base.c 61.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/*
 * Procedures for creating, accessing and interpreting the device tree.
 *
 * Paul Mackerras	August 1996.
 * Copyright (C) 1996-2005 Paul Mackerras.
 *
 *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
 *    {engebret|bergner}@us.ibm.com
 *
 *  Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
 *
12 13
 *  Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
 *  Grant Likely.
14 15 16 17 18 19
 *
 *      This program is free software; you can redistribute it and/or
 *      modify it under the terms of the GNU General Public License
 *      as published by the Free Software Foundation; either version
 *      2 of the License, or (at your option) any later version.
 */
20
#include <linux/ctype.h>
21
#include <linux/cpu.h>
22 23
#include <linux/module.h>
#include <linux/of.h>
24
#include <linux/of_graph.h>
S
Stephen Rothwell 已提交
25
#include <linux/spinlock.h>
26
#include <linux/slab.h>
27
#include <linux/string.h>
J
Jeremy Kerr 已提交
28
#include <linux/proc_fs.h>
S
Stephen Rothwell 已提交
29

30
#include "of_private.h"
31

32
LIST_HEAD(aliases_lookup);
33

34 35
struct device_node *of_allnodes;
EXPORT_SYMBOL(of_allnodes);
36
struct device_node *of_chosen;
37
struct device_node *of_aliases;
38
static struct device_node *of_stdout;
39

40 41 42 43 44 45
static struct kset *of_kset;

/*
 * Used to protect the of_aliases; but also overloaded to hold off addition of
 * nodes to sysfs
 */
46
DEFINE_MUTEX(of_aliases_mutex);
47

S
Stephen Rothwell 已提交
48 49 50
/* use when traversing tree through the allnext, child, sibling,
 * or parent members of struct device_node.
 */
51
DEFINE_RAW_SPINLOCK(devtree_lock);
52 53 54

int of_n_addr_cells(struct device_node *np)
{
55
	const __be32 *ip;
56 57 58 59 60 61

	do {
		if (np->parent)
			np = np->parent;
		ip = of_get_property(np, "#address-cells", NULL);
		if (ip)
62
			return be32_to_cpup(ip);
63 64 65 66 67 68 69 70
	} while (np->parent);
	/* No #address-cells property for the root node */
	return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
}
EXPORT_SYMBOL(of_n_addr_cells);

int of_n_size_cells(struct device_node *np)
{
71
	const __be32 *ip;
72 73 74 75 76 77

	do {
		if (np->parent)
			np = np->parent;
		ip = of_get_property(np, "#size-cells", NULL);
		if (ip)
78
			return be32_to_cpup(ip);
79 80 81 82 83 84
	} while (np->parent);
	/* No #size-cells property for the root node */
	return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
}
EXPORT_SYMBOL(of_n_size_cells);

85 86 87 88 89 90 91
#ifdef CONFIG_NUMA
int __weak of_node_to_nid(struct device_node *np)
{
	return numa_node_id();
}
#endif

92
#if defined(CONFIG_OF_DYNAMIC)
93 94 95 96 97 98 99 100 101 102
/**
 *	of_node_get - Increment refcount of a node
 *	@node:	Node to inc refcount, NULL is supported to
 *		simplify writing of callers
 *
 *	Returns node.
 */
struct device_node *of_node_get(struct device_node *node)
{
	if (node)
103
		kobject_get(&node->kobj);
104 105 106 107
	return node;
}
EXPORT_SYMBOL(of_node_get);

108
static inline struct device_node *kobj_to_device_node(struct kobject *kobj)
109
{
110
	return container_of(kobj, struct device_node, kobj);
111 112 113 114 115 116 117 118 119
}

/**
 *	of_node_release - release a dynamically allocated node
 *	@kref:  kref element of the node to be released
 *
 *	In of_node_put() this function is passed to kref_put()
 *	as the destructor.
 */
120
static void of_node_release(struct kobject *kobj)
121
{
122
	struct device_node *node = kobj_to_device_node(kobj);
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
	struct property *prop = node->properties;

	/* We should never be releasing nodes that haven't been detached. */
	if (!of_node_check_flag(node, OF_DETACHED)) {
		pr_err("ERROR: Bad of_node_put() on %s\n", node->full_name);
		dump_stack();
		return;
	}

	if (!of_node_check_flag(node, OF_DYNAMIC))
		return;

	while (prop) {
		struct property *next = prop->next;
		kfree(prop->name);
		kfree(prop->value);
		kfree(prop);
		prop = next;

		if (!prop) {
			prop = node->deadprops;
			node->deadprops = NULL;
		}
	}
	kfree(node->full_name);
	kfree(node->data);
	kfree(node);
}

/**
 *	of_node_put - Decrement refcount of a node
 *	@node:	Node to dec refcount, NULL is supported to
 *		simplify writing of callers
 *
 */
void of_node_put(struct device_node *node)
{
	if (node)
161
		kobject_put(&node->kobj);
162 163
}
EXPORT_SYMBOL(of_node_put);
164 165 166 167 168
#else
static void of_node_release(struct kobject *kobj)
{
	/* Without CONFIG_OF_DYNAMIC, no nodes gets freed */
}
169
#endif /* CONFIG_OF_DYNAMIC */
170

171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
struct kobj_type of_node_ktype = {
	.release = of_node_release,
};

static ssize_t of_node_property_read(struct file *filp, struct kobject *kobj,
				struct bin_attribute *bin_attr, char *buf,
				loff_t offset, size_t count)
{
	struct property *pp = container_of(bin_attr, struct property, attr);
	return memory_read_from_buffer(buf, count, &offset, pp->value, pp->length);
}

static const char *safe_name(struct kobject *kobj, const char *orig_name)
{
	const char *name = orig_name;
	struct kernfs_node *kn;
	int i = 0;

	/* don't be a hero. After 16 tries give up */
	while (i < 16 && (kn = sysfs_get_dirent(kobj->sd, name))) {
		sysfs_put(kn);
		if (name != orig_name)
			kfree(name);
		name = kasprintf(GFP_KERNEL, "%s#%i", orig_name, ++i);
	}

	if (name != orig_name)
		pr_warn("device-tree: Duplicate name in %s, renamed to \"%s\"\n",
			kobject_name(kobj), name);
	return name;
}

static int __of_add_property_sysfs(struct device_node *np, struct property *pp)
{
	int rc;

	/* Important: Don't leak passwords */
	bool secure = strncmp(pp->name, "security-", 9) == 0;

	sysfs_bin_attr_init(&pp->attr);
	pp->attr.attr.name = safe_name(&np->kobj, pp->name);
	pp->attr.attr.mode = secure ? S_IRUSR : S_IRUGO;
	pp->attr.size = secure ? 0 : pp->length;
	pp->attr.read = of_node_property_read;

	rc = sysfs_create_bin_file(&np->kobj, &pp->attr);
	WARN(rc, "error adding attribute %s to node %s\n", pp->name, np->full_name);
	return rc;
}

static int __of_node_add(struct device_node *np)
{
	const char *name;
	struct property *pp;
	int rc;

	np->kobj.kset = of_kset;
	if (!np->parent) {
		/* Nodes without parents are new top level trees */
		rc = kobject_add(&np->kobj, NULL, safe_name(&of_kset->kobj, "base"));
	} else {
		name = safe_name(&np->parent->kobj, kbasename(np->full_name));
		if (!name || !name[0])
			return -EINVAL;

		rc = kobject_add(&np->kobj, &np->parent->kobj, "%s", name);
	}
	if (rc)
		return rc;

	for_each_property_of_node(np, pp)
		__of_add_property_sysfs(np, pp);

	return 0;
}

int of_node_add(struct device_node *np)
{
	int rc = 0;
250 251 252 253 254 255 256

	BUG_ON(!of_node_is_initialized(np));

	/*
	 * Grab the mutex here so that in a race condition between of_init() and
	 * of_node_add(), node addition will still be consistent.
	 */
257 258 259
	mutex_lock(&of_aliases_mutex);
	if (of_kset)
		rc = __of_node_add(np);
260 261 262
	else
		/* This scenario may be perfectly valid, but report it anyway */
		pr_info("of_node_add(%s) before of_init()\n", np->full_name);
263 264 265 266 267 268 269 270 271
	mutex_unlock(&of_aliases_mutex);
	return rc;
}

#if defined(CONFIG_OF_DYNAMIC)
static void of_node_remove(struct device_node *np)
{
	struct property *pp;

272
	BUG_ON(!of_node_is_initialized(np));
273

274 275 276 277 278 279 280 281 282
	/* only remove properties if on sysfs */
	if (of_node_is_attached(np)) {
		for_each_property_of_node(np, pp)
			sysfs_remove_bin_file(&np->kobj, &pp->attr);
		kobject_del(&np->kobj);
	}

	/* finally remove the kobj_init ref */
	of_node_put(np);
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
}
#endif

static int __init of_init(void)
{
	struct device_node *np;

	/* Create the kset, and register existing nodes */
	mutex_lock(&of_aliases_mutex);
	of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
	if (!of_kset) {
		mutex_unlock(&of_aliases_mutex);
		return -ENOMEM;
	}
	for_each_of_allnodes(np)
		__of_node_add(np);
	mutex_unlock(&of_aliases_mutex);

