base.c 66.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/*
 * Procedures for creating, accessing and interpreting the device tree.
 *
 * Paul Mackerras	August 1996.
 * Copyright (C) 1996-2005 Paul Mackerras.
 *
 *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
 *    {engebret|bergner}@us.ibm.com
 *
 *  Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
 *
12 13
 *  Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
 *  Grant Likely.
14 15 16 17 18 19
 *
 *      This program is free software; you can redistribute it and/or
 *      modify it under the terms of the GNU General Public License
 *      as published by the Free Software Foundation; either version
 *      2 of the License, or (at your option) any later version.
 */
20 21 22

#define pr_fmt(fmt)	"OF: " fmt

23
#include <linux/console.h>
24
#include <linux/ctype.h>
25
#include <linux/cpu.h>
26 27
#include <linux/module.h>
#include <linux/of.h>
28
#include <linux/of_graph.h>
S
Stephen Rothwell 已提交
29
#include <linux/spinlock.h>
30
#include <linux/slab.h>
31
#include <linux/string.h>
J
Jeremy Kerr 已提交
32
#include <linux/proc_fs.h>
S
Stephen Rothwell 已提交
33

34
#include "of_private.h"
35

36
LIST_HEAD(aliases_lookup);
37

G
Grant Likely 已提交
38 39
struct device_node *of_root;
EXPORT_SYMBOL(of_root);
40
struct device_node *of_chosen;
41
struct device_node *of_aliases;
42
struct device_node *of_stdout;
43
static const char *of_stdout_options;
44

45
struct kset *of_kset;
46 47

/*
48 49 50 51
 * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
 * This mutex must be held whenever modifications are being made to the
 * device tree. The of_{attach,detach}_node() and
 * of_{add,remove,update}_property() helpers make sure this happens.
52
 */
53
DEFINE_MUTEX(of_mutex);
54

G
Grant Likely 已提交
55
/* use when traversing tree through the child, sibling,
S
Stephen Rothwell 已提交
56 57
 * or parent members of struct device_node.
 */
58
DEFINE_RAW_SPINLOCK(devtree_lock);
59 60 61

int of_n_addr_cells(struct device_node *np)
{
62
	const __be32 *ip;
63 64 65 66 67 68

	do {
		if (np->parent)
			np = np->parent;
		ip = of_get_property(np, "#address-cells", NULL);
		if (ip)
69
			return be32_to_cpup(ip);
70 71 72 73 74 75 76 77
	} while (np->parent);
	/* No #address-cells property for the root node */
	return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
}
EXPORT_SYMBOL(of_n_addr_cells);

int of_n_size_cells(struct device_node *np)
{
78
	const __be32 *ip;
79 80 81 82 83 84

	do {
		if (np->parent)
			np = np->parent;
		ip = of_get_property(np, "#size-cells", NULL);
		if (ip)
85
			return be32_to_cpup(ip);
86 87 88 89 90 91
	} while (np->parent);
	/* No #size-cells property for the root node */
	return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
}
EXPORT_SYMBOL(of_n_size_cells);

92 93 94
#ifdef CONFIG_NUMA
int __weak of_node_to_nid(struct device_node *np)
{
95
	return NUMA_NO_NODE;
96 97 98
}
#endif

99
#ifndef CONFIG_OF_DYNAMIC
100 101 102 103
static void of_node_release(struct kobject *kobj)
{
	/* Without CONFIG_OF_DYNAMIC, no nodes gets freed */
}
104
#endif /* CONFIG_OF_DYNAMIC */
105

106 107 108 109 110 111 112 113 114 115 116 117
struct kobj_type of_node_ktype = {
	.release = of_node_release,
};

static ssize_t of_node_property_read(struct file *filp, struct kobject *kobj,
				struct bin_attribute *bin_attr, char *buf,
				loff_t offset, size_t count)
{
	struct property *pp = container_of(bin_attr, struct property, attr);
	return memory_read_from_buffer(buf, count, &offset, pp->value, pp->length);
}

118
/* always return newly allocated name, caller must free after use */
119 120 121 122 123 124 125 126 127 128 129 130 131 132
static const char *safe_name(struct kobject *kobj, const char *orig_name)
{
	const char *name = orig_name;
	struct kernfs_node *kn;
	int i = 0;

	/* don't be a hero. After 16 tries give up */
	while (i < 16 && (kn = sysfs_get_dirent(kobj->sd, name))) {
		sysfs_put(kn);
		if (name != orig_name)
			kfree(name);
		name = kasprintf(GFP_KERNEL, "%s#%i", orig_name, ++i);
	}

133 134 135
	if (name == orig_name) {
		name = kstrdup(orig_name, GFP_KERNEL);
	} else {
136
		pr_warn("Duplicate name in %s, renamed to \"%s\"\n",
137
			kobject_name(kobj), name);
138
	}
139 140 141
	return name;
}

142
int __of_add_property_sysfs(struct device_node *np, struct property *pp)
143 144 145 146 147 148
{
	int rc;

	/* Important: Don't leak passwords */
	bool secure = strncmp(pp->name, "security-", 9) == 0;

149 150 151
	if (!IS_ENABLED(CONFIG_SYSFS))
		return 0;

152 153 154
	if (!of_kset || !of_node_is_attached(np))
		return 0;

155 156 157 158 159 160 161 162 163 164 165
	sysfs_bin_attr_init(&pp->attr);
	pp->attr.attr.name = safe_name(&np->kobj, pp->name);
	pp->attr.attr.mode = secure ? S_IRUSR : S_IRUGO;
	pp->attr.size = secure ? 0 : pp->length;
	pp->attr.read = of_node_property_read;

	rc = sysfs_create_bin_file(&np->kobj, &pp->attr);
	WARN(rc, "error adding attribute %s to node %s\n", pp->name, np->full_name);
	return rc;
}

166
int __of_attach_node_sysfs(struct device_node *np)
167 168
{
	const char *name;
169
	struct kobject *parent;
170 171 172
	struct property *pp;
	int rc;

173 174 175
	if (!IS_ENABLED(CONFIG_SYSFS))
		return 0;

176 177 178
	if (!of_kset)
		return 0;

179 180 181
	np->kobj.kset = of_kset;
	if (!np->parent) {
		/* Nodes without parents are new top level trees */
182 183
		name = safe_name(&of_kset->kobj, "base");
		parent = NULL;
184 185
	} else {
		name = safe_name(&np->parent->kobj, kbasename(np->full_name));
186
		parent = &np->parent->kobj;
187
	}
188 189 190 191
	if (!name)
		return -ENOMEM;
	rc = kobject_add(&np->kobj, parent, "%s", name);
	kfree(name);
192 193 194 195 196 197 198 199 200
	if (rc)
		return rc;

	for_each_property_of_node(np, pp)
		__of_add_property_sysfs(np, pp);

	return 0;
}

201
void __init of_core_init(void)
202 203 204 205
{
	struct device_node *np;

	/* Create the kset, and register existing nodes */
206
	mutex_lock(&of_mutex);
207 208
	of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
	if (!of_kset) {
209
		mutex_unlock(&of_mutex);
210
		pr_err("failed to register existing nodes\n");
211
		return;
212 213
	}
	for_each_of_allnodes(np)
214
		__of_attach_node_sysfs(np);
215
	mutex_unlock(&of_mutex);
216

G
Grant Likely 已提交
217
	/* Symlink in /proc as required by userspace ABI */
G
Grant Likely 已提交
218
	if (of_root)
219 220 221
		proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
}

222 223
static struct property *__of_find_property(const struct device_node *np,
					   const char *name, int *lenp)
S
Stephen Rothwell 已提交
224 225 226
{
	struct property *pp;

227 228 229
	if (!np)
		return NULL;

230
	for (pp = np->properties; pp; pp = pp->next) {
S
Stephen Rothwell 已提交
231
		if (of_prop_cmp(pp->name, name) == 0) {
232
			if (lenp)
S
Stephen Rothwell 已提交
233 234 235 236
				*lenp = pp->length;
			break;
		}
	}
237 238 239 240 241 242 243 244 245

	return pp;
}

struct property *of_find_property(const struct device_node *np,
				  const char *name,
				  int *lenp)
{
	struct property *pp;
246
	unsigned long flags;
247

248
	raw_spin_lock_irqsave(&devtree_lock, flags);
249
	pp = __of_find_property(np, name, lenp);
250
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
S
Stephen Rothwell 已提交
251 252 253 254 255

	return pp;
}
EXPORT_SYMBOL(of_find_property);

G
Grant Likely 已提交
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
struct device_node *__of_find_all_nodes(struct device_node *prev)
{
	struct device_node *np;
	if (!prev) {
		np = of_root;
	} else if (prev->child) {
		np = prev->child;
	} else {
		/* Walk back up looking for a sibling, or the end of the structure */
		np = prev;
		while (np->parent && !np->sibling)
			np = np->parent;
		np = np->sibling; /* Might be null at the end of the tree */
	}
	return np;
}

273 274 275 276 277 278 279 280 281 282 283
/**
 * of_find_all_nodes - Get next node in global list
 * @prev:	Previous node or NULL to start iteration
 *		of_node_put() will be called on it
 *
 * Returns a node pointer with refcount incremented, use
 * of_node_put() on it when done.
 */
struct device_node *of_find_all_nodes(struct device_node *prev)
{
	struct device_node *np;
284
	unsigned long flags;
285

286
	raw_spin_lock_irqsave(&devtree_lock, flags);
G
Grant Likely 已提交
287 288
	np = __of_find_all_nodes(prev);
	of_node_get(np);
289
	of_node_put(prev);
290
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
291 292 293 294
	return np;
}
EXPORT_SYMBOL(of_find_all_nodes);

