intel_lrc.c 75.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133 134 135 136 137
 */

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
138
#include "intel_mocs.h"
139

140
#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
141 142 143
#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)

144 145 146 147 148 149 150 151 152 153 154 155 156
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186

#define CTX_LRI_HEADER_0		0x01
#define CTX_CONTEXT_CONTROL		0x02
#define CTX_RING_HEAD			0x04
#define CTX_RING_TAIL			0x06
#define CTX_RING_BUFFER_START		0x08
#define CTX_RING_BUFFER_CONTROL		0x0a
#define CTX_BB_HEAD_U			0x0c
#define CTX_BB_HEAD_L			0x0e
#define CTX_BB_STATE			0x10
#define CTX_SECOND_BB_HEAD_U		0x12
#define CTX_SECOND_BB_HEAD_L		0x14
#define CTX_SECOND_BB_STATE		0x16
#define CTX_BB_PER_CTX_PTR		0x18
#define CTX_RCS_INDIRECT_CTX		0x1a
#define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
#define CTX_LRI_HEADER_1		0x21
#define CTX_CTX_TIMESTAMP		0x22
#define CTX_PDP3_UDW			0x24
#define CTX_PDP3_LDW			0x26
#define CTX_PDP2_UDW			0x28
#define CTX_PDP2_LDW			0x2a
#define CTX_PDP1_UDW			0x2c
#define CTX_PDP1_LDW			0x2e
#define CTX_PDP0_UDW			0x30
#define CTX_PDP0_LDW			0x32
#define CTX_LRI_HEADER_2		0x41
#define CTX_R_PWR_CLK_STATE		0x42
#define CTX_GPGPU_CSR_BASE_ADDRESS	0x44

187 188 189 190 191
#define GEN8_CTX_VALID (1<<0)
#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
#define GEN8_CTX_FORCE_RESTORE (1<<2)
#define GEN8_CTX_L3LLC_COHERENT (1<<5)
#define GEN8_CTX_PRIVILEGE (1<<8)
192 193

#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) { \
194
	const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n));	\
195 196 197 198
	reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
	reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
}

199 200 201 202 203
#define ASSIGN_CTX_PML4(ppgtt, reg_state) { \
	reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
	reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
}

204 205
enum {
	ADVANCED_CONTEXT = 0,
206
	LEGACY_32B_CONTEXT,
207 208 209
	ADVANCED_AD_CONTEXT,
	LEGACY_64B_CONTEXT
};
210 211 212 213
#define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
#define GEN8_CTX_ADDRESSING_MODE(dev)  (USES_FULL_48BIT_PPGTT(dev) ?\
		LEGACY_64B_CONTEXT :\
		LEGACY_32B_CONTEXT)
214 215 216 217 218 219 220
enum {
	FAULT_AND_HANG = 0,
	FAULT_AND_HALT, /* Debug only */
	FAULT_AND_STREAM,
	FAULT_AND_CONTINUE /* Unsupported */
};
#define GEN8_CTX_ID_SHIFT 32
221
#define CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT  0x17
222

223
static int intel_lr_context_pin(struct drm_i915_gem_request *rq);
224

225 226 227 228 229 230
/**
 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
 * @dev: DRM device.
 * @enable_execlists: value of i915.enable_execlists module parameter.
 *
 * Only certain platforms support Execlists (the prerequisites being
231
 * support for Logical Ring Contexts and Aliasing PPGTT or better).
232 233 234
 *
 * Return: 1 if Execlists is supported and has to be enabled.
 */
235 236
int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
{
237 238
	WARN_ON(i915.enable_ppgtt == -1);

239 240 241 242 243 244
	/* On platforms with execlist available, vGPU will only
	 * support execlist mode, no ring buffer mode.
	 */
	if (HAS_LOGICAL_RING_CONTEXTS(dev) && intel_vgpu_active(dev))
		return 1;

245 246 247
	if (INTEL_INFO(dev)->gen >= 9)
		return 1;

248 249 250
	if (enable_execlists == 0)
		return 0;

251 252
	if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
	    i915.use_mmio_flip >= 0)
253 254 255 256
		return 1;

	return 0;
}
257

258 259 260 261 262 263 264 265 266 267 268 269
/**
 * intel_execlists_ctx_id() - get the Execlists Context ID
 * @ctx_obj: Logical Ring Context backing object.
 *
 * Do not confuse with ctx->id! Unfortunately we have a name overload
 * here: the old context ID we pass to userspace as a handler so that
 * they can refer to a context, and the new context ID we pass to the
 * ELSP so that the GPU can inform us of the context status via
 * interrupts.
 *
 * Return: 20-bits globally unique context ID.
 */
270 271
u32 intel_execlists_ctx_id(struct drm_i915_gem_object *ctx_obj)
{
272 273
	u32 lrca = i915_gem_obj_ggtt_offset(ctx_obj) +
			LRC_PPHWSP_PN * PAGE_SIZE;
274 275 276 277 278 279

	/* LRCA is required to be 4K aligned so the more significant 20 bits
	 * are globally unique */
	return lrca >> 12;
}

280 281 282 283 284 285 286 287 288
static bool disable_lite_restore_wa(struct intel_engine_cs *ring)
{
	struct drm_device *dev = ring->dev;

	return ((IS_SKYLAKE(dev) && INTEL_REVID(dev) <= SKL_REVID_B0) ||
		(IS_BROXTON(dev) && INTEL_REVID(dev) == BXT_REVID_A0)) &&
	       (ring->id == VCS || ring->id == VCS2);
}

289 290
uint64_t intel_lr_context_descriptor(struct intel_context *ctx,
				     struct intel_engine_cs *ring)
291
{
292
	struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
293
	uint64_t desc;
294 295
	uint64_t lrca = i915_gem_obj_ggtt_offset(ctx_obj) +
			LRC_PPHWSP_PN * PAGE_SIZE;
296 297

	WARN_ON(lrca & 0xFFFFFFFF00000FFFULL);
298 299

	desc = GEN8_CTX_VALID;
300
	desc |= GEN8_CTX_ADDRESSING_MODE(dev) << GEN8_CTX_ADDRESSING_MODE_SHIFT;
301 302
	if (IS_GEN8(ctx_obj->base.dev))
		desc |= GEN8_CTX_L3LLC_COHERENT;
303 304 305 306 307 308 309 310
	desc |= GEN8_CTX_PRIVILEGE;
	desc |= lrca;
	desc |= (u64)intel_execlists_ctx_id(ctx_obj) << GEN8_CTX_ID_SHIFT;

	/* TODO: WaDisableLiteRestore when we start using semaphore
	 * signalling between Command Streamers */
	/* desc |= GEN8_CTX_FORCE_RESTORE; */

311
	/* WaEnableForceRestoreInCtxtDescForVCS:skl */
312
	/* WaEnableForceRestoreInCtxtDescForVCS:bxt */
313
	if (disable_lite_restore_wa(ring))
314 315
		desc |= GEN8_CTX_FORCE_RESTORE;

316 317 318
	return desc;
}

319 320
static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
				 struct drm_i915_gem_request *rq1)
321
{
322 323

	struct intel_engine_cs *ring = rq0->ring;
324 325
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
326
	uint64_t desc[2];
327

328
	if (rq1) {
329
		desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->ring);
330 331 332 333
		rq1->elsp_submitted++;
	} else {
		desc[1] = 0;
	}
334

335
	desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->ring);
336
	rq0->elsp_submitted++;
337

338
	/* You must always write both descriptors in the order below. */
339 340
	spin_lock(&dev_priv->uncore.lock);
	intel_uncore_forcewake_get__locked(dev_priv, FORCEWAKE_ALL);
341 342
	I915_WRITE_FW(RING_ELSP(ring), upper_32_bits(desc[1]));
	I915_WRITE_FW(RING_ELSP(ring), lower_32_bits(desc[1]));
343

344
	I915_WRITE_FW(RING_ELSP(ring), upper_32_bits(desc[0]));
345
	/* The context is automatically loaded after the following */
346
	I915_WRITE_FW(RING_ELSP(ring), lower_32_bits(desc[0]));
347

348
	/* ELSP is a wo register, use another nearby reg for posting */
349 350 351
	POSTING_READ_FW(RING_EXECLIST_STATUS(ring));
	intel_uncore_forcewake_put__locked(dev_priv, FORCEWAKE_ALL);
	spin_unlock(&dev_priv->uncore.lock);
352 353
}

354
static int execlists_update_context(struct drm_i915_gem_request *rq)
355
{
356 357 358 359
	struct intel_engine_cs *ring = rq->ring;
	struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
	struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
	struct drm_i915_gem_object *rb_obj = rq->ringbuf->obj;
360 361 362
	struct page *page;
	uint32_t *reg_state;

363 364 365 366
	BUG_ON(!ctx_obj);
	WARN_ON(!i915_gem_obj_is_pinned(ctx_obj));
	WARN_ON(!i915_gem_obj_is_pinned(rb_obj));

367
	page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
368 369
	reg_state = kmap_atomic(page);

370 371
	reg_state[CTX_RING_TAIL+1] = rq->tail;
	reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(rb_obj);
372

373 374 375 376 377 378
	if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
		/* True 32b PPGTT with dynamic page allocation: update PDP
		 * registers and point the unallocated PDPs to scratch page.
		 * PML4 is allocated during ppgtt init, so this is not needed
		 * in 48-bit mode.
		 */
379 380 381 382 383 384
		ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
		ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
		ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
		ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
	}