G
Grant Likely 已提交
301
	/* Symlink in /proc as required by userspace ABI */
302 303 304 305 306 307 308
	if (of_allnodes)
		proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");

	return 0;
}
core_initcall(of_init);

309 310
static struct property *__of_find_property(const struct device_node *np,
					   const char *name, int *lenp)
S
Stephen Rothwell 已提交
311 312 313
{
	struct property *pp;

314 315 316
	if (!np)
		return NULL;

317
	for (pp = np->properties; pp; pp = pp->next) {
S
Stephen Rothwell 已提交
318
		if (of_prop_cmp(pp->name, name) == 0) {
319
			if (lenp)
S
Stephen Rothwell 已提交
320 321 322 323
				*lenp = pp->length;
			break;
		}
	}
324 325 326 327 328 329 330 331 332

	return pp;
}

struct property *of_find_property(const struct device_node *np,
				  const char *name,
				  int *lenp)
{
	struct property *pp;
333
	unsigned long flags;
334

335
	raw_spin_lock_irqsave(&devtree_lock, flags);
336
	pp = __of_find_property(np, name, lenp);
337
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
S
Stephen Rothwell 已提交
338 339 340 341 342

	return pp;
}
EXPORT_SYMBOL(of_find_property);

343 344 345 346 347 348 349 350 351 352 353
/**
 * of_find_all_nodes - Get next node in global list
 * @prev:	Previous node or NULL to start iteration
 *		of_node_put() will be called on it
 *
 * Returns a node pointer with refcount incremented, use
 * of_node_put() on it when done.
 */
struct device_node *of_find_all_nodes(struct device_node *prev)
{
	struct device_node *np;
354
	unsigned long flags;
355

356
	raw_spin_lock_irqsave(&devtree_lock, flags);
357
	np = prev ? prev->allnext : of_allnodes;
358 359 360 361
	for (; np != NULL; np = np->allnext)
		if (of_node_get(np))
			break;
	of_node_put(prev);
362
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
363 364 365 366
	return np;
}
EXPORT_SYMBOL(of_find_all_nodes);

367 368 369 370 371 372 373 374 375 376 377 378
/*
 * Find a property with a given name for a given node
 * and return the value.
 */
static const void *__of_get_property(const struct device_node *np,
				     const char *name, int *lenp)
{
	struct property *pp = __of_find_property(np, name, lenp);

	return pp ? pp->value : NULL;
}

379 380 381 382 383
/*
 * Find a property with a given name for a given node
 * and return the value.
 */
const void *of_get_property(const struct device_node *np, const char *name,
384
			    int *lenp)
385 386 387 388 389 390
{
	struct property *pp = of_find_property(np, name, lenp);

	return pp ? pp->value : NULL;
}
EXPORT_SYMBOL(of_get_property);
391

392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
/*
 * arch_match_cpu_phys_id - Match the given logical CPU and physical id
 *
 * @cpu: logical cpu index of a core/thread
 * @phys_id: physical identifier of a core/thread
 *
 * CPU logical to physical index mapping is architecture specific.
 * However this __weak function provides a default match of physical
 * id to logical cpu index. phys_id provided here is usually values read
 * from the device tree which must match the hardware internal registers.
 *
 * Returns true if the physical identifier and the logical cpu index
 * correspond to the same core/thread, false otherwise.
 */
bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
{
	return (u32)phys_id == cpu;
}

/**
 * Checks if the given "prop_name" property holds the physical id of the
 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
 * NULL, local thread number within the core is returned in it.
 */
static bool __of_find_n_match_cpu_property(struct device_node *cpun,
			const char *prop_name, int cpu, unsigned int *thread)
{
	const __be32 *cell;
	int ac, prop_len, tid;
	u64 hwid;

	ac = of_n_addr_cells(cpun);
	cell = of_get_property(cpun, prop_name, &prop_len);
425
	if (!cell || !ac)
426
		return false;
427
	prop_len /= sizeof(*cell) * ac;
428 429 430 431 432 433 434 435 436 437 438 439
	for (tid = 0; tid < prop_len; tid++) {
		hwid = of_read_number(cell, ac);
		if (arch_match_cpu_phys_id(cpu, hwid)) {
			if (thread)
				*thread = tid;
			return true;
		}
		cell += ac;
	}
	return false;
}

440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
/*
 * arch_find_n_match_cpu_physical_id - See if the given device node is
 * for the cpu corresponding to logical cpu 'cpu'.  Return true if so,
 * else false.  If 'thread' is non-NULL, the local thread number within the
 * core is returned in it.
 */
bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
					      int cpu, unsigned int *thread)
{
	/* Check for non-standard "ibm,ppc-interrupt-server#s" property
	 * for thread ids on PowerPC. If it doesn't exist fallback to
	 * standard "reg" property.
	 */
	if (IS_ENABLED(CONFIG_PPC) &&
	    __of_find_n_match_cpu_property(cpun,
					   "ibm,ppc-interrupt-server#s",
					   cpu, thread))
		return true;

	if (__of_find_n_match_cpu_property(cpun, "reg", cpu, thread))
		return true;

	return false;
}

465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
/**
 * of_get_cpu_node - Get device node associated with the given logical CPU
 *
 * @cpu: CPU number(logical index) for which device node is required
 * @thread: if not NULL, local thread number within the physical core is
 *          returned
 *
 * The main purpose of this function is to retrieve the device node for the
 * given logical CPU index. It should be used to initialize the of_node in
 * cpu device. Once of_node in cpu device is populated, all the further
 * references can use that instead.
 *
 * CPU logical to physical index mapping is architecture specific and is built
 * before booting secondary cores. This function uses arch_match_cpu_phys_id
 * which can be overridden by architecture specific implementation.
 *
 * Returns a node pointer for the logical cpu if found, else NULL.
 */
struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
{
485
	struct device_node *cpun;
486

487 488
	for_each_node_by_type(cpun, "cpu") {
		if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
489 490 491 492 493 494
			return cpun;
	}
	return NULL;
}
EXPORT_SYMBOL(of_get_cpu_node);

495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
/**
 * __of_device_is_compatible() - Check if the node matches given constraints
 * @device: pointer to node
 * @compat: required compatible string, NULL or "" for any match
 * @type: required device_type value, NULL or "" for any match
 * @name: required node name, NULL or "" for any match
 *
 * Checks if the given @compat, @type and @name strings match the
 * properties of the given @device. A constraints can be skipped by
 * passing NULL or an empty string as the constraint.
 *
 * Returns 0 for no match, and a positive integer on match. The return
 * value is a relative score with larger values indicating better
 * matches. The score is weighted for the most specific compatible value
 * to get the highest score. Matching type is next, followed by matching
 * name. Practically speaking, this results in the following priority
 * order for matches:
 *
 * 1. specific compatible && type && name
 * 2. specific compatible && type
 * 3. specific compatible && name
 * 4. specific compatible
 * 5. general compatible && type && name
 * 6. general compatible && type
 * 7. general compatible && name
 * 8. general compatible
 * 9. type && name
 * 10. type
 * 11. name
524
 */
525
static int __of_device_is_compatible(const struct device_node *device,
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
				     const char *compat, const char *type, const char *name)
{
	struct property *prop;
	const char *cp;
	int index = 0, score = 0;

	/* Compatible match has highest priority */
	if (compat && compat[0]) {
		prop = __of_find_property(device, "compatible", NULL);
		for (cp = of_prop_next_string(prop, NULL); cp;
		     cp = of_prop_next_string(prop, cp), index++) {
			if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
				score = INT_MAX/2 - (index << 2);
				break;
			}
		}
		if (!score)
			return 0;
	}
545

546 547 548 549 550
	/* Matching type is better than matching name */
	if (type && type[0]) {
		if (!device->type || of_node_cmp(type, device->type))
			return 0;
		score += 2;
551 552
	}

553 554 555 556 557 558 559 560
	/* Matching name is a bit better than not */
	if (name && name[0]) {
		if (!device->name || of_node_cmp(name, device->name))
			return 0;
		score++;
	}

	return score;
561
}
562 563 564 565 566 567 568

/** Checks if the given "compat" string matches one of the strings in
 * the device's "compatible" property
 */
int of_device_is_compatible(const struct device_node *device,
		const char *compat)
{
569
	unsigned long flags;
570 571
	int res;

572
	raw_spin_lock_irqsave(&devtree_lock, flags);
573
	res = __of_device_is_compatible(device, compat, NULL, NULL);
574
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
575 576
	return res;
}
577
EXPORT_SYMBOL(of_device_is_compatible);
S
Stephen Rothwell 已提交
578

G
Grant Likely 已提交
579
/**
580
 * of_machine_is_compatible - Test root of device tree for a given compatible value
G
Grant Likely 已提交
581 582 583 584 585
 * @compat: compatible string to look for in root node's compatible property.
 *
 * Returns true if the root node has the given value in its
 * compatible property.
 */
586
int of_machine_is_compatible(const char *compat)
G
Grant Likely 已提交
587 588 589 590 591 592 593 594 595 596 597
{
	struct device_node *root;
	int rc = 0;

	root = of_find_node_by_path("/");
	if (root) {
		rc = of_device_is_compatible(root, compat);
		of_node_put(root);
	}
	return rc;
}
598
EXPORT_SYMBOL(of_machine_is_compatible);
G
Grant Likely 已提交
599

