dib7000p.c 62.8 KB
Newer Older
1 2 3
/*
 * Linux-DVB Driver for DiBcom's second generation DiB7000P (PC).
 *
4
 * Copyright (C) 2005-7 DiBcom (http://www.dibcom.fr/)
5 6 7 8 9 10
 *
 * This program is free software; you can redistribute it and/or
 *	modify it under the terms of the GNU General Public License as
 *	published by the Free Software Foundation, version 2.
 */
#include <linux/kernel.h>
11
#include <linux/slab.h>
12 13
#include <linux/i2c.h>

14
#include "dvb_math.h"
15 16 17 18 19 20 21 22
#include "dvb_frontend.h"

#include "dib7000p.h"

static int debug;
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "turn on debugging (default: 0)");

23 24
static int buggy_sfn_workaround;
module_param(buggy_sfn_workaround, int, 0644);
25
MODULE_PARM_DESC(buggy_sfn_workaround, "Enable work-around for buggy SFNs (default: 0)");
26

27
#define dprintk(args...) do { if (debug) { printk(KERN_DEBUG "DiB7000P: "); printk(args); printk("\n"); } } while (0)
28

29 30 31 32 33
struct i2c_device {
	struct i2c_adapter *i2c_adap;
	u8 i2c_addr;
};

34 35
struct dib7000p_state {
	struct dvb_frontend demod;
36
	struct dib7000p_config cfg;
37 38

	u8 i2c_addr;
39
	struct i2c_adapter *i2c_adap;
40 41 42 43 44

	struct dibx000_i2c_master i2c_master;

	u16 wbd_ref;

45
	u8 current_band;
46
	u32 current_bandwidth;
47 48 49
	struct dibx000_agc_config *current_agc;
	u32 timf;

50 51
	u8 div_force_off:1;
	u8 div_state:1;
52
	u16 div_sync_wait;
53 54 55

	u8 agc_state;

56 57
	u16 gpio_dir;
	u16 gpio_val;
58

59 60 61 62 63 64 65
	u8 sfn_workaround_active:1;

#define SOC7090 0x7090
	u16 version;

	u16 tuner_enable;
	struct i2c_adapter dib7090_tuner_adap;
66 67 68 69 70

	/* for the I2C transfer */
	struct i2c_msg msg[2];
	u8 i2c_write_buffer[4];
	u8 i2c_read_buffer[2];
71 72 73 74
};

enum dib7000p_power_mode {
	DIB7000P_POWER_ALL = 0,
75
	DIB7000P_POWER_ANALOG_ADC,
76 77 78
	DIB7000P_POWER_INTERFACE_ONLY,
};

79 80 81
static int dib7090_set_output_mode(struct dvb_frontend *fe, int mode);
static int dib7090_set_diversity_in(struct dvb_frontend *fe, int onoff);

82 83
static u16 dib7000p_read_word(struct dib7000p_state *state, u16 reg)
{
84 85 86 87 88 89 90 91 92 93 94 95 96 97
	state->i2c_write_buffer[0] = reg >> 8;
	state->i2c_write_buffer[1] = reg & 0xff;

	memset(state->msg, 0, 2 * sizeof(struct i2c_msg));
	state->msg[0].addr = state->i2c_addr >> 1;
	state->msg[0].flags = 0;
	state->msg[0].buf = state->i2c_write_buffer;
	state->msg[0].len = 2;
	state->msg[1].addr = state->i2c_addr >> 1;
	state->msg[1].flags = I2C_M_RD;
	state->msg[1].buf = state->i2c_read_buffer;
	state->msg[1].len = 2;

	if (i2c_transfer(state->i2c_adap, state->msg, 2) != 2)
98
		dprintk("i2c read error on %d", reg);
99

100
	return (state->i2c_read_buffer[0] << 8) | state->i2c_read_buffer[1];
101 102 103 104
}

static int dib7000p_write_word(struct dib7000p_state *state, u16 reg, u16 val)
{
105 106 107 108 109 110 111 112 113 114 115 116
	state->i2c_write_buffer[0] = (reg >> 8) & 0xff;
	state->i2c_write_buffer[1] = reg & 0xff;
	state->i2c_write_buffer[2] = (val >> 8) & 0xff;
	state->i2c_write_buffer[3] = val & 0xff;

	memset(&state->msg[0], 0, sizeof(struct i2c_msg));
	state->msg[0].addr = state->i2c_addr >> 1;
	state->msg[0].flags = 0;
	state->msg[0].buf = state->i2c_write_buffer;
	state->msg[0].len = 4;

	return i2c_transfer(state->i2c_adap, state->msg, 1) != 1 ? -EREMOTEIO : 0;
117
}
118 119

static void dib7000p_write_tab(struct dib7000p_state *state, u16 * buf)
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
{
	u16 l = 0, r, *n;
	n = buf;
	l = *n++;
	while (l) {
		r = *n++;

		do {
			dib7000p_write_word(state, r, *n++);
			r++;
		} while (--l);
		l = *n++;
	}
}