385 386 387 388 389
	kunmap_atomic(reg_state);

	return 0;
}

390 391
static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
				      struct drm_i915_gem_request *rq1)
392
{
393
	execlists_update_context(rq0);
394

395
	if (rq1)
396
		execlists_update_context(rq1);
397

398
	execlists_elsp_write(rq0, rq1);
399 400
}

401 402
static void execlists_context_unqueue(struct intel_engine_cs *ring)
{
403 404
	struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
	struct drm_i915_gem_request *cursor = NULL, *tmp = NULL;
405 406

	assert_spin_locked(&ring->execlist_lock);
407

408 409 410 411 412 413
	/*
	 * If irqs are not active generate a warning as batches that finish
	 * without the irqs may get lost and a GPU Hang may occur.
	 */
	WARN_ON(!intel_irqs_enabled(ring->dev->dev_private));

414 415 416 417 418 419 420 421
	if (list_empty(&ring->execlist_queue))
		return;

	/* Try to read in pairs */
	list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
				 execlist_link) {
		if (!req0) {
			req0 = cursor;
422
		} else if (req0->ctx == cursor->ctx) {
423 424
			/* Same ctx: ignore first request, as second request
			 * will update tail past first request's workload */
425
			cursor->elsp_submitted = req0->elsp_submitted;
426
			list_del(&req0->execlist_link);
427 428
			list_add_tail(&req0->execlist_link,
				&ring->execlist_retired_req_list);
429 430 431 432 433 434 435
			req0 = cursor;
		} else {
			req1 = cursor;
			break;
		}
	}

436 437 438 439 440
	if (IS_GEN8(ring->dev) || IS_GEN9(ring->dev)) {
		/*
		 * WaIdleLiteRestore: make sure we never cause a lite
		 * restore with HEAD==TAIL
		 */
441
		if (req0->elsp_submitted) {
442 443 444 445 446 447 448 449 450 451 452 453 454 455
			/*
			 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL
			 * as we resubmit the request. See gen8_emit_request()
			 * for where we prepare the padding after the end of the
			 * request.
			 */
			struct intel_ringbuffer *ringbuf;

			ringbuf = req0->ctx->engine[ring->id].ringbuf;
			req0->tail += 8;
			req0->tail &= ringbuf->size - 1;
		}
	}

456 457
	WARN_ON(req1 && req1->elsp_submitted);

458
	execlists_submit_requests(req0, req1);
459 460
}

461 462 463
static bool execlists_check_remove_request(struct intel_engine_cs *ring,
					   u32 request_id)
{
464
	struct drm_i915_gem_request *head_req;
465 466 467 468

	assert_spin_locked(&ring->execlist_lock);

	head_req = list_first_entry_or_null(&ring->execlist_queue,
469
					    struct drm_i915_gem_request,
470 471 472 473
					    execlist_link);

	if (head_req != NULL) {
		struct drm_i915_gem_object *ctx_obj =
474
				head_req->ctx->engine[ring->id].state;
475
		if (intel_execlists_ctx_id(ctx_obj) == request_id) {
476 477 478 479 480
			WARN(head_req->elsp_submitted == 0,
			     "Never submitted head request\n");

			if (--head_req->elsp_submitted <= 0) {
				list_del(&head_req->execlist_link);
481 482
				list_add_tail(&head_req->execlist_link,
					&ring->execlist_retired_req_list);
483 484
				return true;
			}
485 486 487 488 489 490
		}
	}

	return false;
}

491
/**
492
 * intel_lrc_irq_handler() - handle Context Switch interrupts
493 494 495 496 497
 * @ring: Engine Command Streamer to handle.
 *
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
498
void intel_lrc_irq_handler(struct intel_engine_cs *ring)
499 500 501 502 503
{
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
	u32 status_pointer;
	u8 read_pointer;
	u8 write_pointer;
504
	u32 status = 0;
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
	u32 status_id;
	u32 submit_contexts = 0;

	status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));

	read_pointer = ring->next_context_status_buffer;
	write_pointer = status_pointer & 0x07;
	if (read_pointer > write_pointer)
		write_pointer += 6;

	spin_lock(&ring->execlist_lock);

	while (read_pointer < write_pointer) {
		read_pointer++;
		status = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
				(read_pointer % 6) * 8);
		status_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
				(read_pointer % 6) * 8 + 4);

524 525 526
		if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
			continue;

527 528 529 530 531 532 533 534 535 536
		if (status & GEN8_CTX_STATUS_PREEMPTED) {
			if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
				if (execlists_check_remove_request(ring, status_id))
					WARN(1, "Lite Restored request removed from queue\n");
			} else
				WARN(1, "Preemption without Lite Restore\n");
		}

		 if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
		     (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
537 538 539 540 541
			if (execlists_check_remove_request(ring, status_id))
				submit_contexts++;
		}
	}

542 543 544 545 546 547
	if (disable_lite_restore_wa(ring)) {
		/* Prevent a ctx to preempt itself */
		if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) &&
		    (submit_contexts != 0))
			execlists_context_unqueue(ring);
	} else if (submit_contexts != 0) {
548
		execlists_context_unqueue(ring);
549
	}
550 551 552 553 554 555 556

	spin_unlock(&ring->execlist_lock);

	WARN(submit_contexts > 2, "More than two context complete events?\n");
	ring->next_context_status_buffer = write_pointer % 6;

	I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
557
		   _MASKED_FIELD(0x07 << 8, ((u32)ring->next_context_status_buffer & 0x07) << 8));
558 559
}

560
static int execlists_context_queue(struct drm_i915_gem_request *request)
561
{
562
	struct intel_engine_cs *ring = request->ring;
563
	struct drm_i915_gem_request *cursor;
564
	int num_elements = 0;
565

566
	if (request->ctx != ring->default_context)
567
		intel_lr_context_pin(request);
568 569 570

	i915_gem_request_reference(request);

571
	spin_lock_irq(&ring->execlist_lock);
572

573 574 575 576 577
	list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
		if (++num_elements > 2)
			break;

	if (num_elements > 2) {
578
		struct drm_i915_gem_request *tail_req;
579 580

		tail_req = list_last_entry(&ring->execlist_queue,
581
					   struct drm_i915_gem_request,
582 583
					   execlist_link);

584
		if (request->ctx == tail_req->ctx) {
585
			WARN(tail_req->elsp_submitted != 0,
586
				"More than 2 already-submitted reqs queued\n");
587
			list_del(&tail_req->execlist_link);
588 589
			list_add_tail(&tail_req->execlist_link,
				&ring->execlist_retired_req_list);
590 591 592
		}
	}

593
	list_add_tail(&request->execlist_link, &ring->execlist_queue);
594
	if (num_elements == 0)
595 596
		execlists_context_unqueue(ring);

597
	spin_unlock_irq(&ring->execlist_lock);
598 599 600 601

	return 0;
}

602
static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
603
{
604
	struct intel_engine_cs *ring = req->ring;
605 606 607 608 609 610 611
	uint32_t flush_domains;
	int ret;

	flush_domains = 0;
	if (ring->gpu_caches_dirty)
		flush_domains = I915_GEM_GPU_DOMAINS;

612
	ret = ring->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
613 614 615 616 617 618 619
	if (ret)
		return ret;

	ring->gpu_caches_dirty = false;
	return 0;
}

620
static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
621 622
				 struct list_head *vmas)
{
623
	const unsigned other_rings = ~intel_ring_flag(req->ring);
624 625 626 627 628 629 630 631
	struct i915_vma *vma;
	uint32_t flush_domains = 0;
	bool flush_chipset = false;
	int ret;

	list_for_each_entry(vma, vmas, exec_list) {
		struct drm_i915_gem_object *obj = vma->obj;

632
		if (obj->active & other_rings) {
633
			ret = i915_gem_object_sync(obj, req->ring, &req);
634 635 636
			if (ret)
				return ret;
		}
637 638 639 640 641 642 643 644 645 646 647 648 649

		if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
			flush_chipset |= i915_gem_clflush_object(obj, false);

		flush_domains |= obj->base.write_domain;
	}

	if (flush_domains & I915_GEM_DOMAIN_GTT)
		wmb();

	/* Unconditionally invalidate gpu caches and ensure that we do flush
	 * any residual writes from the previous batch.
	 */
650
	return logical_ring_invalidate_all_caches(req);
651 652
}

653
int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
654 655 656
{
	int ret;

657 658
	request->ringbuf = request->ctx->engine[request->ring->id].ringbuf;

659
	if (request->ctx != request->ring->default_context) {
660
		ret = intel_lr_context_pin(request);
661
		if (ret)
662 663 664 665 666 667
			return ret;
	}

	return 0;
}

668
static int logical_ring_wait_for_space(struct drm_i915_gem_request *req,
669
				       int bytes)
670
{
671 672 673
	struct intel_ringbuffer *ringbuf = req->ringbuf;
	struct intel_engine_cs *ring = req->ring;
	struct drm_i915_gem_request *target;
674 675
	unsigned space;
	int ret;
676 677 678 679

	if (intel_ring_space(ringbuf) >= bytes)
		return 0;

680 681 682
	/* The whole point of reserving space is to not wait! */
	WARN_ON(ringbuf->reserved_in_use);

