\0,
 * fan?_alarm_enable\0, fan?_beep\0, fan?_shutdown\0
 */
H
Hans de Goede 已提交
117
#define ABITUGURU_FAN_NAMES_LENGTH	(11 + 9 + 11 + 18 + 10 + 14)
118 119 120 121
/*
 * sum of strlen of: pwm?_enable\0, pwm?_auto_channels_temp\0,
 * pwm?_auto_point{1,2}_pwm\0, pwm?_auto_point{1,2}_temp\0
 */
H
Hans de Goede 已提交
122 123 124 125 126 127 128
#define ABITUGURU_PWM_NAMES_LENGTH	(12 + 24 + 2 * 21 + 2 * 22)
/* IN_NAMES_LENGTH > TEMP_NAMES_LENGTH so assume all bank1 sensors are in */
#define ABITUGURU_SYSFS_NAMES_LENGTH	( \
	ABIT_UGURU_MAX_BANK1_SENSORS * ABITUGURU_IN_NAMES_LENGTH + \
	ABIT_UGURU_MAX_BANK2_SENSORS * ABITUGURU_FAN_NAMES_LENGTH + \
	ABIT_UGURU_MAX_PWMS * ABITUGURU_PWM_NAMES_LENGTH)

129 130 131 132 133 134
/*
 * All the macros below are named identical to the oguru and oguru2 programs
 * reverse engineered by Olle Sandberg, hence the names might not be 100%
 * logical. I could come up with better names, but I prefer keeping the names
 * identical so that this driver can be compared with his work more easily.
 */
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
/* Two i/o-ports are used by uGuru */
#define ABIT_UGURU_BASE				0x00E0
/* Used to tell uGuru what to read and to read the actual data */
#define ABIT_UGURU_CMD				0x00
/* Mostly used to check if uGuru is busy */
#define ABIT_UGURU_DATA				0x04
#define ABIT_UGURU_REGION_LENGTH		5
/* uGuru status' */
#define ABIT_UGURU_STATUS_WRITE			0x00 /* Ready to be written */
#define ABIT_UGURU_STATUS_READ			0x01 /* Ready to be read */
#define ABIT_UGURU_STATUS_INPUT			0x08 /* More input */
#define ABIT_UGURU_STATUS_READY			0x09 /* Ready to be written */

/* Constants */
/* in (Volt) sensors go up to 3494 mV, temp to 255000 millidegrees Celsius */
static const int abituguru_bank1_max_value[2] = { 3494, 255000 };
151 152 153 154
/*
 * Min / Max allowed values for sensor2 (fan) alarm threshold, these values
 * correspond to 300-3000 RPM
 */
155 156
static const u8 abituguru_bank2_min_threshold = 5;
static const u8 abituguru_bank2_max_threshold = 50;
157 158 159 160
/*
 * Register 0 is a bitfield, 1 and 2 are pwm settings (255 = 100%), 3 and 4
 * are temperature trip points.
 */
161
static const int abituguru_pwm_settings_multiplier[5] = { 0, 1, 1, 1000, 1000 };
162 163 164 165 166
/*
 * Min / Max allowed values for pwm_settings. Note: pwm1 (CPU fan) is a
 * special case the minium allowed pwm% setting for this is 30% (77) on
 * some MB's this special case is handled in the code!
 */
167 168 169 170 171
static const u8 abituguru_pwm_min[5] = { 0, 170, 170, 25, 25 };
static const u8 abituguru_pwm_max[5] = { 0, 255, 255, 75, 75 };


/* Insmod parameters */
172
static bool force;
173 174
module_param(force, bool, 0);
MODULE_PARM_DESC(force, "Set to one to force detection.");
175 176 177 178 179 180 181 182
static int bank1_types[ABIT_UGURU_MAX_BANK1_SENSORS] = { -1, -1, -1, -1, -1,
	-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 };
module_param_array(bank1_types, int, NULL, 0);
MODULE_PARM_DESC(bank1_types, "Bank1 sensortype autodetection override:\n"
	"   -1 autodetect\n"
	"    0 volt sensor\n"
	"    1 temp sensor\n"
	"    2 not connected");
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
static int fan_sensors;
module_param(fan_sensors, int, 0);
MODULE_PARM_DESC(fan_sensors, "Number of fan sensors on the uGuru "
	"(0 = autodetect)");
static int pwms;
module_param(pwms, int, 0);
MODULE_PARM_DESC(pwms, "Number of PWMs on the uGuru "
	"(0 = autodetect)");

/* Default verbose is 2, since this driver is still in the testing phase */
static int verbose = 2;
module_param(verbose, int, 0644);
MODULE_PARM_DESC(verbose, "How verbose should the driver be? (0-3):\n"
	"   0 normal output\n"
	"   1 + verbose error reporting\n"
	"   2 + sensors type probing info\n"
	"   3 + retryable error reporting");


202 203 204 205 206
/*
 * For the Abit uGuru, we need to keep some data in memory.
 * The structure is dynamically allocated, at the same time when a new
 * abituguru device is allocated.
 */
207
struct abituguru_data {
208
	struct device *hwmon_dev;	/* hwmon registered device */
209 210 211 212
	struct mutex update_lock;	/* protect access to data and uGuru */
	unsigned long last_updated;	/* In jiffies */
	unsigned short addr;		/* uguru base address */
	char uguru_ready;		/* is the uguru in ready state? */
213 214 215 216 217 218 219 220 221 222 223 224
	unsigned char update_timeouts;	/*
					 * number of update timeouts since last
					 * successful update
					 */

	/*
	 * The sysfs attr and their names are generated automatically, for bank1
	 * we cannot use a predefined array because we don't know beforehand
	 * of a sensor is a volt or a temp sensor, for bank2 and the pwms its
	 * easier todo things the same way.  For in sensors we have 9 (temp 7)
	 * sysfs entries per sensor, for bank2 and pwms 6.
	 */
H
Hans de Goede 已提交
225 226
	struct sensor_device_attribute_2 sysfs_attr[
		ABIT_UGURU_MAX_BANK1_SENSORS * 9 +
227
		ABIT_UGURU_MAX_BANK2_SENSORS * 6 + ABIT_UGURU_MAX_PWMS * 6];
H
Hans de Goede 已提交
228 229
	/* Buffer to store the dynamically generated sysfs names */
	char sysfs_names[ABITUGURU_SYSFS_NAMES_LENGTH];
230 231

	/* Bank 1 data */
H
Hans de Goede 已提交
232 233 234 235
	/* number of and addresses of [0] in, [1] temp sensors */
	u8 bank1_sensors[2];
	u8 bank1_address[2][ABIT_UGURU_MAX_BANK1_SENSORS];
	u8 bank1_value[ABIT_UGURU_MAX_BANK1_SENSORS];
236 237 238 239
	/*
	 * This array holds 3 entries per sensor for the bank 1 sensor settings
	 * (flags, min, max for voltage / flags, warn, shutdown for temp).
	 */
H
Hans de Goede 已提交
240
	u8 bank1_settings[ABIT_UGURU_MAX_BANK1_SENSORS][3];
241 242 243 244
	/*
	 * Maximum value for each sensor used for scaling in mV/millidegrees
	 * Celsius.
	 */
H
Hans de Goede 已提交
245
	int bank1_max_value[ABIT_UGURU_MAX_BANK1_SENSORS];
246 247 248 249 250 251 252 253 254 255 256 257 258 259

	/* Bank 2 data, ABIT_UGURU_MAX_BANK2_SENSORS entries for bank2 */
	u8 bank2_sensors; /* actual number of bank2 sensors found */
	u8 bank2_value[ABIT_UGURU_MAX_BANK2_SENSORS];
	u8 bank2_settings[ABIT_UGURU_MAX_BANK2_SENSORS][2]; /* flags, min */

	/* Alarms 2 bytes for bank1, 1 byte for bank2 */
	u8 alarms[3];

	/* Fan PWM (speed control) 5 bytes per PWM */
	u8 pwms; /* actual number of pwms found */
	u8 pwm_settings[ABIT_UGURU_MAX_PWMS][5];
};

260 261 262 263
static const char *never_happen = "This should never happen.";
static const char *report_this =
	"Please report this to the abituguru maintainer (see MAINTAINERS)";