600
/**
601
 *  __of_device_is_available - check if a device is available for use
602
 *
603
 *  @device: Node to check for availability, with locks already held
604 605 606 607
 *
 *  Returns 1 if the status property is absent or set to "okay" or "ok",
 *  0 otherwise
 */
608
static int __of_device_is_available(const struct device_node *device)
609 610 611 612
{
	const char *status;
	int statlen;

613 614 615
	if (!device)
		return 0;

616
	status = __of_get_property(device, "status", &statlen);
617 618 619 620 621 622 623 624 625 626
	if (status == NULL)
		return 1;

	if (statlen > 0) {
		if (!strcmp(status, "okay") || !strcmp(status, "ok"))
			return 1;
	}

	return 0;
}
627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646

/**
 *  of_device_is_available - check if a device is available for use
 *
 *  @device: Node to check for availability
 *
 *  Returns 1 if the status property is absent or set to "okay" or "ok",
 *  0 otherwise
 */
int of_device_is_available(const struct device_node *device)
{
	unsigned long flags;
	int res;

	raw_spin_lock_irqsave(&devtree_lock, flags);
	res = __of_device_is_available(device);
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
	return res;

}
647 648
EXPORT_SYMBOL(of_device_is_available);

S
Stephen Rothwell 已提交
649 650 651 652 653 654 655 656 657 658
/**
 *	of_get_parent - Get a node's parent if any
 *	@node:	Node to get parent
 *
 *	Returns a node pointer with refcount incremented, use
 *	of_node_put() on it when done.
 */
struct device_node *of_get_parent(const struct device_node *node)
{
	struct device_node *np;
659
	unsigned long flags;
S
Stephen Rothwell 已提交
660 661 662 663

	if (!node)
		return NULL;

664
	raw_spin_lock_irqsave(&devtree_lock, flags);
S
Stephen Rothwell 已提交
665
	np = of_node_get(node->parent);
666
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
S
Stephen Rothwell 已提交
667 668 669
	return np;
}
EXPORT_SYMBOL(of_get_parent);
S
Stephen Rothwell 已提交
670

671 672 673 674 675 676 677 678 679 680 681 682 683 684
/**
 *	of_get_next_parent - Iterate to a node's parent
 *	@node:	Node to get parent of
 *
 * 	This is like of_get_parent() except that it drops the
 * 	refcount on the passed node, making it suitable for iterating
 * 	through a node's parents.
 *
 *	Returns a node pointer with refcount incremented, use
 *	of_node_put() on it when done.
 */
struct device_node *of_get_next_parent(struct device_node *node)
{
	struct device_node *parent;
685
	unsigned long flags;
686 687 688 689

	if (!node)
		return NULL;

690
	raw_spin_lock_irqsave(&devtree_lock, flags);
691 692
	parent = of_node_get(node->parent);
	of_node_put(node);
693
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
694 695
	return parent;
}
696
EXPORT_SYMBOL(of_get_next_parent);
697

698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
static struct device_node *__of_get_next_child(const struct device_node *node,
						struct device_node *prev)
{
	struct device_node *next;

	next = prev ? prev->sibling : node->child;
	for (; next; next = next->sibling)
		if (of_node_get(next))
			break;
	of_node_put(prev);
	return next;
}
#define __for_each_child_of_node(parent, child) \
	for (child = __of_get_next_child(parent, NULL); child != NULL; \
	     child = __of_get_next_child(parent, child))

S
Stephen Rothwell 已提交
714 715 716 717 718 719 720 721 722 723 724 725
/**
 *	of_get_next_child - Iterate a node childs
 *	@node:	parent node
 *	@prev:	previous child of the parent node, or NULL to get first
 *
 *	Returns a node pointer with refcount incremented, use
 *	of_node_put() on it when done.
 */
struct device_node *of_get_next_child(const struct device_node *node,
	struct device_node *prev)
{
	struct device_node *next;
726
	unsigned long flags;
S
Stephen Rothwell 已提交
727

728
	raw_spin_lock_irqsave(&devtree_lock, flags);
729
	next = __of_get_next_child(node, prev);
730
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
S
Stephen Rothwell 已提交
731 732 733
	return next;
}
EXPORT_SYMBOL(of_get_next_child);
734

735 736 737 738 739 740 741 742 743 744 745 746
/**
 *	of_get_next_available_child - Find the next available child node
 *	@node:	parent node
 *	@prev:	previous child of the parent node, or NULL to get first
 *
 *      This function is like of_get_next_child(), except that it
 *      automatically skips any disabled nodes (i.e. status = "disabled").
 */
struct device_node *of_get_next_available_child(const struct device_node *node,
	struct device_node *prev)
{
	struct device_node *next;
747
	unsigned long flags;
748

749
	raw_spin_lock_irqsave(&devtree_lock, flags);
750 751
	next = prev ? prev->sibling : node->child;
	for (; next; next = next->sibling) {
752
		if (!__of_device_is_available(next))
753 754 755 756 757
			continue;
		if (of_node_get(next))
			break;
	}
	of_node_put(prev);
758
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
759 760 761 762
	return next;
}
EXPORT_SYMBOL(of_get_next_available_child);

763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785
/**
 *	of_get_child_by_name - Find the child node by name for a given parent
 *	@node:	parent node
 *	@name:	child name to look for.
 *
 *      This function looks for child node for given matching name
 *
 *	Returns a node pointer if found, with refcount incremented, use
 *	of_node_put() on it when done.
 *	Returns NULL if node is not found.
 */
struct device_node *of_get_child_by_name(const struct device_node *node,
				const char *name)
{
	struct device_node *child;

	for_each_child_of_node(node, child)
		if (child->name && (of_node_cmp(child->name, name) == 0))
			break;
	return child;
}
EXPORT_SYMBOL(of_get_child_by_name);

786 787 788 789 790 791 792 793 794
/**
 *	of_find_node_by_path - Find a node matching a full OF path
 *	@path:	The full path to match
 *
 *	Returns a node pointer with refcount incremented, use
 *	of_node_put() on it when done.
 */
struct device_node *of_find_node_by_path(const char *path)
{
795
	struct device_node *np = of_allnodes;
796
	unsigned long flags;
797

798
	raw_spin_lock_irqsave(&devtree_lock, flags);
799 800 801 802 803
	for (; np; np = np->allnext) {
		if (np->full_name && (of_node_cmp(np->full_name, path) == 0)
		    && of_node_get(np))
			break;
	}
804
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
	return np;
}
EXPORT_SYMBOL(of_find_node_by_path);

/**
 *	of_find_node_by_name - Find a node by its "name" property
 *	@from:	The node to start searching from or NULL, the node
 *		you pass will not be searched, only the next one
 *		will; typically, you pass what the previous call
 *		returned. of_node_put() will be called on it
 *	@name:	The name string to match against
 *
 *	Returns a node pointer with refcount incremented, use
 *	of_node_put() on it when done.
 */
struct device_node *of_find_node_by_name(struct device_node *from,
	const char *name)
{
	struct device_node *np;
824
	unsigned long flags;
825

826
	raw_spin_lock_irqsave(&devtree_lock, flags);
827
	np = from ? from->allnext : of_allnodes;
828 829 830 831 832
	for (; np; np = np->allnext)
		if (np->name && (of_node_cmp(np->name, name) == 0)
		    && of_node_get(np))
			break;
	of_node_put(from);
833
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853
	return np;
}
EXPORT_SYMBOL(of_find_node_by_name);

/**
 *	of_find_node_by_type - Find a node by its "device_type" property
 *	@from:	The node to start searching from, or NULL to start searching
 *		the entire device tree. The node you pass will not be
 *		searched, only the next one will; typically, you pass
 *		what the previous call returned. of_node_put() will be
 *		called on from for you.
 *	@type:	The type string to match against
 *
 *	Returns a node pointer with refcount incremented, use
 *	of_node_put() on it when done.
 */
struct device_node *of_find_node_by_type(struct device_node *from,
	const char *type)
{
	struct device_node *np;
854
	unsigned long flags;
855

856
	raw_spin_lock_irqsave(&devtree_lock, flags);
857
	np = from ? from->allnext : of_allnodes;
858 859 860 861 862
	for (; np; np = np->allnext)
		if (np->type && (of_node_cmp(np->type, type) == 0)
		    && of_node_get(np))
			break;
	of_node_put(from);
863
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
	return np;
}
EXPORT_SYMBOL(of_find_node_by_type);

/**
 *	of_find_compatible_node - Find a node based on type and one of the
 *                                tokens in its "compatible" property
 *	@from:		The node to start searching from or NULL, the node
 *			you pass will not be searched, only the next one
 *			will; typically, you pass what the previous call
 *			returned. of_node_put() will be called on it
 *	@type:		The type string to match "device_type" or NULL to ignore
 *	@compatible:	The string to match to one of the tokens in the device
 *			"compatible" list.
 *
 *	Returns a node pointer with refcount incremented, use
 *	of_node_put() on it when done.
 */
struct device_node *of_find_compatible_node(struct device_node *from,
	const char *type, const char *compatible)
{
	struct device_node *np;
886
	unsigned long flags;
887