135 136
static int dib7000p_set_output_mode(struct dib7000p_state *state, int mode)
{
137
	int ret = 0;
138 139 140 141
	u16 outreg, fifo_threshold, smo_mode;

	outreg = 0;
	fifo_threshold = 1792;
142
	smo_mode = (dib7000p_read_word(state, 235) & 0x0050) | (1 << 1);
143

144
	dprintk("setting output mode for demod %p to %d", &state->demod, mode);
145 146

	switch (mode) {
147
	case OUTMODE_MPEG2_PAR_GATED_CLK:
148 149
		outreg = (1 << 10);	/* 0x0400 */
		break;
150
	case OUTMODE_MPEG2_PAR_CONT_CLK:
151 152
		outreg = (1 << 10) | (1 << 6);	/* 0x0440 */
		break;
153
	case OUTMODE_MPEG2_SERIAL:
154 155 156 157 158 159 160 161
		outreg = (1 << 10) | (2 << 6) | (0 << 1);	/* 0x0480 */
		break;
	case OUTMODE_DIVERSITY:
		if (state->cfg.hostbus_diversity)
			outreg = (1 << 10) | (4 << 6);	/* 0x0500 */
		else
			outreg = (1 << 11);
		break;
162
	case OUTMODE_MPEG2_FIFO:
163 164 165 166 167 168 169
		smo_mode |= (3 << 1);
		fifo_threshold = 512;
		outreg = (1 << 10) | (5 << 6);
		break;
	case OUTMODE_ANALOG_ADC:
		outreg = (1 << 10) | (3 << 6);
		break;
170
	case OUTMODE_HIGH_Z:
171 172 173 174 175
		outreg = 0;
		break;
	default:
		dprintk("Unhandled output_mode passed to be set for demod %p", &state->demod);
		break;
176 177 178
	}

	if (state->cfg.output_mpeg2_in_188_bytes)
179
		smo_mode |= (1 << 5);
180

181 182 183 184
	ret |= dib7000p_write_word(state, 235, smo_mode);
	ret |= dib7000p_write_word(state, 236, fifo_threshold);	/* synchronous fread */
	if (state->version != SOC7090)
		ret |= dib7000p_write_word(state, 1286, outreg);	/* P_Div_active */
185 186 187 188

	return ret;
}

189 190 191 192 193
static int dib7000p_set_diversity_in(struct dvb_frontend *demod, int onoff)
{
	struct dib7000p_state *state = demod->demodulator_priv;

	if (state->div_force_off) {
194
		dprintk("diversity combination deactivated - forced by COFDM parameters");
195
		onoff = 0;
196 197 198 199
		dib7000p_write_word(state, 207, 0);
	} else
		dib7000p_write_word(state, 207, (state->div_sync_wait << 4) | (1 << 2) | (2 << 0));

200
	state->div_state = (u8) onoff;
201 202 203 204 205 206 207 208 209 210 211 212 213

	if (onoff) {
		dib7000p_write_word(state, 204, 6);
		dib7000p_write_word(state, 205, 16);
		/* P_dvsy_sync_mode = 0, P_dvsy_sync_enable=1, P_dvcb_comb_mode=2 */
	} else {
		dib7000p_write_word(state, 204, 1);
		dib7000p_write_word(state, 205, 0);
	}

	return 0;
}

214 215 216
static int dib7000p_set_power_mode(struct dib7000p_state *state, enum dib7000p_power_mode mode)
{
	/* by default everything is powered off */
217
	u16 reg_774 = 0x3fff, reg_775 = 0xffff, reg_776 = 0x0007, reg_899 = 0x0003, reg_1280 = (0xfe00) | (dib7000p_read_word(state, 1280) & 0x01ff);
218 219 220 221