264 265 266 267 268 269 270 271 272
/* wait till the uguru is in the specified state */
static int abituguru_wait(struct abituguru_data *data, u8 state)
{
	int timeout = ABIT_UGURU_WAIT_TIMEOUT;

	while (inb_p(data->addr + ABIT_UGURU_DATA) != state) {
		timeout--;
		if (timeout == 0)
			return -EBUSY;
273 274 275 276
		/*
		 * sleep a bit before our last few tries, see the comment on
		 * this where ABIT_UGURU_WAIT_TIMEOUT_SLEEP is defined.
		 */
277 278
		if (timeout <= ABIT_UGURU_WAIT_TIMEOUT_SLEEP)
			msleep(0);
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
	}
	return 0;
}

/* Put the uguru in ready for input state */
static int abituguru_ready(struct abituguru_data *data)
{
	int timeout = ABIT_UGURU_READY_TIMEOUT;

	if (data->uguru_ready)
		return 0;

	/* Reset? / Prepare for next read/write cycle */
	outb(0x00, data->addr + ABIT_UGURU_DATA);

	/* Wait till the uguru is ready */
	if (abituguru_wait(data, ABIT_UGURU_STATUS_READY)) {
		ABIT_UGURU_DEBUG(1,
			"timeout exceeded waiting for ready state\n");
		return -EIO;
	}

	/* Cmd port MUST be read now and should contain 0xAC */
	while (inb_p(data->addr + ABIT_UGURU_CMD) != 0xAC) {
		timeout--;
		if (timeout == 0) {
			ABIT_UGURU_DEBUG(1,
			   "CMD reg does not hold 0xAC after ready command\n");
			return -EIO;
		}
309
		msleep(0);
310 311
	}

312 313 314 315
	/*
	 * After this the ABIT_UGURU_DATA port should contain
	 * ABIT_UGURU_STATUS_INPUT
	 */
316 317 318 319 320 321 322 323
	timeout = ABIT_UGURU_READY_TIMEOUT;
	while (inb_p(data->addr + ABIT_UGURU_DATA) != ABIT_UGURU_STATUS_INPUT) {
		timeout--;
		if (timeout == 0) {
			ABIT_UGURU_DEBUG(1,
				"state != more input after ready command\n");
			return -EIO;
		}
324
		msleep(0);
325 326 327 328 329 330
	}

	data->uguru_ready = 1;
	return 0;
}

331 332 333 334 335 336
/*
 * Send the bank and then sensor address to the uGuru for the next read/write
 * cycle. This function gets called as the first part of a read/write by
 * abituguru_read and abituguru_write. This function should never be
 * called by any other function.
 */
337 338 339
static int abituguru_send_address(struct abituguru_data *data,
	u8 bank_addr, u8 sensor_addr, int retries)
{
340 341 342 343
	/*
	 * assume the caller does error handling itself if it has not requested
	 * any retries, and thus be quiet.
	 */
344 345 346
	int report_errors = retries;

	for (;;) {
347 348 349 350
		/*
		 * Make sure the uguru is ready and then send the bank address,
		 * after this the uguru is no longer "ready".
		 */
351 352 353 354 355
		if (abituguru_ready(data) != 0)
			return -EIO;
		outb(bank_addr, data->addr + ABIT_UGURU_DATA);
		data->uguru_ready = 0;

356 357 358 359
		/*
		 * Wait till the uguru is ABIT_UGURU_STATUS_INPUT state again
		 * and send the sensor addr
		 */
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
		if (abituguru_wait(data, ABIT_UGURU_STATUS_INPUT)) {
			if (retries) {
				ABIT_UGURU_DEBUG(3, "timeout exceeded "
					"waiting for more input state, %d "
					"tries remaining\n", retries);
				set_current_state(TASK_UNINTERRUPTIBLE);
				schedule_timeout(ABIT_UGURU_RETRY_DELAY);
				retries--;
				continue;
			}
			if (report_errors)
				ABIT_UGURU_DEBUG(1, "timeout exceeded "
					"waiting for more input state "
					"(bank: %d)\n", (int)bank_addr);
			return -EBUSY;
		}
		outb(sensor_addr, data->addr + ABIT_UGURU_CMD);
		return 0;
	}
}

381 382 383 384
/*
 * Read count bytes from sensor sensor_addr in bank bank_addr and store the
 * result in buf, retry the send address part of the read retries times.
 */
385 386 387 388 389 390 391 392 393 394 395 396 397
static int abituguru_read(struct abituguru_data *data,
	u8 bank_addr, u8 sensor_addr, u8 *buf, int count, int retries)
{
	int i;

	/* Send the address */
	i = abituguru_send_address(data, bank_addr, sensor_addr, retries);
	if (i)
		return i;

	/* And read the data */
	for (i = 0; i < count; i++) {
		if (abituguru_wait(data, ABIT_UGURU_STATUS_READ)) {
398 399
			ABIT_UGURU_DEBUG(retries ? 1 : 3,
				"timeout exceeded waiting for "
400 401 402 403 404 405 406 407 408 409 410 411 412
				"read state (bank: %d, sensor: %d)\n",
				(int)bank_addr, (int)sensor_addr);
			break;
		}
		buf[i] = inb(data->addr + ABIT_UGURU_CMD);
	}

	/* Last put the chip back in ready state */
	abituguru_ready(data);

	return i;
}

413 414 415 416
/*
 * Write count bytes from buf to sensor sensor_addr in bank bank_addr, the send
 * address part of the write is always retried ABIT_UGURU_MAX_RETRIES times.
 */
417 418 419
static int abituguru_write(struct abituguru_data *data,
	u8 bank_addr, u8 sensor_addr, u8 *buf, int count)
{
420 421 422 423
	/*
	 * We use the ready timeout as we have to wait for 0xAC just like the
	 * ready function
	 */
424
	int i, timeout = ABIT_UGURU_READY_TIMEOUT;
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442

	/* Send the address */
	i = abituguru_send_address(data, bank_addr, sensor_addr,
		ABIT_UGURU_MAX_RETRIES);
	if (i)
		return i;

	/* And write the data */
	for (i = 0; i < count; i++) {
		if (abituguru_wait(data, ABIT_UGURU_STATUS_WRITE)) {
			ABIT_UGURU_DEBUG(1, "timeout exceeded waiting for "
				"write state (bank: %d, sensor: %d)\n",
				(int)bank_addr, (int)sensor_addr);
			break;
		}
		outb(buf[i], data->addr + ABIT_UGURU_CMD);
	}

443 444 445 446 447
	/*
	 * Now we need to wait till the chip is ready to be read again,
	 * so that we can read 0xAC as confirmation that our write has
	 * succeeded.
	 */
448 449 450 451 452 453 454 455
	if (abituguru_wait(data, ABIT_UGURU_STATUS_READ)) {
		ABIT_UGURU_DEBUG(1, "timeout exceeded waiting for read state "
			"after write (bank: %d, sensor: %d)\n", (int)bank_addr,
			(int)sensor_addr);
		return -EIO;
	}

	/* Cmd port MUST be read now and should contain 0xAC */
456 457 458 459 460 461 462 463 464
	while (inb_p(data->addr + ABIT_UGURU_CMD) != 0xAC) {
		timeout--;
		if (timeout == 0) {
			ABIT_UGURU_DEBUG(1, "CMD reg does not hold 0xAC after "
				"write (bank: %d, sensor: %d)\n",
				(int)bank_addr, (int)sensor_addr);
			return -EIO;
		}
		msleep(0);
465 466 467 468 469 470 471 472
	}

	/* Last put the chip back in ready state */
	abituguru_ready(data);

	return i;
}

473 474 475 476 477 478 479 480
/*
 * Detect sensor type. Temp and Volt sensors are enabled with
 * different masks and will ignore enable masks not meant for them.
 * This enables us to test what kind of sensor we're dealing with.
 * By setting the alarm thresholds so that we will always get an
 * alarm for sensor type X and then enabling the sensor as sensor type
 * X, if we then get an alarm it is a sensor of type X.
 */
481 482 483 484
static int __devinit
abituguru_detect_bank1_sensor_type(struct abituguru_data *data,
				   u8 sensor_addr)
{
485
	u8 val, test_flag, buf[3];
486
	int i, ret = -ENODEV; /* error is the most common used retval :| */
487