888
	raw_spin_lock_irqsave(&devtree_lock, flags);
889
	np = from ? from->allnext : of_allnodes;
890
	for (; np; np = np->allnext) {
891
		if (__of_device_is_compatible(np, compatible, type, NULL) &&
892
		    of_node_get(np))
893 894 895
			break;
	}
	of_node_put(from);
896
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
897 898 899
	return np;
}
EXPORT_SYMBOL(of_find_compatible_node);
900

901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
/**
 *	of_find_node_with_property - Find a node which has a property with
 *                                   the given name.
 *	@from:		The node to start searching from or NULL, the node
 *			you pass will not be searched, only the next one
 *			will; typically, you pass what the previous call
 *			returned. of_node_put() will be called on it
 *	@prop_name:	The name of the property to look for.
 *
 *	Returns a node pointer with refcount incremented, use
 *	of_node_put() on it when done.
 */
struct device_node *of_find_node_with_property(struct device_node *from,
	const char *prop_name)
{
	struct device_node *np;
	struct property *pp;
918
	unsigned long flags;
919

920
	raw_spin_lock_irqsave(&devtree_lock, flags);
921
	np = from ? from->allnext : of_allnodes;
922
	for (; np; np = np->allnext) {
923
		for (pp = np->properties; pp; pp = pp->next) {
924 925 926 927 928 929 930 931
			if (of_prop_cmp(pp->name, prop_name) == 0) {
				of_node_get(np);
				goto out;
			}
		}
	}
out:
	of_node_put(from);
932
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
933 934 935 936
	return np;
}
EXPORT_SYMBOL(of_find_node_with_property);

937 938 939
static
const struct of_device_id *__of_match_node(const struct of_device_id *matches,
					   const struct device_node *node)
940
{
941 942 943
	const struct of_device_id *best_match = NULL;
	int score, best_score = 0;

944 945 946
	if (!matches)
		return NULL;

947 948 949 950 951 952 953
	for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
		score = __of_device_is_compatible(node, matches->compatible,
						  matches->type, matches->name);
		if (score > best_score) {
			best_match = matches;
			best_score = score;
		}
954
	}
955 956

	return best_match;
957
}
958 959 960 961 962 963

/**
 * of_match_node - Tell if an device_node has a matching of_match structure
 *	@matches:	array of of device match structures to search in
 *	@node:		the of device structure to match against
 *
964
 *	Low level utility function used by device matching.
965 966 967 968 969
 */
const struct of_device_id *of_match_node(const struct of_device_id *matches,
					 const struct device_node *node)
{
	const struct of_device_id *match;
970
	unsigned long flags;
971

972
	raw_spin_lock_irqsave(&devtree_lock, flags);
973
	match = __of_match_node(matches, node);
974
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
975 976
	return match;
}
977 978 979
EXPORT_SYMBOL(of_match_node);

/**
980 981
 *	of_find_matching_node_and_match - Find a node based on an of_device_id
 *					  match table.
982 983 984 985 986
 *	@from:		The node to start searching from or NULL, the node
 *			you pass will not be searched, only the next one
 *			will; typically, you pass what the previous call
 *			returned. of_node_put() will be called on it
 *	@matches:	array of of device match structures to search in
987
 *	@match		Updated to point at the matches entry which matched
988 989 990 991
 *
 *	Returns a node pointer with refcount incremented, use
 *	of_node_put() on it when done.
 */
992 993 994
struct device_node *of_find_matching_node_and_match(struct device_node *from,
					const struct of_device_id *matches,
					const struct of_device_id **match)
995 996
{
	struct device_node *np;
997
	const struct of_device_id *m;
998
	unsigned long flags;
999

1000 1001 1002
	if (match)
		*match = NULL;

1003
	raw_spin_lock_irqsave(&devtree_lock, flags);
1004
	np = from ? from->allnext : of_allnodes;
1005
	for (; np; np = np->allnext) {
1006
		m = __of_match_node(matches, np);
1007
		if (m && of_node_get(np)) {
1008
			if (match)
1009
				*match = m;
1010
			break;
1011
		}
1012 1013
	}
	of_node_put(from);
1014
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1015 1016
	return np;
}
1017
EXPORT_SYMBOL(of_find_matching_node_and_match);
1018 1019 1020 1021 1022 1023 1024

/**
 * of_modalias_node - Lookup appropriate modalias for a device node
 * @node:	pointer to a device tree node
 * @modalias:	Pointer to buffer that modalias value will be copied into
 * @len:	Length of modalias value
 *
1025 1026 1027 1028
 * Based on the value of the compatible property, this routine will attempt
 * to choose an appropriate modalias value for a particular device tree node.
 * It does this by stripping the manufacturer prefix (as delimited by a ',')
 * from the first entry in the compatible list property.
1029
 *
1030
 * This routine returns 0 on success, <0 on failure.
1031 1032 1033
 */
int of_modalias_node(struct device_node *node, char *modalias, int len)
{
1034 1035
	const char *compatible, *p;
	int cplen;
1036 1037

	compatible = of_get_property(node, "compatible", &cplen);
1038
	if (!compatible || strlen(compatible) > cplen)
1039 1040
		return -ENODEV;
	p = strchr(compatible, ',');
1041
	strlcpy(modalias, p ? p + 1 : compatible, len);
1042 1043 1044 1045
	return 0;
}
EXPORT_SYMBOL_GPL(of_modalias_node);

J
Jeremy Kerr 已提交
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
/**
 * of_find_node_by_phandle - Find a node given a phandle
 * @handle:	phandle of the node to find
 *
 * Returns a node pointer with refcount incremented, use
 * of_node_put() on it when done.
 */
struct device_node *of_find_node_by_phandle(phandle handle)
{
	struct device_node *np;
1056
	unsigned long flags;
J
Jeremy Kerr 已提交
1057

1058
	raw_spin_lock_irqsave(&devtree_lock, flags);
1059
	for (np = of_allnodes; np; np = np->allnext)
J
Jeremy Kerr 已提交
1060 1061 1062
		if (np->phandle == handle)
			break;
	of_node_get(np);
1063
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
J
Jeremy Kerr 已提交
1064 1065 1066 1067
	return np;
}
EXPORT_SYMBOL(of_find_node_by_phandle);

1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
/**
 * of_property_count_elems_of_size - Count the number of elements in a property
 *
 * @np:		device node from which the property value is to be read.
 * @propname:	name of the property to be searched.
 * @elem_size:	size of the individual element
 *
 * Search for a property in a device node and count the number of elements of
 * size elem_size in it. Returns number of elements on sucess, -EINVAL if the
 * property does not exist or its length does not match a multiple of elem_size
 * and -ENODATA if the property does not have a value.
 */
int of_property_count_elems_of_size(const struct device_node *np,
				const char *propname, int elem_size)
{
	struct property *prop = of_find_property(np, propname, NULL);

	if (!prop)
		return -EINVAL;
	if (!prop->value)
		return -ENODATA;

	if (prop->length % elem_size != 0) {
		pr_err("size of %s in node %s is not a multiple of %d\n",
		       propname, np->full_name, elem_size);
		return -EINVAL;
	}

	return prop->length / elem_size;
}
EXPORT_SYMBOL_GPL(of_property_count_elems_of_size);

1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
/**
 * of_find_property_value_of_size
 *
 * @np:		device node from which the property value is to be read.
 * @propname:	name of the property to be searched.
 * @len:	requested length of property value
 *
 * Search for a property in a device node and valid the requested size.
 * Returns the property value on success, -EINVAL if the property does not
 *  exist, -ENODATA if property does not have a value, and -EOVERFLOW if the
 * property data isn't large enough.
 *
 */
static void *of_find_property_value_of_size(const struct device_node *np,
			const char *propname, u32 len)
{
	struct property *prop = of_find_property(np, propname, NULL);

	if (!prop)
		return ERR_PTR(-EINVAL);
	if (!prop->value)
		return ERR_PTR(-ENODATA);
	if (len > prop->length)
		return ERR_PTR(-EOVERFLOW);

	return prop->value;
}

1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
/**
 * of_property_read_u32_index - Find and read a u32 from a multi-value property.
 *
 * @np:		device node from which the property value is to be read.
 * @propname:	name of the property to be searched.
 * @index:	index of the u32 in the list of values
 * @out_value:	pointer to return value, modified only if no error.
 *
 * Search for a property in a device node and read nth 32-bit value from
 * it. Returns 0 on success, -EINVAL if the property does not exist,
 * -ENODATA if property does not have a value, and -EOVERFLOW if the
 * property data isn't large enough.
 *
 * The out_value is modified only if a valid u32 value can be decoded.
 */
int of_property_read_u32_index(const struct device_node *np,
				       const char *propname,
				       u32 index, u32 *out_value)
{
1147 1148
	const u32 *val = of_find_property_value_of_size(np, propname,
					((index + 1) * sizeof(*out_value)));
1149

1150 1151
	if (IS_ERR(val))
		return PTR_ERR(val);
1152

1153
	*out_value = be32_to_cpup(((__be32 *)val) + index);
1154 1155 1156 1157
	return 0;
}
EXPORT_SYMBOL_GPL(of_property_read_u32_index);