295 296 297 298
/*
 * Find a property with a given name for a given node
 * and return the value.
 */
299 300
const void *__of_get_property(const struct device_node *np,
			      const char *name, int *lenp)
301 302 303 304 305 306
{
	struct property *pp = __of_find_property(np, name, lenp);

	return pp ? pp->value : NULL;
}

307 308 309 310 311
/*
 * Find a property with a given name for a given node
 * and return the value.
 */
const void *of_get_property(const struct device_node *np, const char *name,
312
			    int *lenp)
313 314 315 316 317 318
{
	struct property *pp = of_find_property(np, name, lenp);

	return pp ? pp->value : NULL;
}
EXPORT_SYMBOL(of_get_property);
319

320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
/*
 * arch_match_cpu_phys_id - Match the given logical CPU and physical id
 *
 * @cpu: logical cpu index of a core/thread
 * @phys_id: physical identifier of a core/thread
 *
 * CPU logical to physical index mapping is architecture specific.
 * However this __weak function provides a default match of physical
 * id to logical cpu index. phys_id provided here is usually values read
 * from the device tree which must match the hardware internal registers.
 *
 * Returns true if the physical identifier and the logical cpu index
 * correspond to the same core/thread, false otherwise.
 */
bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
{
	return (u32)phys_id == cpu;
}

/**
 * Checks if the given "prop_name" property holds the physical id of the
 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
 * NULL, local thread number within the core is returned in it.
 */
static bool __of_find_n_match_cpu_property(struct device_node *cpun,
			const char *prop_name, int cpu, unsigned int *thread)
{
	const __be32 *cell;
	int ac, prop_len, tid;
	u64 hwid;

	ac = of_n_addr_cells(cpun);
	cell = of_get_property(cpun, prop_name, &prop_len);
353
	if (!cell || !ac)
354
		return false;
355
	prop_len /= sizeof(*cell) * ac;
356 357 358 359 360 361 362 363 364 365 366 367
	for (tid = 0; tid < prop_len; tid++) {
		hwid = of_read_number(cell, ac);
		if (arch_match_cpu_phys_id(cpu, hwid)) {
			if (thread)
				*thread = tid;
			return true;
		}
		cell += ac;
	}
	return false;
}

368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
/*
 * arch_find_n_match_cpu_physical_id - See if the given device node is
 * for the cpu corresponding to logical cpu 'cpu'.  Return true if so,
 * else false.  If 'thread' is non-NULL, the local thread number within the
 * core is returned in it.
 */
bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
					      int cpu, unsigned int *thread)
{
	/* Check for non-standard "ibm,ppc-interrupt-server#s" property
	 * for thread ids on PowerPC. If it doesn't exist fallback to
	 * standard "reg" property.
	 */
	if (IS_ENABLED(CONFIG_PPC) &&
	    __of_find_n_match_cpu_property(cpun,
					   "ibm,ppc-interrupt-server#s",
					   cpu, thread))
		return true;

387
	return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread);
388 389
}

390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
/**
 * of_get_cpu_node - Get device node associated with the given logical CPU
 *
 * @cpu: CPU number(logical index) for which device node is required
 * @thread: if not NULL, local thread number within the physical core is
 *          returned
 *
 * The main purpose of this function is to retrieve the device node for the
 * given logical CPU index. It should be used to initialize the of_node in
 * cpu device. Once of_node in cpu device is populated, all the further
 * references can use that instead.
 *
 * CPU logical to physical index mapping is architecture specific and is built
 * before booting secondary cores. This function uses arch_match_cpu_phys_id
 * which can be overridden by architecture specific implementation.
 *
406 407
 * Returns a node pointer for the logical cpu with refcount incremented, use
 * of_node_put() on it when done. Returns NULL if not found.
408 409 410
 */
struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
{
411
	struct device_node *cpun;
412

413 414
	for_each_node_by_type(cpun, "cpu") {
		if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
415 416 417 418 419 420
			return cpun;
	}
	return NULL;
}
EXPORT_SYMBOL(of_get_cpu_node);

421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
/**
 * __of_device_is_compatible() - Check if the node matches given constraints
 * @device: pointer to node
 * @compat: required compatible string, NULL or "" for any match
 * @type: required device_type value, NULL or "" for any match
 * @name: required node name, NULL or "" for any match
 *
 * Checks if the given @compat, @type and @name strings match the
 * properties of the given @device. A constraints can be skipped by
 * passing NULL or an empty string as the constraint.
 *
 * Returns 0 for no match, and a positive integer on match. The return
 * value is a relative score with larger values indicating better
 * matches. The score is weighted for the most specific compatible value
 * to get the highest score. Matching type is next, followed by matching
 * name. Practically speaking, this results in the following priority
 * order for matches:
 *
 * 1. specific compatible && type && name
 * 2. specific compatible && type
 * 3. specific compatible && name
 * 4. specific compatible
 * 5. general compatible && type && name
 * 6. general compatible && type
 * 7. general compatible && name
 * 8. general compatible
 * 9. type && name
 * 10. type
 * 11. name
450
 */
451
static int __of_device_is_compatible(const struct device_node *device,
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
				     const char *compat, const char *type, const char *name)
{
	struct property *prop;
	const char *cp;
	int index = 0, score = 0;

	/* Compatible match has highest priority */
	if (compat && compat[0]) {
		prop = __of_find_property(device, "compatible", NULL);
		for (cp = of_prop_next_string(prop, NULL); cp;
		     cp = of_prop_next_string(prop, cp), index++) {
			if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
				score = INT_MAX/2 - (index << 2);
				break;
			}
		}
		if (!score)
			return 0;
	}
471

472 473 474 475 476
	/* Matching type is better than matching name */
	if (type && type[0]) {
		if (!device->type || of_node_cmp(type, device->type))
			return 0;
		score += 2;
477 478
	}

479 480 481 482 483 484 485 486
	/* Matching name is a bit better than not */
	if (name && name[0]) {
		if (!device->name || of_node_cmp(name, device->name))
			return 0;
		score++;
	}

	return score;
487
}
488 489 490 491 492 493 494

/** Checks if the given "compat" string matches one of the strings in
 * the device's "compatible" property
 */
int of_device_is_compatible(const struct device_node *device,
		const char *compat)
{
495
	unsigned long flags;
496 497
	int res;

498
	raw_spin_lock_irqsave(&devtree_lock, flags);
499
	res = __of_device_is_compatible(device, compat, NULL, NULL);
500
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
501 502
	return res;
}
503
EXPORT_SYMBOL(of_device_is_compatible);
S
Stephen Rothwell 已提交
504

505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
/** Checks if the device is compatible with any of the entries in
 *  a NULL terminated array of strings. Returns the best match
 *  score or 0.
 */
int of_device_compatible_match(struct device_node *device,
			       const char *const *compat)
{
	unsigned int tmp, score = 0;

	if (!compat)
		return 0;

	while (*compat) {
		tmp = of_device_is_compatible(device, *compat);
		if (tmp > score)
			score = tmp;
		compat++;
	}

	return score;
}

G
Grant Likely 已提交
527
/**
528
 * of_machine_is_compatible - Test root of device tree for a given compatible value
G
Grant Likely 已提交
529 530
 * @compat: compatible string to look for in root node's compatible property.
 *
531
 * Returns a positive integer if the root node has the given value in its
G
Grant Likely 已提交
532 533
 * compatible property.
 */
534
int of_machine_is_compatible(const char *compat)
G
Grant Likely 已提交
535 536 537 538 539 540 541 542 543 544 545
{
	struct device_node *root;
	int rc = 0;

	root = of_find_node_by_path("/");
	if (root) {
		rc = of_device_is_compatible(root, compat);
		of_node_put(root);
	}
	return rc;
}
546
EXPORT_SYMBOL(of_machine_is_compatible);
G
Grant Likely 已提交
547

548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
/**
 * of_machine_get_model_name - Find and read the model name or the compatible
 *		value for the machine.
 * @model:	pointer to null terminated return string, modified only if
 *		return value is 0.
 *
 * Returns a string containing either the model name or the compatible value
 * of the machine if found, else return error.
 *
 * Search for a machine model name or the compatible if model name is missing
 * in a device tree node and retrieve a null terminated string value (pointer
 * to data, not a copy). Returns 0 on success, -EINVAL if root of the device
 * tree is not found and other error returned by of_property_read_string on
 * failure.
 */
int of_machine_get_model_name(const char **model)
{
	int error;

	if (!of_node_get(of_root))
		return -EINVAL;

	error = of_property_read_string(of_root, "model", model);
	if (error)
		error = of_property_read_string_index(of_root, "compatible",
						      0, model);
	of_node_put(of_root);

	return error;
}
EXPORT_SYMBOL(of_machine_get_model_name);

580
/**
581
 *  __of_device_is_available - check if a device is available for use
582
 *
583
 *  @device: Node to check for availability, with locks already held
584
 *
585 586
 *  Returns true if the status property is absent or set to "okay" or "ok",
 *  false otherwise
587
 */
588
static bool __of_device_is_available(const struct device_node *device)
589 590 591 592
{
	const char *status;
	int statlen;

593
	if (!device)
594
		return false;
595

596
	status = __of_get_property(device, "status", &statlen);
597
	if (status == NULL)
598
		return true;
599 600 601

	if (statlen > 0) {
		if (!strcmp(status, "okay") || !strcmp(status, "ok"))
602
			return true;
603 604
	}

605
	return false;
606
}
607 608 609 610 611 612

/**
 *  of_device_is_available - check if a device is available for use
 *
 *  @device: Node to check for availability
 *
613 614
 *  Returns true if the status property is absent or set to "okay" or "ok",
 *  false otherwise
615
 */
616
bool of_device_is_available(const struct device_node *device)
617 618
{
	unsigned long flags;
619
	bool res;
620 621 622 623 624 625 626

	raw_spin_lock_irqsave(&devtree_lock, flags);
	res = __of_device_is_available(device);
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
	return res;

}
627 628
EXPORT_SYMBOL(of_device_is_available);

629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
/**
 *  of_device_is_big_endian - check if a device has BE registers
 *
 *  @device: Node to check for endianness
 *
 *  Returns true if the device has a "big-endian" property, or if the kernel
 *  was compiled for BE *and* the device has a "native-endian" property.
 *  Returns false otherwise.
 *
 *  Callers would nominally use ioread32be/iowrite32be if
 *  of_device_is_big_endian() == true, or readl/writel otherwise.
 */
bool of_device_is_big_endian(const struct device_node *device)
{
	if (of_property_read_bool(device, "big-endian"))
		return true;
	if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
	    of_property_read_bool(device, "native-endian"))
		return true;
	return false;
}
EXPORT_SYMBOL(of_device_is_big_endian);

