smp-cps.c 13.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
/*
 * Copyright (C) 2013 Imagination Technologies
 * Author: Paul Burton <paul.burton@imgtec.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the
 * Free Software Foundation;  either version 2 of the  License, or (at your
 * option) any later version.
 */

11
#include <linux/delay.h>
12
#include <linux/io.h>
13
#include <linux/irqchip/mips-gic.h>
14 15 16 17 18
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/smp.h>
#include <linux/types.h>

19
#include <asm/bcache.h>
20 21 22 23
#include <asm/mips-cm.h>
#include <asm/mips-cpc.h>
#include <asm/mips_mt.h>
#include <asm/mipsregs.h>
P
Paul Burton 已提交
24
#include <asm/pm-cps.h>
25
#include <asm/r4kcache.h>
26 27 28 29 30 31
#include <asm/smp-cps.h>
#include <asm/time.h>
#include <asm/uasm.h>

static DECLARE_BITMAP(core_power, NR_CPUS);

32
struct core_boot_config *mips_cps_core_bootcfg;
33

34
static unsigned core_vpe_count(unsigned core)
35
{
36
	unsigned cfg;
37

38 39
	if ((!config_enabled(CONFIG_MIPS_MT_SMP) || !cpu_has_mipsmt)
		&& (!config_enabled(CONFIG_CPU_MIPSR6) || !cpu_has_vp))
40
		return 1;
41

42
	mips_cm_lock_other(core, 0);
43
	cfg = read_gcr_co_config() & CM_GCR_Cx_CONFIG_PVPE_MSK;
44
	mips_cm_unlock_other();
45
	return (cfg >> CM_GCR_Cx_CONFIG_PVPE_SHF) + 1;
46 47 48 49 50
}

static void __init cps_smp_setup(void)
{
	unsigned int ncores, nvpes, core_vpes;
51
	unsigned long core_entry;
52 53 54 55
	int c, v;

	/* Detect & record VPE topology */
	ncores = mips_cm_numcores();
56
	pr_info("%s topology ", cpu_has_mips_r6 ? "VP" : "VPE");
57
	for (c = nvpes = 0; c < ncores; c++) {
58
		core_vpes = core_vpe_count(c);
59 60
		pr_cont("%c%u", c ? ',' : '{', core_vpes);

61 62 63 64
		/* Use the number of VPEs in core 0 for smp_num_siblings */
		if (!c)
			smp_num_siblings = core_vpes;

65 66
		for (v = 0; v < min_t(int, core_vpes, NR_CPUS - nvpes); v++) {
			cpu_data[nvpes + v].core = c;
67
#if defined(CONFIG_MIPS_MT_SMP) || defined(CONFIG_CPU_MIPSR6)
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
			cpu_data[nvpes + v].vpe_id = v;
#endif
		}

		nvpes += core_vpes;
	}
	pr_cont("} total %u\n", nvpes);

	/* Indicate present CPUs (CPU being synonymous with VPE) */
	for (v = 0; v < min_t(unsigned, nvpes, NR_CPUS); v++) {
		set_cpu_possible(v, true);
		set_cpu_present(v, true);
		__cpu_number_map[v] = v;
		__cpu_logical_map[v] = v;
	}

84 85 86
	/* Set a coherent default CCA (CWB) */
	change_c0_config(CONF_CM_CMASK, 0x5);

87 88 89 90
	/* Core 0 is powered up (we're running on it) */
	bitmap_set(core_power, 0, 1);

	/* Initialise core 0 */
91
	mips_cps_core_init();
92 93 94

	/* Make core 0 coherent with everything */
	write_gcr_cl_coherence(0xff);
95

96 97 98 99 100
	if (mips_cm_revision() >= CM_REV_CM3) {
		core_entry = CKSEG1ADDR((unsigned long)mips_cps_core_entry);
		write_gcr_bev_base(core_entry);
	}