	/* now, depending on the requested mode, we power on */
	switch (mode) {
		/* power up everything in the demod */
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
	case DIB7000P_POWER_ALL:
		reg_774 = 0x0000;
		reg_775 = 0x0000;
		reg_776 = 0x0;
		reg_899 = 0x0;
		if (state->version == SOC7090)
			reg_1280 &= 0x001f;
		else
			reg_1280 &= 0x01ff;
		break;

	case DIB7000P_POWER_ANALOG_ADC:
		/* dem, cfg, iqc, sad, agc */
		reg_774 &= ~((1 << 15) | (1 << 14) | (1 << 11) | (1 << 10) | (1 << 9));
		/* nud */
		reg_776 &= ~((1 << 0));
		/* Dout */
		if (state->version != SOC7090)
240
			reg_1280 &= ~((1 << 11));
241 242
		reg_1280 &= ~(1 << 6);
		/* fall through wanted to enable the interfaces */
243

244
		/* just leave power on the control-interfaces: GPIO and (I2C or SDIO) */
245 246 247 248
	case DIB7000P_POWER_INTERFACE_ONLY:	/* TODO power up either SDIO or I2C */
		if (state->version == SOC7090)
			reg_1280 &= ~((1 << 7) | (1 << 5));
		else
249
			reg_1280 &= ~((1 << 14) | (1 << 13) | (1 << 12) | (1 << 10));
250
		break;
251

252 253 254
/* TODO following stuff is just converted from the dib7000-driver - check when is used what */
	}

255 256 257 258
	dib7000p_write_word(state, 774, reg_774);
	dib7000p_write_word(state, 775, reg_775);
	dib7000p_write_word(state, 776, reg_776);
	dib7000p_write_word(state, 899, reg_899);
259 260 261 262 263 264 265
	dib7000p_write_word(state, 1280, reg_1280);

	return 0;
}

static void dib7000p_set_adc_state(struct dib7000p_state *state, enum dibx000_adc_states no)
{
266 267
	u16 reg_908 = dib7000p_read_word(state, 908), reg_909 = dib7000p_read_word(state, 909);
	u16 reg;
268 269

	switch (no) {
270 271 272 273 274 275 276 277 278 279 280 281 282
	case DIBX000_SLOW_ADC_ON:
		if (state->version == SOC7090) {
			reg = dib7000p_read_word(state, 1925);

			dib7000p_write_word(state, 1925, reg | (1 << 4) | (1 << 2));	/* en_slowAdc = 1 & reset_sladc = 1 */

			reg = dib7000p_read_word(state, 1925);	/* read acces to make it works... strange ... */
			msleep(200);
			dib7000p_write_word(state, 1925, reg & ~(1 << 4));	/* en_slowAdc = 1 & reset_sladc = 0 */

			reg = dib7000p_read_word(state, 72) & ~((0x3 << 14) | (0x3 << 12));
			dib7000p_write_word(state, 72, reg | (1 << 14) | (3 << 12) | 524);	/* ref = Vin1 => Vbg ; sel = Vin0 or Vin3 ; (Vin2 = Vcm) */
		} else {
283 284 285
			reg_909 |= (1 << 1) | (1 << 0);
			dib7000p_write_word(state, 909, reg_909);
			reg_909 &= ~(1 << 1);
286 287
		}
		break;
288

289 290 291 292 293 294 295
	case DIBX000_SLOW_ADC_OFF:
		if (state->version == SOC7090) {
			reg = dib7000p_read_word(state, 1925);
			dib7000p_write_word(state, 1925, (reg & ~(1 << 2)) | (1 << 4));	/* reset_sladc = 1 en_slowAdc = 0 */
		} else
			reg_909 |= (1 << 1) | (1 << 0);
		break;
296

297 298 299 300
	case DIBX000_ADC_ON:
		reg_908 &= 0x0fff;
		reg_909 &= 0x0003;
		break;
301

302
	case DIBX000_ADC_OFF:
303 304 305
		reg_908 |= (1 << 14) | (1 << 13) | (1 << 12);
		reg_909 |= (1 << 5) | (1 << 4) | (1 << 3) | (1 << 2);
		break;
306

307 308 309
	case DIBX000_VBG_ENABLE:
		reg_908 &= ~(1 << 15);
		break;
310

311 312 313
	case DIBX000_VBG_DISABLE:
		reg_908 |= (1 << 15);
		break;
314

315 316
	default:
		break;
317 318
	}

319
//	dprintk( "908: %x, 909: %x\n", reg_908, reg_909);
320

321
	reg_909 |= (state->cfg.disable_sample_and_hold & 1) << 4;
322 323
	reg_908 |= (state->cfg.enable_current_mirror & 1) << 7;