488 489 490 491 492 493 494 495 496
	/* If overriden by the user return the user selected type */
	if (bank1_types[sensor_addr] >= ABIT_UGURU_IN_SENSOR &&
			bank1_types[sensor_addr] <= ABIT_UGURU_NC) {
		ABIT_UGURU_DEBUG(2, "assuming sensor type %d for bank1 sensor "
			"%d because of \"bank1_types\" module param\n",
			bank1_types[sensor_addr], (int)sensor_addr);
		return bank1_types[sensor_addr];
	}

497 498 499
	/* First read the sensor and the current settings */
	if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1, sensor_addr, &val,
			1, ABIT_UGURU_MAX_RETRIES) != 1)
H
Hans de Goede 已提交
500
		return -ENODEV;
501 502

	/* Test val is sane / usable for sensor type detection. */
503
	if ((val < 10u) || (val > 250u)) {
504
		pr_warn("bank1-sensor: %d reading (%d) too close to limits, "
505 506
			"unable to determine sensor type, skipping sensor\n",
			(int)sensor_addr, (int)val);
507 508 509 510 511
		/*
		 * assume no sensor is there for sensors for which we can't
		 * determine the sensor type because their reading is too close
		 * to their limits, this usually means no sensor is there.
		 */
512 513 514 515
		return ABIT_UGURU_NC;
	}

	ABIT_UGURU_DEBUG(2, "testing bank1 sensor %d\n", (int)sensor_addr);
516 517 518 519 520
	/*
	 * Volt sensor test, enable volt low alarm, set min value ridicously
	 * high, or vica versa if the reading is very high. If its a volt
	 * sensor this should always give us an alarm.
	 */
521 522 523 524 525 526 527 528 529 530 531 532
	if (val <= 240u) {
		buf[0] = ABIT_UGURU_VOLT_LOW_ALARM_ENABLE;
		buf[1] = 245;
		buf[2] = 250;
		test_flag = ABIT_UGURU_VOLT_LOW_ALARM_FLAG;
	} else {
		buf[0] = ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE;
		buf[1] = 5;
		buf[2] = 10;
		test_flag = ABIT_UGURU_VOLT_HIGH_ALARM_FLAG;
	}

533 534
	if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr,
			buf, 3) != 3)
535
		goto abituguru_detect_bank1_sensor_type_exit;
536 537 538 539
	/*
	 * Now we need 20 ms to give the uguru time to read the sensors
	 * and raise a voltage alarm
	 */
540 541 542 543 544
	set_current_state(TASK_UNINTERRUPTIBLE);
	schedule_timeout(HZ/50);
	/* Check for alarm and check the alarm is a volt low alarm. */
	if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, buf, 3,
			ABIT_UGURU_MAX_RETRIES) != 3)
545
		goto abituguru_detect_bank1_sensor_type_exit;
546 547 548 549
	if (buf[sensor_addr/8] & (0x01 << (sensor_addr % 8))) {
		if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1,
				sensor_addr, buf, 3,
				ABIT_UGURU_MAX_RETRIES) != 3)
550
			goto abituguru_detect_bank1_sensor_type_exit;
551
		if (buf[0] & test_flag) {
552
			ABIT_UGURU_DEBUG(2, "  found volt sensor\n");
553 554
			ret = ABIT_UGURU_IN_SENSOR;
			goto abituguru_detect_bank1_sensor_type_exit;
555 556
		} else
			ABIT_UGURU_DEBUG(2, "  alarm raised during volt "
557
				"sensor test, but volt range flag not set\n");
558 559 560 561
	} else
		ABIT_UGURU_DEBUG(2, "  alarm not raised during volt sensor "
			"test\n");

562 563 564 565 566
	/*
	 * Temp sensor test, enable sensor as a temp sensor, set beep value
	 * ridicously low (but not too low, otherwise uguru ignores it).
	 * If its a temp sensor this should always give us an alarm.
	 */
567 568 569 570 571
	buf[0] = ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE;
	buf[1] = 5;
	buf[2] = 10;
	if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr,
			buf, 3) != 3)
572
		goto abituguru_detect_bank1_sensor_type_exit;
573 574 575 576
	/*
	 * Now we need 50 ms to give the uguru time to read the sensors
	 * and raise a temp alarm
	 */
577 578 579 580 581
	set_current_state(TASK_UNINTERRUPTIBLE);
	schedule_timeout(HZ/20);
	/* Check for alarm and check the alarm is a temp high alarm. */
	if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, buf, 3,
			ABIT_UGURU_MAX_RETRIES) != 3)
582
		goto abituguru_detect_bank1_sensor_type_exit;
583 584 585 586
	if (buf[sensor_addr/8] & (0x01 << (sensor_addr % 8))) {
		if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1,
				sensor_addr, buf, 3,
				ABIT_UGURU_MAX_RETRIES) != 3)
587
			goto abituguru_detect_bank1_sensor_type_exit;
588 589
		if (buf[0] & ABIT_UGURU_TEMP_HIGH_ALARM_FLAG) {
			ABIT_UGURU_DEBUG(2, "  found temp sensor\n");
590 591
			ret = ABIT_UGURU_TEMP_SENSOR;
			goto abituguru_detect_bank1_sensor_type_exit;
592 593 594 595 596 597 598
		} else
			ABIT_UGURU_DEBUG(2, "  alarm raised during temp "
				"sensor test, but temp high flag not set\n");
	} else
		ABIT_UGURU_DEBUG(2, "  alarm not raised during temp sensor "
			"test\n");

599 600
	ret = ABIT_UGURU_NC;
abituguru_detect_bank1_sensor_type_exit:
601 602 603 604 605
	/*
	 * Restore original settings, failing here is really BAD, it has been
	 * reported that some BIOS-es hang when entering the uGuru menu with
	 * invalid settings present in the uGuru, so we try this 3 times.
	 */
606 607 608 609 610 611
	for (i = 0; i < 3; i++)
		if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2,
				sensor_addr, data->bank1_settings[sensor_addr],
				3) == 3)
			break;
	if (i == 3) {
612 613
		pr_err("Fatal error could not restore original settings. %s %s\n",
		       never_happen, report_this);
H
Hans de Goede 已提交
614
		return -ENODEV;
615
	}
616 617 618
	return ret;
}

619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
/*
 * These functions try to find out how many sensors there are in bank2 and how
 * many pwms there are. The purpose of this is to make sure that we don't give
 * the user the possibility to change settings for non-existent sensors / pwm.
 * The uGuru will happily read / write whatever memory happens to be after the
 * memory storing the PWM settings when reading/writing to a PWM which is not
 * there. Notice even if we detect a PWM which doesn't exist we normally won't
 * write to it, unless the user tries to change the settings.
 *
 * Although the uGuru allows reading (settings) from non existing bank2
 * sensors, my version of the uGuru does seem to stop writing to them, the
 * write function above aborts in this case with:
 * "CMD reg does not hold 0xAC after write"
 *
 * Notice these 2 tests are non destructive iow read-only tests, otherwise
 * they would defeat their purpose. Although for the bank2_sensors detection a
 * read/write test would be feasible because of the reaction above, I've
 * however opted to stay on the safe side.
 */
638 639 640 641 642
static void __devinit
abituguru_detect_no_bank2_sensors(struct abituguru_data *data)
{
	int i;

643
	if (fan_sensors > 0 && fan_sensors <= ABIT_UGURU_MAX_BANK2_SENSORS) {
644 645 646 647 648 649 650 651 652
		data->bank2_sensors = fan_sensors;
		ABIT_UGURU_DEBUG(2, "assuming %d fan sensors because of "
			"\"fan_sensors\" module param\n",
			(int)data->bank2_sensors);
		return;
	}

	ABIT_UGURU_DEBUG(2, "detecting number of fan sensors\n");
	for (i = 0; i < ABIT_UGURU_MAX_BANK2_SENSORS; i++) {
653 654 655 656 657 658 659 660
		/*
		 * 0x89 are the known used bits:
		 * -0x80 enable shutdown
		 * -0x08 enable beep
		 * -0x01 enable alarm
		 * All other bits should be 0, but on some motherboards
		 * 0x40 (bit 6) is also high for some of the fans??
		 */
661
		if (data->bank2_settings[i][0] & ~0xC9) {
662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
			ABIT_UGURU_DEBUG(2, "  bank2 sensor %d does not seem "
				"to be a fan sensor: settings[0] = %02X\n",
				i, (unsigned int)data->bank2_settings[i][0]);
			break;
		}