101 102 103
#ifdef CONFIG_MIPS_MT_FPAFF
	/* If we have an FPU, enroll ourselves in the FPU-full mask */
	if (cpu_has_fpu)
104
		cpumask_set_cpu(0, &mt_fpu_cpumask);
105
#endif /* CONFIG_MIPS_MT_FPAFF */
106 107 108 109
}

static void __init cps_prepare_cpus(unsigned int max_cpus)
{
110 111
	unsigned ncores, core_vpes, c, cca;
	bool cca_unsuitable;
112
	u32 *entry_code;
113

114
	mips_mt_set_cpuoptions();
115

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
	/* Detect whether the CCA is unsuited to multi-core SMP */
	cca = read_c0_config() & CONF_CM_CMASK;
	switch (cca) {
	case 0x4: /* CWBE */
	case 0x5: /* CWB */
		/* The CCA is coherent, multi-core is fine */
		cca_unsuitable = false;
		break;

	default:
		/* CCA is not coherent, multi-core is not usable */
		cca_unsuitable = true;
	}

	/* Warn the user if the CCA prevents multi-core */
	ncores = mips_cm_numcores();
	if (cca_unsuitable && ncores > 1) {
		pr_warn("Using only one core due to unsuitable CCA 0x%x\n",
			cca);

		for_each_present_cpu(c) {
			if (cpu_data[c].core)
				set_cpu_present(c, false);
		}
	}

142 143 144 145 146
	/*
	 * Patch the start of mips_cps_core_entry to provide:
	 *
	 * s0 = kseg0 CCA
	 */
147
	entry_code = (u32 *)&mips_cps_core_entry;
148
	uasm_i_addiu(&entry_code, 16, 0, cca);
149 150 151 152 153
	blast_dcache_range((unsigned long)&mips_cps_core_entry,
			   (unsigned long)entry_code);
	bc_wback_inv((unsigned long)&mips_cps_core_entry,
		     (void *)entry_code - (void *)&mips_cps_core_entry);
	__sync();
154

155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
	/* Allocate core boot configuration structs */
	mips_cps_core_bootcfg = kcalloc(ncores, sizeof(*mips_cps_core_bootcfg),
					GFP_KERNEL);
	if (!mips_cps_core_bootcfg) {
		pr_err("Failed to allocate boot config for %u cores\n", ncores);
		goto err_out;
	}

	/* Allocate VPE boot configuration structs */
	for (c = 0; c < ncores; c++) {
		core_vpes = core_vpe_count(c);
		mips_cps_core_bootcfg[c].vpe_config = kcalloc(core_vpes,
				sizeof(*mips_cps_core_bootcfg[c].vpe_config),
				GFP_KERNEL);
		if (!mips_cps_core_bootcfg[c].vpe_config) {
			pr_err("Failed to allocate %u VPE boot configs\n",
			       core_vpes);
			goto err_out;
		}
	}

	/* Mark this CPU as booted */
	atomic_set(&mips_cps_core_bootcfg[current_cpu_data.core].vpe_mask,
		   1 << cpu_vpe_id(&current_cpu_data));

	return;
err_out:
	/* Clean up allocations */
	if (mips_cps_core_bootcfg) {
		for (c = 0; c < ncores; c++)
			kfree(mips_cps_core_bootcfg[c].vpe_config);
		kfree(mips_cps_core_bootcfg);
		mips_cps_core_bootcfg = NULL;
	}

	/* Effectively disable SMP by declaring CPUs not present */
	for_each_possible_cpu(c) {
		if (c == 0)
			continue;
		set_cpu_present(c, false);
	}
196 197
}

198
static void boot_core(unsigned core)
199
{
200 201
	u32 access, stat, seq_state;
	unsigned timeout;
202 203

	/* Select the appropriate core */
204
	mips_cm_lock_other(core, 0);
205 206 207 208 209 210 211

	/* Set its reset vector */
	write_gcr_co_reset_base(CKSEG1ADDR((unsigned long)mips_cps_core_entry));

	/* Ensure its coherency is disabled */
	write_gcr_co_coherence(0);