1158 1159 1160 1161 1162
/**
 * of_property_read_u8_array - Find and read an array of u8 from a property.
 *
 * @np:		device node from which the property value is to be read.
 * @propname:	name of the property to be searched.
L
Lad, Prabhakar 已提交
1163
 * @out_values:	pointer to return value, modified only if return value is 0.
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
 * @sz:		number of array elements to read
 *
 * Search for a property in a device node and read 8-bit value(s) from
 * it. Returns 0 on success, -EINVAL if the property does not exist,
 * -ENODATA if property does not have a value, and -EOVERFLOW if the
 * property data isn't large enough.
 *
 * dts entry of array should be like:
 *	property = /bits/ 8 <0x50 0x60 0x70>;
 *
L
Lad, Prabhakar 已提交
1174
 * The out_values is modified only if a valid u8 value can be decoded.
1175 1176 1177 1178
 */
int of_property_read_u8_array(const struct device_node *np,
			const char *propname, u8 *out_values, size_t sz)
{
1179 1180
	const u8 *val = of_find_property_value_of_size(np, propname,
						(sz * sizeof(*out_values)));
1181

1182 1183
	if (IS_ERR(val))
		return PTR_ERR(val);
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195

	while (sz--)
		*out_values++ = *val++;
	return 0;
}
EXPORT_SYMBOL_GPL(of_property_read_u8_array);

/**
 * of_property_read_u16_array - Find and read an array of u16 from a property.
 *
 * @np:		device node from which the property value is to be read.
 * @propname:	name of the property to be searched.
L
Lad, Prabhakar 已提交
1196
 * @out_values:	pointer to return value, modified only if return value is 0.
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
 * @sz:		number of array elements to read
 *
 * Search for a property in a device node and read 16-bit value(s) from
 * it. Returns 0 on success, -EINVAL if the property does not exist,
 * -ENODATA if property does not have a value, and -EOVERFLOW if the
 * property data isn't large enough.
 *
 * dts entry of array should be like:
 *	property = /bits/ 16 <0x5000 0x6000 0x7000>;
 *
L
Lad, Prabhakar 已提交
1207
 * The out_values is modified only if a valid u16 value can be decoded.
1208 1209 1210 1211
 */
int of_property_read_u16_array(const struct device_node *np,
			const char *propname, u16 *out_values, size_t sz)
{
1212 1213
	const __be16 *val = of_find_property_value_of_size(np, propname,
						(sz * sizeof(*out_values)));
1214

1215 1216
	if (IS_ERR(val))
		return PTR_ERR(val);
1217 1218 1219 1220 1221 1222 1223

	while (sz--)
		*out_values++ = be16_to_cpup(val++);
	return 0;
}
EXPORT_SYMBOL_GPL(of_property_read_u16_array);

1224
/**
1225 1226 1227
 * of_property_read_u32_array - Find and read an array of 32 bit integers
 * from a property.
 *
1228 1229
 * @np:		device node from which the property value is to be read.
 * @propname:	name of the property to be searched.
L
Lad, Prabhakar 已提交
1230
 * @out_values:	pointer to return value, modified only if return value is 0.
1231
 * @sz:		number of array elements to read
1232
 *
1233
 * Search for a property in a device node and read 32-bit value(s) from
1234 1235 1236 1237
 * it. Returns 0 on success, -EINVAL if the property does not exist,
 * -ENODATA if property does not have a value, and -EOVERFLOW if the
 * property data isn't large enough.
 *
L
Lad, Prabhakar 已提交
1238
 * The out_values is modified only if a valid u32 value can be decoded.
1239
 */
1240 1241 1242
int of_property_read_u32_array(const struct device_node *np,
			       const char *propname, u32 *out_values,
			       size_t sz)
1243
{
1244 1245
	const __be32 *val = of_find_property_value_of_size(np, propname,
						(sz * sizeof(*out_values)));
1246

1247 1248
	if (IS_ERR(val))
		return PTR_ERR(val);
1249 1250 1251

	while (sz--)
		*out_values++ = be32_to_cpup(val++);
1252 1253
	return 0;
}
1254
EXPORT_SYMBOL_GPL(of_property_read_u32_array);
1255

1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
/**
 * of_property_read_u64 - Find and read a 64 bit integer from a property
 * @np:		device node from which the property value is to be read.
 * @propname:	name of the property to be searched.
 * @out_value:	pointer to return value, modified only if return value is 0.
 *
 * Search for a property in a device node and read a 64-bit value from
 * it. Returns 0 on success, -EINVAL if the property does not exist,
 * -ENODATA if property does not have a value, and -EOVERFLOW if the
 * property data isn't large enough.
 *
 * The out_value is modified only if a valid u64 value can be decoded.
 */
int of_property_read_u64(const struct device_node *np, const char *propname,
			 u64 *out_value)
{
1272 1273
	const __be32 *val = of_find_property_value_of_size(np, propname,
						sizeof(*out_value));
1274

1275 1276 1277 1278
	if (IS_ERR(val))
		return PTR_ERR(val);

	*out_value = of_read_number(val, 2);
1279 1280 1281 1282
	return 0;
}
EXPORT_SYMBOL_GPL(of_property_read_u64);

1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
/**
 * of_property_read_string - Find and read a string from a property
 * @np:		device node from which the property value is to be read.
 * @propname:	name of the property to be searched.
 * @out_string:	pointer to null terminated return string, modified only if
 *		return value is 0.
 *
 * Search for a property in a device tree node and retrieve a null
 * terminated string value (pointer to data, not a copy). Returns 0 on
 * success, -EINVAL if the property does not exist, -ENODATA if property
 * does not have a value, and -EILSEQ if the string is not null-terminated
 * within the length of the property data.
 *
 * The out_string pointer is modified only if a valid string can be decoded.
 */
1298
int of_property_read_string(struct device_node *np, const char *propname,
1299
				const char **out_string)
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
{
	struct property *prop = of_find_property(np, propname, NULL);
	if (!prop)
		return -EINVAL;
	if (!prop->value)
		return -ENODATA;
	if (strnlen(prop->value, prop->length) >= prop->length)
		return -EILSEQ;
	*out_string = prop->value;
	return 0;
}
EXPORT_SYMBOL_GPL(of_property_read_string);

1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
/**
 * of_property_read_string_index - Find and read a string from a multiple
 * strings property.
 * @np:		device node from which the property value is to be read.
 * @propname:	name of the property to be searched.
 * @index:	index of the string in the list of strings
 * @out_string:	pointer to null terminated return string, modified only if
 *		return value is 0.
 *
 * Search for a property in a device tree node and retrieve a null
 * terminated string value (pointer to data, not a copy) in the list of strings
 * contained in that property.
 * Returns 0 on success, -EINVAL if the property does not exist, -ENODATA if
 * property does not have a value, and -EILSEQ if the string is not
 * null-terminated within the length of the property data.
 *
 * The out_string pointer is modified only if a valid string can be decoded.
 */
int of_property_read_string_index(struct device_node *np, const char *propname,
				  int index, const char **output)
{
	struct property *prop = of_find_property(np, propname, NULL);
	int i = 0;
	size_t l = 0, total = 0;
	const char *p;

	if (!prop)
		return -EINVAL;
	if (!prop->value)
		return -ENODATA;
	if (strnlen(prop->value, prop->length) >= prop->length)
		return -EILSEQ;

	p = prop->value;

	for (i = 0; total < prop->length; total += l, p += l) {
		l = strlen(p) + 1;
1350
		if (i++ == index) {
1351 1352 1353 1354 1355 1356 1357 1358
			*output = p;
			return 0;
		}
	}
	return -ENODATA;
}
EXPORT_SYMBOL_GPL(of_property_read_string_index);

1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
/**
 * of_property_match_string() - Find string in a list and return index
 * @np: pointer to node containing string list property
 * @propname: string list property name
 * @string: pointer to string to search for in string list
 *
 * This function searches a string list property and returns the index
 * of a specific string value.
 */
int of_property_match_string(struct device_node *np, const char *propname,
			     const char *string)
{
	struct property *prop = of_find_property(np, propname, NULL);
	size_t l;
	int i;
	const char *p, *end;

	if (!prop)
		return -EINVAL;
	if (!prop->value)
		return -ENODATA;

	p = prop->value;
	end = p + prop->length;

	for (i = 0; p < end; i++, p += l) {
		l = strlen(p) + 1;
		if (p + l > end)
			return -EILSEQ;
		pr_debug("comparing %s with %s\n", string, p);
		if (strcmp(string, p) == 0)
			return i; /* Found it; return index */
	}
	return -ENODATA;
}
EXPORT_SYMBOL_GPL(of_property_match_string);
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423

/**
 * of_property_count_strings - Find and return the number of strings from a
 * multiple strings property.
 * @np:		device node from which the property value is to be read.
 * @propname:	name of the property to be searched.
 *
 * Search for a property in a device tree node and retrieve the number of null
 * terminated string contain in it. Returns the number of strings on
 * success, -EINVAL if the property does not exist, -ENODATA if property
 * does not have a value, and -EILSEQ if the string is not null-terminated
 * within the length of the property data.
 */
int of_property_count_strings(struct device_node *np, const char *propname)
{
	struct property *prop = of_find_property(np, propname, NULL);
	int i = 0;
	size_t l = 0, total = 0;
	const char *p;

	if (!prop)
		return -EINVAL;
	if (!prop->value)
		return -ENODATA;
	if (strnlen(prop->value, prop->length) >= prop->length)
		return -EILSEQ;

	p = prop->value;