		/* check if the threshold is within the allowed range */
		if (data->bank2_settings[i][1] <
				abituguru_bank2_min_threshold) {
			ABIT_UGURU_DEBUG(2, "  bank2 sensor %d does not seem "
				"to be a fan sensor: the threshold (%d) is "
				"below the minimum (%d)\n", i,
				(int)data->bank2_settings[i][1],
				(int)abituguru_bank2_min_threshold);
			break;
		}
		if (data->bank2_settings[i][1] >
				abituguru_bank2_max_threshold) {
			ABIT_UGURU_DEBUG(2, "  bank2 sensor %d does not seem "
				"to be a fan sensor: the threshold (%d) is "
				"above the maximum (%d)\n", i,
				(int)data->bank2_settings[i][1],
				(int)abituguru_bank2_max_threshold);
			break;
		}
	}

	data->bank2_sensors = i;
	ABIT_UGURU_DEBUG(2, " found: %d fan sensors\n",
		(int)data->bank2_sensors);
}

static void __devinit
abituguru_detect_no_pwms(struct abituguru_data *data)
{
	int i, j;

699
	if (pwms > 0 && pwms <= ABIT_UGURU_MAX_PWMS) {
700 701 702 703 704 705 706 707
		data->pwms = pwms;
		ABIT_UGURU_DEBUG(2, "assuming %d PWM outputs because of "
			"\"pwms\" module param\n", (int)data->pwms);
		return;
	}

	ABIT_UGURU_DEBUG(2, "detecting number of PWM outputs\n");
	for (i = 0; i < ABIT_UGURU_MAX_PWMS; i++) {
708 709 710 711 712
		/*
		 * 0x80 is the enable bit and the low
		 * nibble is which temp sensor to use,
		 * the other bits should be 0
		 */
713 714 715 716 717 718 719
		if (data->pwm_settings[i][0] & ~0x8F) {
			ABIT_UGURU_DEBUG(2, "  pwm channel %d does not seem "
				"to be a pwm channel: settings[0] = %02X\n",
				i, (unsigned int)data->pwm_settings[i][0]);
			break;
		}

720 721 722 723
		/*
		 * the low nibble must correspond to one of the temp sensors
		 * we've found
		 */
724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
		for (j = 0; j < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR];
				j++) {
			if (data->bank1_address[ABIT_UGURU_TEMP_SENSOR][j] ==
					(data->pwm_settings[i][0] & 0x0F))
				break;
		}
		if (j == data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]) {
			ABIT_UGURU_DEBUG(2, "  pwm channel %d does not seem "
				"to be a pwm channel: %d is not a valid temp "
				"sensor address\n", i,
				data->pwm_settings[i][0] & 0x0F);
			break;
		}

		/* check if all other settings are within the allowed range */
		for (j = 1; j < 5; j++) {
			u8 min;
			/* special case pwm1 min pwm% */
			if ((i == 0) && ((j == 1) || (j == 2)))
				min = 77;
			else
				min = abituguru_pwm_min[j];
			if (data->pwm_settings[i][j] < min) {
				ABIT_UGURU_DEBUG(2, "  pwm channel %d does "
					"not seem to be a pwm channel: "
					"setting %d (%d) is below the minimum "
					"value (%d)\n", i, j,
					(int)data->pwm_settings[i][j],
					(int)min);
				goto abituguru_detect_no_pwms_exit;
			}
			if (data->pwm_settings[i][j] > abituguru_pwm_max[j]) {
				ABIT_UGURU_DEBUG(2, "  pwm channel %d does "
					"not seem to be a pwm channel: "
					"setting %d (%d) is above the maximum "
					"value (%d)\n", i, j,
					(int)data->pwm_settings[i][j],
					(int)abituguru_pwm_max[j]);
				goto abituguru_detect_no_pwms_exit;
			}
		}

		/* check that min temp < max temp and min pwm < max pwm */
		if (data->pwm_settings[i][1] >= data->pwm_settings[i][2]) {
			ABIT_UGURU_DEBUG(2, "  pwm channel %d does not seem "
				"to be a pwm channel: min pwm (%d) >= "
				"max pwm (%d)\n", i,
				(int)data->pwm_settings[i][1],
				(int)data->pwm_settings[i][2]);
			break;
		}
		if (data->pwm_settings[i][3] >= data->pwm_settings[i][4]) {
			ABIT_UGURU_DEBUG(2, "  pwm channel %d does not seem "
				"to be a pwm channel: min temp (%d) >= "
				"max temp (%d)\n", i,
				(int)data->pwm_settings[i][3],
				(int)data->pwm_settings[i][4]);
			break;
		}
	}

abituguru_detect_no_pwms_exit:
	data->pwms = i;
	ABIT_UGURU_DEBUG(2, " found: %d PWM outputs\n", (int)data->pwms);
}

790 791 792 793 794
/*
 * Following are the sysfs callback functions. These functions expect:
 * sensor_device_attribute_2->index:   sensor address/offset in the bank
 * sensor_device_attribute_2->nr:      register offset, bitmask or NA.
 */
795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
static struct abituguru_data *abituguru_update_device(struct device *dev);

static ssize_t show_bank1_value(struct device *dev,
	struct device_attribute *devattr, char *buf)
{
	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
	struct abituguru_data *data = abituguru_update_device(dev);
	if (!data)
		return -EIO;
	return sprintf(buf, "%d\n", (data->bank1_value[attr->index] *
		data->bank1_max_value[attr->index] + 128) / 255);
}

static ssize_t show_bank1_setting(struct device *dev,
	struct device_attribute *devattr, char *buf)
{
	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
	struct abituguru_data *data = dev_get_drvdata(dev);
	return sprintf(buf, "%d\n",
		(data->bank1_settings[attr->index][attr->nr] *
		data->bank1_max_value[attr->index] + 128) / 255);
}

static ssize_t show_bank2_value(struct device *dev,
	struct device_attribute *devattr, char *buf)
{
	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
	struct abituguru_data *data = abituguru_update_device(dev);
	if (!data)
		return -EIO;
	return sprintf(buf, "%d\n", (data->bank2_value[attr->index] *
		ABIT_UGURU_FAN_MAX + 128) / 255);
}

static ssize_t show_bank2_setting(struct device *dev,
	struct device_attribute *devattr, char *buf)
{
	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
	struct abituguru_data *data = dev_get_drvdata(dev);
	return sprintf(buf, "%d\n",
		(data->bank2_settings[attr->index][attr->nr] *
		ABIT_UGURU_FAN_MAX + 128) / 255);
}

static ssize_t store_bank1_setting(struct device *dev, struct device_attribute
	*devattr, const char *buf, size_t count)
{
	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
	struct abituguru_data *data = dev_get_drvdata(dev);
844 845 846 847 848 849 850 851 852
	unsigned long val;
	ssize_t ret;

	ret = kstrtoul(buf, 10, &val);
	if (ret)
		return ret;

	ret = count;
	val = (val * 255 + data->bank1_max_value[attr->index] / 2) /
853
		data->bank1_max_value[attr->index];
854 855
	if (val > 255)
		return -EINVAL;
856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876

	mutex_lock(&data->update_lock);
	if (data->bank1_settings[attr->index][attr->nr] != val) {
		u8 orig_val = data->bank1_settings[attr->index][attr->nr];
		data->bank1_settings[attr->index][attr->nr] = val;
		if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2,
				attr->index, data->bank1_settings[attr->index],
				3) <= attr->nr) {
			data->bank1_settings[attr->index][attr->nr] = orig_val;
			ret = -EIO;
		}
	}
	mutex_unlock(&data->update_lock);
	return ret;
}

static ssize_t store_bank2_setting(struct device *dev, struct device_attribute
	*devattr, const char *buf, size_t count)
{
	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
	struct abituguru_data *data = dev_get_drvdata(dev);
877 878 879 880 881 882 883 884 885
	unsigned long val;
	ssize_t ret;

	ret = kstrtoul(buf, 10, &val);
	if (ret)
		return ret;

	ret = count;
	val = (val * 255 + ABIT_UGURU_FAN_MAX / 2) / ABIT_UGURU_FAN_MAX;
886 887