S
Stephen Rothwell 已提交
652 653 654 655 656 657 658 659 660 661
/**
 *	of_get_parent - Get a node's parent if any
 *	@node:	Node to get parent
 *
 *	Returns a node pointer with refcount incremented, use
 *	of_node_put() on it when done.
 */
struct device_node *of_get_parent(const struct device_node *node)
{
	struct device_node *np;
662
	unsigned long flags;
S
Stephen Rothwell 已提交
663 664 665 666

	if (!node)
		return NULL;

667
	raw_spin_lock_irqsave(&devtree_lock, flags);
S
Stephen Rothwell 已提交
668
	np = of_node_get(node->parent);
669
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
S
Stephen Rothwell 已提交
670 671 672
	return np;
}
EXPORT_SYMBOL(of_get_parent);
S
Stephen Rothwell 已提交
673

674 675 676 677
/**
 *	of_get_next_parent - Iterate to a node's parent
 *	@node:	Node to get parent of
 *
G
Geert Uytterhoeven 已提交
678 679 680
 *	This is like of_get_parent() except that it drops the
 *	refcount on the passed node, making it suitable for iterating
 *	through a node's parents.
681 682 683 684 685 686 687
 *
 *	Returns a node pointer with refcount incremented, use
 *	of_node_put() on it when done.
 */
struct device_node *of_get_next_parent(struct device_node *node)
{
	struct device_node *parent;
688
	unsigned long flags;
689 690 691 692

	if (!node)
		return NULL;

693
	raw_spin_lock_irqsave(&devtree_lock, flags);
694 695
	parent = of_node_get(node->parent);
	of_node_put(node);
696
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
697 698
	return parent;
}
699
EXPORT_SYMBOL(of_get_next_parent);
700

701 702 703 704 705
static struct device_node *__of_get_next_child(const struct device_node *node,
						struct device_node *prev)
{
	struct device_node *next;

706 707 708
	if (!node)
		return NULL;

709 710 711 712 713 714 715 716 717 718 719
	next = prev ? prev->sibling : node->child;
	for (; next; next = next->sibling)
		if (of_node_get(next))
			break;
	of_node_put(prev);
	return next;
}
#define __for_each_child_of_node(parent, child) \
	for (child = __of_get_next_child(parent, NULL); child != NULL; \
	     child = __of_get_next_child(parent, child))

S
Stephen Rothwell 已提交
720 721 722 723 724
/**
 *	of_get_next_child - Iterate a node childs
 *	@node:	parent node
 *	@prev:	previous child of the parent node, or NULL to get first
 *
725 726 727
 *	Returns a node pointer with refcount incremented, use of_node_put() on
 *	it when done. Returns NULL when prev is the last child. Decrements the
 *	refcount of prev.
S
Stephen Rothwell 已提交
728 729 730 731 732
 */
struct device_node *of_get_next_child(const struct device_node *node,
	struct device_node *prev)
{
	struct device_node *next;
733
	unsigned long flags;
S
Stephen Rothwell 已提交
734

735
	raw_spin_lock_irqsave(&devtree_lock, flags);
736
	next = __of_get_next_child(node, prev);
737
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
S
Stephen Rothwell 已提交
738 739 740
	return next;
}
EXPORT_SYMBOL(of_get_next_child);
741

742 743 744 745 746 747 748 749 750 751 752 753
/**
 *	of_get_next_available_child - Find the next available child node
 *	@node:	parent node
 *	@prev:	previous child of the parent node, or NULL to get first
 *
 *      This function is like of_get_next_child(), except that it
 *      automatically skips any disabled nodes (i.e. status = "disabled").
 */
struct device_node *of_get_next_available_child(const struct device_node *node,
	struct device_node *prev)
{
	struct device_node *next;
754
	unsigned long flags;
755

756 757 758
	if (!node)
		return NULL;

759
	raw_spin_lock_irqsave(&devtree_lock, flags);
760 761
	next = prev ? prev->sibling : node->child;
	for (; next; next = next->sibling) {
762
		if (!__of_device_is_available(next))
763 764 765 766 767
			continue;
		if (of_node_get(next))
			break;
	}
	of_node_put(prev);
768
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
769 770 771 772
	return next;
}
EXPORT_SYMBOL(of_get_next_available_child);

773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
/**
 *	of_get_child_by_name - Find the child node by name for a given parent
 *	@node:	parent node
 *	@name:	child name to look for.
 *
 *      This function looks for child node for given matching name
 *
 *	Returns a node pointer if found, with refcount incremented, use
 *	of_node_put() on it when done.
 *	Returns NULL if node is not found.
 */
struct device_node *of_get_child_by_name(const struct device_node *node,
				const char *name)
{
	struct device_node *child;

	for_each_child_of_node(node, child)
		if (child->name && (of_node_cmp(child->name, name) == 0))
			break;
	return child;
}
EXPORT_SYMBOL(of_get_child_by_name);

796 797 798 799
static struct device_node *__of_find_node_by_path(struct device_node *parent,
						const char *path)
{
	struct device_node *child;
800
	int len;
801

802
	len = strcspn(path, "/:");
803 804 805 806 807 808 809 810 811 812 813 814 815 816
	if (!len)
		return NULL;

	__for_each_child_of_node(parent, child) {
		const char *name = strrchr(child->full_name, '/');
		if (WARN(!name, "malformed device_node %s\n", child->full_name))
			continue;
		name++;
		if (strncmp(path, name, len) == 0 && (strlen(name) == len))
			return child;
	}
	return NULL;
}

817
/**
818
 *	of_find_node_opts_by_path - Find a node matching a full OF path
819 820 821 822
 *	@path: Either the full path to match, or if the path does not
 *	       start with '/', the name of a property of the /aliases
 *	       node (an alias).  In the case of an alias, the node
 *	       matching the alias' value will be returned.
823 824 825
 *	@opts: Address of a pointer into which to store the start of
 *	       an options string appended to the end of the path with
 *	       a ':' separator.
826 827 828 829 830
 *
 *	Valid paths:
 *		/foo/bar	Full path
 *		foo		Valid alias
 *		foo/bar		Valid alias + relative path
831 832 833 834
 *
 *	Returns a node pointer with refcount incremented, use
 *	of_node_put() on it when done.
 */
835
struct device_node *of_find_node_opts_by_path(const char *path, const char **opts)
836
{
837 838
	struct device_node *np = NULL;
	struct property *pp;
839
	unsigned long flags;
840 841 842 843
	const char *separator = strchr(path, ':');

	if (opts)
		*opts = separator ? separator + 1 : NULL;
844

845
	if (strcmp(path, "/") == 0)
G
Grant Likely 已提交
846
		return of_node_get(of_root);
847 848 849

	/* The path could begin with an alias */
	if (*path != '/') {
850 851 852 853 854 855
		int len;
		const char *p = separator;

		if (!p)
			p = strchrnul(path, '/');
		len = p - path;
856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872

		/* of_aliases must not be NULL */
		if (!of_aliases)
			return NULL;

		for_each_property_of_node(of_aliases, pp) {
			if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
				np = of_find_node_by_path(pp->value);
				break;
			}
		}
		if (!np)
			return NULL;
		path = p;
	}

	/* Step down the tree matching path components */
873
	raw_spin_lock_irqsave(&devtree_lock, flags);
874
	if (!np)
G
Grant Likely 已提交
875
		np = of_node_get(of_root);
876 877 878 879
	while (np && *path == '/') {
		path++; /* Increment past '/' delimiter */
		np = __of_find_node_by_path(np, path);
		path = strchrnul(path, '/');
880 881
		if (separator && separator < path)
			break;
882
	}
883
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
884 885
	return np;
}
886
EXPORT_SYMBOL(of_find_node_opts_by_path);
887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902

/**
 *	of_find_node_by_name - Find a node by its "name" property
 *	@from:	The node to start searching from or NULL, the node
 *		you pass will not be searched, only the next one
 *		will; typically, you pass what the previous call
 *		returned. of_node_put() will be called on it
 *	@name:	The name string to match against
 *
 *	Returns a node pointer with refcount incremented, use
 *	of_node_put() on it when done.
 */
struct device_node *of_find_node_by_name(struct device_node *from,
	const char *name)
{
	struct device_node *np;
903
	unsigned long flags;
904

905
	raw_spin_lock_irqsave(&devtree_lock, flags);
G
Grant Likely 已提交
906
	for_each_of_allnodes_from(from, np)
907 908 909 910
		if (np->name && (of_node_cmp(np->name, name) == 0)
		    && of_node_get(np))
			break;
	of_node_put(from);
911
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931
	return np;
}
EXPORT_SYMBOL(of_find_node_by_name);

/**
 *	of_find_node_by_type - Find a node by its "device_type" property
 *	@from:	The node to start searching from, or NULL to start searching
 *		the entire device tree. The node you pass will not be
 *		searched, only the next one will; typically, you pass
 *		what the previous call returned. of_node_put() will be
 *		called on from for you.
 *	@type:	The type string to match against
 *
 *	Returns a node pointer with refcount incremented, use
 *	of_node_put() on it when done.
 */
struct device_node *of_find_node_by_type(struct device_node *from,
	const char *type)
{
	struct device_node *np;
932
	unsigned long flags;
933

934
	raw_spin_lock_irqsave(&devtree_lock, flags);
G
Grant Likely 已提交
935
	for_each_of_allnodes_from(from, np)
936 937 938 939
		if (np->type && (of_node_cmp(np->type, type) == 0)
		    && of_node_get(np))
			break;
	of_node_put(from);
940
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962
	return np;
}
EXPORT_SYMBOL(of_find_node_by_type);

/**
 *	of_find_compatible_node - Find a node based on type and one of the
 *                                tokens in its "compatible" property
 *	@from:		The node to start searching from or NULL, the node
 *			you pass will not be searched, only the next one
 *			will; typically, you pass what the previous call
 *			returned. of_node_put() will be called on it
 *	@type:		The type string to match "device_type" or NULL to ignore
 *	@compatible:	The string to match to one of the tokens in the device
 *			"compatible" list.
 *
 *	Returns a node pointer with refcount incremented, use
 *	of_node_put() on it when done.
 */
struct device_node *of_find_compatible_node(struct device_node *from,
	const char *type, const char *compatible)
{
	struct device_node *np;
963
	unsigned long flags;
964