683
	list_for_each_entry(target, &ring->request_list, list) {
684 685 686 687 688
		/*
		 * The request queue is per-engine, so can contain requests
		 * from multiple ringbuffers. Here, we must ignore any that
		 * aren't from the ringbuffer we're considering.
		 */
689
		if (target->ringbuf != ringbuf)
690 691 692
			continue;

		/* Would completion of this request free enough space? */
693
		space = __intel_ring_space(target->postfix, ringbuf->tail,
694 695
					   ringbuf->size);
		if (space >= bytes)
696 697 698
			break;
	}

699
	if (WARN_ON(&target->list == &ring->request_list))
700 701
		return -ENOSPC;

702
	ret = i915_wait_request(target);
703 704 705
	if (ret)
		return ret;

706 707
	ringbuf->space = space;
	return 0;
708 709 710 711
}

/*
 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
712
 * @request: Request to advance the logical ringbuffer of.
713 714 715 716 717 718 719
 *
 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
 * really happens during submission is that the context and current tail will be placed
 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
 * point, the tail *inside* the context is updated and the ELSP written to.
 */
static void
720
intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
721
{
722
	struct intel_engine_cs *ring = request->ring;
723
	struct drm_i915_private *dev_priv = request->i915;
724

725
	intel_logical_ring_advance(request->ringbuf);
726

727 728
	request->tail = request->ringbuf->tail;

729 730 731
	if (intel_ring_stopped(ring))
		return;

732 733 734 735
	if (dev_priv->guc.execbuf_client)
		i915_guc_submit(dev_priv->guc.execbuf_client, request);
	else
		execlists_context_queue(request);
736 737
}

738
static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
739 740 741 742 743 744 745 746 747 748 749 750 751
{
	uint32_t __iomem *virt;
	int rem = ringbuf->size - ringbuf->tail;

	virt = ringbuf->virtual_start + ringbuf->tail;
	rem /= 4;
	while (rem--)
		iowrite32(MI_NOOP, virt++);

	ringbuf->tail = 0;
	intel_ring_update_space(ringbuf);
}

752
static int logical_ring_prepare(struct drm_i915_gem_request *req, int bytes)
753
{
754
	struct intel_ringbuffer *ringbuf = req->ringbuf;
755 756 757 758
	int remain_usable = ringbuf->effective_size - ringbuf->tail;
	int remain_actual = ringbuf->size - ringbuf->tail;
	int ret, total_bytes, wait_bytes = 0;
	bool need_wrap = false;
759

760 761 762 763
	if (ringbuf->reserved_in_use)
		total_bytes = bytes;
	else
		total_bytes = bytes + ringbuf->reserved_size;
764

765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783
	if (unlikely(bytes > remain_usable)) {
		/*
		 * Not enough space for the basic request. So need to flush
		 * out the remainder and then wait for base + reserved.
		 */
		wait_bytes = remain_actual + total_bytes;
		need_wrap = true;
	} else {
		if (unlikely(total_bytes > remain_usable)) {
			/*
			 * The base request will fit but the reserved space
			 * falls off the end. So only need to to wait for the
			 * reserved size after flushing out the remainder.
			 */
			wait_bytes = remain_actual + ringbuf->reserved_size;
			need_wrap = true;
		} else if (total_bytes > ringbuf->space) {
			/* No wrapping required, just waiting. */
			wait_bytes = total_bytes;
784
		}
785 786
	}

787 788
	if (wait_bytes) {
		ret = logical_ring_wait_for_space(req, wait_bytes);
789 790
		if (unlikely(ret))
			return ret;
791 792 793

		if (need_wrap)
			__wrap_ring_buffer(ringbuf);
794 795 796 797 798 799 800 801
	}

	return 0;
}

/**
 * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
 *
802
 * @request: The request to start some new work for
803
 * @ctx: Logical ring context whose ringbuffer is being prepared.
804 805 806 807 808 809 810 811 812
 * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
 *
 * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
 * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
 * and also preallocates a request (every workload submission is still mediated through
 * requests, same as it did with legacy ringbuffer submission).
 *
 * Return: non-zero if the ringbuffer is not ready to be written to.
 */
813
int intel_logical_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
814
{
815
	struct drm_i915_private *dev_priv;
816 817
	int ret;

818 819 820
	WARN_ON(req == NULL);
	dev_priv = req->ring->dev->dev_private;

821 822 823 824 825
	ret = i915_gem_check_wedge(&dev_priv->gpu_error,
				   dev_priv->mm.interruptible);
	if (ret)
		return ret;

826
	ret = logical_ring_prepare(req, num_dwords * sizeof(uint32_t));
827 828 829
	if (ret)
		return ret;

830
	req->ringbuf->space -= num_dwords * sizeof(uint32_t);
831 832 833
	return 0;
}

834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
int intel_logical_ring_reserve_space(struct drm_i915_gem_request *request)
{
	/*
	 * The first call merely notes the reserve request and is common for
	 * all back ends. The subsequent localised _begin() call actually
	 * ensures that the reservation is available. Without the begin, if
	 * the request creator immediately submitted the request without
	 * adding any commands to it then there might not actually be
	 * sufficient room for the submission commands.
	 */
	intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);

	return intel_logical_ring_begin(request, 0);
}

849 850 851 852 853 854 855 856 857 858
/**
 * execlists_submission() - submit a batchbuffer for execution, Execlists style
 * @dev: DRM device.
 * @file: DRM file.
 * @ring: Engine Command Streamer to submit to.
 * @ctx: Context to employ for this submission.
 * @args: execbuffer call arguments.
 * @vmas: list of vmas.
 * @batch_obj: the batchbuffer to submit.
 * @exec_start: batchbuffer start virtual address pointer.
859
 * @dispatch_flags: translated execbuffer call flags.
860 861 862 863 864 865
 *
 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
 * away the submission details of the execbuffer ioctl call.
 *
 * Return: non-zero if the submission fails.
 */
866
int intel_execlists_submission(struct i915_execbuffer_params *params,
867
			       struct drm_i915_gem_execbuffer2 *args,
868
			       struct list_head *vmas)
869
{
870 871
	struct drm_device       *dev = params->dev;
	struct intel_engine_cs  *ring = params->ring;
872
	struct drm_i915_private *dev_priv = dev->dev_private;
873 874
	struct intel_ringbuffer *ringbuf = params->ctx->engine[ring->id].ringbuf;
	u64 exec_start;
875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
	int instp_mode;
	u32 instp_mask;
	int ret;

	instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
	instp_mask = I915_EXEC_CONSTANTS_MASK;
	switch (instp_mode) {
	case I915_EXEC_CONSTANTS_REL_GENERAL:
	case I915_EXEC_CONSTANTS_ABSOLUTE:
	case I915_EXEC_CONSTANTS_REL_SURFACE:
		if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
			DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
			return -EINVAL;
		}

		if (instp_mode != dev_priv->relative_constants_mode) {
			if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
				DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
				return -EINVAL;
			}

			/* The HW changed the meaning on this bit on gen6 */
			instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
		}
		break;
	default:
		DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
		return -EINVAL;
	}

	if (args->num_cliprects != 0) {
		DRM_DEBUG("clip rectangles are only valid on pre-gen5\n");
		return -EINVAL;
	} else {
		if (args->DR4 == 0xffffffff) {
			DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
			args->DR4 = 0;
		}

		if (args->DR1 || args->DR4 || args->cliprects_ptr) {
			DRM_DEBUG("0 cliprects but dirt in cliprects fields\n");
			return -EINVAL;
		}
	}

	if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
		DRM_DEBUG("sol reset is gen7 only\n");
		return -EINVAL;
	}

925
	ret = execlists_move_to_gpu(params->request, vmas);
926 927 928 929 930
	if (ret)
		return ret;

	if (ring == &dev_priv->ring[RCS] &&
	    instp_mode != dev_priv->relative_constants_mode) {
931
		ret = intel_logical_ring_begin(params->request, 4);
932 933 934 935 936 937 938 939 940 941 942 943
		if (ret)
			return ret;

		intel_logical_ring_emit(ringbuf, MI_NOOP);
		intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
		intel_logical_ring_emit(ringbuf, INSTPM);
		intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
		intel_logical_ring_advance(ringbuf);

		dev_priv->relative_constants_mode = instp_mode;
	}

944 945 946
	exec_start = params->batch_obj_vm_offset +
		     args->batch_start_offset;

947
	ret = ring->emit_bb_start(params->request, exec_start, params->dispatch_flags);
948 949 950
	if (ret)
		return ret;

951
	trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
952

953
	i915_gem_execbuffer_move_to_active(vmas, params->request);
954
	i915_gem_execbuffer_retire_commands(params);
955

956 957 958
	return 0;
}

959 960
void intel_execlists_retire_requests(struct intel_engine_cs *ring)
{
961
	struct drm_i915_gem_request *req, *tmp;
962 963 964 965 966 967 968
	struct list_head retired_list;

	WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
	if (list_empty(&ring->execlist_retired_req_list))
		return;