324 325 326 327
	dib7000p_write_word(state, 908, reg_908);
	dib7000p_write_word(state, 909, reg_909);
}

328
static int dib7000p_set_bandwidth(struct dib7000p_state *state, u32 bw)
329 330 331 332
{
	u32 timf;

	// store the current bandwidth for later use
333
	state->current_bandwidth = bw;
334 335

	if (state->timf == 0) {
336
		dprintk("using default timf");
337 338
		timf = state->cfg.bw->timf;
	} else {
339
		dprintk("using updated timf");
340 341 342
		timf = state->timf;
	}

343
	timf = timf * (bw / 50) / 160;
344

345
	dib7000p_write_word(state, 23, (u16) ((timf >> 16) & 0xffff));
346
	dib7000p_write_word(state, 24, (u16) ((timf) & 0xffff));
347 348 349 350 351 352 353 354

	return 0;
}

static int dib7000p_sad_calib(struct dib7000p_state *state)
{
/* internal */
	dib7000p_write_word(state, 73, (0 << 1) | (0 << 0));
355 356

	if (state->version == SOC7090)
357
		dib7000p_write_word(state, 74, 2048);
358
	else
359
		dib7000p_write_word(state, 74, 776);
360 361 362 363 364 365 366 367 368 369

	/* do the calibration */
	dib7000p_write_word(state, 73, (1 << 0));
	dib7000p_write_word(state, 73, (0 << 0));

	msleep(1);

	return 0;
}

370 371 372 373 374 375 376 377 378
int dib7000p_set_wbd_ref(struct dvb_frontend *demod, u16 value)
{
	struct dib7000p_state *state = demod->demodulator_priv;
	if (value > 4095)
		value = 4095;
	state->wbd_ref = value;
	return dib7000p_write_word(state, 105, (dib7000p_read_word(state, 105) & 0xf000) | value);
}
EXPORT_SYMBOL(dib7000p_set_wbd_ref);
379

380 381 382
static void dib7000p_reset_pll(struct dib7000p_state *state)
{
	struct dibx000_bandwidth_config *bw = &state->cfg.bw[0];
383 384
	u16 clk_cfg0;

385 386
	if (state->version == SOC7090) {
		dib7000p_write_word(state, 1856, (!bw->pll_reset << 13) | (bw->pll_range << 12) | (bw->pll_ratio << 6) | (bw->pll_prediv));
387

388 389
		while (((dib7000p_read_word(state, 1856) >> 15) & 0x1) != 1)
			;
390 391 392 393 394 395

		dib7000p_write_word(state, 1857, dib7000p_read_word(state, 1857) | (!bw->pll_bypass << 15));
	} else {
		/* force PLL bypass */
		clk_cfg0 = (1 << 15) | ((bw->pll_ratio & 0x3f) << 9) |
			(bw->modulo << 7) | (bw->ADClkSrc << 6) | (bw->IO_CLK_en_core << 5) | (bw->bypclk_div << 2) | (bw->enable_refdiv << 1) | (0 << 0);
396

397 398 399 400 401 402 403
		dib7000p_write_word(state, 900, clk_cfg0);

		/* P_pll_cfg */
		dib7000p_write_word(state, 903, (bw->pll_prediv << 5) | (((bw->pll_ratio >> 6) & 0x3) << 3) | (bw->pll_range << 1) | bw->pll_reset);
		clk_cfg0 = (bw->pll_bypass << 15) | (clk_cfg0 & 0x7fff);
		dib7000p_write_word(state, 900, clk_cfg0);
	}
404

405 406 407 408
	dib7000p_write_word(state, 18, (u16) (((bw->internal * 1000) >> 16) & 0xffff));
	dib7000p_write_word(state, 19, (u16) ((bw->internal * 1000) & 0xffff));
	dib7000p_write_word(state, 21, (u16) ((bw->ifreq >> 16) & 0xffff));
	dib7000p_write_word(state, 22, (u16) ((bw->ifreq) & 0xffff));
409 410 411 412

	dib7000p_write_word(state, 72, bw->sad_cfg);
}

413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
static u32 dib7000p_get_internal_freq(struct dib7000p_state *state)
{
	u32 internal = (u32) dib7000p_read_word(state, 18) << 16;
	internal |= (u32) dib7000p_read_word(state, 19);
	internal /= 1000;

	return internal;
}

int dib7000p_update_pll(struct dvb_frontend *fe, struct dibx000_bandwidth_config *bw)
{
	struct dib7000p_state *state = fe->demodulator_priv;
	u16 reg_1857, reg_1856 = dib7000p_read_word(state, 1856);
	u8 loopdiv, prediv;
	u32 internal, xtal;