965
	raw_spin_lock_irqsave(&devtree_lock, flags);
G
Grant Likely 已提交
966
	for_each_of_allnodes_from(from, np)
967
		if (__of_device_is_compatible(np, compatible, type, NULL) &&
968
		    of_node_get(np))
969 970
			break;
	of_node_put(from);
971
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
972 973 974
	return np;
}
EXPORT_SYMBOL(of_find_compatible_node);
975

976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
/**
 *	of_find_node_with_property - Find a node which has a property with
 *                                   the given name.
 *	@from:		The node to start searching from or NULL, the node
 *			you pass will not be searched, only the next one
 *			will; typically, you pass what the previous call
 *			returned. of_node_put() will be called on it
 *	@prop_name:	The name of the property to look for.
 *
 *	Returns a node pointer with refcount incremented, use
 *	of_node_put() on it when done.
 */
struct device_node *of_find_node_with_property(struct device_node *from,
	const char *prop_name)
{
	struct device_node *np;
	struct property *pp;
993
	unsigned long flags;
994

995
	raw_spin_lock_irqsave(&devtree_lock, flags);
G
Grant Likely 已提交
996
	for_each_of_allnodes_from(from, np) {
997
		for (pp = np->properties; pp; pp = pp->next) {
998 999 1000 1001 1002 1003 1004 1005
			if (of_prop_cmp(pp->name, prop_name) == 0) {
				of_node_get(np);
				goto out;
			}
		}
	}
out:
	of_node_put(from);
1006
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1007 1008 1009 1010
	return np;
}
EXPORT_SYMBOL(of_find_node_with_property);

1011 1012 1013
static
const struct of_device_id *__of_match_node(const struct of_device_id *matches,
					   const struct device_node *node)
1014
{
1015 1016 1017
	const struct of_device_id *best_match = NULL;
	int score, best_score = 0;

1018 1019 1020
	if (!matches)
		return NULL;

1021 1022 1023 1024 1025 1026 1027
	for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
		score = __of_device_is_compatible(node, matches->compatible,
						  matches->type, matches->name);
		if (score > best_score) {
			best_match = matches;
			best_score = score;
		}
1028
	}
1029 1030

	return best_match;
1031
}
1032 1033

/**
G
Geert Uytterhoeven 已提交
1034
 * of_match_node - Tell if a device_node has a matching of_match structure
1035 1036 1037
 *	@matches:	array of of device match structures to search in
 *	@node:		the of device structure to match against
 *
1038
 *	Low level utility function used by device matching.
1039 1040 1041 1042 1043
 */
const struct of_device_id *of_match_node(const struct of_device_id *matches,
					 const struct device_node *node)
{
	const struct of_device_id *match;
1044
	unsigned long flags;
1045

1046
	raw_spin_lock_irqsave(&devtree_lock, flags);
1047
	match = __of_match_node(matches, node);
1048
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1049 1050
	return match;
}
1051 1052 1053
EXPORT_SYMBOL(of_match_node);

/**
1054 1055
 *	of_find_matching_node_and_match - Find a node based on an of_device_id
 *					  match table.
1056 1057 1058 1059 1060
 *	@from:		The node to start searching from or NULL, the node
 *			you pass will not be searched, only the next one
 *			will; typically, you pass what the previous call
 *			returned. of_node_put() will be called on it
 *	@matches:	array of of device match structures to search in
1061
 *	@match		Updated to point at the matches entry which matched
1062 1063 1064 1065
 *
 *	Returns a node pointer with refcount incremented, use
 *	of_node_put() on it when done.
 */
1066 1067 1068
struct device_node *of_find_matching_node_and_match(struct device_node *from,
					const struct of_device_id *matches,
					const struct of_device_id **match)
1069 1070
{
	struct device_node *np;
1071
	const struct of_device_id *m;
1072
	unsigned long flags;
1073

1074 1075 1076
	if (match)
		*match = NULL;

1077
	raw_spin_lock_irqsave(&devtree_lock, flags);
G
Grant Likely 已提交
1078
	for_each_of_allnodes_from(from, np) {
1079
		m = __of_match_node(matches, np);
1080
		if (m && of_node_get(np)) {
1081
			if (match)
1082
				*match = m;
1083
			break;
1084
		}
1085 1086
	}
	of_node_put(from);
1087
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1088 1089
	return np;
}
1090
EXPORT_SYMBOL(of_find_matching_node_and_match);
1091 1092 1093 1094 1095 1096 1097

/**
 * of_modalias_node - Lookup appropriate modalias for a device node
 * @node:	pointer to a device tree node
 * @modalias:	Pointer to buffer that modalias value will be copied into
 * @len:	Length of modalias value
 *
1098 1099 1100 1101
 * Based on the value of the compatible property, this routine will attempt
 * to choose an appropriate modalias value for a particular device tree node.
 * It does this by stripping the manufacturer prefix (as delimited by a ',')
 * from the first entry in the compatible list property.
1102
 *
1103
 * This routine returns 0 on success, <0 on failure.
1104 1105 1106
 */
int of_modalias_node(struct device_node *node, char *modalias, int len)
{
1107 1108
	const char *compatible, *p;
	int cplen;
1109 1110

	compatible = of_get_property(node, "compatible", &cplen);
1111
	if (!compatible || strlen(compatible) > cplen)
1112 1113
		return -ENODEV;
	p = strchr(compatible, ',');
1114
	strlcpy(modalias, p ? p + 1 : compatible, len);
1115 1116 1117 1118
	return 0;
}
EXPORT_SYMBOL_GPL(of_modalias_node);

J
Jeremy Kerr 已提交
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
/**
 * of_find_node_by_phandle - Find a node given a phandle
 * @handle:	phandle of the node to find
 *
 * Returns a node pointer with refcount incremented, use
 * of_node_put() on it when done.
 */
struct device_node *of_find_node_by_phandle(phandle handle)
{
	struct device_node *np;
1129
	unsigned long flags;
J
Jeremy Kerr 已提交
1130

1131 1132 1133
	if (!handle)
		return NULL;

1134
	raw_spin_lock_irqsave(&devtree_lock, flags);
G
Grant Likely 已提交
1135
	for_each_of_allnodes(np)
J
Jeremy Kerr 已提交
1136 1137 1138
		if (np->phandle == handle)
			break;
	of_node_get(np);
1139
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
J
Jeremy Kerr 已提交
1140 1141 1142 1143
	return np;
}
EXPORT_SYMBOL(of_find_node_by_phandle);

1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
/**
 * of_property_count_elems_of_size - Count the number of elements in a property
 *
 * @np:		device node from which the property value is to be read.
 * @propname:	name of the property to be searched.
 * @elem_size:	size of the individual element
 *
 * Search for a property in a device node and count the number of elements of
 * size elem_size in it. Returns number of elements on sucess, -EINVAL if the
 * property does not exist or its length does not match a multiple of elem_size
 * and -ENODATA if the property does not have a value.
 */
int of_property_count_elems_of_size(const struct device_node *np,
				const char *propname, int elem_size)
{
	struct property *prop = of_find_property(np, propname, NULL);

	if (!prop)
		return -EINVAL;
	if (!prop->value)
		return -ENODATA;

	if (prop->length % elem_size != 0) {
		pr_err("size of %s in node %s is not a multiple of %d\n",
		       propname, np->full_name, elem_size);
		return -EINVAL;
	}

	return prop->length / elem_size;
}
EXPORT_SYMBOL_GPL(of_property_count_elems_of_size);

1176 1177 1178 1179 1180
/**
 * of_find_property_value_of_size
 *
 * @np:		device node from which the property value is to be read.
 * @propname:	name of the property to be searched.
1181 1182 1183
 * @min:	minimum allowed length of property value
 * @max:	maximum allowed length of property value (0 means unlimited)
 * @len:	if !=NULL, actual length is written to here
1184 1185 1186 1187
 *
 * Search for a property in a device node and valid the requested size.
 * Returns the property value on success, -EINVAL if the property does not
 *  exist, -ENODATA if property does not have a value, and -EOVERFLOW if the
1188
 * property data is too small or too large.
1189 1190 1191
 *
 */
static void *of_find_property_value_of_size(const struct device_node *np,
1192
			const char *propname, u32 min, u32 max, size_t *len)
1193 1194 1195 1196 1197 1198 1199
{
	struct property *prop = of_find_property(np, propname, NULL);

	if (!prop)
		return ERR_PTR(-EINVAL);
	if (!prop->value)
		return ERR_PTR(-ENODATA);
1200 1201 1202
	if (prop->length < min)
		return ERR_PTR(-EOVERFLOW);
	if (max && prop->length > max)
1203 1204
		return ERR_PTR(-EOVERFLOW);

1205 1206 1207
	if (len)
		*len = prop->length;

1208 1209 1210
	return prop->value;
}

1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
/**
 * of_property_read_u32_index - Find and read a u32 from a multi-value property.
 *
 * @np:		device node from which the property value is to be read.
 * @propname:	name of the property to be searched.
 * @index:	index of the u32 in the list of values
 * @out_value:	pointer to return value, modified only if no error.
 *
 * Search for a property in a device node and read nth 32-bit value from
 * it. Returns 0 on success, -EINVAL if the property does not exist,
 * -ENODATA if property does not have a value, and -EOVERFLOW if the
 * property data isn't large enough.
 *
 * The out_value is modified only if a valid u32 value can be decoded.
 */
int of_property_read_u32_index(const struct device_node *np,
				       const char *propname,
				       u32 index, u32 *out_value)
{
1230
	const u32 *val = of_find_property_value_of_size(np, propname,
1231 1232 1233
					((index + 1) * sizeof(*out_value)),
					0,
					NULL);
1234

1235 1236
	if (IS_ERR(val))
		return PTR_ERR(val);
1237

1238
	*out_value = be32_to_cpup(((__be32 *)val) + index);
1239 1240 1241 1242
	return 0;
}
EXPORT_SYMBOL_GPL(of_property_read_u32_index);