	INIT_LIST_HEAD(&retired_list);
969
	spin_lock_irq(&ring->execlist_lock);
970
	list_replace_init(&ring->execlist_retired_req_list, &retired_list);
971
	spin_unlock_irq(&ring->execlist_lock);
972 973

	list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
974
		struct intel_context *ctx = req->ctx;
975 976 977 978
		struct drm_i915_gem_object *ctx_obj =
				ctx->engine[ring->id].state;

		if (ctx_obj && (ctx != ring->default_context))
979
			intel_lr_context_unpin(req);
980
		list_del(&req->execlist_link);
981
		i915_gem_request_unreference(req);
982 983 984
	}
}

985 986
void intel_logical_ring_stop(struct intel_engine_cs *ring)
{
987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
	int ret;

	if (!intel_ring_initialized(ring))
		return;

	ret = intel_ring_idle(ring);
	if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
			  ring->name, ret);

	/* TODO: Is this correct with Execlists enabled? */
	I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
	if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
		DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
		return;
	}
	I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
1005 1006
}

1007
int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
1008
{
1009
	struct intel_engine_cs *ring = req->ring;
1010 1011 1012 1013 1014
	int ret;

	if (!ring->gpu_caches_dirty)
		return 0;

1015
	ret = ring->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
1016 1017 1018 1019 1020 1021 1022
	if (ret)
		return ret;

	ring->gpu_caches_dirty = false;
	return 0;
}

1023
static int intel_lr_context_pin(struct drm_i915_gem_request *rq)
1024
{
1025
	struct drm_i915_private *dev_priv = rq->i915;
1026 1027 1028
	struct intel_engine_cs *ring = rq->ring;
	struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
	struct intel_ringbuffer *ringbuf = rq->ringbuf;
1029 1030 1031
	int ret = 0;

	WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1032
	if (rq->ctx->engine[ring->id].pin_count++ == 0) {
1033 1034
		ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN,
				PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
1035
		if (ret)
1036
			goto reset_pin_count;
1037 1038 1039 1040

		ret = intel_pin_and_map_ringbuffer_obj(ring->dev, ringbuf);
		if (ret)
			goto unpin_ctx_obj;
1041

1042
		ctx_obj->dirty = true;
1043

1044 1045 1046
		/* Invalidate GuC TLB. */
		if (i915.enable_guc_submission)
			I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
1047 1048
	}

1049 1050 1051 1052
	return ret;

unpin_ctx_obj:
	i915_gem_object_ggtt_unpin(ctx_obj);
1053
reset_pin_count:
1054
	rq->ctx->engine[ring->id].pin_count = 0;
1055

1056 1057 1058
	return ret;
}

1059
void intel_lr_context_unpin(struct drm_i915_gem_request *rq)
1060
{
1061 1062 1063
	struct intel_engine_cs *ring = rq->ring;
	struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
	struct intel_ringbuffer *ringbuf = rq->ringbuf;
1064 1065 1066

	if (ctx_obj) {
		WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1067
		if (--rq->ctx->engine[ring->id].pin_count == 0) {
1068
			intel_unpin_ringbuffer_obj(ringbuf);
1069
			i915_gem_object_ggtt_unpin(ctx_obj);
1070
		}
1071 1072 1073
	}
}

1074
static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
1075 1076
{
	int ret, i;
1077 1078
	struct intel_engine_cs *ring = req->ring;
	struct intel_ringbuffer *ringbuf = req->ringbuf;
1079 1080 1081 1082
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct i915_workarounds *w = &dev_priv->workarounds;

1083
	if (WARN_ON_ONCE(w->count == 0))
1084 1085 1086
		return 0;

	ring->gpu_caches_dirty = true;
1087
	ret = logical_ring_flush_all_caches(req);
1088 1089 1090
	if (ret)
		return ret;

1091
	ret = intel_logical_ring_begin(req, w->count * 2 + 2);
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
	if (ret)
		return ret;

	intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
	for (i = 0; i < w->count; i++) {
		intel_logical_ring_emit(ringbuf, w->reg[i].addr);
		intel_logical_ring_emit(ringbuf, w->reg[i].value);
	}
	intel_logical_ring_emit(ringbuf, MI_NOOP);

	intel_logical_ring_advance(ringbuf);

	ring->gpu_caches_dirty = true;
1105
	ret = logical_ring_flush_all_caches(req);
1106 1107 1108 1109 1110 1111
	if (ret)
		return ret;

	return 0;
}

1112
#define wa_ctx_emit(batch, index, cmd)					\
1113
	do {								\
1114 1115
		int __index = (index)++;				\
		if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1116 1117
			return -ENOSPC;					\
		}							\
1118
		batch[__index] = (cmd);					\
1119 1120
	} while (0)

1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143

/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *ring,
						uint32_t *const batch,
						uint32_t index)
{
	uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);

1144 1145 1146 1147 1148 1149 1150 1151 1152
	/*
	 * WaDisableLSQCROPERFforOCL:skl
	 * This WA is implemented in skl_init_clock_gating() but since
	 * this batch updates GEN8_L3SQCREG4 with default value we need to
	 * set this bit here to retain the WA during flush.
	 */
	if (IS_SKYLAKE(ring->dev) && INTEL_REVID(ring->dev) <= SKL_REVID_E0)
		l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;

1153
	wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
				   MI_SRM_LRM_GLOBAL_GTT));
	wa_ctx_emit(batch, index, GEN8_L3SQCREG4);
	wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
	wa_ctx_emit(batch, index, 0);

	wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
	wa_ctx_emit(batch, index, GEN8_L3SQCREG4);
	wa_ctx_emit(batch, index, l3sqc4_flush);

	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
				   PIPE_CONTROL_DC_FLUSH_ENABLE));
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);

1171
	wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
1172 1173 1174 1175
				   MI_SRM_LRM_GLOBAL_GTT));
	wa_ctx_emit(batch, index, GEN8_L3SQCREG4);
	wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
	wa_ctx_emit(batch, index, 0);
1176 1177 1178 1179

	return index;
}

1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t offset,
				    uint32_t start_alignment)
{
	return wa_ctx->offset = ALIGN(offset, start_alignment);
}

static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
			     uint32_t offset,
			     uint32_t size_alignment)
{
	wa_ctx->size = offset - wa_ctx->offset;

	WARN(wa_ctx->size % size_alignment,
	     "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
	     wa_ctx->size, size_alignment);
	return 0;
}

/**
 * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
 *
 * @ring: only applicable for RCS
 * @wa_ctx: structure representing wa_ctx
 *  offset: specifies start of the batch, should be cache-aligned. This is updated
 *    with the offset value received as input.
 *  size: size of the batch in DWORDS but HW expects in terms of cachelines
 * @batch: page in which WA are loaded
 * @offset: This field specifies the start of the batch, it should be
 *  cache-aligned otherwise it is adjusted accordingly.
 *  Typically we only have one indirect_ctx and per_ctx batch buffer which are
 *  initialized at the beginning and shared across all contexts but this field
 *  helps us to have multiple batches at different offsets and select them based
 *  on a criteria. At the moment this batch always start at the beginning of the page
 *  and at this point we don't have multiple wa_ctx batch buffers.
 *
 *  The number of WA applied are not known at the beginning; we use this field
 *  to return the no of DWORDS written.
1218
 *
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
 *  It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 *  so it adds NOOPs as padding to make it cacheline aligned.
 *  MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 *  makes a complete batch buffer.
 *
 * Return: non-zero if we exceed the PAGE_SIZE limit.
 */

static int gen8_init_indirectctx_bb(struct intel_engine_cs *ring,
				    struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t *const batch,
				    uint32_t *offset)
{
1232
	uint32_t scratch_addr;
1233 1234
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1235
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1236
	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1237

1238 1239
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
	if (IS_BROADWELL(ring->dev)) {
1240 1241 1242
		index = gen8_emit_flush_coherentl3_wa(ring, batch, index);
		if (index < 0)
			return index;
1243 1244
	}

1245 1246 1247 1248
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
	scratch_addr = ring->scratch.gtt_offset + 2*CACHELINE_BYTES;

1249 1250 1251 1252 1253 1254 1255 1256 1257
	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
				   PIPE_CONTROL_GLOBAL_GTT_IVB |
				   PIPE_CONTROL_CS_STALL |
				   PIPE_CONTROL_QW_WRITE));
	wa_ctx_emit(batch, index, scratch_addr);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
1258

1259 1260
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
1261
		wa_ctx_emit(batch, index, MI_NOOP);
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

/**
 * gen8_init_perctx_bb() - initialize per ctx batch with WA
 *
 * @ring: only applicable for RCS
 * @wa_ctx: structure representing wa_ctx
 *  offset: specifies start of the batch, should be cache-aligned.
 *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1279
 * @batch: page in which WA are loaded
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
 * @offset: This field specifies the start of this batch.
 *   This batch is started immediately after indirect_ctx batch. Since we ensure
 *   that indirect_ctx ends on a cacheline this batch is aligned automatically.
 *
 *   The number of DWORDS written are returned using this field.
 *
 *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
 *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
 */
static int gen8_init_perctx_bb(struct intel_engine_cs *ring,
			       struct i915_wa_ctx_bb *wa_ctx,
			       uint32_t *const batch,
			       uint32_t *offset)
{
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1296
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1297
	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1298