1424
	for (i = 0; total < prop->length; total += l, p += l, i++)
1425
		l = strlen(p) + 1;
1426

1427 1428 1429 1430
	return i;
}
EXPORT_SYMBOL_GPL(of_property_count_strings);

1431 1432 1433 1434 1435 1436 1437 1438 1439
void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
{
	int i;
	printk("%s %s", msg, of_node_full_name(args->np));
	for (i = 0; i < args->args_count; i++)
		printk(i ? ",%08x" : ":%08x", args->args[i]);
	printk("\n");
}

1440 1441
static int __of_parse_phandle_with_args(const struct device_node *np,
					const char *list_name,
1442 1443
					const char *cells_name,
					int cell_count, int index,
1444
					struct of_phandle_args *out_args)
1445
{
1446
	const __be32 *list, *list_end;
1447
	int rc = 0, size, cur_index = 0;
1448
	uint32_t count = 0;
1449
	struct device_node *node = NULL;
1450
	phandle phandle;
1451

1452
	/* Retrieve the phandle list property */
1453
	list = of_get_property(np, list_name, &size);
1454
	if (!list)
1455
		return -ENOENT;
1456 1457
	list_end = list + size / sizeof(*list);

1458
	/* Loop over the phandles until all the requested entry is found */
1459
	while (list < list_end) {
1460
		rc = -EINVAL;
1461
		count = 0;
1462

1463 1464 1465 1466
		/*
		 * If phandle is 0, then it is an empty entry with no
		 * arguments.  Skip forward to the next entry.
		 */
G
Grant Likely 已提交
1467
		phandle = be32_to_cpup(list++);
1468 1469 1470
		if (phandle) {
			/*
			 * Find the provider node and parse the #*-cells
1471 1472 1473 1474 1475 1476
			 * property to determine the argument length.
			 *
			 * This is not needed if the cell count is hard-coded
			 * (i.e. cells_name not set, but cell_count is set),
			 * except when we're going to return the found node
			 * below.
1477
			 */
1478 1479 1480 1481 1482 1483 1484
			if (cells_name || cur_index == index) {
				node = of_find_node_by_phandle(phandle);
				if (!node) {
					pr_err("%s: could not find phandle\n",
						np->full_name);
					goto err;
				}
1485
			}
1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496

			if (cells_name) {
				if (of_property_read_u32(node, cells_name,
							 &count)) {
					pr_err("%s: could not get %s for %s\n",
						np->full_name, cells_name,
						node->full_name);
					goto err;
				}
			} else {
				count = cell_count;
1497
			}
1498

1499 1500 1501 1502 1503 1504 1505
			/*
			 * Make sure that the arguments actually fit in the
			 * remaining property data length
			 */
			if (list + count > list_end) {
				pr_err("%s: arguments longer than property\n",
					 np->full_name);
1506
				goto err;
1507
			}
1508 1509
		}

1510 1511 1512 1513 1514 1515
		/*
		 * All of the error cases above bail out of the loop, so at
		 * this point, the parsing is successful. If the requested
		 * index matches, then fill the out_args structure and return,
		 * or return -ENOENT for an empty entry.
		 */
1516
		rc = -ENOENT;
1517 1518
		if (cur_index == index) {
			if (!phandle)
1519
				goto err;
1520 1521 1522 1523 1524 1525 1526 1527 1528

			if (out_args) {
				int i;
				if (WARN_ON(count > MAX_PHANDLE_ARGS))
					count = MAX_PHANDLE_ARGS;
				out_args->np = node;
				out_args->args_count = count;
				for (i = 0; i < count; i++)
					out_args->args[i] = be32_to_cpup(list++);
1529 1530
			} else {
				of_node_put(node);
1531
			}
1532 1533

			/* Found it! return success */
1534
			return 0;
1535 1536 1537 1538
		}

		of_node_put(node);
		node = NULL;
1539
		list += count;
1540 1541 1542
		cur_index++;
	}

1543 1544 1545 1546
	/*
	 * Unlock node before returning result; will be one of:
	 * -ENOENT : index is for empty phandle
	 * -EINVAL : parsing error on data
1547
	 * [1..n]  : Number of phandle (count mode; when index = -1)
1548
	 */
1549
	rc = index < 0 ? cur_index : -ENOENT;
1550
 err:
1551 1552
	if (node)
		of_node_put(node);
1553
	return rc;
1554
}
1555

S
Stephen Warren 已提交
1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
/**
 * of_parse_phandle - Resolve a phandle property to a device_node pointer
 * @np: Pointer to device node holding phandle property
 * @phandle_name: Name of property holding a phandle value
 * @index: For properties holding a table of phandles, this is the index into
 *         the table
 *
 * Returns the device_node pointer with refcount incremented.  Use
 * of_node_put() on it when done.
 */
struct device_node *of_parse_phandle(const struct device_node *np,
				     const char *phandle_name, int index)
{
1569 1570 1571 1572
	struct of_phandle_args args;

	if (index < 0)
		return NULL;
S
Stephen Warren 已提交
1573

1574 1575
	if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
					 index, &args))
S
Stephen Warren 已提交
1576 1577
		return NULL;

1578
	return args.np;
S
Stephen Warren 已提交
1579 1580 1581
}
EXPORT_SYMBOL(of_parse_phandle);

1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
/**
 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
 * @np:		pointer to a device tree node containing a list
 * @list_name:	property name that contains a list
 * @cells_name:	property name that specifies phandles' arguments count
 * @index:	index of a phandle to parse out
 * @out_args:	optional pointer to output arguments structure (will be filled)
 *
 * This function is useful to parse lists of phandles and their arguments.
 * Returns 0 on success and fills out_args, on error returns appropriate
 * errno value.
 *
 * Caller is responsible to call of_node_put() on the returned out_args->node
 * pointer.
 *
 * Example:
 *
 * phandle1: node1 {
 * 	#list-cells = <2>;
 * }
 *
 * phandle2: node2 {
 * 	#list-cells = <1>;
 * }
 *
 * node3 {
 * 	list = <&phandle1 1 2 &phandle2 3>;
 * }
 *
 * To get a device_node of the `node2' node you may call this:
 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
 */
1614 1615 1616 1617 1618 1619
int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
				const char *cells_name, int index,
				struct of_phandle_args *out_args)
{
	if (index < 0)
		return -EINVAL;
1620 1621
	return __of_parse_phandle_with_args(np, list_name, cells_name, 0,
					    index, out_args);
1622
}
1623
EXPORT_SYMBOL(of_parse_phandle_with_args);
1624

1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
/**
 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
 * @np:		pointer to a device tree node containing a list
 * @list_name:	property name that contains a list
 * @cell_count: number of argument cells following the phandle
 * @index:	index of a phandle to parse out
 * @out_args:	optional pointer to output arguments structure (will be filled)
 *
 * This function is useful to parse lists of phandles and their arguments.
 * Returns 0 on success and fills out_args, on error returns appropriate
 * errno value.
 *
 * Caller is responsible to call of_node_put() on the returned out_args->node
 * pointer.
 *
 * Example:
 *
 * phandle1: node1 {
 * }
 *
 * phandle2: node2 {
 * }
 *
 * node3 {
 * 	list = <&phandle1 0 2 &phandle2 2 3>;
 * }
 *
 * To get a device_node of the `node2' node you may call this:
 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
 */
int of_parse_phandle_with_fixed_args(const struct device_node *np,
				const char *list_name, int cell_count,
				int index, struct of_phandle_args *out_args)
{
	if (index < 0)
		return -EINVAL;
	return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
					   index, out_args);
}
EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);

1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683
/**
 * of_count_phandle_with_args() - Find the number of phandles references in a property
 * @np:		pointer to a device tree node containing a list
 * @list_name:	property name that contains a list
 * @cells_name:	property name that specifies phandles' arguments count
 *
 * Returns the number of phandle + argument tuples within a property. It
 * is a typical pattern to encode a list of phandle and variable
 * arguments into a single property. The number of arguments is encoded
 * by a property in the phandle-target node. For example, a gpios
 * property would contain a list of GPIO specifies consisting of a
 * phandle and 1 or more arguments. The number of arguments are
 * determined by the #gpio-cells property in the node pointed to by the
 * phandle.
 */
int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
				const char *cells_name)
{
1684 1685
	return __of_parse_phandle_with_args(np, list_name, cells_name, 0, -1,
					    NULL);
1686 1687 1688
}
EXPORT_SYMBOL(of_count_phandle_with_args);

1689 1690 1691 1692 1693 1694
#if defined(CONFIG_OF_DYNAMIC)
static int of_property_notify(int action, struct device_node *np,
			      struct property *prop)
{
	struct of_prop_reconfig pr;

1695 1696 1697 1698
	/* only call notifiers if the node is attached */
	if (!of_node_is_attached(np))
		return 0;