	/* get back old values */
	prediv = reg_1856 & 0x3f;
	loopdiv = (reg_1856 >> 6) & 0x3f;

	if ((bw != NULL) && (bw->pll_prediv != prediv || bw->pll_ratio != loopdiv)) {
		dprintk("Updating pll (prediv: old =  %d new = %d ; loopdiv : old = %d new = %d)", prediv, bw->pll_prediv, loopdiv, bw->pll_ratio);
		reg_1856 &= 0xf000;
		reg_1857 = dib7000p_read_word(state, 1857);
437
		dib7000p_write_word(state, 1857, reg_1857 & ~(1 << 15));
438 439 440 441 442 443 444 445 446 447

		dib7000p_write_word(state, 1856, reg_1856 | ((bw->pll_ratio & 0x3f) << 6) | (bw->pll_prediv & 0x3f));

		/* write new system clk into P_sec_len */
		internal = dib7000p_get_internal_freq(state);
		xtal = (internal / loopdiv) * prediv;
		internal = 1000 * (xtal / bw->pll_prediv) * bw->pll_ratio;	/* new internal */
		dib7000p_write_word(state, 18, (u16) ((internal >> 16) & 0xffff));
		dib7000p_write_word(state, 19, (u16) (internal & 0xffff));

448
		dib7000p_write_word(state, 1857, reg_1857 | (1 << 15));
449

450
		while (((dib7000p_read_word(state, 1856) >> 15) & 0x1) != 1)
451 452 453 454 455 456 457 458
			dprintk("Waiting for PLL to lock");

		return 0;
	}
	return -EIO;
}
EXPORT_SYMBOL(dib7000p_update_pll);

459 460 461
static int dib7000p_reset_gpio(struct dib7000p_state *st)
{
	/* reset the GPIOs */
462
	dprintk("gpio dir: %x: val: %x, pwm_pos: %x", st->gpio_dir, st->gpio_val, st->cfg.gpio_pwm_pos);
463 464 465 466 467 468 469 470 471 472 473 474

	dib7000p_write_word(st, 1029, st->gpio_dir);
	dib7000p_write_word(st, 1030, st->gpio_val);

	/* TODO 1031 is P_gpio_od */

	dib7000p_write_word(st, 1032, st->cfg.gpio_pwm_pos);

	dib7000p_write_word(st, 1037, st->cfg.pwm_freq_div);
	return 0;
}

475 476 477
static int dib7000p_cfg_gpio(struct dib7000p_state *st, u8 num, u8 dir, u8 val)
{
	st->gpio_dir = dib7000p_read_word(st, 1029);
478 479
	st->gpio_dir &= ~(1 << num);	/* reset the direction bit */
	st->gpio_dir |= (dir & 0x1) << num;	/* set the new direction */
480 481 482
	dib7000p_write_word(st, 1029, st->gpio_dir);

	st->gpio_val = dib7000p_read_word(st, 1030);
483 484
	st->gpio_val &= ~(1 << num);	/* reset the direction bit */
	st->gpio_val |= (val & 0x01) << num;	/* set the new value */
485 486 487 488 489 490 491 492 493 494 495
	dib7000p_write_word(st, 1030, st->gpio_val);

	return 0;
}

int dib7000p_set_gpio(struct dvb_frontend *demod, u8 num, u8 dir, u8 val)
{
	struct dib7000p_state *state = demod->demodulator_priv;
	return dib7000p_cfg_gpio(state, num, dir, val);
}
EXPORT_SYMBOL(dib7000p_set_gpio);
496

497
static u16 dib7000p_defaults[] = {
498 499
	// auto search configuration
	3, 2,
500 501 502
	0x0004,
	0x1000,
	0x0814,			/* Equal Lock */
503 504

	12, 6,
505 506 507 508 509 510 511 512 513 514 515 516
	0x001b,
	0x7740,
	0x005b,
	0x8d80,
	0x01c9,
	0xc380,
	0x0000,
	0x0080,
	0x0000,
	0x0090,
	0x0001,
	0xd4c0,
517 518