	/* this check can be done before taking the lock */
888 889
	if (val < abituguru_bank2_min_threshold ||
			val > abituguru_bank2_max_threshold)
890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
		return -EINVAL;

	mutex_lock(&data->update_lock);
	if (data->bank2_settings[attr->index][attr->nr] != val) {
		u8 orig_val = data->bank2_settings[attr->index][attr->nr];
		data->bank2_settings[attr->index][attr->nr] = val;
		if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK2 + 2,
				attr->index, data->bank2_settings[attr->index],
				2) <= attr->nr) {
			data->bank2_settings[attr->index][attr->nr] = orig_val;
			ret = -EIO;
		}
	}
	mutex_unlock(&data->update_lock);
	return ret;
}

static ssize_t show_bank1_alarm(struct device *dev,
	struct device_attribute *devattr, char *buf)
{
	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
	struct abituguru_data *data = abituguru_update_device(dev);
	if (!data)
		return -EIO;
914 915 916 917 918 919 920
	/*
	 * See if the alarm bit for this sensor is set, and if the
	 * alarm matches the type of alarm we're looking for (for volt
	 * it can be either low or high). The type is stored in a few
	 * readonly bits in the settings part of the relevant sensor.
	 * The bitmask of the type is passed to us in attr->nr.
	 */
921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967
	if ((data->alarms[attr->index / 8] & (0x01 << (attr->index % 8))) &&
			(data->bank1_settings[attr->index][0] & attr->nr))
		return sprintf(buf, "1\n");
	else
		return sprintf(buf, "0\n");
}

static ssize_t show_bank2_alarm(struct device *dev,
	struct device_attribute *devattr, char *buf)
{
	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
	struct abituguru_data *data = abituguru_update_device(dev);
	if (!data)
		return -EIO;
	if (data->alarms[2] & (0x01 << attr->index))
		return sprintf(buf, "1\n");
	else
		return sprintf(buf, "0\n");
}

static ssize_t show_bank1_mask(struct device *dev,
	struct device_attribute *devattr, char *buf)
{
	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
	struct abituguru_data *data = dev_get_drvdata(dev);
	if (data->bank1_settings[attr->index][0] & attr->nr)
		return sprintf(buf, "1\n");
	else
		return sprintf(buf, "0\n");
}

static ssize_t show_bank2_mask(struct device *dev,
	struct device_attribute *devattr, char *buf)
{
	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
	struct abituguru_data *data = dev_get_drvdata(dev);
	if (data->bank2_settings[attr->index][0] & attr->nr)
		return sprintf(buf, "1\n");
	else
		return sprintf(buf, "0\n");
}

static ssize_t store_bank1_mask(struct device *dev,
	struct device_attribute *devattr, const char *buf, size_t count)
{
	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
	struct abituguru_data *data = dev_get_drvdata(dev);
968
	ssize_t ret;
969
	u8 orig_val;
970 971 972 973 974
	unsigned long mask;

	ret = kstrtoul(buf, 10, &mask);
	if (ret)
		return ret;
975

976
	ret = count;
977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
	mutex_lock(&data->update_lock);
	orig_val = data->bank1_settings[attr->index][0];

	if (mask)
		data->bank1_settings[attr->index][0] |= attr->nr;
	else
		data->bank1_settings[attr->index][0] &= ~attr->nr;

	if ((data->bank1_settings[attr->index][0] != orig_val) &&
			(abituguru_write(data,
			ABIT_UGURU_SENSOR_BANK1 + 2, attr->index,
			data->bank1_settings[attr->index], 3) < 1)) {
		data->bank1_settings[attr->index][0] = orig_val;
		ret = -EIO;
	}
	mutex_unlock(&data->update_lock);
	return ret;
}

static ssize_t store_bank2_mask(struct device *dev,
	struct device_attribute *devattr, const char *buf, size_t count)
{
	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
	struct abituguru_data *data = dev_get_drvdata(dev);
1001
	ssize_t ret;
1002
	u8 orig_val;
1003
	unsigned long mask;
1004

1005 1006 1007 1008 1009
	ret = kstrtoul(buf, 10, &mask);
	if (ret)
		return ret;

	ret = count;
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
	mutex_lock(&data->update_lock);
	orig_val = data->bank2_settings[attr->index][0];

	if (mask)
		data->bank2_settings[attr->index][0] |= attr->nr;
	else
		data->bank2_settings[attr->index][0] &= ~attr->nr;

	if ((data->bank2_settings[attr->index][0] != orig_val) &&
			(abituguru_write(data,
			ABIT_UGURU_SENSOR_BANK2 + 2, attr->index,
			data->bank2_settings[attr->index], 2) < 1)) {
		data->bank2_settings[attr->index][0] = orig_val;
		ret = -EIO;
	}
	mutex_unlock(&data->update_lock);
	return ret;
}

/* Fan PWM (speed control) */
static ssize_t show_pwm_setting(struct device *dev,
	struct device_attribute *devattr, char *buf)
{
	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
	struct abituguru_data *data = dev_get_drvdata(dev);
	return sprintf(buf, "%d\n", data->pwm_settings[attr->index][attr->nr] *
		abituguru_pwm_settings_multiplier[attr->nr]);
}

static ssize_t store_pwm_setting(struct device *dev, struct device_attribute
	*devattr, const char *buf, size_t count)
{
	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
	struct abituguru_data *data = dev_get_drvdata(dev);
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
	u8 min;
	unsigned long val;
	ssize_t ret;

	ret = kstrtoul(buf, 10, &val);
	if (ret)
		return ret;

	ret = count;
	val = (val + abituguru_pwm_settings_multiplier[attr->nr] / 2) /
				abituguru_pwm_settings_multiplier[attr->nr];
1055 1056 1057 1058 1059 1060 1061 1062

	/* special case pwm1 min pwm% */
	if ((attr->index == 0) && ((attr->nr == 1) || (attr->nr == 2)))
		min = 77;
	else
		min = abituguru_pwm_min[attr->nr];

	/* this check can be done before taking the lock */
1063
	if (val < min || val > abituguru_pwm_max[attr->nr])
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
		return -EINVAL;

	mutex_lock(&data->update_lock);
	/* this check needs to be done after taking the lock */
	if ((attr->nr & 1) &&
			(val >= data->pwm_settings[attr->index][attr->nr + 1]))
		ret = -EINVAL;
	else if (!(attr->nr & 1) &&
			(val <= data->pwm_settings[attr->index][attr->nr - 1]))
		ret = -EINVAL;
	else if (data->pwm_settings[attr->index][attr->nr] != val) {
		u8 orig_val = data->pwm_settings[attr->index][attr->nr];
		data->pwm_settings[attr->index][attr->nr] = val;
		if (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1,
				attr->index, data->pwm_settings[attr->index],
				5) <= attr->nr) {
			data->pwm_settings[attr->index][attr->nr] =
				orig_val;
			ret = -EIO;
		}
	}
	mutex_unlock(&data->update_lock);
	return ret;
}

static ssize_t show_pwm_sensor(struct device *dev,
	struct device_attribute *devattr, char *buf)
{
	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
	struct abituguru_data *data = dev_get_drvdata(dev);
	int i;
1095 1096 1097 1098
	/*
	 * We need to walk to the temp sensor addresses to find what
	 * the userspace id of the configured temp sensor is.
	 */
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
	for (i = 0; i < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]; i++)
		if (data->bank1_address[ABIT_UGURU_TEMP_SENSOR][i] ==
				(data->pwm_settings[attr->index][0] & 0x0F))
			return sprintf(buf, "%d\n", i+1);

	return -ENXIO;
}

static ssize_t store_pwm_sensor(struct device *dev, struct device_attribute
	*devattr, const char *buf, size_t count)
{
	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
	struct abituguru_data *data = dev_get_drvdata(dev);
1112 1113 1114 1115 1116 1117 1118 1119
	ssize_t ret;
	unsigned long val;
	u8 orig_val;
	u8 address;