212 213 214
	/* Start it with the legacy memory map and exception base */
	write_gcr_co_reset_ext_base(CM_GCR_RESET_EXT_BASE_UEB);

215 216
	/* Ensure the core can access the GCRs */
	access = read_gcr_access();
217
	access |= 1 << (CM_GCR_ACCESS_ACCESSEN_SHF + core);
218 219 220 221
	write_gcr_access(access);

	if (mips_cpc_present()) {
		/* Reset the core */
222
		mips_cpc_lock_other(core);
223 224 225 226 227 228 229 230 231 232 233 234

		if (mips_cm_revision() >= CM_REV_CM3) {
			/* Run VP0 following the reset */
			write_cpc_co_vp_run(0x1);

			/*
			 * Ensure that the VP_RUN register is written before the
			 * core leaves reset.
			 */
			wmb();
		}

235
		write_cpc_co_cmd(CPC_Cx_CMD_RESET);
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257

		timeout = 100;
		while (true) {
			stat = read_cpc_co_stat_conf();
			seq_state = stat & CPC_Cx_STAT_CONF_SEQSTATE_MSK;

			/* U6 == coherent execution, ie. the core is up */
			if (seq_state == CPC_Cx_STAT_CONF_SEQSTATE_U6)
				break;

			/* Delay a little while before we start warning */
			if (timeout) {
				timeout--;
				mdelay(10);
				continue;
			}

			pr_warn("Waiting for core %u to start... STAT_CONF=0x%x\n",
				core, stat);
			mdelay(1000);
		}

258
		mips_cpc_unlock_other();
259 260 261 262 263
	} else {
		/* Take the core out of reset */
		write_gcr_co_reset_release(0);
	}

264 265
	mips_cm_unlock_other();

266
	/* The core is now powered up */
267
	bitmap_set(core_power, core, 1);
268 269
}

270
static void remote_vpe_boot(void *dummy)
271
{
272 273 274 275
	unsigned core = current_cpu_data.core;
	struct core_boot_config *core_cfg = &mips_cps_core_bootcfg[core];

	mips_cps_boot_vpes(core_cfg, cpu_vpe_id(&current_cpu_data));
276 277 278 279
}

static void cps_boot_secondary(int cpu, struct task_struct *idle)
{
280 281 282 283
	unsigned core = cpu_data[cpu].core;
	unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]);
	struct core_boot_config *core_cfg = &mips_cps_core_bootcfg[core];
	struct vpe_boot_config *vpe_cfg = &core_cfg->vpe_config[vpe_id];
284
	unsigned long core_entry;
285 286 287
	unsigned int remote;
	int err;

288 289 290
	vpe_cfg->pc = (unsigned long)&smp_bootstrap;
	vpe_cfg->sp = __KSTK_TOS(idle);
	vpe_cfg->gp = (unsigned long)task_thread_info(idle);
291

292 293
	atomic_or(1 << cpu_vpe_id(&cpu_data[cpu]), &core_cfg->vpe_mask);

P
Paul Burton 已提交
294
	preempt_disable();
295

296
	if (!test_bit(core, core_power)) {
297
		/* Boot a VPE on a powered down core */
298
		boot_core(core);
P
Paul Burton 已提交
299
		goto out;
300 301
	}

302 303 304 305 306 307 308
	if (cpu_has_vp) {
		mips_cm_lock_other(core, vpe_id);
		core_entry = CKSEG1ADDR((unsigned long)mips_cps_core_entry);
		write_gcr_co_reset_base(core_entry);
		mips_cm_unlock_other();
	}

309
	if (core != current_cpu_data.core) {
310 311
		/* Boot a VPE on another powered up core */
		for (remote = 0; remote < NR_CPUS; remote++) {
312
			if (cpu_data[remote].core != core)
313 314 315 316 317 318
				continue;
			if (cpu_online(remote))
				break;
		}
		BUG_ON(remote >= NR_CPUS);