	1, 26,
519
	0x6680,
520 521 522

	/* set ADC level to -16 */
	11, 79,
523 524 525 526 527 528 529 530 531 532 533
	(1 << 13) - 825 - 117,
	(1 << 13) - 837 - 117,
	(1 << 13) - 811 - 117,
	(1 << 13) - 766 - 117,
	(1 << 13) - 737 - 117,
	(1 << 13) - 693 - 117,
	(1 << 13) - 648 - 117,
	(1 << 13) - 619 - 117,
	(1 << 13) - 575 - 117,
	(1 << 13) - 531 - 117,
	(1 << 13) - 501 - 117,
534 535

	1, 142,
536
	0x0410,
537 538 539

	/* disable power smoothing */
	8, 145,
540 541 542 543 544 545 546 547
	0,
	0,
	0,
	0,
	0,
	0,
	0,
	0,
548 549

	1, 154,
550
	1 << 13,
551 552

	1, 168,
553
	0x0ccd,
554 555

	1, 183,
556
	0x200f,
557 558

	1, 212,
559
		0x169,
560 561

	5, 187,
562 563 564 565 566
	0x023d,
	0x00a4,
	0x00a4,
	0x7ff0,
	0x3ccc,
567 568

	1, 198,
569
	0x800,
570 571

	1, 222,
572
	0x0010,
573 574

	1, 235,
575
	0x0062,
576 577

	2, 901,
578 579
	0x0006,
	(3 << 10) | (1 << 6),
580 581

	1, 905,
582
	0x2c8e,
583 584 585 586

	0,
};

587 588 589 590
static int dib7000p_demod_reset(struct dib7000p_state *state)
{
	dib7000p_set_power_mode(state, DIB7000P_POWER_ALL);

591 592 593
	if (state->version == SOC7090)
		dibx000_reset_i2c_master(&state->i2c_master);

594 595 596
	dib7000p_set_adc_state(state, DIBX000_VBG_ENABLE);

	/* restart all parts */
597 598 599 600 601 602 603 604 605 606
	dib7000p_write_word(state, 770, 0xffff);
	dib7000p_write_word(state, 771, 0xffff);
	dib7000p_write_word(state, 772, 0x001f);
	dib7000p_write_word(state, 898, 0x0003);
	dib7000p_write_word(state, 1280, 0x001f - ((1 << 4) | (1 << 3)));

	dib7000p_write_word(state, 770, 0);
	dib7000p_write_word(state, 771, 0);
	dib7000p_write_word(state, 772, 0);
	dib7000p_write_word(state, 898, 0);
607 608 609 610 611 612
	dib7000p_write_word(state, 1280, 0);

	/* default */
	dib7000p_reset_pll(state);

	if (dib7000p_reset_gpio(state) != 0)
613
		dprintk("GPIO reset was not successful.");
614

615 616
	if (state->version == SOC7090) {
		dib7000p_write_word(state, 899, 0);
617

618 619 620 621
		/* impulse noise */
		dib7000p_write_word(state, 42, (1<<5) | 3); /* P_iqc_thsat_ipc = 1 ; P_iqc_win2 = 3 */
		dib7000p_write_word(state, 43, 0x2d4); /*-300 fag P_iqc_dect_min = -280 */
		dib7000p_write_word(state, 44, 300); /* 300 fag P_iqc_dect_min = +280 */
622
		dib7000p_write_word(state, 273, (1<<6) | 30);
623 624 625
	}
	if (dib7000p_set_output_mode(state, OUTMODE_HIGH_Z) != 0)
		dprintk("OUTPUT_MODE could not be reset.");
626 627 628 629 630

	dib7000p_set_adc_state(state, DIBX000_SLOW_ADC_ON);
	dib7000p_sad_calib(state);
	dib7000p_set_adc_state(state, DIBX000_SLOW_ADC_OFF);

631 632 633 634 635
	/* unforce divstr regardless whether i2c enumeration was done or not */
	dib7000p_write_word(state, 1285, dib7000p_read_word(state, 1285) & ~(1 << 1));

	dib7000p_set_bandwidth(state, 8000);

636
	if (state->version == SOC7090) {
637
		dib7000p_write_word(state, 36, 0x5755);/* P_iqc_impnc_on =1 & P_iqc_corr_inh = 1 for impulsive noise */
638
	} else {
639 640 641 642 643
		if (state->cfg.tuner_is_baseband)
			dib7000p_write_word(state, 36, 0x0755);
		else
			dib7000p_write_word(state, 36, 0x1f55);
	}
644 645 646

	dib7000p_write_tab(state, dib7000p_defaults);