1243
/**
1244 1245
 * of_property_read_variable_u8_array - Find and read an array of u8 from a
 * property, with bounds on the minimum and maximum array size.
1246 1247 1248
 *
 * @np:		device node from which the property value is to be read.
 * @propname:	name of the property to be searched.
L
Lad, Prabhakar 已提交
1249
 * @out_values:	pointer to return value, modified only if return value is 0.
1250 1251 1252 1253
 * @sz_min:	minimum number of array elements to read
 * @sz_max:	maximum number of array elements to read, if zero there is no
 *		upper limit on the number of elements in the dts entry but only
 *		sz_min will be read.
1254 1255
 *
 * Search for a property in a device node and read 8-bit value(s) from
1256 1257 1258
 * it. Returns number of elements read on success, -EINVAL if the property
 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
 * if the property data is smaller than sz_min or longer than sz_max.
1259 1260 1261 1262
 *
 * dts entry of array should be like:
 *	property = /bits/ 8 <0x50 0x60 0x70>;
 *
L
Lad, Prabhakar 已提交
1263
 * The out_values is modified only if a valid u8 value can be decoded.
1264
 */
1265 1266 1267
int of_property_read_variable_u8_array(const struct device_node *np,
					const char *propname, u8 *out_values,
					size_t sz_min, size_t sz_max)
1268
{
1269
	size_t sz, count;
1270
	const u8 *val = of_find_property_value_of_size(np, propname,
1271 1272 1273
						(sz_min * sizeof(*out_values)),
						(sz_max * sizeof(*out_values)),
						&sz);
1274

1275 1276
	if (IS_ERR(val))
		return PTR_ERR(val);
1277

1278 1279 1280 1281 1282 1283 1284
	if (!sz_max)
		sz = sz_min;
	else
		sz /= sizeof(*out_values);

	count = sz;
	while (count--)
1285
		*out_values++ = *val++;
1286 1287

	return sz;
1288
}
1289
EXPORT_SYMBOL_GPL(of_property_read_variable_u8_array);
1290 1291

/**
1292 1293
 * of_property_read_variable_u16_array - Find and read an array of u16 from a
 * property, with bounds on the minimum and maximum array size.
1294 1295 1296
 *
 * @np:		device node from which the property value is to be read.
 * @propname:	name of the property to be searched.
L
Lad, Prabhakar 已提交
1297
 * @out_values:	pointer to return value, modified only if return value is 0.
1298 1299 1300 1301
 * @sz_min:	minimum number of array elements to read
 * @sz_max:	maximum number of array elements to read, if zero there is no
 *		upper limit on the number of elements in the dts entry but only
 *		sz_min will be read.
1302 1303
 *
 * Search for a property in a device node and read 16-bit value(s) from
1304 1305 1306
 * it. Returns number of elements read on success, -EINVAL if the property
 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
 * if the property data is smaller than sz_min or longer than sz_max.
1307 1308 1309 1310
 *
 * dts entry of array should be like:
 *	property = /bits/ 16 <0x5000 0x6000 0x7000>;
 *
L
Lad, Prabhakar 已提交
1311
 * The out_values is modified only if a valid u16 value can be decoded.
1312
 */
1313 1314 1315
int of_property_read_variable_u16_array(const struct device_node *np,
					const char *propname, u16 *out_values,
					size_t sz_min, size_t sz_max)
1316
{
1317
	size_t sz, count;
1318
	const __be16 *val = of_find_property_value_of_size(np, propname,
1319 1320 1321
						(sz_min * sizeof(*out_values)),
						(sz_max * sizeof(*out_values)),
						&sz);
1322

1323 1324
	if (IS_ERR(val))
		return PTR_ERR(val);
1325

1326 1327 1328 1329 1330 1331 1332
	if (!sz_max)
		sz = sz_min;
	else
		sz /= sizeof(*out_values);

	count = sz;
	while (count--)
1333
		*out_values++ = be16_to_cpup(val++);
1334 1335

	return sz;
1336
}
1337
EXPORT_SYMBOL_GPL(of_property_read_variable_u16_array);
1338

1339
/**
1340 1341
 * of_property_read_variable_u32_array - Find and read an array of 32 bit
 * integers from a property, with bounds on the minimum and maximum array size.
1342
 *
1343 1344
 * @np:		device node from which the property value is to be read.
 * @propname:	name of the property to be searched.
L
Lad, Prabhakar 已提交
1345
 * @out_values:	pointer to return value, modified only if return value is 0.
1346 1347 1348 1349
 * @sz_min:	minimum number of array elements to read
 * @sz_max:	maximum number of array elements to read, if zero there is no
 *		upper limit on the number of elements in the dts entry but only
 *		sz_min will be read.
1350
 *
1351
 * Search for a property in a device node and read 32-bit value(s) from
1352 1353 1354
 * it. Returns number of elements read on success, -EINVAL if the property
 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
 * if the property data is smaller than sz_min or longer than sz_max.
1355
 *
L
Lad, Prabhakar 已提交
1356
 * The out_values is modified only if a valid u32 value can be decoded.
1357
 */
1358
int of_property_read_variable_u32_array(const struct device_node *np,
1359
			       const char *propname, u32 *out_values,
1360
			       size_t sz_min, size_t sz_max)
1361
{
1362
	size_t sz, count;
1363
	const __be32 *val = of_find_property_value_of_size(np, propname,
1364 1365 1366
						(sz_min * sizeof(*out_values)),
						(sz_max * sizeof(*out_values)),
						&sz);
1367

1368 1369
	if (IS_ERR(val))
		return PTR_ERR(val);
1370

1371 1372 1373 1374 1375 1376 1377
	if (!sz_max)
		sz = sz_min;
	else
		sz /= sizeof(*out_values);

	count = sz;
	while (count--)
1378
		*out_values++ = be32_to_cpup(val++);
1379 1380

	return sz;
1381
}
1382
EXPORT_SYMBOL_GPL(of_property_read_variable_u32_array);
1383

1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
/**
 * of_property_read_u64 - Find and read a 64 bit integer from a property
 * @np:		device node from which the property value is to be read.
 * @propname:	name of the property to be searched.
 * @out_value:	pointer to return value, modified only if return value is 0.
 *
 * Search for a property in a device node and read a 64-bit value from
 * it. Returns 0 on success, -EINVAL if the property does not exist,
 * -ENODATA if property does not have a value, and -EOVERFLOW if the
 * property data isn't large enough.
 *
 * The out_value is modified only if a valid u64 value can be decoded.
 */
int of_property_read_u64(const struct device_node *np, const char *propname,
			 u64 *out_value)
{
1400
	const __be32 *val = of_find_property_value_of_size(np, propname,
1401 1402 1403
						sizeof(*out_value),
						0,
						NULL);
1404

1405 1406 1407 1408
	if (IS_ERR(val))
		return PTR_ERR(val);

	*out_value = of_read_number(val, 2);
1409 1410 1411 1412
	return 0;
}
EXPORT_SYMBOL_GPL(of_property_read_u64);

1413
/**
1414 1415
 * of_property_read_variable_u64_array - Find and read an array of 64 bit
 * integers from a property, with bounds on the minimum and maximum array size.
1416 1417 1418 1419
 *
 * @np:		device node from which the property value is to be read.
 * @propname:	name of the property to be searched.
 * @out_values:	pointer to return value, modified only if return value is 0.
1420 1421 1422 1423
 * @sz_min:	minimum number of array elements to read
 * @sz_max:	maximum number of array elements to read, if zero there is no
 *		upper limit on the number of elements in the dts entry but only
 *		sz_min will be read.
1424 1425
 *
 * Search for a property in a device node and read 64-bit value(s) from
1426 1427 1428
 * it. Returns number of elements read on success, -EINVAL if the property
 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
 * if the property data is smaller than sz_min or longer than sz_max.
1429 1430 1431
 *
 * The out_values is modified only if a valid u64 value can be decoded.
 */
1432
int of_property_read_variable_u64_array(const struct device_node *np,
1433
			       const char *propname, u64 *out_values,
1434
			       size_t sz_min, size_t sz_max)
1435
{
1436
	size_t sz, count;
1437
	const __be32 *val = of_find_property_value_of_size(np, propname,
1438 1439 1440
						(sz_min * sizeof(*out_values)),
						(sz_max * sizeof(*out_values)),
						&sz);
1441 1442 1443 1444

	if (IS_ERR(val))
		return PTR_ERR(val);

1445 1446 1447 1448 1449 1450 1451
	if (!sz_max)
		sz = sz_min;
	else
		sz /= sizeof(*out_values);

	count = sz;
	while (count--) {
1452 1453 1454
		*out_values++ = of_read_number(val, 2);
		val += 2;
	}
1455 1456

	return sz;
1457
}
1458
EXPORT_SYMBOL_GPL(of_property_read_variable_u64_array);
1459

1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
/**
 * of_property_read_string - Find and read a string from a property
 * @np:		device node from which the property value is to be read.
 * @propname:	name of the property to be searched.
 * @out_string:	pointer to null terminated return string, modified only if
 *		return value is 0.
 *
 * Search for a property in a device tree node and retrieve a null
 * terminated string value (pointer to data, not a copy). Returns 0 on
 * success, -EINVAL if the property does not exist, -ENODATA if property
 * does not have a value, and -EILSEQ if the string is not null-terminated
 * within the length of the property data.
 *
 * The out_string pointer is modified only if a valid string can be decoded.
 */
1475
int of_property_read_string(const struct device_node *np, const char *propname,
1476
				const char **out_string)
1477
{
1478
	const struct property *prop = of_find_property(np, propname, NULL);
1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
	if (!prop)
		return -EINVAL;
	if (!prop->value)
		return -ENODATA;
	if (strnlen(prop->value, prop->length) >= prop->length)
		return -EILSEQ;
	*out_string = prop->value;
	return 0;
}
EXPORT_SYMBOL_GPL(of_property_read_string);