	ret = kstrtoul(buf, 10, &val);
	if (ret)
		return ret;
1120

1121 1122 1123 1124 1125
	if (val == 0 || val > data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR])
		return -EINVAL;

	val -= 1;
	ret = count;
1126
	mutex_lock(&data->update_lock);
1127 1128 1129 1130 1131 1132 1133 1134 1135
	orig_val = data->pwm_settings[attr->index][0];
	address = data->bank1_address[ABIT_UGURU_TEMP_SENSOR][val];
	data->pwm_settings[attr->index][0] &= 0xF0;
	data->pwm_settings[attr->index][0] |= address;
	if (data->pwm_settings[attr->index][0] != orig_val) {
		if (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1, attr->index,
				    data->pwm_settings[attr->index], 5) < 1) {
			data->pwm_settings[attr->index][0] = orig_val;
			ret = -EIO;
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
		}
	}
	mutex_unlock(&data->update_lock);
	return ret;
}

static ssize_t show_pwm_enable(struct device *dev,
	struct device_attribute *devattr, char *buf)
{
	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
	struct abituguru_data *data = dev_get_drvdata(dev);
	int res = 0;
	if (data->pwm_settings[attr->index][0] & ABIT_UGURU_FAN_PWM_ENABLE)
		res = 2;
	return sprintf(buf, "%d\n", res);
}

static ssize_t store_pwm_enable(struct device *dev, struct device_attribute
	*devattr, const char *buf, size_t count)
{
	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
	struct abituguru_data *data = dev_get_drvdata(dev);
1158 1159 1160 1161 1162 1163 1164
	u8 orig_val;
	ssize_t ret;
	unsigned long user_val;

	ret = kstrtoul(buf, 10, &user_val);
	if (ret)
		return ret;
1165

1166
	ret = count;
1167 1168 1169
	mutex_lock(&data->update_lock);
	orig_val = data->pwm_settings[attr->index][0];
	switch (user_val) {
1170 1171 1172 1173 1174 1175 1176 1177 1178
	case 0:
		data->pwm_settings[attr->index][0] &=
			~ABIT_UGURU_FAN_PWM_ENABLE;
		break;
	case 2:
		data->pwm_settings[attr->index][0] |= ABIT_UGURU_FAN_PWM_ENABLE;
		break;
	default:
		ret = -EINVAL;
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
	}
	if ((data->pwm_settings[attr->index][0] != orig_val) &&
			(abituguru_write(data, ABIT_UGURU_FAN_PWM + 1,
			attr->index, data->pwm_settings[attr->index],
			5) < 1)) {
		data->pwm_settings[attr->index][0] = orig_val;
		ret = -EIO;
	}
	mutex_unlock(&data->update_lock);
	return ret;
}

static ssize_t show_name(struct device *dev,
	struct device_attribute *devattr, char *buf)
{
	return sprintf(buf, "%s\n", ABIT_UGURU_NAME);
}

/* Sysfs attr templates, the real entries are generated automatically. */
static const
struct sensor_device_attribute_2 abituguru_sysfs_bank1_templ[2][9] = {
	{
	SENSOR_ATTR_2(in%d_input, 0444, show_bank1_value, NULL, 0, 0),
	SENSOR_ATTR_2(in%d_min, 0644, show_bank1_setting,
		store_bank1_setting, 1, 0),
	SENSOR_ATTR_2(in%d_min_alarm, 0444, show_bank1_alarm, NULL,
		ABIT_UGURU_VOLT_LOW_ALARM_FLAG, 0),
	SENSOR_ATTR_2(in%d_max, 0644, show_bank1_setting,
		store_bank1_setting, 2, 0),
	SENSOR_ATTR_2(in%d_max_alarm, 0444, show_bank1_alarm, NULL,
		ABIT_UGURU_VOLT_HIGH_ALARM_FLAG, 0),
	SENSOR_ATTR_2(in%d_beep, 0644, show_bank1_mask,
		store_bank1_mask, ABIT_UGURU_BEEP_ENABLE, 0),
	SENSOR_ATTR_2(in%d_shutdown, 0644, show_bank1_mask,
		store_bank1_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0),
	SENSOR_ATTR_2(in%d_min_alarm_enable, 0644, show_bank1_mask,
		store_bank1_mask, ABIT_UGURU_VOLT_LOW_ALARM_ENABLE, 0),
	SENSOR_ATTR_2(in%d_max_alarm_enable, 0644, show_bank1_mask,
		store_bank1_mask, ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE, 0),
	}, {
	SENSOR_ATTR_2(temp%d_input, 0444, show_bank1_value, NULL, 0, 0),
	SENSOR_ATTR_2(temp%d_alarm, 0444, show_bank1_alarm, NULL,
		ABIT_UGURU_TEMP_HIGH_ALARM_FLAG, 0),
	SENSOR_ATTR_2(temp%d_max, 0644, show_bank1_setting,
		store_bank1_setting, 1, 0),
	SENSOR_ATTR_2(temp%d_crit, 0644, show_bank1_setting,
		store_bank1_setting, 2, 0),
	SENSOR_ATTR_2(temp%d_beep, 0644, show_bank1_mask,
		store_bank1_mask, ABIT_UGURU_BEEP_ENABLE, 0),
	SENSOR_ATTR_2(temp%d_shutdown, 0644, show_bank1_mask,
		store_bank1_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0),
	SENSOR_ATTR_2(temp%d_alarm_enable, 0644, show_bank1_mask,
		store_bank1_mask, ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE, 0),
	}
};

static const struct sensor_device_attribute_2 abituguru_sysfs_fan_templ[6] = {
	SENSOR_ATTR_2(fan%d_input, 0444, show_bank2_value, NULL, 0, 0),
	SENSOR_ATTR_2(fan%d_alarm, 0444, show_bank2_alarm, NULL, 0, 0),
	SENSOR_ATTR_2(fan%d_min, 0644, show_bank2_setting,
		store_bank2_setting, 1, 0),
	SENSOR_ATTR_2(fan%d_beep, 0644, show_bank2_mask,
		store_bank2_mask, ABIT_UGURU_BEEP_ENABLE, 0),
	SENSOR_ATTR_2(fan%d_shutdown, 0644, show_bank2_mask,
		store_bank2_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0),
	SENSOR_ATTR_2(fan%d_alarm_enable, 0644, show_bank2_mask,
		store_bank2_mask, ABIT_UGURU_FAN_LOW_ALARM_ENABLE, 0),
};

static const struct sensor_device_attribute_2 abituguru_sysfs_pwm_templ[6] = {
	SENSOR_ATTR_2(pwm%d_enable, 0644, show_pwm_enable,
		store_pwm_enable, 0, 0),
	SENSOR_ATTR_2(pwm%d_auto_channels_temp, 0644, show_pwm_sensor,
		store_pwm_sensor, 0, 0),
	SENSOR_ATTR_2(pwm%d_auto_point1_pwm, 0644, show_pwm_setting,
		store_pwm_setting, 1, 0),
	SENSOR_ATTR_2(pwm%d_auto_point2_pwm, 0644, show_pwm_setting,
		store_pwm_setting, 2, 0),
	SENSOR_ATTR_2(pwm%d_auto_point1_temp, 0644, show_pwm_setting,
		store_pwm_setting, 3, 0),
	SENSOR_ATTR_2(pwm%d_auto_point2_temp, 0644, show_pwm_setting,
		store_pwm_setting, 4, 0),
};

H
Hans de Goede 已提交
1263
static struct sensor_device_attribute_2 abituguru_sysfs_attr[] = {
1264 1265 1266 1267 1268 1269
	SENSOR_ATTR_2(name, 0444, show_name, NULL, 0, 0),
};

static int __devinit abituguru_probe(struct platform_device *pdev)
{
	struct abituguru_data *data;
H
Hans de Goede 已提交
1270
	int i, j, used, sysfs_names_free, sysfs_attr_i, res = -ENODEV;
1271 1272
	char *sysfs_filename;

1273 1274 1275 1276
	/*
	 * El weirdo probe order, to keep the sysfs order identical to the
	 * BIOS and window-appliction listing order.
	 */
H
Hans de Goede 已提交
1277 1278 1279
	const u8 probe_order[ABIT_UGURU_MAX_BANK1_SENSORS] = {
		0x00, 0x01, 0x03, 0x04, 0x0A, 0x08, 0x0E, 0x02,
		0x09, 0x06, 0x05, 0x0B, 0x0F, 0x0D, 0x07, 0x0C };
1280