647 648 649 650 651
	dib7000p_set_power_mode(state, DIB7000P_POWER_INTERFACE_ONLY);

	return 0;
}

652 653 654 655
static void dib7000p_pll_clk_cfg(struct dib7000p_state *state)
{
	u16 tmp = 0;
	tmp = dib7000p_read_word(state, 903);
656
	dib7000p_write_word(state, 903, (tmp | 0x1));
657
	tmp = dib7000p_read_word(state, 900);
658
	dib7000p_write_word(state, 900, (tmp & 0x7fff) | (1 << 6));
659 660
}

661 662 663
static void dib7000p_restart_agc(struct dib7000p_state *state)
{
	// P_restart_iqc & P_restart_agc
664
	dib7000p_write_word(state, 770, (1 << 11) | (1 << 9));
665 666 667
	dib7000p_write_word(state, 770, 0x0000);
}

668
static int dib7000p_update_lna(struct dib7000p_state *state)
669 670 671
{
	u16 dyn_gain;

672
	if (state->cfg.update_lna) {
673
		dyn_gain = dib7000p_read_word(state, 394);
674
		if (state->cfg.update_lna(&state->demod, dyn_gain)) {
675
			dib7000p_restart_agc(state);
676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
			return 1;
		}
	}

	return 0;
}

static int dib7000p_set_agc_config(struct dib7000p_state *state, u8 band)
{
	struct dibx000_agc_config *agc = NULL;
	int i;
	if (state->current_band == band && state->current_agc != NULL)
		return 0;
	state->current_band = band;

	for (i = 0; i < state->cfg.agc_config_count; i++)
		if (state->cfg.agc[i].band_caps & band) {
			agc = &state->cfg.agc[i];
694
			break;
695 696 697
		}

	if (agc == NULL) {
698
		dprintk("no valid AGC configuration found for band 0x%02x", band);
699
		return -EINVAL;
700
	}
701 702 703 704

	state->current_agc = agc;

	/* AGC */
705 706 707
	dib7000p_write_word(state, 75, agc->setup);
	dib7000p_write_word(state, 76, agc->inv_gain);
	dib7000p_write_word(state, 77, agc->time_stabiliz);
708 709 710 711
	dib7000p_write_word(state, 100, (agc->alpha_level << 12) | agc->thlock);

	// Demod AGC loop configuration
	dib7000p_write_word(state, 101, (agc->alpha_mant << 5) | agc->alpha_exp);
712
	dib7000p_write_word(state, 102, (agc->beta_mant << 6) | agc->beta_exp);
713 714

	/* AGC continued */
715
	dprintk("WBD: ref: %d, sel: %d, active: %d, alpha: %d",
716 717 718 719 720 721 722 723 724
		state->wbd_ref != 0 ? state->wbd_ref : agc->wbd_ref, agc->wbd_sel, !agc->perform_agc_softsplit, agc->wbd_sel);

	if (state->wbd_ref != 0)
		dib7000p_write_word(state, 105, (agc->wbd_inv << 12) | state->wbd_ref);
	else
		dib7000p_write_word(state, 105, (agc->wbd_inv << 12) | agc->wbd_ref);

	dib7000p_write_word(state, 106, (agc->wbd_sel << 13) | (agc->wbd_alpha << 9) | (agc->perform_agc_softsplit << 8));

725 726 727 728 729 730
	dib7000p_write_word(state, 107, agc->agc1_max);
	dib7000p_write_word(state, 108, agc->agc1_min);
	dib7000p_write_word(state, 109, agc->agc2_max);
	dib7000p_write_word(state, 110, agc->agc2_min);
	dib7000p_write_word(state, 111, (agc->agc1_pt1 << 8) | agc->agc1_pt2);
	dib7000p_write_word(state, 112, agc->agc1_pt3);
731
	dib7000p_write_word(state, 113, (agc->agc1_slope1 << 8) | agc->agc1_slope2);
732
	dib7000p_write_word(state, 114, (agc->agc2_pt1 << 8) | agc->agc2_pt2);
733 734
	dib7000p_write_word(state, 115, (agc->agc2_slope1 << 8) | agc->agc2_slope2);
	return 0;
735 736
}

737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
static void dib7000p_set_dds(struct dib7000p_state *state, s32 offset_khz)
{
	u32 internal = dib7000p_get_internal_freq(state);
	s32 unit_khz_dds_val = 67108864 / (internal);	/* 2**26 / Fsampling is the unit 1KHz offset */
	u32 abs_offset_khz = ABS(offset_khz);
	u32 dds = state->cfg.bw->ifreq & 0x1ffffff;
	u8 invert = !!(state->cfg.bw->ifreq & (1 << 25));

	dprintk("setting a frequency offset of %dkHz internal freq = %d invert = %d", offset_khz, internal, invert);

	if (offset_khz < 0)
		unit_khz_dds_val *= -1;