1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710
	pr.dn = np;
	pr.prop = prop;
	return of_reconfig_notify(action, &pr);
}
#else
static int of_property_notify(int action, struct device_node *np,
			      struct property *prop)
{
	return 0;
}
#endif

1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
/**
 * __of_add_property - Add a property to a node without lock operations
 */
static int __of_add_property(struct device_node *np, struct property *prop)
{
	struct property **next;

	prop->next = NULL;
	next = &np->properties;
	while (*next) {
		if (strcmp(prop->name, (*next)->name) == 0)
			/* duplicate ! don't insert it */
			return -EEXIST;

		next = &(*next)->next;
	}
	*next = prop;

	return 0;
}

1732
/**
1733
 * of_add_property - Add a property to a node
1734
 */
1735
int of_add_property(struct device_node *np, struct property *prop)
1736 1737
{
	unsigned long flags;
1738 1739 1740 1741 1742
	int rc;

	rc = of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop);
	if (rc)
		return rc;
1743

1744
	raw_spin_lock_irqsave(&devtree_lock, flags);
1745
	rc = __of_add_property(np, prop);
1746
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1747 1748
	if (rc)
		return rc;
1749

1750 1751
	if (of_node_is_attached(np))
		__of_add_property_sysfs(np, prop);
1752

1753
	return rc;
1754 1755 1756
}

/**
1757
 * of_remove_property - Remove a property from a node.
1758 1759 1760 1761 1762 1763
 *
 * Note that we don't actually remove it, since we have given out
 * who-knows-how-many pointers to the data using get-property.
 * Instead we just move the property to the "dead properties"
 * list, so it won't be found any more.
 */
1764
int of_remove_property(struct device_node *np, struct property *prop)
1765 1766 1767 1768
{
	struct property **next;
	unsigned long flags;
	int found = 0;
1769 1770 1771 1772 1773
	int rc;

	rc = of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop);
	if (rc)
		return rc;
1774

1775
	raw_spin_lock_irqsave(&devtree_lock, flags);
1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787
	next = &np->properties;
	while (*next) {
		if (*next == prop) {
			/* found the node */
			*next = prop->next;
			prop->next = np->deadprops;
			np->deadprops = prop;
			found = 1;
			break;
		}
		next = &(*next)->next;
	}
1788
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1789 1790 1791 1792

	if (!found)
		return -ENODEV;

1793 1794 1795 1796 1797
	/* at early boot, bail hear and defer setup to of_init() */
	if (!of_kset)
		return 0;

	sysfs_remove_bin_file(&np->kobj, &prop->attr);
1798 1799 1800 1801 1802

	return 0;
}

/*
1803
 * of_update_property - Update a property in a node, if the property does
1804
 * not exist, add it.
1805 1806 1807 1808 1809 1810
 *
 * Note that we don't actually remove it, since we have given out
 * who-knows-how-many pointers to the data using get-property.
 * Instead we just move the property to the "dead properties" list,
 * and add the new property to the property list
 */
1811
int of_update_property(struct device_node *np, struct property *newprop)
1812
{
1813
	struct property **next, *oldprop;
1814
	unsigned long flags;
1815
	int rc;
1816 1817 1818 1819

	rc = of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop);
	if (rc)
		return rc;
1820

1821 1822 1823
	if (!newprop->name)
		return -EINVAL;

1824
	raw_spin_lock_irqsave(&devtree_lock, flags);
1825
	next = &np->properties;
1826 1827 1828 1829 1830 1831
	oldprop = __of_find_property(np, newprop->name, NULL);
	if (!oldprop) {
		/* add the new node */
		rc = __of_add_property(np, newprop);
	} else while (*next) {
		/* replace the node */
1832 1833 1834 1835 1836 1837 1838 1839 1840
		if (*next == oldprop) {
			newprop->next = oldprop->next;
			*next = newprop;
			oldprop->next = np->deadprops;
			np->deadprops = oldprop;
			break;
		}
		next = &(*next)->next;
	}
1841
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1842 1843 1844 1845 1846 1847
	if (rc)
		return rc;

	/* At early boot, bail out and defer setup to of_init() */
	if (!of_kset)
		return 0;
1848 1849

	/* Update the sysfs attribute */
1850 1851
	if (oldprop)
		sysfs_remove_bin_file(&np->kobj, &oldprop->attr);
1852
	__of_add_property_sysfs(np, newprop);
1853 1854 1855

	return 0;
}
1856 1857 1858 1859 1860 1861 1862 1863 1864 1865

#if defined(CONFIG_OF_DYNAMIC)
/*
 * Support for dynamic device trees.
 *
 * On some platforms, the device tree can be manipulated at runtime.
 * The routines in this section support adding, removing and changing
 * device tree nodes.
 */

1866 1867 1868 1869 1870 1871
static BLOCKING_NOTIFIER_HEAD(of_reconfig_chain);

int of_reconfig_notifier_register(struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&of_reconfig_chain, nb);
}
1872
EXPORT_SYMBOL_GPL(of_reconfig_notifier_register);
1873 1874 1875 1876 1877

int of_reconfig_notifier_unregister(struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&of_reconfig_chain, nb);
}
1878
EXPORT_SYMBOL_GPL(of_reconfig_notifier_unregister);
1879 1880 1881 1882 1883 1884 1885 1886 1887

int of_reconfig_notify(unsigned long action, void *p)
{
	int rc;

	rc = blocking_notifier_call_chain(&of_reconfig_chain, action, p);
	return notifier_to_errno(rc);
}

1888 1889 1890
/**
 * of_attach_node - Plug a device node into the tree and global list.
 */
1891
int of_attach_node(struct device_node *np)
1892 1893
{
	unsigned long flags;
1894 1895 1896 1897 1898
	int rc;

	rc = of_reconfig_notify(OF_RECONFIG_ATTACH_NODE, np);
	if (rc)
		return rc;
1899

1900
	raw_spin_lock_irqsave(&devtree_lock, flags);
1901
	np->sibling = np->parent->child;
1902
	np->allnext = of_allnodes;
1903
	np->parent->child = np;
1904
	of_allnodes = np;
1905
	of_node_clear_flag(np, OF_DETACHED);
1906
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1907

1908
	of_node_add(np);
1909
	return 0;
1910 1911 1912 1913 1914 1915 1916 1917
}

/**
 * of_detach_node - "Unplug" a node from the device tree.
 *
 * The caller must hold a reference to the node.  The memory associated with
 * the node is not freed until its refcount goes to zero.
 */
1918
int of_detach_node(struct device_node *np)
1919 1920 1921
{
	struct device_node *parent;
	unsigned long flags;
1922 1923 1924 1925 1926
	int rc = 0;

	rc = of_reconfig_notify(OF_RECONFIG_DETACH_NODE, np);
	if (rc)
		return rc;
1927

1928
	raw_spin_lock_irqsave(&devtree_lock, flags);
1929

1930 1931
	if (of_node_check_flag(np, OF_DETACHED)) {
		/* someone already detached it */
1932
		raw_spin_unlock_irqrestore(&devtree_lock, flags);
1933
		return rc;
1934 1935
	}

1936
	parent = np->parent;
1937
	if (!parent) {
1938
		raw_spin_unlock_irqrestore(&devtree_lock, flags);
1939
		return rc;
1940
	}
1941

1942 1943
	if (of_allnodes == np)
		of_allnodes = np->allnext;
1944 1945
	else {
		struct device_node *prev;
1946
		for (prev = of_allnodes;
1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964
		     prev->allnext != np;
		     prev = prev->allnext)
			;
		prev->allnext = np->allnext;
	}

	if (parent->child == np)
		parent->child = np->sibling;
	else {
		struct device_node *prevsib;
		for (prevsib = np->parent->child;
		     prevsib->sibling != np;
		     prevsib = prevsib->sibling)
			;
		prevsib->sibling = np->sibling;
	}

	of_node_set_flag(np, OF_DETACHED);
1965
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1966

1967
	of_node_remove(np);
1968
	return rc;
1969 1970 1971
}
#endif /* defined(CONFIG_OF_DYNAMIC) */

1972 1973 1974 1975 1976 1977 1978 1979 1980
static void of_alias_add(struct alias_prop *ap, struct device_node *np,
			 int id, const char *stem, int stem_len)
{
	ap->np = np;
	ap->id = id;
	strncpy(ap->stem, stem, stem_len);
	ap->stem[stem_len] = 0;
	list_add_tail(&ap->link, &aliases_lookup);
	pr_debug("adding DT alias:%s: stem=%s id=%i node=%s\n",
1981
		 ap->alias, ap->stem, ap->id, of_node_full_name(np));
1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
}

/**
 * of_alias_scan - Scan all properties of 'aliases' node
 *
 * The function scans all the properties of 'aliases' node and populate
 * the the global lookup table with the properties.  It returns the
 * number of alias_prop found, or error code in error case.
 *
 * @dt_alloc:	An allocator that provides a virtual address to memory
 *		for the resulting tree
 */
void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
{
	struct property *pp;

	of_chosen = of_find_node_by_path("/chosen");
	if (of_chosen == NULL)
		of_chosen = of_find_node_by_path("/chosen@0");
2001 2002

	if (of_chosen) {
2003 2004 2005
		const char *name = of_get_property(of_chosen, "stdout-path", NULL);
		if (!name)
			name = of_get_property(of_chosen, "linux,stdout-path", NULL);
2006 2007 2008 2009
		if (name)
			of_stdout = of_find_node_by_path(name);
	}