1299
	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1300 1301 1302 1303

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

1304 1305 1306 1307 1308
static int gen9_init_indirectctx_bb(struct intel_engine_cs *ring,
				    struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t *const batch,
				    uint32_t *offset)
{
1309
	int ret;
1310
	struct drm_device *dev = ring->dev;
1311 1312
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1313 1314 1315 1316
	/* WaDisableCtxRestoreArbitration:skl,bxt */
	if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) <= SKL_REVID_D0)) ||
	    (IS_BROXTON(dev) && (INTEL_REVID(dev) == BXT_REVID_A0)))
		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1317

1318 1319 1320 1321 1322 1323
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
	ret = gen8_emit_flush_coherentl3_wa(ring, batch, index);
	if (ret < 0)
		return ret;
	index = ret;

1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
		wa_ctx_emit(batch, index, MI_NOOP);

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

static int gen9_init_perctx_bb(struct intel_engine_cs *ring,
			       struct i915_wa_ctx_bb *wa_ctx,
			       uint32_t *const batch,
			       uint32_t *offset)
{
1336
	struct drm_device *dev = ring->dev;
1337 1338
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
	/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
	if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) <= SKL_REVID_B0)) ||
	    (IS_BROXTON(dev) && (INTEL_REVID(dev) == BXT_REVID_A0))) {
		wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
		wa_ctx_emit(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
		wa_ctx_emit(batch, index,
			    _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
		wa_ctx_emit(batch, index, MI_NOOP);
	}

1349 1350 1351 1352 1353
	/* WaDisableCtxRestoreArbitration:skl,bxt */
	if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) <= SKL_REVID_D0)) ||
	    (IS_BROXTON(dev) && (INTEL_REVID(dev) == BXT_REVID_A0)))
		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);

1354 1355 1356 1357 1358
	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *ring, u32 size)
{
	int ret;

	ring->wa_ctx.obj = i915_gem_alloc_object(ring->dev, PAGE_ALIGN(size));
	if (!ring->wa_ctx.obj) {
		DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
		return -ENOMEM;
	}

	ret = i915_gem_obj_ggtt_pin(ring->wa_ctx.obj, PAGE_SIZE, 0);
	if (ret) {
		DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
				 ret);
		drm_gem_object_unreference(&ring->wa_ctx.obj->base);
		return ret;
	}

	return 0;
}

static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *ring)
{
	if (ring->wa_ctx.obj) {
		i915_gem_object_ggtt_unpin(ring->wa_ctx.obj);
		drm_gem_object_unreference(&ring->wa_ctx.obj->base);
		ring->wa_ctx.obj = NULL;
	}
}

static int intel_init_workaround_bb(struct intel_engine_cs *ring)
{
	int ret;
	uint32_t *batch;
	uint32_t offset;
	struct page *page;
	struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;

	WARN_ON(ring->id != RCS);

1399
	/* update this when WA for higher Gen are added */
1400 1401 1402
	if (INTEL_INFO(ring->dev)->gen > 9) {
		DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
			  INTEL_INFO(ring->dev)->gen);
1403
		return 0;
1404
	}
1405

1406 1407 1408 1409 1410 1411
	/* some WA perform writes to scratch page, ensure it is valid */
	if (ring->scratch.obj == NULL) {
		DRM_ERROR("scratch page not allocated for %s\n", ring->name);
		return -EINVAL;
	}

1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
	ret = lrc_setup_wa_ctx_obj(ring, PAGE_SIZE);
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

	page = i915_gem_object_get_page(wa_ctx->obj, 0);
	batch = kmap_atomic(page);
	offset = 0;

	if (INTEL_INFO(ring->dev)->gen == 8) {
		ret = gen8_init_indirectctx_bb(ring,
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

		ret = gen8_init_perctx_bb(ring,
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
	} else if (INTEL_INFO(ring->dev)->gen == 9) {
		ret = gen9_init_indirectctx_bb(ring,
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

		ret = gen9_init_perctx_bb(ring,
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
	}

out:
	kunmap_atomic(batch);
	if (ret)
		lrc_destroy_wa_ctx_obj(ring);

	return ret;
}

1460 1461 1462 1463 1464
static int gen8_init_common_ring(struct intel_engine_cs *ring)
{
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;

1465 1466 1467
	I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
	I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);

1468 1469 1470 1471 1472 1473
	if (ring->status_page.obj) {
		I915_WRITE(RING_HWS_PGA(ring->mmio_base),
			   (u32)ring->status_page.gfx_addr);
		POSTING_READ(RING_HWS_PGA(ring->mmio_base));
	}

1474 1475 1476 1477
	I915_WRITE(RING_MODE_GEN7(ring),
		   _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
	POSTING_READ(RING_MODE_GEN7(ring));
1478
	ring->next_context_status_buffer = 0;
1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);

	memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));

	return 0;
}

static int gen8_init_render_ring(struct intel_engine_cs *ring)
{
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	ret = gen8_init_common_ring(ring);
	if (ret)
		return ret;

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1506
	return init_workarounds_ring(ring);
1507 1508
}

1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
static int gen9_init_render_ring(struct intel_engine_cs *ring)
{
	int ret;

	ret = gen8_init_common_ring(ring);
	if (ret)
		return ret;

	return init_workarounds_ring(ring);
}

1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
{
	struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
	struct intel_engine_cs *ring = req->ring;
	struct intel_ringbuffer *ringbuf = req->ringbuf;
	const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
	int i, ret;

	ret = intel_logical_ring_begin(req, num_lri_cmds * 2 + 2);
	if (ret)
		return ret;

	intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
	for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

		intel_logical_ring_emit(ringbuf, GEN8_RING_PDP_UDW(ring, i));
		intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
		intel_logical_ring_emit(ringbuf, GEN8_RING_PDP_LDW(ring, i));
		intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
	}

	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1548
static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1549
			      u64 offset, unsigned dispatch_flags)
1550
{
1551
	struct intel_ringbuffer *ringbuf = req->ringbuf;
1552
	bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1553 1554
	int ret;

1555 1556 1557 1558
	/* Don't rely in hw updating PDPs, specially in lite-restore.
	 * Ideally, we should set Force PD Restore in ctx descriptor,
	 * but we can't. Force Restore would be a second option, but
	 * it is unsafe in case of lite-restore (because the ctx is
1559 1560
	 * not idle). PML4 is allocated during ppgtt init so this is
	 * not needed in 48-bit.*/
1561 1562
	if (req->ctx->ppgtt &&
	    (intel_ring_flag(req->ring) & req->ctx->ppgtt->pd_dirty_rings)) {
1563 1564
		if (!USES_FULL_48BIT_PPGTT(req->i915) &&
		    !intel_vgpu_active(req->i915->dev)) {
1565 1566 1567 1568
			ret = intel_logical_ring_emit_pdps(req);
			if (ret)
				return ret;
		}
1569 1570 1571 1572

		req->ctx->ppgtt->pd_dirty_rings &= ~intel_ring_flag(req->ring);
	}

1573
	ret = intel_logical_ring_begin(req, 4);
1574 1575 1576 1577
	if (ret)
		return ret;

	/* FIXME(BDW): Address space and security selectors. */
1578 1579 1580 1581
	intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
				(ppgtt<<8) |
				(dispatch_flags & I915_DISPATCH_RS ?
				 MI_BATCH_RESOURCE_STREAMER : 0));
1582 1583 1584 1585 1586 1587 1588 1589
	intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
	intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1590 1591 1592 1593 1594 1595
static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
{
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long flags;

1596
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
		return false;

	spin_lock_irqsave(&dev_priv->irq_lock, flags);
	if (ring->irq_refcount++ == 0) {
		I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
		POSTING_READ(RING_IMR(ring->mmio_base));
	}
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);

	return true;
}

static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
{
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long flags;

	spin_lock_irqsave(&dev_priv->irq_lock, flags);
	if (--ring->irq_refcount == 0) {
		I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
		POSTING_READ(RING_IMR(ring->mmio_base));
	}
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
}

1623
static int gen8_emit_flush(struct drm_i915_gem_request *request,
1624 1625 1626
			   u32 invalidate_domains,
			   u32 unused)
{
1627
	struct intel_ringbuffer *ringbuf = request->ringbuf;
1628 1629 1630 1631 1632 1633
	struct intel_engine_cs *ring = ringbuf->ring;
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t cmd;
	int ret;

1634
	ret = intel_logical_ring_begin(request, 4);
1635 1636 1637 1638 1639
	if (ret)
		return ret;

	cmd = MI_FLUSH_DW + 1;

1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

	if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
		cmd |= MI_INVALIDATE_TLB;
		if (ring == &dev_priv->ring[VCS])
			cmd |= MI_INVALIDATE_BSD;
1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
	}

	intel_logical_ring_emit(ringbuf, cmd);
	intel_logical_ring_emit(ringbuf,
				I915_GEM_HWS_SCRATCH_ADDR |
				MI_FLUSH_DW_USE_GTT);
	intel_logical_ring_emit(ringbuf, 0); /* upper addr */
	intel_logical_ring_emit(ringbuf, 0); /* value */
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1664
static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1665 1666 1667
				  u32 invalidate_domains,
				  u32 flush_domains)
{
1668
	struct intel_ringbuffer *ringbuf = request->ringbuf;
1669 1670
	struct intel_engine_cs *ring = ringbuf->ring;
	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1671
	bool vf_flush_wa;
1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
	u32 flags = 0;
	int ret;

	flags |= PIPE_CONTROL_CS_STALL;

	if (flush_domains) {
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
	}

	if (invalidate_domains) {
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
	}