1490 1491 1492 1493 1494 1495 1496 1497 1498
/**
 * of_property_match_string() - Find string in a list and return index
 * @np: pointer to node containing string list property
 * @propname: string list property name
 * @string: pointer to string to search for in string list
 *
 * This function searches a string list property and returns the index
 * of a specific string value.
 */
1499
int of_property_match_string(const struct device_node *np, const char *propname,
1500 1501
			     const char *string)
{
1502
	const struct property *prop = of_find_property(np, propname, NULL);
1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
	size_t l;
	int i;
	const char *p, *end;

	if (!prop)
		return -EINVAL;
	if (!prop->value)
		return -ENODATA;

	p = prop->value;
	end = p + prop->length;

	for (i = 0; p < end; i++, p += l) {
1516
		l = strnlen(p, end - p) + 1;
1517 1518 1519 1520 1521 1522 1523 1524 1525
		if (p + l > end)
			return -EILSEQ;
		pr_debug("comparing %s with %s\n", string, p);
		if (strcmp(string, p) == 0)
			return i; /* Found it; return index */
	}
	return -ENODATA;
}
EXPORT_SYMBOL_GPL(of_property_match_string);
1526 1527

/**
1528
 * of_property_read_string_helper() - Utility helper for parsing string properties
1529 1530
 * @np:		device node from which the property value is to be read.
 * @propname:	name of the property to be searched.
1531 1532 1533
 * @out_strs:	output array of string pointers.
 * @sz:		number of array elements to read.
 * @skip:	Number of strings to skip over at beginning of list.
1534
 *
1535 1536
 * Don't call this function directly. It is a utility helper for the
 * of_property_read_string*() family of functions.
1537
 */
1538 1539 1540
int of_property_read_string_helper(const struct device_node *np,
				   const char *propname, const char **out_strs,
				   size_t sz, int skip)
1541
{
1542
	const struct property *prop = of_find_property(np, propname, NULL);
1543 1544
	int l = 0, i = 0;
	const char *p, *end;
1545 1546 1547 1548 1549 1550

	if (!prop)
		return -EINVAL;
	if (!prop->value)
		return -ENODATA;
	p = prop->value;
1551
	end = p + prop->length;
1552

1553 1554 1555 1556 1557 1558 1559 1560 1561
	for (i = 0; p < end && (!out_strs || i < skip + sz); i++, p += l) {
		l = strnlen(p, end - p) + 1;
		if (p + l > end)
			return -EILSEQ;
		if (out_strs && i >= skip)
			*out_strs++ = p;
	}
	i -= skip;
	return i <= 0 ? -ENODATA : i;
1562
}
1563
EXPORT_SYMBOL_GPL(of_property_read_string_helper);
1564

1565 1566 1567 1568 1569 1570 1571 1572 1573
void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
{
	int i;
	printk("%s %s", msg, of_node_full_name(args->np));
	for (i = 0; i < args->args_count; i++)
		printk(i ? ",%08x" : ":%08x", args->args[i]);
	printk("\n");
}

1574 1575 1576 1577 1578
int of_phandle_iterator_init(struct of_phandle_iterator *it,
		const struct device_node *np,
		const char *list_name,
		const char *cells_name,
		int cell_count)
1579
{
1580 1581 1582 1583
	const __be32 *list;
	int size;

	memset(it, 0, sizeof(*it));
1584 1585

	list = of_get_property(np, list_name, &size);
1586
	if (!list)
1587
		return -ENOENT;
1588

1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
	it->cells_name = cells_name;
	it->cell_count = cell_count;
	it->parent = np;
	it->list_end = list + size / sizeof(*list);
	it->phandle_end = list;
	it->cur = list;

	return 0;
}

1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
int of_phandle_iterator_next(struct of_phandle_iterator *it)
{
	uint32_t count = 0;

	if (it->node) {
		of_node_put(it->node);
		it->node = NULL;
	}

	if (!it->cur || it->phandle_end >= it->list_end)
		return -ENOENT;

	it->cur = it->phandle_end;

	/* If phandle is 0, then it is an empty entry with no arguments. */
	it->phandle = be32_to_cpup(it->cur++);

	if (it->phandle) {
1617

1618
		/*
1619 1620
		 * Find the provider node and parse the #*-cells property to
		 * determine the argument length.
1621
		 */
1622
		it->node = of_find_node_by_phandle(it->phandle);
1623

1624 1625 1626 1627 1628
		if (it->cells_name) {
			if (!it->node) {
				pr_err("%s: could not find phandle\n",
				       it->parent->full_name);
				goto err;
1629
			}
1630

1631 1632 1633 1634 1635 1636
			if (of_property_read_u32(it->node, it->cells_name,
						 &count)) {
				pr_err("%s: could not get %s for %s\n",
				       it->parent->full_name,
				       it->cells_name,
				       it->node->full_name);
1637
				goto err;
1638
			}
1639 1640
		} else {
			count = it->cell_count;
1641 1642
		}

1643
		/*
1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
		 * Make sure that the arguments actually fit in the remaining
		 * property data length
		 */
		if (it->cur + count > it->list_end) {
			pr_err("%s: arguments longer than property\n",
			       it->parent->full_name);
			goto err;
		}
	}

	it->phandle_end = it->cur + count;
	it->cur_count = count;

	return 0;

err:
	if (it->node) {
		of_node_put(it->node);
		it->node = NULL;
	}

	return -EINVAL;
}

1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
int of_phandle_iterator_args(struct of_phandle_iterator *it,
			     uint32_t *args,
			     int size)
{
	int i, count;

	count = it->cur_count;

	if (WARN_ON(size < count))
		count = size;

	for (i = 0; i < count; i++)
		args[i] = be32_to_cpup(it->cur++);

	return count;
}

1685 1686
static int __of_parse_phandle_with_args(const struct device_node *np,
					const char *list_name,
1687 1688
					const char *cells_name,
					int cell_count, int index,
1689
					struct of_phandle_args *out_args)
1690
{
1691 1692
	struct of_phandle_iterator it;
	int rc, cur_index = 0;
1693

1694
	/* Loop over the phandles until all the requested entry is found */
1695
	of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) {
1696
		/*
1697
		 * All of the error cases bail out of the loop, so at
1698 1699 1700 1701
		 * this point, the parsing is successful. If the requested
		 * index matches, then fill the out_args structure and return,
		 * or return -ENOENT for an empty entry.
		 */
1702
		rc = -ENOENT;
1703
		if (cur_index == index) {
1704
			if (!it.phandle)
1705
				goto err;
1706 1707

			if (out_args) {
1708 1709 1710 1711 1712
				int c;

				c = of_phandle_iterator_args(&it,
							     out_args->args,
							     MAX_PHANDLE_ARGS);
1713
				out_args->np = it.node;
1714
				out_args->args_count = c;
1715
			} else {
1716
				of_node_put(it.node);
1717
			}
1718 1719

			/* Found it! return success */
1720
			return 0;
1721 1722 1723 1724 1725
		}

		cur_index++;
	}

1726 1727 1728 1729 1730
	/*
	 * Unlock node before returning result; will be one of:
	 * -ENOENT : index is for empty phandle
	 * -EINVAL : parsing error on data
	 */
1731

1732
 err:
1733
	of_node_put(it.node);
1734
	return rc;
1735
}
1736

S
Stephen Warren 已提交
1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
/**
 * of_parse_phandle - Resolve a phandle property to a device_node pointer
 * @np: Pointer to device node holding phandle property
 * @phandle_name: Name of property holding a phandle value
 * @index: For properties holding a table of phandles, this is the index into
 *         the table
 *
 * Returns the device_node pointer with refcount incremented.  Use
 * of_node_put() on it when done.
 */
struct device_node *of_parse_phandle(const struct device_node *np,
				     const char *phandle_name, int index)
{
1750 1751 1752 1753
	struct of_phandle_args args;

	if (index < 0)
		return NULL;
S
Stephen Warren 已提交
1754

1755 1756
	if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
					 index, &args))
S
Stephen Warren 已提交
1757 1758
		return NULL;

1759
	return args.np;
S
Stephen Warren 已提交
1760 1761 1762
}
EXPORT_SYMBOL(of_parse_phandle);

1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774
/**
 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
 * @np:		pointer to a device tree node containing a list
 * @list_name:	property name that contains a list
 * @cells_name:	property name that specifies phandles' arguments count
 * @index:	index of a phandle to parse out
 * @out_args:	optional pointer to output arguments structure (will be filled)
 *
 * This function is useful to parse lists of phandles and their arguments.
 * Returns 0 on success and fills out_args, on error returns appropriate
 * errno value.
 *
1775
 * Caller is responsible to call of_node_put() on the returned out_args->np
1776 1777 1778 1779 1780
 * pointer.
 *
 * Example:
 *
 * phandle1: node1 {
G
Geert Uytterhoeven 已提交
1781
 *	#list-cells = <2>;
1782 1783 1784
 * }
 *
 * phandle2: node2 {
G
Geert Uytterhoeven 已提交
1785
 *	#list-cells = <1>;
1786 1787 1788
 * }
 *
 * node3 {
G
Geert Uytterhoeven 已提交
1789
 *	list = <&phandle1 1 2 &phandle2 3>;
1790 1791 1792 1793 1794
 * }
 *
 * To get a device_node of the `node2' node you may call this:
 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
 */
1795 1796 1797 1798 1799 1800
int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
				const char *cells_name, int index,
				struct of_phandle_args *out_args)
{
	if (index < 0)
		return -EINVAL;
1801 1802
	return __of_parse_phandle_with_args(np, list_name, cells_name, 0,
					    index, out_args);
1803
}
1804
EXPORT_SYMBOL(of_parse_phandle_with_args);
1805

1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817
/**
 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
 * @np:		pointer to a device tree node containing a list
 * @list_name:	property name that contains a list
 * @cell_count: number of argument cells following the phandle
 * @index:	index of a phandle to parse out
 * @out_args:	optional pointer to output arguments structure (will be filled)
 *
 * This function is useful to parse lists of phandles and their arguments.
 * Returns 0 on success and fills out_args, on error returns appropriate
 * errno value.
 *
1818
 * Caller is responsible to call of_node_put() on the returned out_args->np
1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829
 * pointer.
 *
 * Example:
 *
 * phandle1: node1 {
 * }
 *
 * phandle2: node2 {
 * }
 *
 * node3 {
G
Geert Uytterhoeven 已提交
1830
 *	list = <&phandle1 0 2 &phandle2 2 3>;
1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846
 * }
 *
 * To get a device_node of the `node2' node you may call this:
 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
 */
int of_parse_phandle_with_fixed_args(const struct device_node *np,
				const char *list_name, int cell_count,
				int index, struct of_phandle_args *out_args)
{
	if (index < 0)
		return -EINVAL;
	return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
					   index, out_args);
}
EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);