319 320
		err = smp_call_function_single(remote, remote_vpe_boot,
					       NULL, 1);
321 322
		if (err)
			panic("Failed to call remote CPU\n");
P
Paul Burton 已提交
323
		goto out;
324 325
	}

326
	BUG_ON(!cpu_has_mipsmt && !cpu_has_vp);
327 328

	/* Boot a VPE on this core */
329
	mips_cps_boot_vpes(core_cfg, vpe_id);
P
Paul Burton 已提交
330 331
out:
	preempt_enable();
332 333 334 335 336 337 338 339
}

static void cps_init_secondary(void)
{
	/* Disable MT - we only want to run 1 TC per VPE */
	if (cpu_has_mipsmt)
		dmt();

340 341 342 343 344 345 346 347 348 349 350
	if (mips_cm_revision() >= CM_REV_CM3) {
		unsigned ident = gic_read_local_vp_id();

		/*
		 * Ensure that our calculation of the VP ID matches up with
		 * what the GIC reports, otherwise we'll have configured
		 * interrupts incorrectly.
		 */
		BUG_ON(ident != mips_cm_vp_id(smp_processor_id()));
	}

351 352
	change_c0_status(ST0_IM, STATUSF_IP2 | STATUSF_IP3 | STATUSF_IP4 |
				 STATUSF_IP5 | STATUSF_IP6 | STATUSF_IP7);
353 354 355 356 357 358 359 360 361
}

static void cps_smp_finish(void)
{
	write_c0_compare(read_c0_count() + (8 * mips_hpt_frequency / HZ));

#ifdef CONFIG_MIPS_MT_FPAFF
	/* If we have an FPU, enroll ourselves in the FPU-full mask */
	if (cpu_has_fpu)
362
		cpumask_set_cpu(smp_processor_id(), &mt_fpu_cpumask);
363 364 365 366 367
#endif /* CONFIG_MIPS_MT_FPAFF */

	local_irq_enable();
}

P
Paul Burton 已提交
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
#ifdef CONFIG_HOTPLUG_CPU

static int cps_cpu_disable(void)
{
	unsigned cpu = smp_processor_id();
	struct core_boot_config *core_cfg;

	if (!cpu)
		return -EBUSY;

	if (!cps_pm_support_state(CPS_PM_POWER_GATED))
		return -EINVAL;

	core_cfg = &mips_cps_core_bootcfg[current_cpu_data.core];
	atomic_sub(1 << cpu_vpe_id(&current_cpu_data), &core_cfg->vpe_mask);
383
	smp_mb__after_atomic();
P
Paul Burton 已提交
384
	set_cpu_online(cpu, false);
385
	cpumask_clear_cpu(cpu, &cpu_callin_map);
P
Paul Burton 已提交
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440

	return 0;
}

static DECLARE_COMPLETION(cpu_death_chosen);
static unsigned cpu_death_sibling;
static enum {
	CPU_DEATH_HALT,
	CPU_DEATH_POWER,
} cpu_death;

void play_dead(void)
{
	unsigned cpu, core;

	local_irq_disable();
	idle_task_exit();
	cpu = smp_processor_id();
	cpu_death = CPU_DEATH_POWER;

	if (cpu_has_mipsmt) {
		core = cpu_data[cpu].core;

		/* Look for another online VPE within the core */
		for_each_online_cpu(cpu_death_sibling) {
			if (cpu_data[cpu_death_sibling].core != core)
				continue;

			/*
			 * There is an online VPE within the core. Just halt
			 * this TC and leave the core alone.
			 */
			cpu_death = CPU_DEATH_HALT;
			break;
		}
	}

	/* This CPU has chosen its way out */
	complete(&cpu_death_chosen);

	if (cpu_death == CPU_DEATH_HALT) {
		/* Halt this TC */
		write_c0_tchalt(TCHALT_H);
		instruction_hazard();
	} else {
		/* Power down the core */
		cps_pm_enter_state(CPS_PM_POWER_GATED);
	}