1693 1694 1695 1696 1697 1698 1699
	/*
	 * On GEN9+ Before VF_CACHE_INVALIDATE we need to emit a NULL pipe
	 * control.
	 */
	vf_flush_wa = INTEL_INFO(ring->dev)->gen >= 9 &&
		      flags & PIPE_CONTROL_VF_CACHE_INVALIDATE;

1700
	ret = intel_logical_ring_begin(request, vf_flush_wa ? 12 : 6);
1701 1702 1703
	if (ret)
		return ret;

1704 1705 1706 1707 1708 1709 1710 1711 1712
	if (vf_flush_wa) {
		intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
	}

1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
	intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
	intel_logical_ring_emit(ringbuf, flags);
	intel_logical_ring_emit(ringbuf, scratch_addr);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
{
	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
}

static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
{
	intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
}

1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761
static u32 bxt_a_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
{

	/*
	 * On BXT A steppings there is a HW coherency issue whereby the
	 * MI_STORE_DATA_IMM storing the completed request's seqno
	 * occasionally doesn't invalidate the CPU cache. Work around this by
	 * clflushing the corresponding cacheline whenever the caller wants
	 * the coherency to be guaranteed. Note that this cacheline is known
	 * to be clean at this point, since we only write it in
	 * bxt_a_set_seqno(), where we also do a clflush after the write. So
	 * this clflush in practice becomes an invalidate operation.
	 */

	if (!lazy_coherency)
		intel_flush_status_page(ring, I915_GEM_HWS_INDEX);

	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
}

static void bxt_a_set_seqno(struct intel_engine_cs *ring, u32 seqno)
{
	intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);

	/* See bxt_a_get_seqno() explaining the reason for the clflush. */
	intel_flush_status_page(ring, I915_GEM_HWS_INDEX);
}

1762
static int gen8_emit_request(struct drm_i915_gem_request *request)
1763
{
1764
	struct intel_ringbuffer *ringbuf = request->ringbuf;
1765 1766 1767 1768
	struct intel_engine_cs *ring = ringbuf->ring;
	u32 cmd;
	int ret;

1769 1770 1771 1772 1773
	/*
	 * Reserve space for 2 NOOPs at the end of each request to be
	 * used as a workaround for not being allowed to do lite
	 * restore with HEAD==TAIL (WaIdleLiteRestore).
	 */
1774
	ret = intel_logical_ring_begin(request, 8);
1775 1776 1777
	if (ret)
		return ret;

1778
	cmd = MI_STORE_DWORD_IMM_GEN4;
1779 1780 1781 1782 1783 1784 1785
	cmd |= MI_GLOBAL_GTT;

	intel_logical_ring_emit(ringbuf, cmd);
	intel_logical_ring_emit(ringbuf,
				(ring->status_page.gfx_addr +
				(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
	intel_logical_ring_emit(ringbuf, 0);
1786
	intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1787 1788
	intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
	intel_logical_ring_emit(ringbuf, MI_NOOP);
1789
	intel_logical_ring_advance_and_submit(request);
1790

1791 1792 1793 1794 1795 1796 1797 1798
	/*
	 * Here we add two extra NOOPs as padding to avoid
	 * lite restore of a context with HEAD==TAIL.
	 */
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);

1799 1800 1801
	return 0;
}

1802
static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1803 1804 1805 1806
{
	struct render_state so;
	int ret;

1807
	ret = i915_gem_render_state_prepare(req->ring, &so);
1808 1809 1810 1811 1812 1813
	if (ret)
		return ret;

	if (so.rodata == NULL)
		return 0;

1814
	ret = req->ring->emit_bb_start(req, so.ggtt_offset,
1815
				       I915_DISPATCH_SECURE);
1816 1817 1818
	if (ret)
		goto out;

1819 1820 1821 1822 1823 1824
	ret = req->ring->emit_bb_start(req,
				       (so.ggtt_offset + so.aux_batch_offset),
				       I915_DISPATCH_SECURE);
	if (ret)
		goto out;

1825
	i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
1826 1827 1828 1829 1830 1831

out:
	i915_gem_render_state_fini(&so);
	return ret;
}

1832
static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1833 1834 1835
{
	int ret;

1836
	ret = intel_logical_ring_workarounds_emit(req);
1837 1838 1839
	if (ret)
		return ret;

1840 1841 1842 1843 1844 1845 1846 1847
	ret = intel_rcs_context_init_mocs(req);
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

1848
	return intel_lr_context_render_state_init(req);
1849 1850
}

1851 1852 1853 1854 1855 1856
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
 *
 * @ring: Engine Command Streamer.
 *
 */
1857 1858
void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
{
1859
	struct drm_i915_private *dev_priv;
1860

1861 1862 1863
	if (!intel_ring_initialized(ring))
		return;

1864 1865
	dev_priv = ring->dev->dev_private;

1866 1867
	intel_logical_ring_stop(ring);
	WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1868 1869 1870 1871 1872

	if (ring->cleanup)
		ring->cleanup(ring);

	i915_cmd_parser_fini_ring(ring);
1873
	i915_gem_batch_pool_fini(&ring->batch_pool);
1874 1875 1876 1877 1878

	if (ring->status_page.obj) {
		kunmap(sg_page(ring->status_page.obj->pages->sgl));
		ring->status_page.obj = NULL;
	}
1879 1880

	lrc_destroy_wa_ctx_obj(ring);
1881 1882 1883 1884
}

static int logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
{
1885 1886 1887 1888 1889 1890 1891 1892
	int ret;

	/* Intentionally left blank. */
	ring->buffer = NULL;

	ring->dev = dev;
	INIT_LIST_HEAD(&ring->active_list);
	INIT_LIST_HEAD(&ring->request_list);
1893
	i915_gem_batch_pool_init(dev, &ring->batch_pool);
1894 1895
	init_waitqueue_head(&ring->irq_queue);

1896
	INIT_LIST_HEAD(&ring->execlist_queue);
1897
	INIT_LIST_HEAD(&ring->execlist_retired_req_list);
1898 1899
	spin_lock_init(&ring->execlist_lock);

1900 1901 1902 1903
	ret = i915_cmd_parser_init_ring(ring);
	if (ret)
		return ret;

1904 1905 1906
	ret = intel_lr_context_deferred_create(ring->default_context, ring);

	return ret;
1907 1908 1909 1910 1911 1912
}

static int logical_render_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring = &dev_priv->ring[RCS];
1913
	int ret;
1914 1915 1916 1917 1918 1919

	ring->name = "render ring";
	ring->id = RCS;
	ring->mmio_base = RENDER_RING_BASE;
	ring->irq_enable_mask =
		GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1920 1921 1922 1923
	ring->irq_keep_mask =
		GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
	if (HAS_L3_DPF(dev))
		ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1924

1925 1926 1927 1928
	if (INTEL_INFO(dev)->gen >= 9)
		ring->init_hw = gen9_init_render_ring;
	else
		ring->init_hw = gen8_init_render_ring;
1929
	ring->init_context = gen8_init_rcs_context;
1930
	ring->cleanup = intel_fini_pipe_control;
1931 1932 1933 1934 1935 1936 1937
	if (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0) {
		ring->get_seqno = bxt_a_get_seqno;
		ring->set_seqno = bxt_a_set_seqno;
	} else {
		ring->get_seqno = gen8_get_seqno;
		ring->set_seqno = gen8_set_seqno;
	}
1938
	ring->emit_request = gen8_emit_request;
1939
	ring->emit_flush = gen8_emit_flush_render;
1940 1941
	ring->irq_get = gen8_logical_ring_get_irq;
	ring->irq_put = gen8_logical_ring_put_irq;
1942
	ring->emit_bb_start = gen8_emit_bb_start;
1943

1944
	ring->dev = dev;
1945 1946

	ret = intel_init_pipe_control(ring);
1947 1948 1949
	if (ret)
		return ret;

1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
	ret = intel_init_workaround_bb(ring);
	if (ret) {
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed: %d\n",
			  ret);
	}

1961 1962
	ret = logical_ring_init(dev, ring);
	if (ret) {
1963
		lrc_destroy_wa_ctx_obj(ring);
1964
	}
1965 1966

	return ret;
1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978
}

static int logical_bsd_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring = &dev_priv->ring[VCS];

	ring->name = "bsd ring";
	ring->id = VCS;
	ring->mmio_base = GEN6_BSD_RING_BASE;
	ring->irq_enable_mask =
		GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1979 1980
	ring->irq_keep_mask =
		GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1981

1982
	ring->init_hw = gen8_init_common_ring;
1983 1984 1985 1986 1987 1988 1989
	if (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0) {
		ring->get_seqno = bxt_a_get_seqno;
		ring->set_seqno = bxt_a_set_seqno;
	} else {
		ring->get_seqno = gen8_get_seqno;
		ring->set_seqno = gen8_set_seqno;
	}
1990
	ring->emit_request = gen8_emit_request;
1991
	ring->emit_flush = gen8_emit_flush;
1992 1993
	ring->irq_get = gen8_logical_ring_get_irq;
	ring->irq_put = gen8_logical_ring_put_irq;
1994
	ring->emit_bb_start = gen8_emit_bb_start;
1995