1281 1282
	data = kzalloc(sizeof(struct abituguru_data), GFP_KERNEL);
	if (!data)
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
		return -ENOMEM;

	data->addr = platform_get_resource(pdev, IORESOURCE_IO, 0)->start;
	mutex_init(&data->update_lock);
	platform_set_drvdata(pdev, data);

	/* See if the uGuru is ready */
	if (inb_p(data->addr + ABIT_UGURU_DATA) == ABIT_UGURU_STATUS_INPUT)
		data->uguru_ready = 1;

1293 1294 1295 1296 1297
	/*
	 * Completely read the uGuru this has 2 purposes:
	 * - testread / see if one really is there.
	 * - make an in memory copy of all the uguru settings for future use.
	 */
1298
	if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0,
H
Hans de Goede 已提交
1299 1300
			data->alarms, 3, ABIT_UGURU_MAX_RETRIES) != 3)
		goto abituguru_probe_error;
1301

H
Hans de Goede 已提交
1302
	for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) {
1303 1304
		if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1, i,
				&data->bank1_value[i], 1,
H
Hans de Goede 已提交
1305 1306
				ABIT_UGURU_MAX_RETRIES) != 1)
			goto abituguru_probe_error;
1307 1308
		if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1+1, i,
				data->bank1_settings[i], 3,
H
Hans de Goede 已提交
1309 1310
				ABIT_UGURU_MAX_RETRIES) != 3)
			goto abituguru_probe_error;
1311
	}
1312 1313 1314 1315 1316 1317 1318
	/*
	 * Note: We don't know how many bank2 sensors / pwms there really are,
	 * but in order to "detect" this we need to read the maximum amount
	 * anyways. If we read sensors/pwms not there we'll just read crap
	 * this can't hurt. We need the detection because we don't want
	 * unwanted writes, which will hurt!
	 */
1319 1320 1321
	for (i = 0; i < ABIT_UGURU_MAX_BANK2_SENSORS; i++) {
		if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK2, i,
				&data->bank2_value[i], 1,
H
Hans de Goede 已提交
1322 1323
				ABIT_UGURU_MAX_RETRIES) != 1)
			goto abituguru_probe_error;
1324 1325
		if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK2+1, i,
				data->bank2_settings[i], 2,
H
Hans de Goede 已提交
1326 1327
				ABIT_UGURU_MAX_RETRIES) != 2)
			goto abituguru_probe_error;
1328 1329 1330 1331
	}
	for (i = 0; i < ABIT_UGURU_MAX_PWMS; i++) {
		if (abituguru_read(data, ABIT_UGURU_FAN_PWM, i,
				data->pwm_settings[i], 5,
H
Hans de Goede 已提交
1332 1333
				ABIT_UGURU_MAX_RETRIES) != 5)
			goto abituguru_probe_error;
1334 1335 1336 1337
	}
	data->last_updated = jiffies;

	/* Detect sensor types and fill the sysfs attr for bank1 */
H
Hans de Goede 已提交
1338 1339 1340 1341
	sysfs_attr_i = 0;
	sysfs_filename = data->sysfs_names;
	sysfs_names_free = ABITUGURU_SYSFS_NAMES_LENGTH;
	for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) {
1342
		res = abituguru_detect_bank1_sensor_type(data, probe_order[i]);
H
Hans de Goede 已提交
1343 1344
		if (res < 0)
			goto abituguru_probe_error;
1345 1346 1347
		if (res == ABIT_UGURU_NC)
			continue;

H
Hans de Goede 已提交
1348
		/* res 1 (temp) sensors have 7 sysfs entries, 0 (in) 9 */
1349
		for (j = 0; j < (res ? 7 : 9); j++) {
H
Hans de Goede 已提交
1350 1351 1352 1353
			used = snprintf(sysfs_filename, sysfs_names_free,
				abituguru_sysfs_bank1_templ[res][j].dev_attr.
				attr.name, data->bank1_sensors[res] + res)
				+ 1;
1354 1355 1356 1357 1358
			data->sysfs_attr[sysfs_attr_i] =
				abituguru_sysfs_bank1_templ[res][j];
			data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name =
				sysfs_filename;
			data->sysfs_attr[sysfs_attr_i].index = probe_order[i];
H
Hans de Goede 已提交
1359 1360
			sysfs_filename += used;
			sysfs_names_free -= used;
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
			sysfs_attr_i++;
		}
		data->bank1_max_value[probe_order[i]] =
			abituguru_bank1_max_value[res];
		data->bank1_address[res][data->bank1_sensors[res]] =
			probe_order[i];
		data->bank1_sensors[res]++;
	}
	/* Detect number of sensors and fill the sysfs attr for bank2 (fans) */
	abituguru_detect_no_bank2_sensors(data);
	for (i = 0; i < data->bank2_sensors; i++) {
H
Hans de Goede 已提交
1372 1373 1374 1375
		for (j = 0; j < ARRAY_SIZE(abituguru_sysfs_fan_templ); j++) {
			used = snprintf(sysfs_filename, sysfs_names_free,
				abituguru_sysfs_fan_templ[j].dev_attr.attr.name,
				i + 1) + 1;
1376 1377 1378 1379 1380
			data->sysfs_attr[sysfs_attr_i] =
				abituguru_sysfs_fan_templ[j];
			data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name =
				sysfs_filename;
			data->sysfs_attr[sysfs_attr_i].index = i;
H
Hans de Goede 已提交
1381 1382
			sysfs_filename += used;
			sysfs_names_free -= used;
1383 1384 1385 1386 1387 1388
			sysfs_attr_i++;
		}
	}
	/* Detect number of sensors and fill the sysfs attr for pwms */
	abituguru_detect_no_pwms(data);
	for (i = 0; i < data->pwms; i++) {
H
Hans de Goede 已提交
1389 1390 1391 1392
		for (j = 0; j < ARRAY_SIZE(abituguru_sysfs_pwm_templ); j++) {
			used = snprintf(sysfs_filename, sysfs_names_free,
				abituguru_sysfs_pwm_templ[j].dev_attr.attr.name,
				i + 1) + 1;
1393 1394 1395 1396 1397
			data->sysfs_attr[sysfs_attr_i] =
				abituguru_sysfs_pwm_templ[j];
			data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name =
				sysfs_filename;
			data->sysfs_attr[sysfs_attr_i].index = i;
H
Hans de Goede 已提交
1398 1399
			sysfs_filename += used;
			sysfs_names_free -= used;
1400 1401 1402
			sysfs_attr_i++;
		}
	}
H
Hans de Goede 已提交
1403 1404
	/* Fail safe check, this should never happen! */
	if (sysfs_names_free < 0) {
1405 1406
		pr_err("Fatal error ran out of space for sysfs attr names. %s %s",
		       never_happen, report_this);
H
Hans de Goede 已提交
1407 1408
		res = -ENAMETOOLONG;
		goto abituguru_probe_error;
1409
	}
1410
	pr_info("found Abit uGuru\n");
1411 1412 1413

	/* Register sysfs hooks */
	for (i = 0; i < sysfs_attr_i; i++)
1414 1415 1416
		if (device_create_file(&pdev->dev,
				&data->sysfs_attr[i].dev_attr))
			goto abituguru_probe_error;
H
Hans de Goede 已提交
1417
	for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++)
1418 1419 1420
		if (device_create_file(&pdev->dev,
				&abituguru_sysfs_attr[i].dev_attr))
			goto abituguru_probe_error;
1421

1422 1423
	data->hwmon_dev = hwmon_device_register(&pdev->dev);
	if (!IS_ERR(data->hwmon_dev))
1424
		return 0; /* success */
H
Hans de Goede 已提交
1425

