smp-cps.c 6.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * Copyright (C) 2013 Imagination Technologies
 * Author: Paul Burton <paul.burton@imgtec.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the
 * Free Software Foundation;  either version 2 of the  License, or (at your
 * option) any later version.
 */

#include <linux/io.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/smp.h>
#include <linux/types.h>

#include <asm/cacheflush.h>
#include <asm/gic.h>
#include <asm/mips-cm.h>
#include <asm/mips-cpc.h>
#include <asm/mips_mt.h>
#include <asm/mipsregs.h>
#include <asm/smp-cps.h>
#include <asm/time.h>
#include <asm/uasm.h>

static DECLARE_BITMAP(core_power, NR_CPUS);

29
struct core_boot_config *mips_cps_core_bootcfg;
30

31
static unsigned core_vpe_count(unsigned core)
32
{
33
	unsigned cfg;
34

35 36
	if (!config_enabled(CONFIG_MIPS_MT_SMP) || !cpu_has_mipsmt)
		return 1;
37

38 39 40
	write_gcr_cl_other(core << CM_GCR_Cx_OTHER_CORENUM_SHF);
	cfg = read_gcr_co_config() & CM_GCR_Cx_CONFIG_PVPE_MSK;
	return (cfg >> CM_GCR_Cx_CONFIG_PVPE_SHF) + 1;
41 42 43 44 45 46
}

static void __init cps_smp_setup(void)
{
	unsigned int ncores, nvpes, core_vpes;
	int c, v;
47
	u32 *entry_code;
48 49 50 51 52

	/* Detect & record VPE topology */
	ncores = mips_cm_numcores();
	pr_info("VPE topology ");
	for (c = nvpes = 0; c < ncores; c++) {
53
		core_vpes = core_vpe_count(c);
54 55
		pr_cont("%c%u", c ? ',' : '{', core_vpes);

56 57 58 59
		/* Use the number of VPEs in core 0 for smp_num_siblings */
		if (!c)
			smp_num_siblings = core_vpes;

60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
		for (v = 0; v < min_t(int, core_vpes, NR_CPUS - nvpes); v++) {
			cpu_data[nvpes + v].core = c;
#ifdef CONFIG_MIPS_MT_SMP
			cpu_data[nvpes + v].vpe_id = v;
#endif
		}

		nvpes += core_vpes;
	}
	pr_cont("} total %u\n", nvpes);

	/* Indicate present CPUs (CPU being synonymous with VPE) */
	for (v = 0; v < min_t(unsigned, nvpes, NR_CPUS); v++) {
		set_cpu_possible(v, true);
		set_cpu_present(v, true);
		__cpu_number_map[v] = v;
		__cpu_logical_map[v] = v;
	}

	/* Core 0 is powered up (we're running on it) */
	bitmap_set(core_power, 0, 1);

	/* Initialise core 0 */
83
	mips_cps_core_init();
84 85 86 87 88 89 90 91 92 93 94

	/* Patch the start of mips_cps_core_entry to provide the CM base */
	entry_code = (u32 *)&mips_cps_core_entry;
	UASM_i_LA(&entry_code, 3, (long)mips_cm_base);

	/* Make core 0 coherent with everything */
	write_gcr_cl_coherence(0xff);
}

static void __init cps_prepare_cpus(unsigned int max_cpus)
{
95 96
	unsigned ncores, core_vpes, c;

97
	mips_mt_set_cpuoptions();
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140

	/* Allocate core boot configuration structs */
	ncores = mips_cm_numcores();
	mips_cps_core_bootcfg = kcalloc(ncores, sizeof(*mips_cps_core_bootcfg),
					GFP_KERNEL);
	if (!mips_cps_core_bootcfg) {
		pr_err("Failed to allocate boot config for %u cores\n", ncores);
		goto err_out;
	}

	/* Allocate VPE boot configuration structs */
	for (c = 0; c < ncores; c++) {
		core_vpes = core_vpe_count(c);
		mips_cps_core_bootcfg[c].vpe_config = kcalloc(core_vpes,
				sizeof(*mips_cps_core_bootcfg[c].vpe_config),
				GFP_KERNEL);
		if (!mips_cps_core_bootcfg[c].vpe_config) {
			pr_err("Failed to allocate %u VPE boot configs\n",
			       core_vpes);
			goto err_out;
		}
	}

	/* Mark this CPU as booted */
	atomic_set(&mips_cps_core_bootcfg[current_cpu_data.core].vpe_mask,
		   1 << cpu_vpe_id(&current_cpu_data));

	return;
err_out:
	/* Clean up allocations */
	if (mips_cps_core_bootcfg) {
		for (c = 0; c < ncores; c++)
			kfree(mips_cps_core_bootcfg[c].vpe_config);
		kfree(mips_cps_core_bootcfg);
		mips_cps_core_bootcfg = NULL;
	}

	/* Effectively disable SMP by declaring CPUs not present */
	for_each_possible_cpu(c) {
		if (c == 0)
			continue;
		set_cpu_present(c, false);
	}
141 142
}