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
	return logical_ring_init(dev, ring);
}

static int logical_bsd2_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring = &dev_priv->ring[VCS2];

	ring->name = "bds2 ring";
	ring->id = VCS2;
	ring->mmio_base = GEN8_BSD2_RING_BASE;
	ring->irq_enable_mask =
		GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2009 2010
	ring->irq_keep_mask =
		GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2011

2012
	ring->init_hw = gen8_init_common_ring;
2013 2014
	ring->get_seqno = gen8_get_seqno;
	ring->set_seqno = gen8_set_seqno;
2015
	ring->emit_request = gen8_emit_request;
2016
	ring->emit_flush = gen8_emit_flush;
2017 2018
	ring->irq_get = gen8_logical_ring_get_irq;
	ring->irq_put = gen8_logical_ring_put_irq;
2019
	ring->emit_bb_start = gen8_emit_bb_start;
2020

2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033
	return logical_ring_init(dev, ring);
}

static int logical_blt_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring = &dev_priv->ring[BCS];

	ring->name = "blitter ring";
	ring->id = BCS;
	ring->mmio_base = BLT_RING_BASE;
	ring->irq_enable_mask =
		GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2034 2035
	ring->irq_keep_mask =
		GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2036

2037
	ring->init_hw = gen8_init_common_ring;
2038 2039 2040 2041 2042 2043 2044
	if (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0) {
		ring->get_seqno = bxt_a_get_seqno;
		ring->set_seqno = bxt_a_set_seqno;
	} else {
		ring->get_seqno = gen8_get_seqno;
		ring->set_seqno = gen8_set_seqno;
	}
2045
	ring->emit_request = gen8_emit_request;
2046
	ring->emit_flush = gen8_emit_flush;
2047 2048
	ring->irq_get = gen8_logical_ring_get_irq;
	ring->irq_put = gen8_logical_ring_put_irq;
2049
	ring->emit_bb_start = gen8_emit_bb_start;
2050

2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
	return logical_ring_init(dev, ring);
}

static int logical_vebox_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring = &dev_priv->ring[VECS];

	ring->name = "video enhancement ring";
	ring->id = VECS;
	ring->mmio_base = VEBOX_RING_BASE;
	ring->irq_enable_mask =
		GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2064 2065
	ring->irq_keep_mask =
		GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2066

2067
	ring->init_hw = gen8_init_common_ring;
2068 2069 2070 2071 2072 2073 2074
	if (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0) {
		ring->get_seqno = bxt_a_get_seqno;
		ring->set_seqno = bxt_a_set_seqno;
	} else {
		ring->get_seqno = gen8_get_seqno;
		ring->set_seqno = gen8_set_seqno;
	}
2075
	ring->emit_request = gen8_emit_request;
2076
	ring->emit_flush = gen8_emit_flush;
2077 2078
	ring->irq_get = gen8_logical_ring_get_irq;
	ring->irq_put = gen8_logical_ring_put_irq;
2079
	ring->emit_bb_start = gen8_emit_bb_start;
2080

2081 2082 2083
	return logical_ring_init(dev, ring);
}

2084 2085 2086 2087 2088 2089 2090 2091 2092 2093
/**
 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
 * @dev: DRM device.
 *
 * This function inits the engines for an Execlists submission style (the equivalent in the
 * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
 * those engines that are present in the hardware.
 *
 * Return: non-zero if the initialization failed.
 */
2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146
int intel_logical_rings_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	ret = logical_render_ring_init(dev);
	if (ret)
		return ret;

	if (HAS_BSD(dev)) {
		ret = logical_bsd_ring_init(dev);
		if (ret)
			goto cleanup_render_ring;
	}

	if (HAS_BLT(dev)) {
		ret = logical_blt_ring_init(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

	if (HAS_VEBOX(dev)) {
		ret = logical_vebox_ring_init(dev);
		if (ret)
			goto cleanup_blt_ring;
	}

	if (HAS_BSD2(dev)) {
		ret = logical_bsd2_ring_init(dev);
		if (ret)
			goto cleanup_vebox_ring;
	}

	ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
	if (ret)
		goto cleanup_bsd2_ring;

	return 0;

cleanup_bsd2_ring:
	intel_logical_ring_cleanup(&dev_priv->ring[VCS2]);
cleanup_vebox_ring:
	intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
cleanup_blt_ring:
	intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
cleanup_bsd_ring:
	intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
cleanup_render_ring:
	intel_logical_ring_cleanup(&dev_priv->ring[RCS]);

	return ret;
}

2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189
static u32
make_rpcs(struct drm_device *dev)
{
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
	if (INTEL_INFO(dev)->gen < 9)
		return 0;

	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
	if (INTEL_INFO(dev)->has_slice_pg) {
		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
		rpcs |= INTEL_INFO(dev)->slice_total <<
			GEN8_RPCS_S_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	if (INTEL_INFO(dev)->has_subslice_pg) {
		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
		rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
			GEN8_RPCS_SS_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	if (INTEL_INFO(dev)->has_eu_pg) {
		rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
			GEN8_RPCS_EU_MIN_SHIFT;
		rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
			GEN8_RPCS_EU_MAX_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

2190 2191 2192 2193
static int
populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
		    struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
{
2194 2195
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
2196
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2197 2198 2199 2200
	struct page *page;
	uint32_t *reg_state;
	int ret;

2201 2202 2203
	if (!ppgtt)
		ppgtt = dev_priv->mm.aliasing_ppgtt;

2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219
	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

	ret = i915_gem_object_get_pages(ctx_obj);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not get object pages\n");
		return ret;
	}

	i915_gem_object_pin_pages(ctx_obj);

	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */
2220
	page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234
	reg_state = kmap_atomic(page);

	/* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
	 * commands followed by (reg, value) pairs. The values we are setting here are
	 * only for the first context restore: on a subsequent save, the GPU will
	 * recreate this batchbuffer with new values (including all the missing
	 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
	if (ring->id == RCS)
		reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(14);
	else
		reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(11);
	reg_state[CTX_LRI_HEADER_0] |= MI_LRI_FORCE_POSTED;
	reg_state[CTX_CONTEXT_CONTROL] = RING_CONTEXT_CONTROL(ring);
	reg_state[CTX_CONTEXT_CONTROL+1] =
2235
		_MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2236 2237
				   CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
				   CTX_CTRL_RS_CTX_ENABLE);
2238 2239 2240 2241 2242
	reg_state[CTX_RING_HEAD] = RING_HEAD(ring->mmio_base);
	reg_state[CTX_RING_HEAD+1] = 0;
	reg_state[CTX_RING_TAIL] = RING_TAIL(ring->mmio_base);
	reg_state[CTX_RING_TAIL+1] = 0;
	reg_state[CTX_RING_BUFFER_START] = RING_START(ring->mmio_base);
2243 2244 2245
	/* Ring buffer start address is not known until the buffer is pinned.
	 * It is written to the context image in execlists_update_context()
	 */
2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267
	reg_state[CTX_RING_BUFFER_CONTROL] = RING_CTL(ring->mmio_base);
	reg_state[CTX_RING_BUFFER_CONTROL+1] =
			((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID;
	reg_state[CTX_BB_HEAD_U] = ring->mmio_base + 0x168;
	reg_state[CTX_BB_HEAD_U+1] = 0;
	reg_state[CTX_BB_HEAD_L] = ring->mmio_base + 0x140;
	reg_state[CTX_BB_HEAD_L+1] = 0;
	reg_state[CTX_BB_STATE] = ring->mmio_base + 0x110;
	reg_state[CTX_BB_STATE+1] = (1<<5);
	reg_state[CTX_SECOND_BB_HEAD_U] = ring->mmio_base + 0x11c;
	reg_state[CTX_SECOND_BB_HEAD_U+1] = 0;
	reg_state[CTX_SECOND_BB_HEAD_L] = ring->mmio_base + 0x114;
	reg_state[CTX_SECOND_BB_HEAD_L+1] = 0;
	reg_state[CTX_SECOND_BB_STATE] = ring->mmio_base + 0x118;
	reg_state[CTX_SECOND_BB_STATE+1] = 0;
	if (ring->id == RCS) {
		reg_state[CTX_BB_PER_CTX_PTR] = ring->mmio_base + 0x1c0;
		reg_state[CTX_BB_PER_CTX_PTR+1] = 0;
		reg_state[CTX_RCS_INDIRECT_CTX] = ring->mmio_base + 0x1c4;
		reg_state[CTX_RCS_INDIRECT_CTX+1] = 0;
		reg_state[CTX_RCS_INDIRECT_CTX_OFFSET] = ring->mmio_base + 0x1c8;
		reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] = 0;
2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282
		if (ring->wa_ctx.obj) {
			struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
			uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);

			reg_state[CTX_RCS_INDIRECT_CTX+1] =
				(ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
				(wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);

			reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
				CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT << 6;

			reg_state[CTX_BB_PER_CTX_PTR+1] =
				(ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
				0x01;
		}
2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295
	}
	reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9);
	reg_state[CTX_LRI_HEADER_1] |= MI_LRI_FORCE_POSTED;
	reg_state[CTX_CTX_TIMESTAMP] = ring->mmio_base + 0x3a8;
	reg_state[CTX_CTX_TIMESTAMP+1] = 0;
	reg_state[CTX_PDP3_UDW] = GEN8_RING_PDP_UDW(ring, 3);
	reg_state[CTX_PDP3_LDW] = GEN8_RING_PDP_LDW(ring, 3);
	reg_state[CTX_PDP2_UDW] = GEN8_RING_PDP_UDW(ring, 2);
	reg_state[CTX_PDP2_LDW] = GEN8_RING_PDP_LDW(ring, 2);
	reg_state[CTX_PDP1_UDW] = GEN8_RING_PDP_UDW(ring, 1);
	reg_state[CTX_PDP1_LDW] = GEN8_RING_PDP_LDW(ring, 1);
	reg_state[CTX_PDP0_UDW] = GEN8_RING_PDP_UDW(ring, 0);
	reg_state[CTX_PDP0_LDW] = GEN8_RING_PDP_LDW(ring, 0);
2296