1426
	res = PTR_ERR(data->hwmon_dev);
H
Hans de Goede 已提交
1427
abituguru_probe_error:
1428 1429 1430 1431 1432
	for (i = 0; data->sysfs_attr[i].dev_attr.attr.name; i++)
		device_remove_file(&pdev->dev, &data->sysfs_attr[i].dev_attr);
	for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++)
		device_remove_file(&pdev->dev,
			&abituguru_sysfs_attr[i].dev_attr);
1433
	platform_set_drvdata(pdev, NULL);
H
Hans de Goede 已提交
1434 1435
	kfree(data);
	return res;
1436 1437 1438 1439
}

static int __devexit abituguru_remove(struct platform_device *pdev)
{
1440
	int i;
1441 1442
	struct abituguru_data *data = platform_get_drvdata(pdev);

1443
	hwmon_device_unregister(data->hwmon_dev);
1444 1445 1446 1447 1448
	for (i = 0; data->sysfs_attr[i].dev_attr.attr.name; i++)
		device_remove_file(&pdev->dev, &data->sysfs_attr[i].dev_attr);
	for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++)
		device_remove_file(&pdev->dev,
			&abituguru_sysfs_attr[i].dev_attr);
1449
	platform_set_drvdata(pdev, NULL);
1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
	kfree(data);

	return 0;
}

static struct abituguru_data *abituguru_update_device(struct device *dev)
{
	int i, err;
	struct abituguru_data *data = dev_get_drvdata(dev);
	/* fake a complete successful read if no update necessary. */
	char success = 1;

	mutex_lock(&data->update_lock);
	if (time_after(jiffies, data->last_updated + HZ)) {
		success = 0;
1465 1466 1467
		err = abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0,
				     data->alarms, 3, 0);
		if (err != 3)
1468
			goto LEAVE_UPDATE;
H
Hans de Goede 已提交
1469
		for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) {
1470 1471 1472
			err = abituguru_read(data, ABIT_UGURU_SENSOR_BANK1,
					     i, &data->bank1_value[i], 1, 0);
			if (err != 1)
1473
				goto LEAVE_UPDATE;
1474 1475 1476
			err = abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1,
					     i, data->bank1_settings[i], 3, 0);
			if (err != 3)
1477 1478
				goto LEAVE_UPDATE;
		}
1479 1480 1481 1482
		for (i = 0; i < data->bank2_sensors; i++) {
			err = abituguru_read(data, ABIT_UGURU_SENSOR_BANK2, i,
					     &data->bank2_value[i], 1, 0);
			if (err != 1)
1483
				goto LEAVE_UPDATE;
1484
		}
1485 1486 1487 1488 1489
		/* success! */
		success = 1;
		data->update_timeouts = 0;
LEAVE_UPDATE:
		/* handle timeout condition */
1490
		if (!success && (err == -EBUSY || err >= 0)) {
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
			/* No overflow please */
			if (data->update_timeouts < 255u)
				data->update_timeouts++;
			if (data->update_timeouts <= ABIT_UGURU_MAX_TIMEOUTS) {
				ABIT_UGURU_DEBUG(3, "timeout exceeded, will "
					"try again next update\n");
				/* Just a timeout, fake a successful read */
				success = 1;
			} else
				ABIT_UGURU_DEBUG(1, "timeout exceeded %d "
					"times waiting for more input state\n",
					(int)data->update_timeouts);
		}
		/* On success set last_updated */
		if (success)
			data->last_updated = jiffies;
	}
	mutex_unlock(&data->update_lock);

	if (success)
		return data;
	else
		return NULL;
}

1516 1517
#ifdef CONFIG_PM_SLEEP
static int abituguru_suspend(struct device *dev)
1518
{
1519
	struct abituguru_data *data = dev_get_drvdata(dev);
1520 1521 1522 1523
	/*
	 * make sure all communications with the uguru are done and no new
	 * ones are started
	 */
1524 1525 1526 1527
	mutex_lock(&data->update_lock);
	return 0;
}

1528
static int abituguru_resume(struct device *dev)
1529
{
1530
	struct abituguru_data *data = dev_get_drvdata(dev);
1531 1532 1533 1534 1535 1536
	/* See if the uGuru is still ready */
	if (inb_p(data->addr + ABIT_UGURU_DATA) != ABIT_UGURU_STATUS_INPUT)
		data->uguru_ready = 0;
	mutex_unlock(&data->update_lock);
	return 0;
}
1537 1538 1539

static SIMPLE_DEV_PM_OPS(abituguru_pm, abituguru_suspend, abituguru_resume);
#define ABIT_UGURU_PM	&abituguru_pm
1540
#else
1541
#define ABIT_UGURU_PM	NULL
1542 1543
#endif /* CONFIG_PM */

1544 1545 1546 1547
static struct platform_driver abituguru_driver = {
	.driver = {
		.owner	= THIS_MODULE,
		.name	= ABIT_UGURU_NAME,
1548
		.pm	= ABIT_UGURU_PM,
1549
	},
1550 1551
	.probe		= abituguru_probe,
	.remove		= __devexit_p(abituguru_remove),
1552 1553 1554 1555
};

static int __init abituguru_detect(void)
{
1556 1557 1558 1559 1560 1561 1562 1563
	/*
	 * See if there is an uguru there. After a reboot uGuru will hold 0x00
	 * at DATA and 0xAC, when this driver has already been loaded once
	 * DATA will hold 0x08. For most uGuru's CMD will hold 0xAC in either
	 * scenario but some will hold 0x00.
	 * Some uGuru's initially hold 0x09 at DATA and will only hold 0x08
	 * after reading CMD first, so CMD must be read first!
	 */
1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
	u8 cmd_val = inb_p(ABIT_UGURU_BASE + ABIT_UGURU_CMD);
	u8 data_val = inb_p(ABIT_UGURU_BASE + ABIT_UGURU_DATA);
	if (((data_val == 0x00) || (data_val == 0x08)) &&
	    ((cmd_val == 0x00) || (cmd_val == 0xAC)))
		return ABIT_UGURU_BASE;

	ABIT_UGURU_DEBUG(2, "no Abit uGuru found, data = 0x%02X, cmd = "
		"0x%02X\n", (unsigned int)data_val, (unsigned int)cmd_val);

	if (force) {
1574
		pr_info("Assuming Abit uGuru is present because of \"force\" parameter\n");
1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
		return ABIT_UGURU_BASE;
	}

	/* No uGuru found */
	return -ENODEV;
}

static struct platform_device *abituguru_pdev;

static int __init abituguru_init(void)
{
	int address, err;
	struct resource res = { .flags = IORESOURCE_IO };
1588
	const char *board_vendor = dmi_get_system_info(DMI_BOARD_VENDOR);
1589 1590 1591 1592 1593 1594

	/* safety check, refuse to load on non Abit motherboards */
	if (!force && (!board_vendor ||
			strcmp(board_vendor, "http://www.abit.com.tw/")))
		return -ENODEV;

1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
	address = abituguru_detect();
	if (address < 0)
		return address;

	err = platform_driver_register(&abituguru_driver);
	if (err)
		goto exit;

	abituguru_pdev = platform_device_alloc(ABIT_UGURU_NAME, address);
	if (!abituguru_pdev) {
1605
		pr_err("Device allocation failed\n");
1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
		err = -ENOMEM;
		goto exit_driver_unregister;
	}

	res.start = address;
	res.end = address + ABIT_UGURU_REGION_LENGTH - 1;
	res.name = ABIT_UGURU_NAME;

	err = platform_device_add_resources(abituguru_pdev, &res, 1);
	if (err) {
1616
		pr_err("Device resource addition failed (%d)\n", err);
1617 1618 1619 1620 1621
		goto exit_device_put;
	}

	err = platform_device_add(abituguru_pdev);
	if (err) {
1622
		pr_err("Device addition failed (%d)\n", err);
1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
		goto exit_device_put;
	}

	return 0;

exit_device_put:
	platform_device_put(abituguru_pdev);
exit_driver_unregister:
	platform_driver_unregister(&abituguru_driver);
exit:
	return err;
}

static void __exit abituguru_exit(void)
{
	platform_device_unregister(abituguru_pdev);
	platform_driver_unregister(&abituguru_driver);
}

1642
MODULE_AUTHOR("Hans de Goede <hdegoede@redhat.com>");
1643 1644 1645 1646 1647
MODULE_DESCRIPTION("Abit uGuru Sensor device");
MODULE_LICENSE("GPL");

module_init(abituguru_init);
module_exit(abituguru_exit);