143
static void boot_core(unsigned core)
144 145 146 147
{
	u32 access;

	/* Select the appropriate core */
148
	write_gcr_cl_other(core << CM_GCR_Cx_OTHER_CORENUM_SHF);
149 150 151 152 153 154 155 156 157

	/* Set its reset vector */
	write_gcr_co_reset_base(CKSEG1ADDR((unsigned long)mips_cps_core_entry));

	/* Ensure its coherency is disabled */
	write_gcr_co_coherence(0);

	/* Ensure the core can access the GCRs */
	access = read_gcr_access();
158
	access |= 1 << (CM_GCR_ACCESS_ACCESSEN_SHF + core);
159 160 161 162
	write_gcr_access(access);

	if (mips_cpc_present()) {
		/* Select the appropriate core */
163
		write_cpc_cl_other(core << CPC_Cx_OTHER_CORENUM_SHF);
164 165 166 167 168 169 170 171 172

		/* Reset the core */
		write_cpc_co_cmd(CPC_Cx_CMD_RESET);
	} else {
		/* Take the core out of reset */
		write_gcr_co_reset_release(0);
	}

	/* The core is now powered up */
173
	bitmap_set(core_power, core, 1);
174 175
}

176
static void remote_vpe_boot(void *dummy)
177
{
178
	mips_cps_boot_vpes();
179 180 181 182
}

static void cps_boot_secondary(int cpu, struct task_struct *idle)
{
183 184 185 186
	unsigned core = cpu_data[cpu].core;
	unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]);
	struct core_boot_config *core_cfg = &mips_cps_core_bootcfg[core];
	struct vpe_boot_config *vpe_cfg = &core_cfg->vpe_config[vpe_id];
187 188 189
	unsigned int remote;
	int err;

190 191 192
	vpe_cfg->pc = (unsigned long)&smp_bootstrap;
	vpe_cfg->sp = __KSTK_TOS(idle);
	vpe_cfg->gp = (unsigned long)task_thread_info(idle);
193

194 195 196
	atomic_or(1 << cpu_vpe_id(&cpu_data[cpu]), &core_cfg->vpe_mask);

	if (!test_bit(core, core_power)) {
197
		/* Boot a VPE on a powered down core */
198
		boot_core(core);
199 200 201
		return;
	}

202
	if (core != current_cpu_data.core) {
203 204
		/* Boot a VPE on another powered up core */
		for (remote = 0; remote < NR_CPUS; remote++) {
205
			if (cpu_data[remote].core != core)
206 207 208 209 210 211
				continue;
			if (cpu_online(remote))
				break;
		}
		BUG_ON(remote >= NR_CPUS);

212 213
		err = smp_call_function_single(remote, remote_vpe_boot,
					       NULL, 1);
214 215 216 217 218 219 220 221
		if (err)
			panic("Failed to call remote CPU\n");
		return;
	}

	BUG_ON(!cpu_has_mipsmt);

	/* Boot a VPE on this core */
222
	mips_cps_boot_vpes();
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
}

static void cps_init_secondary(void)
{
	/* Disable MT - we only want to run 1 TC per VPE */
	if (cpu_has_mipsmt)
		dmt();

	change_c0_status(ST0_IM, STATUSF_IP3 | STATUSF_IP4 |
				 STATUSF_IP6 | STATUSF_IP7);
}

static void cps_smp_finish(void)
{
	write_c0_compare(read_c0_count() + (8 * mips_hpt_frequency / HZ));

#ifdef CONFIG_MIPS_MT_FPAFF
	/* If we have an FPU, enroll ourselves in the FPU-full mask */
	if (cpu_has_fpu)
		cpu_set(smp_processor_id(), mt_fpu_cpumask);
#endif /* CONFIG_MIPS_MT_FPAFF */

	local_irq_enable();
}

static void cps_cpus_done(void)
{
}

static struct plat_smp_ops cps_smp_ops = {
	.smp_setup		= cps_smp_setup,
	.prepare_cpus		= cps_prepare_cpus,
	.boot_secondary		= cps_boot_secondary,
	.init_secondary		= cps_init_secondary,
	.smp_finish		= cps_smp_finish,
	.send_ipi_single	= gic_send_ipi_single,
	.send_ipi_mask		= gic_send_ipi_mask,
	.cpus_done		= cps_cpus_done,
};

int register_cps_smp_ops(void)
{
	if (!mips_cm_present()) {
		pr_warn("MIPS CPS SMP unable to proceed without a CM\n");
		return -ENODEV;
	}

	/* check we have a GIC - we need one for IPIs */
	if (!(read_gcr_gic_status() & CM_GCR_GIC_STATUS_EX_MSK)) {
		pr_warn("MIPS CPS SMP unable to proceed without a GIC\n");
		return -ENODEV;
	}

	register_smp_ops(&cps_smp_ops);
	return 0;
}