1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864
/**
 * of_count_phandle_with_args() - Find the number of phandles references in a property
 * @np:		pointer to a device tree node containing a list
 * @list_name:	property name that contains a list
 * @cells_name:	property name that specifies phandles' arguments count
 *
 * Returns the number of phandle + argument tuples within a property. It
 * is a typical pattern to encode a list of phandle and variable
 * arguments into a single property. The number of arguments is encoded
 * by a property in the phandle-target node. For example, a gpios
 * property would contain a list of GPIO specifies consisting of a
 * phandle and 1 or more arguments. The number of arguments are
 * determined by the #gpio-cells property in the node pointed to by the
 * phandle.
 */
int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
				const char *cells_name)
{
1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878
	struct of_phandle_iterator it;
	int rc, cur_index = 0;

	rc = of_phandle_iterator_init(&it, np, list_name, cells_name, 0);
	if (rc)
		return rc;

	while ((rc = of_phandle_iterator_next(&it)) == 0)
		cur_index += 1;

	if (rc != -ENOENT)
		return rc;

	return cur_index;
1879 1880 1881
}
EXPORT_SYMBOL(of_count_phandle_with_args);

1882 1883 1884
/**
 * __of_add_property - Add a property to a node without lock operations
 */
1885
int __of_add_property(struct device_node *np, struct property *prop)
1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902
{
	struct property **next;

	prop->next = NULL;
	next = &np->properties;
	while (*next) {
		if (strcmp(prop->name, (*next)->name) == 0)
			/* duplicate ! don't insert it */
			return -EEXIST;

		next = &(*next)->next;
	}
	*next = prop;

	return 0;
}

1903
/**
1904
 * of_add_property - Add a property to a node
1905
 */
1906
int of_add_property(struct device_node *np, struct property *prop)
1907 1908
{
	unsigned long flags;
1909 1910
	int rc;

1911
	mutex_lock(&of_mutex);
1912

1913
	raw_spin_lock_irqsave(&devtree_lock, flags);
1914
	rc = __of_add_property(np, prop);
1915
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1916

1917
	if (!rc)
1918
		__of_add_property_sysfs(np, prop);
1919

1920 1921
	mutex_unlock(&of_mutex);

1922 1923 1924
	if (!rc)
		of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);

1925
	return rc;
1926 1927
}

1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
int __of_remove_property(struct device_node *np, struct property *prop)
{
	struct property **next;

	for (next = &np->properties; *next; next = &(*next)->next) {
		if (*next == prop)
			break;
	}
	if (*next == NULL)
		return -ENODEV;

	/* found the node */
	*next = prop->next;
	prop->next = np->deadprops;
	np->deadprops = prop;

	return 0;
}

1947 1948 1949 1950 1951 1952
void __of_sysfs_remove_bin_file(struct device_node *np, struct property *prop)
{
	sysfs_remove_bin_file(&np->kobj, &prop->attr);
	kfree(prop->attr.attr.name);
}

1953 1954
void __of_remove_property_sysfs(struct device_node *np, struct property *prop)
{
1955 1956 1957
	if (!IS_ENABLED(CONFIG_SYSFS))
		return;

1958 1959
	/* at early boot, bail here and defer setup to of_init() */
	if (of_kset && of_node_is_attached(np))
1960
		__of_sysfs_remove_bin_file(np, prop);
1961 1962
}

1963
/**
1964
 * of_remove_property - Remove a property from a node.
1965 1966 1967 1968 1969 1970
 *
 * Note that we don't actually remove it, since we have given out
 * who-knows-how-many pointers to the data using get-property.
 * Instead we just move the property to the "dead properties"
 * list, so it won't be found any more.
 */
1971
int of_remove_property(struct device_node *np, struct property *prop)
1972 1973
{
	unsigned long flags;
1974 1975
	int rc;

1976 1977 1978
	if (!prop)
		return -ENODEV;

1979
	mutex_lock(&of_mutex);
1980

1981
	raw_spin_lock_irqsave(&devtree_lock, flags);
1982
	rc = __of_remove_property(np, prop);
1983
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1984

1985 1986
	if (!rc)
		__of_remove_property_sysfs(np, prop);
1987

1988
	mutex_unlock(&of_mutex);
1989

1990 1991
	if (!rc)
		of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1992

1993
	return rc;
1994 1995
}

1996 1997
int __of_update_property(struct device_node *np, struct property *newprop,
		struct property **oldpropp)
1998
{
1999
	struct property **next, *oldprop;
2000

2001 2002 2003 2004 2005
	for (next = &np->properties; *next; next = &(*next)->next) {
		if (of_prop_cmp((*next)->name, newprop->name) == 0)
			break;
	}
	*oldpropp = oldprop = *next;
2006

2007
	if (oldprop) {
2008
		/* replace the node */
2009 2010 2011 2012 2013 2014 2015 2016
		newprop->next = oldprop->next;
		*next = newprop;
		oldprop->next = np->deadprops;
		np->deadprops = oldprop;
	} else {
		/* new node */
		newprop->next = NULL;
		*next = newprop;
2017
	}
2018

2019 2020 2021
	return 0;
}

2022 2023 2024
void __of_update_property_sysfs(struct device_node *np, struct property *newprop,
		struct property *oldprop)
{
2025 2026 2027
	if (!IS_ENABLED(CONFIG_SYSFS))
		return;

2028 2029
	/* At early boot, bail out and defer setup to of_init() */
	if (!of_kset)
2030
		return;
2031

2032
	if (oldprop)
2033
		__of_sysfs_remove_bin_file(np, oldprop);
2034
	__of_add_property_sysfs(np, newprop);
2035
}
2036 2037

/*
2038
 * of_update_property - Update a property in a node, if the property does
2039
 * not exist, add it.
2040
 *
2041 2042 2043 2044
 * Note that we don't actually remove it, since we have given out
 * who-knows-how-many pointers to the data using get-property.
 * Instead we just move the property to the "dead properties" list,
 * and add the new property to the property list
2045
 */
2046
int of_update_property(struct device_node *np, struct property *newprop)
2047
{
2048
	struct property *oldprop;
2049
	unsigned long flags;
2050 2051
	int rc;

2052 2053
	if (!newprop->name)
		return -EINVAL;
2054

2055
	mutex_lock(&of_mutex);
2056

2057
	raw_spin_lock_irqsave(&devtree_lock, flags);
2058
	rc = __of_update_property(np, newprop, &oldprop);
2059
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
2060

2061 2062
	if (!rc)
		__of_update_property_sysfs(np, newprop, oldprop);
2063

2064
	mutex_unlock(&of_mutex);
2065

2066 2067
	if (!rc)
		of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
2068

2069
	return rc;
2070 2071
}

2072 2073 2074 2075 2076 2077 2078 2079 2080
static void of_alias_add(struct alias_prop *ap, struct device_node *np,
			 int id, const char *stem, int stem_len)
{
	ap->np = np;
	ap->id = id;
	strncpy(ap->stem, stem, stem_len);
	ap->stem[stem_len] = 0;
	list_add_tail(&ap->link, &aliases_lookup);
	pr_debug("adding DT alias:%s: stem=%s id=%i node=%s\n",
2081
		 ap->alias, ap->stem, ap->id, of_node_full_name(np));
2082 2083 2084
}

/**
2085
 * of_alias_scan - Scan all properties of the 'aliases' node
2086
 *
2087 2088 2089
 * The function scans all the properties of the 'aliases' node and populates
 * the global lookup table with the properties.  It returns the
 * number of alias properties found, or an error code in case of failure.
2090 2091
 *
 * @dt_alloc:	An allocator that provides a virtual address to memory
2092
 *		for storing the resulting tree
2093 2094 2095 2096 2097
 */
void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
{
	struct property *pp;

2098
	of_aliases = of_find_node_by_path("/aliases");
2099 2100 2101
	of_chosen = of_find_node_by_path("/chosen");
	if (of_chosen == NULL)
		of_chosen = of_find_node_by_path("/chosen@0");
2102 2103

	if (of_chosen) {
2104
		/* linux,stdout-path and /aliases/stdout are for legacy compatibility */
2105 2106 2107
		const char *name = of_get_property(of_chosen, "stdout-path", NULL);
		if (!name)
			name = of_get_property(of_chosen, "linux,stdout-path", NULL);
2108 2109
		if (IS_ENABLED(CONFIG_PPC) && !name)
			name = of_get_property(of_aliases, "stdout", NULL);
2110
		if (name)
2111
			of_stdout = of_find_node_opts_by_path(name, &of_stdout_options);
2112 2113
		if (of_stdout)
			console_set_by_of();
2114 2115
	}

2116 2117 2118
	if (!of_aliases)
		return;

2119
	for_each_property_of_node(of_aliases, pp) {
2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148
		const char *start = pp->name;
		const char *end = start + strlen(start);
		struct device_node *np;
		struct alias_prop *ap;
		int id, len;

		/* Skip those we do not want to proceed */
		if (!strcmp(pp->name, "name") ||
		    !strcmp(pp->name, "phandle") ||
		    !strcmp(pp->name, "linux,phandle"))
			continue;

		np = of_find_node_by_path(pp->value);
		if (!np)
			continue;

		/* walk the alias backwards to extract the id and work out
		 * the 'stem' string */
		while (isdigit(*(end-1)) && end > start)
			end--;
		len = end - start;

		if (kstrtoint(end, 10, &id) < 0)
			continue;

		/* Allocate an alias_prop with enough space for the stem */
		ap = dt_alloc(sizeof(*ap) + len + 1, 4);
		if (!ap)
			continue;
2149
		memset(ap, 0, sizeof(*ap) + len + 1);
2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
		ap->alias = start;
		of_alias_add(ap, np, id, start, len);
	}
}

/**
 * of_alias_get_id - Get alias id for the given device_node
 * @np:		Pointer to the given device_node
 * @stem:	Alias stem of the given device_node
 *
2160 2161
 * The function travels the lookup table to get the alias id for the given
 * device_node and alias stem.  It returns the alias id if found.
2162 2163 2164 2165 2166 2167
 */
int of_alias_get_id(struct device_node *np, const char *stem)
{
	struct alias_prop *app;
	int id = -ENODEV;