	/* This should never be reached */
	panic("Failed to offline CPU %u", cpu);
}

static void wait_for_sibling_halt(void *ptr_cpu)
{
441
	unsigned cpu = (unsigned long)ptr_cpu;
442
	unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]);
P
Paul Burton 已提交
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
	unsigned halted;
	unsigned long flags;

	do {
		local_irq_save(flags);
		settc(vpe_id);
		halted = read_tc_c0_tchalt();
		local_irq_restore(flags);
	} while (!(halted & TCHALT_H));
}

static void cps_cpu_die(unsigned int cpu)
{
	unsigned core = cpu_data[cpu].core;
	unsigned stat;
	int err;

	/* Wait for the cpu to choose its way out */
	if (!wait_for_completion_timeout(&cpu_death_chosen,
					 msecs_to_jiffies(5000))) {
		pr_err("CPU%u: didn't offline\n", cpu);
		return;
	}

	/*
	 * Now wait for the CPU to actually offline. Without doing this that
	 * offlining may race with one or more of:
	 *
	 *   - Onlining the CPU again.
	 *   - Powering down the core if another VPE within it is offlined.
	 *   - A sibling VPE entering a non-coherent state.
	 *
	 * In the non-MT halt case (ie. infinite loop) the CPU is doing nothing
	 * with which we could race, so do nothing.
	 */
	if (cpu_death == CPU_DEATH_POWER) {
		/*
		 * Wait for the core to enter a powered down or clock gated
		 * state, the latter happening when a JTAG probe is connected
		 * in which case the CPC will refuse to power down the core.
		 */
		do {
			mips_cpc_lock_other(core);
			stat = read_cpc_co_stat_conf();
			stat &= CPC_Cx_STAT_CONF_SEQSTATE_MSK;
			mips_cpc_unlock_other();
		} while (stat != CPC_Cx_STAT_CONF_SEQSTATE_D0 &&
			 stat != CPC_Cx_STAT_CONF_SEQSTATE_D2 &&
			 stat != CPC_Cx_STAT_CONF_SEQSTATE_U2);

		/* Indicate the core is powered off */
		bitmap_clear(core_power, core, 1);
	} else if (cpu_has_mipsmt) {
		/*
		 * Have a CPU with access to the offlined CPUs registers wait
		 * for its TC to halt.
		 */
		err = smp_call_function_single(cpu_death_sibling,
					       wait_for_sibling_halt,
502
					       (void *)(unsigned long)cpu, 1);
P
Paul Burton 已提交
503 504 505 506 507 508 509
		if (err)
			panic("Failed to call remote sibling CPU\n");
	}
}

#endif /* CONFIG_HOTPLUG_CPU */

510 511 512 513 514 515
static struct plat_smp_ops cps_smp_ops = {
	.smp_setup		= cps_smp_setup,
	.prepare_cpus		= cps_prepare_cpus,
	.boot_secondary		= cps_boot_secondary,
	.init_secondary		= cps_init_secondary,
	.smp_finish		= cps_smp_finish,
516 517
	.send_ipi_single	= mips_smp_send_ipi_single,
	.send_ipi_mask		= mips_smp_send_ipi_mask,
P
Paul Burton 已提交
518 519 520 521
#ifdef CONFIG_HOTPLUG_CPU
	.cpu_disable		= cps_cpu_disable,
	.cpu_die		= cps_cpu_die,
#endif
522 523
};

524 525 526 527 528 529
bool mips_cps_smp_in_use(void)
{
	extern struct plat_smp_ops *mp_ops;
	return mp_ops == &cps_smp_ops;
}

530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
int register_cps_smp_ops(void)
{
	if (!mips_cm_present()) {
		pr_warn("MIPS CPS SMP unable to proceed without a CM\n");
		return -ENODEV;
	}

	/* check we have a GIC - we need one for IPIs */
	if (!(read_gcr_gic_status() & CM_GCR_GIC_STATUS_EX_MSK)) {
		pr_warn("MIPS CPS SMP unable to proceed without a GIC\n");
		return -ENODEV;
	}

	register_smp_ops(&cps_smp_ops);
	return 0;
}