2010 2011 2012 2013
	of_aliases = of_find_node_by_path("/aliases");
	if (!of_aliases)
		return;

2014
	for_each_property_of_node(of_aliases, pp) {
2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043
		const char *start = pp->name;
		const char *end = start + strlen(start);
		struct device_node *np;
		struct alias_prop *ap;
		int id, len;

		/* Skip those we do not want to proceed */
		if (!strcmp(pp->name, "name") ||
		    !strcmp(pp->name, "phandle") ||
		    !strcmp(pp->name, "linux,phandle"))
			continue;

		np = of_find_node_by_path(pp->value);
		if (!np)
			continue;

		/* walk the alias backwards to extract the id and work out
		 * the 'stem' string */
		while (isdigit(*(end-1)) && end > start)
			end--;
		len = end - start;

		if (kstrtoint(end, 10, &id) < 0)
			continue;

		/* Allocate an alias_prop with enough space for the stem */
		ap = dt_alloc(sizeof(*ap) + len + 1, 4);
		if (!ap)
			continue;
2044
		memset(ap, 0, sizeof(*ap) + len + 1);
2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077
		ap->alias = start;
		of_alias_add(ap, np, id, start, len);
	}
}

/**
 * of_alias_get_id - Get alias id for the given device_node
 * @np:		Pointer to the given device_node
 * @stem:	Alias stem of the given device_node
 *
 * The function travels the lookup table to get alias id for the given
 * device_node and alias stem.  It returns the alias id if find it.
 */
int of_alias_get_id(struct device_node *np, const char *stem)
{
	struct alias_prop *app;
	int id = -ENODEV;

	mutex_lock(&of_aliases_mutex);
	list_for_each_entry(app, &aliases_lookup, link) {
		if (strcmp(app->stem, stem) != 0)
			continue;

		if (np == app->np) {
			id = app->id;
			break;
		}
	}
	mutex_unlock(&of_aliases_mutex);

	return id;
}
EXPORT_SYMBOL_GPL(of_alias_get_id);
2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118

const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur,
			       u32 *pu)
{
	const void *curv = cur;

	if (!prop)
		return NULL;

	if (!cur) {
		curv = prop->value;
		goto out_val;
	}

	curv += sizeof(*cur);
	if (curv >= prop->value + prop->length)
		return NULL;

out_val:
	*pu = be32_to_cpup(curv);
	return curv;
}
EXPORT_SYMBOL_GPL(of_prop_next_u32);

const char *of_prop_next_string(struct property *prop, const char *cur)
{
	const void *curv = cur;

	if (!prop)
		return NULL;

	if (!cur)
		return prop->value;

	curv += strlen(cur) + 1;
	if (curv >= prop->value + prop->length)
		return NULL;

	return curv;
}
EXPORT_SYMBOL_GPL(of_prop_next_string);
2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134

/**
 * of_device_is_stdout_path - check if a device node matches the
 *                            linux,stdout-path property
 *
 * Check if this device node matches the linux,stdout-path property
 * in the chosen node. return true if yes, false otherwise.
 */
int of_device_is_stdout_path(struct device_node *dn)
{
	if (!of_stdout)
		return false;

	return of_stdout == dn;
}
EXPORT_SYMBOL_GPL(of_device_is_stdout_path);
2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165

/**
 *	of_find_next_cache_node - Find a node's subsidiary cache
 *	@np:	node of type "cpu" or "cache"
 *
 *	Returns a node pointer with refcount incremented, use
 *	of_node_put() on it when done.  Caller should hold a reference
 *	to np.
 */
struct device_node *of_find_next_cache_node(const struct device_node *np)
{
	struct device_node *child;
	const phandle *handle;

	handle = of_get_property(np, "l2-cache", NULL);
	if (!handle)
		handle = of_get_property(np, "next-level-cache", NULL);

	if (handle)
		return of_find_node_by_phandle(be32_to_cpup(handle));

	/* OF on pmac has nodes instead of properties named "l2-cache"
	 * beneath CPU nodes.
	 */
	if (!strcmp(np->type, "cpu"))
		for_each_child_of_node(np, child)
			if (!strcmp(child->type, "cache"))
				return child;

	return NULL;
}
2166

2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178
/**
 * of_graph_parse_endpoint() - parse common endpoint node properties
 * @node: pointer to endpoint device_node
 * @endpoint: pointer to the OF endpoint data structure
 *
 * The caller should hold a reference to @node.
 */
int of_graph_parse_endpoint(const struct device_node *node,
			    struct of_endpoint *endpoint)
{
	struct device_node *port_node = of_get_parent(node);

2179 2180 2181
	WARN_ONCE(!port_node, "%s(): endpoint %s has no parent node\n",
		  __func__, node->full_name);

2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197
	memset(endpoint, 0, sizeof(*endpoint));

	endpoint->local_node = node;
	/*
	 * It doesn't matter whether the two calls below succeed.
	 * If they don't then the default value 0 is used.
	 */
	of_property_read_u32(port_node, "reg", &endpoint->port);
	of_property_read_u32(node, "reg", &endpoint->id);

	of_node_put(port_node);

	return 0;
}
EXPORT_SYMBOL(of_graph_parse_endpoint);

2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210
/**
 * of_graph_get_next_endpoint() - get next endpoint node
 * @parent: pointer to the parent device node
 * @prev: previous endpoint node, or NULL to get first
 *
 * Return: An 'endpoint' node pointer with refcount incremented. Refcount
 * of the passed @prev node is not decremented, the caller have to use
 * of_node_put() on it when done.
 */
struct device_node *of_graph_get_next_endpoint(const struct device_node *parent,
					struct device_node *prev)
{
	struct device_node *endpoint;
2211
	struct device_node *port;
2212 2213 2214 2215

	if (!parent)
		return NULL;

2216 2217 2218 2219 2220
	/*
	 * Start by locating the port node. If no previous endpoint is specified
	 * search for the first port node, otherwise get the previous endpoint
	 * parent port node.
	 */
2221 2222
	if (!prev) {
		struct device_node *node;
2223

2224 2225 2226 2227 2228 2229 2230
		node = of_get_child_by_name(parent, "ports");
		if (node)
			parent = node;

		port = of_get_child_by_name(parent, "port");
		of_node_put(node);

2231 2232 2233 2234 2235 2236 2237 2238 2239 2240
		if (!port) {
			pr_err("%s(): no port node found in %s\n",
			       __func__, parent->full_name);
			return NULL;
		}
	} else {
		port = of_get_parent(prev);
		if (WARN_ONCE(!port, "%s(): endpoint %s has no parent node\n",
			      __func__, prev->full_name))
			return NULL;
2241

2242 2243 2244 2245 2246
		/*
		 * Avoid dropping prev node refcount to 0 when getting the next
		 * child below.
		 */
		of_node_get(prev);
2247 2248
	}

2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259
	while (1) {
		/*
		 * Now that we have a port node, get the next endpoint by
		 * getting the next child. If the previous endpoint is NULL this
		 * will return the first child.
		 */
		endpoint = of_get_next_child(port, prev);
		if (endpoint) {
			of_node_put(port);
			return endpoint;
		}
2260

2261 2262
		/* No more endpoints under this port, try the next one. */
		prev = NULL;
2263

2264 2265 2266 2267 2268 2269
		do {
			port = of_get_next_child(parent, port);
			if (!port)
				return NULL;
		} while (of_node_cmp(port->name, "port"));
	}
2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316
}
EXPORT_SYMBOL(of_graph_get_next_endpoint);

/**
 * of_graph_get_remote_port_parent() - get remote port's parent node
 * @node: pointer to a local endpoint device_node
 *
 * Return: Remote device node associated with remote endpoint node linked
 *	   to @node. Use of_node_put() on it when done.
 */
struct device_node *of_graph_get_remote_port_parent(
			       const struct device_node *node)
{
	struct device_node *np;
	unsigned int depth;

	/* Get remote endpoint node. */
	np = of_parse_phandle(node, "remote-endpoint", 0);

	/* Walk 3 levels up only if there is 'ports' node. */
	for (depth = 3; depth && np; depth--) {
		np = of_get_next_parent(np);
		if (depth == 2 && of_node_cmp(np->name, "ports"))
			break;
	}
	return np;
}
EXPORT_SYMBOL(of_graph_get_remote_port_parent);

/**
 * of_graph_get_remote_port() - get remote port node
 * @node: pointer to a local endpoint device_node
 *
 * Return: Remote port node associated with remote endpoint node linked
 *	   to @node. Use of_node_put() on it when done.
 */
struct device_node *of_graph_get_remote_port(const struct device_node *node)
{
	struct device_node *np;

	/* Get remote endpoint node. */
	np = of_parse_phandle(node, "remote-endpoint", 0);
	if (!np)
		return NULL;
	return of_get_next_parent(np);
}
EXPORT_SYMBOL(of_graph_get_remote_port);