2168
	mutex_lock(&of_mutex);
2169 2170 2171 2172 2173 2174 2175 2176 2177
	list_for_each_entry(app, &aliases_lookup, link) {
		if (strcmp(app->stem, stem) != 0)
			continue;

		if (np == app->np) {
			id = app->id;
			break;
		}
	}
2178
	mutex_unlock(&of_mutex);
2179 2180 2181 2182

	return id;
}
EXPORT_SYMBOL_GPL(of_alias_get_id);
2183

2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209
/**
 * of_alias_get_highest_id - Get highest alias id for the given stem
 * @stem:	Alias stem to be examined
 *
 * The function travels the lookup table to get the highest alias id for the
 * given alias stem.  It returns the alias id if found.
 */
int of_alias_get_highest_id(const char *stem)
{
	struct alias_prop *app;
	int id = -ENODEV;

	mutex_lock(&of_mutex);
	list_for_each_entry(app, &aliases_lookup, link) {
		if (strcmp(app->stem, stem) != 0)
			continue;

		if (app->id > id)
			id = app->id;
	}
	mutex_unlock(&of_mutex);

	return id;
}
EXPORT_SYMBOL_GPL(of_alias_get_highest_id);

2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249
const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur,
			       u32 *pu)
{
	const void *curv = cur;

	if (!prop)
		return NULL;

	if (!cur) {
		curv = prop->value;
		goto out_val;
	}

	curv += sizeof(*cur);
	if (curv >= prop->value + prop->length)
		return NULL;

out_val:
	*pu = be32_to_cpup(curv);
	return curv;
}
EXPORT_SYMBOL_GPL(of_prop_next_u32);

const char *of_prop_next_string(struct property *prop, const char *cur)
{
	const void *curv = cur;

	if (!prop)
		return NULL;

	if (!cur)
		return prop->value;

	curv += strlen(cur) + 1;
	if (curv >= prop->value + prop->length)
		return NULL;

	return curv;
}
EXPORT_SYMBOL_GPL(of_prop_next_string);
2250 2251

/**
2252 2253 2254 2255 2256 2257 2258 2259
 * of_console_check() - Test and setup console for DT setup
 * @dn - Pointer to device node
 * @name - Name to use for preferred console without index. ex. "ttyS"
 * @index - Index to use for preferred console.
 *
 * Check if the given device node matches the stdout-path property in the
 * /chosen node. If it does then register it as the preferred console and return
 * TRUE. Otherwise return FALSE.
2260
 */
2261
bool of_console_check(struct device_node *dn, char *name, int index)
2262
{
2263
	if (!dn || dn != of_stdout || console_set_on_cmdline)
2264
		return false;
2265 2266
	return !add_preferred_console(name, index,
				      kstrdup(of_stdout_options, GFP_KERNEL));
2267
}
2268
EXPORT_SYMBOL_GPL(of_console_check);
2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299

/**
 *	of_find_next_cache_node - Find a node's subsidiary cache
 *	@np:	node of type "cpu" or "cache"
 *
 *	Returns a node pointer with refcount incremented, use
 *	of_node_put() on it when done.  Caller should hold a reference
 *	to np.
 */
struct device_node *of_find_next_cache_node(const struct device_node *np)
{
	struct device_node *child;
	const phandle *handle;

	handle = of_get_property(np, "l2-cache", NULL);
	if (!handle)
		handle = of_get_property(np, "next-level-cache", NULL);

	if (handle)
		return of_find_node_by_phandle(be32_to_cpup(handle));

	/* OF on pmac has nodes instead of properties named "l2-cache"
	 * beneath CPU nodes.
	 */
	if (!strcmp(np->type, "cpu"))
		for_each_child_of_node(np, child)
			if (!strcmp(child->type, "cache"))
				return child;

	return NULL;
}
2300

2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312
/**
 * of_graph_parse_endpoint() - parse common endpoint node properties
 * @node: pointer to endpoint device_node
 * @endpoint: pointer to the OF endpoint data structure
 *
 * The caller should hold a reference to @node.
 */
int of_graph_parse_endpoint(const struct device_node *node,
			    struct of_endpoint *endpoint)
{
	struct device_node *port_node = of_get_parent(node);

2313 2314 2315
	WARN_ONCE(!port_node, "%s(): endpoint %s has no parent node\n",
		  __func__, node->full_name);

2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331
	memset(endpoint, 0, sizeof(*endpoint));

	endpoint->local_node = node;
	/*
	 * It doesn't matter whether the two calls below succeed.
	 * If they don't then the default value 0 is used.
	 */
	of_property_read_u32(port_node, "reg", &endpoint->port);
	of_property_read_u32(node, "reg", &endpoint->id);

	of_node_put(port_node);

	return 0;
}
EXPORT_SYMBOL(of_graph_parse_endpoint);

2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363
/**
 * of_graph_get_port_by_id() - get the port matching a given id
 * @parent: pointer to the parent device node
 * @id: id of the port
 *
 * Return: A 'port' node pointer with refcount incremented. The caller
 * has to use of_node_put() on it when done.
 */
struct device_node *of_graph_get_port_by_id(struct device_node *parent, u32 id)
{
	struct device_node *node, *port;

	node = of_get_child_by_name(parent, "ports");
	if (node)
		parent = node;

	for_each_child_of_node(parent, port) {
		u32 port_id = 0;

		if (of_node_cmp(port->name, "port") != 0)
			continue;
		of_property_read_u32(port, "reg", &port_id);
		if (id == port_id)
			break;
	}

	of_node_put(node);

	return port;
}
EXPORT_SYMBOL(of_graph_get_port_by_id);

2364 2365 2366 2367 2368 2369
/**
 * of_graph_get_next_endpoint() - get next endpoint node
 * @parent: pointer to the parent device node
 * @prev: previous endpoint node, or NULL to get first
 *
 * Return: An 'endpoint' node pointer with refcount incremented. Refcount
2370
 * of the passed @prev node is decremented.
2371 2372 2373 2374 2375
 */
struct device_node *of_graph_get_next_endpoint(const struct device_node *parent,
					struct device_node *prev)
{
	struct device_node *endpoint;
2376
	struct device_node *port;
2377 2378 2379 2380

	if (!parent)
		return NULL;

2381 2382 2383 2384 2385
	/*
	 * Start by locating the port node. If no previous endpoint is specified
	 * search for the first port node, otherwise get the previous endpoint
	 * parent port node.
	 */
2386 2387
	if (!prev) {
		struct device_node *node;
2388

2389 2390 2391 2392 2393 2394 2395
		node = of_get_child_by_name(parent, "ports");
		if (node)
			parent = node;

		port = of_get_child_by_name(parent, "port");
		of_node_put(node);

2396
		if (!port) {
2397 2398
			pr_err("graph: no port node found in %s\n",
			       parent->full_name);
2399 2400 2401 2402 2403 2404 2405
			return NULL;
		}
	} else {
		port = of_get_parent(prev);
		if (WARN_ONCE(!port, "%s(): endpoint %s has no parent node\n",
			      __func__, prev->full_name))
			return NULL;
2406 2407
	}

2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418
	while (1) {
		/*
		 * Now that we have a port node, get the next endpoint by
		 * getting the next child. If the previous endpoint is NULL this
		 * will return the first child.
		 */
		endpoint = of_get_next_child(port, prev);
		if (endpoint) {
			of_node_put(port);
			return endpoint;
		}
2419

2420 2421
		/* No more endpoints under this port, try the next one. */
		prev = NULL;
2422

2423 2424 2425 2426 2427 2428
		do {
			port = of_get_next_child(parent, port);
			if (!port)
				return NULL;
		} while (of_node_cmp(port->name, "port"));
	}
2429 2430 2431
}
EXPORT_SYMBOL(of_graph_get_next_endpoint);

2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445
/**
 * of_graph_get_endpoint_by_regs() - get endpoint node of specific identifiers
 * @parent: pointer to the parent device node
 * @port_reg: identifier (value of reg property) of the parent port node
 * @reg: identifier (value of reg property) of the endpoint node
 *
 * Return: An 'endpoint' node pointer which is identified by reg and at the same
 * is the child of a port node identified by port_reg. reg and port_reg are
 * ignored when they are -1.
 */
struct device_node *of_graph_get_endpoint_by_regs(
	const struct device_node *parent, int port_reg, int reg)
{
	struct of_endpoint endpoint;
2446
	struct device_node *node = NULL;
2447

2448
	for_each_endpoint_of_node(parent, node) {
2449 2450 2451 2452 2453 2454 2455 2456
		of_graph_parse_endpoint(node, &endpoint);
		if (((port_reg == -1) || (endpoint.port == port_reg)) &&
			((reg == -1) || (endpoint.id == reg)))
			return node;
	}

	return NULL;
}
2457
EXPORT_SYMBOL(of_graph_get_endpoint_by_regs);
2458

2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502
/**
 * of_graph_get_remote_port_parent() - get remote port's parent node
 * @node: pointer to a local endpoint device_node
 *
 * Return: Remote device node associated with remote endpoint node linked
 *	   to @node. Use of_node_put() on it when done.
 */
struct device_node *of_graph_get_remote_port_parent(
			       const struct device_node *node)
{
	struct device_node *np;
	unsigned int depth;

	/* Get remote endpoint node. */
	np = of_parse_phandle(node, "remote-endpoint", 0);

	/* Walk 3 levels up only if there is 'ports' node. */
	for (depth = 3; depth && np; depth--) {
		np = of_get_next_parent(np);
		if (depth == 2 && of_node_cmp(np->name, "ports"))
			break;
	}
	return np;
}
EXPORT_SYMBOL(of_graph_get_remote_port_parent);

/**
 * of_graph_get_remote_port() - get remote port node
 * @node: pointer to a local endpoint device_node
 *
 * Return: Remote port node associated with remote endpoint node linked
 *	   to @node. Use of_node_put() on it when done.
 */
struct device_node *of_graph_get_remote_port(const struct device_node *node)
{
	struct device_node *np;

	/* Get remote endpoint node. */
	np = of_parse_phandle(node, "remote-endpoint", 0);
	if (!np)
		return NULL;
	return of_get_next_parent(np);
}
EXPORT_SYMBOL(of_graph_get_remote_port);