2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314
	if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
		ASSIGN_CTX_PML4(ppgtt, reg_state);
	} else {
		/* 32b PPGTT
		 * PDP*_DESCRIPTOR contains the base address of space supported.
		 * With dynamic page allocation, PDPs may not be allocated at
		 * this point. Point the unallocated PDPs to the scratch page
		 */
		ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
		ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
		ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
		ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
	}

2315 2316
	if (ring->id == RCS) {
		reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2317 2318
		reg_state[CTX_R_PWR_CLK_STATE] = GEN8_R_PWR_CLK_STATE;
		reg_state[CTX_R_PWR_CLK_STATE+1] = make_rpcs(dev);
2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329
	}

	kunmap_atomic(reg_state);

	ctx_obj->dirty = 1;
	set_page_dirty(page);
	i915_gem_object_unpin_pages(ctx_obj);

	return 0;
}

2330 2331 2332 2333 2334 2335 2336 2337
/**
 * intel_lr_context_free() - free the LRC specific bits of a context
 * @ctx: the LR context to free.
 *
 * The real context freeing is done in i915_gem_context_free: this only
 * takes care of the bits that are LRC related: the per-engine backing
 * objects and the logical ringbuffer.
 */
2338 2339
void intel_lr_context_free(struct intel_context *ctx)
{
2340 2341 2342 2343
	int i;

	for (i = 0; i < I915_NUM_RINGS; i++) {
		struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
2344

2345
		if (ctx_obj) {
2346 2347 2348 2349
			struct intel_ringbuffer *ringbuf =
					ctx->engine[i].ringbuf;
			struct intel_engine_cs *ring = ringbuf->ring;

2350 2351 2352 2353
			if (ctx == ring->default_context) {
				intel_unpin_ringbuffer_obj(ringbuf);
				i915_gem_object_ggtt_unpin(ctx_obj);
			}
2354
			WARN_ON(ctx->engine[ring->id].pin_count);
2355
			intel_ringbuffer_free(ringbuf);
2356 2357 2358 2359 2360 2361 2362 2363 2364
			drm_gem_object_unreference(&ctx_obj->base);
		}
	}
}

static uint32_t get_lr_context_size(struct intel_engine_cs *ring)
{
	int ret = 0;

2365
	WARN_ON(INTEL_INFO(ring->dev)->gen < 8);
2366 2367 2368

	switch (ring->id) {
	case RCS:
2369 2370 2371 2372
		if (INTEL_INFO(ring->dev)->gen >= 9)
			ret = GEN9_LR_CONTEXT_RENDER_SIZE;
		else
			ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2373 2374 2375 2376 2377 2378 2379 2380 2381 2382
		break;
	case VCS:
	case BCS:
	case VECS:
	case VCS2:
		ret = GEN8_LR_CONTEXT_OTHER_SIZE;
		break;
	}

	return ret;
2383 2384
}

2385
static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
2386 2387 2388
		struct drm_i915_gem_object *default_ctx_obj)
{
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2389
	struct page *page;
2390

2391 2392 2393 2394 2395
	/* The HWSP is part of the default context object in LRC mode. */
	ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj)
			+ LRC_PPHWSP_PN * PAGE_SIZE;
	page = i915_gem_object_get_page(default_ctx_obj, LRC_PPHWSP_PN);
	ring->status_page.page_addr = kmap(page);
2396 2397 2398 2399 2400 2401 2402
	ring->status_page.obj = default_ctx_obj;

	I915_WRITE(RING_HWS_PGA(ring->mmio_base),
			(u32)ring->status_page.gfx_addr);
	POSTING_READ(RING_HWS_PGA(ring->mmio_base));
}

2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413
/**
 * intel_lr_context_deferred_create() - create the LRC specific bits of a context
 * @ctx: LR context to create.
 * @ring: engine to be used with the context.
 *
 * This function can be called more than once, with different engines, if we plan
 * to use the context with them. The context backing objects and the ringbuffers
 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
 * the creation is a deferred call: it's better to make sure first that we need to use
 * a given ring with the context.
 *
2414
 * Return: non-zero on error.
2415
 */
2416 2417 2418
int intel_lr_context_deferred_create(struct intel_context *ctx,
				     struct intel_engine_cs *ring)
{
2419
	const bool is_global_default_ctx = (ctx == ring->default_context);
2420
	struct drm_device *dev = ring->dev;
2421
	struct drm_i915_private *dev_priv = dev->dev_private;
2422 2423
	struct drm_i915_gem_object *ctx_obj;
	uint32_t context_size;
2424
	struct intel_ringbuffer *ringbuf;
2425 2426
	int ret;

2427
	WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
2428
	WARN_ON(ctx->engine[ring->id].state);
2429

2430 2431
	context_size = round_up(get_lr_context_size(ring), 4096);

2432 2433 2434
	/* One extra page as the sharing data between driver and GuC */
	context_size += PAGE_SIZE * LRC_PPHWSP_PN;

2435
	ctx_obj = i915_gem_alloc_object(dev, context_size);
2436 2437 2438
	if (!ctx_obj) {
		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
		return -ENOMEM;
2439 2440
	}

2441
	if (is_global_default_ctx) {
2442 2443
		ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN,
				PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
2444 2445 2446 2447 2448 2449
		if (ret) {
			DRM_DEBUG_DRIVER("Pin LRC backing obj failed: %d\n",
					ret);
			drm_gem_object_unreference(&ctx_obj->base);
			return ret;
		}
2450 2451 2452 2453

		/* Invalidate GuC TLB. */
		if (i915.enable_guc_submission)
			I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
2454 2455
	}

2456 2457 2458
	ringbuf = intel_engine_create_ringbuffer(ring, 4 * PAGE_SIZE);
	if (IS_ERR(ringbuf)) {
		ret = PTR_ERR(ringbuf);
2459
		goto error_unpin_ctx;
2460 2461
	}

2462 2463
	if (is_global_default_ctx) {
		ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
2464
		if (ret) {
2465 2466 2467 2468
			DRM_ERROR(
				  "Failed to pin and map ringbuffer %s: %d\n",
				  ring->name, ret);
			goto error_ringbuf;
2469
		}
2470 2471 2472 2473 2474 2475
	}

	ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
		goto error;
2476 2477 2478
	}

	ctx->engine[ring->id].ringbuf = ringbuf;
2479
	ctx->engine[ring->id].state = ctx_obj;
2480

2481 2482
	if (ctx == ring->default_context)
		lrc_setup_hardware_status_page(ring, ctx_obj);
2483
	else if (ring->id == RCS && !ctx->rcs_initialized) {
2484
		if (ring->init_context) {
2485 2486 2487 2488 2489 2490
			struct drm_i915_gem_request *req;

			ret = i915_gem_request_alloc(ring, ctx, &req);
			if (ret)
				return ret;

2491
			ret = ring->init_context(req);
2492
			if (ret) {
2493
				DRM_ERROR("ring init context: %d\n", ret);
2494
				i915_gem_request_cancel(req);
2495 2496 2497 2498
				ctx->engine[ring->id].ringbuf = NULL;
				ctx->engine[ring->id].state = NULL;
				goto error;
			}
2499

2500
			i915_add_request_no_flush(req);
2501 2502
		}

2503 2504 2505
		ctx->rcs_initialized = true;
	}

2506
	return 0;
2507 2508

error:
2509 2510
	if (is_global_default_ctx)
		intel_unpin_ringbuffer_obj(ringbuf);
2511 2512
error_ringbuf:
	intel_ringbuffer_free(ringbuf);
2513
error_unpin_ctx:
2514 2515
	if (is_global_default_ctx)
		i915_gem_object_ggtt_unpin(ctx_obj);
2516 2517
	drm_gem_object_unreference(&ctx_obj->base);
	return ret;
2518
}
2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541

void intel_lr_context_reset(struct drm_device *dev,
			struct intel_context *ctx)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring;
	int i;

	for_each_ring(ring, dev_priv, i) {
		struct drm_i915_gem_object *ctx_obj =
				ctx->engine[ring->id].state;
		struct intel_ringbuffer *ringbuf =
				ctx->engine[ring->id].ringbuf;
		uint32_t *reg_state;
		struct page *page;

		if (!ctx_obj)
			continue;

		if (i915_gem_object_get_pages(ctx_obj)) {
			WARN(1, "Failed get_pages for context obj\n");
			continue;
		}
2542
		page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553
		reg_state = kmap_atomic(page);

		reg_state[CTX_RING_HEAD+1] = 0;
		reg_state[CTX_RING_TAIL+1] = 0;

		kunmap_atomic(reg_state);

		ringbuf->head = 0;
		ringbuf->tail = 0;
	}
}