	/* IF tuner */
	if (invert)
		dds -= (abs_offset_khz * unit_khz_dds_val);	/* /100 because of /100 on the unit_khz_dds_val line calc for better accuracy */
	else
		dds += (abs_offset_khz * unit_khz_dds_val);

	if (abs_offset_khz <= (internal / 2)) {	/* Max dds offset is the half of the demod freq */
		dib7000p_write_word(state, 21, (u16) (((dds >> 16) & 0x1ff) | (0 << 10) | (invert << 9)));
		dib7000p_write_word(state, 22, (u16) (dds & 0xffff));
	}
}

762
static int dib7000p_agc_startup(struct dvb_frontend *demod, struct dvb_frontend_parameters *ch)
763
{
764 765 766 767
	struct dib7000p_state *state = demod->demodulator_priv;
	int ret = -1;
	u8 *agc_state = &state->agc_state;
	u8 agc_split;
768 769
	u16 reg;
	u32 upd_demod_gain_period = 0x1000;
770 771

	switch (state->agc_state) {
772 773 774 775 776
	case 0:
		dib7000p_set_power_mode(state, DIB7000P_POWER_ALL);
		if (state->version == SOC7090) {
			reg = dib7000p_read_word(state, 0x79b) & 0xff00;
			dib7000p_write_word(state, 0x79a, upd_demod_gain_period & 0xFFFF);	/* lsb */
777
			dib7000p_write_word(state, 0x79b, reg | (1 << 14) | ((upd_demod_gain_period >> 16) & 0xFF));
778 779 780 781 782

			/* enable adc i & q */
			reg = dib7000p_read_word(state, 0x780);
			dib7000p_write_word(state, 0x780, (reg | (0x3)) & (~(1 << 7)));
		} else {
783 784
			dib7000p_set_adc_state(state, DIBX000_ADC_ON);
			dib7000p_pll_clk_cfg(state);
785
		}
786

787 788
		if (dib7000p_set_agc_config(state, BAND_OF_FREQUENCY(ch->frequency / 1000)) != 0)
			return -1;
789

790 791 792 793
		dib7000p_set_dds(state, 0);
		ret = 7;
		(*agc_state)++;
		break;
794

795 796 797
	case 1:
		if (state->cfg.agc_control)
			state->cfg.agc_control(&state->demod, 1);
798

799 800 801 802 803
		dib7000p_write_word(state, 78, 32768);
		if (!state->current_agc->perform_agc_softsplit) {
			/* we are using the wbd - so slow AGC startup */
			/* force 0 split on WBD and restart AGC */
			dib7000p_write_word(state, 106, (state->current_agc->wbd_sel << 13) | (state->current_agc->wbd_alpha << 9) | (1 << 8));
804
			(*agc_state)++;
805 806 807 808 809 810 811
			ret = 5;
		} else {
			/* default AGC startup */
			(*agc_state) = 4;
			/* wait AGC rough lock time */
			ret = 7;
		}
812

813 814
		dib7000p_restart_agc(state);
		break;
815

816 817 818 819 820 821
	case 2:		/* fast split search path after 5sec */
		dib7000p_write_word(state, 75, state->current_agc->setup | (1 << 4));	/* freeze AGC loop */
		dib7000p_write_word(state, 106, (state->current_agc->wbd_sel << 13) | (2 << 9) | (0 << 8));	/* fast split search 0.25kHz */
		(*agc_state)++;
		ret = 14;
		break;
822

823 824 825
	case 3:		/* split search ended */
		agc_split = (u8) dib7000p_read_word(state, 396);	/* store the split value for the next time */
		dib7000p_write_word(state, 78, dib7000p_read_word(state, 394));	/* set AGC gain start value */
826

827 828
		dib7000p_write_word(state, 75, state->current_agc->setup);	/* std AGC loop */
		dib7000p_write_word(state, 106, (state->current_agc->wbd_sel << 13) | (state->current_agc->wbd_alpha << 9) | agc_split);	/* standard split search */
829

830
		dib7000p_restart_agc(state);
831

832
		dprintk("SPLIT %p: %hd", demod, agc_split);
833

834 835 836
		(*agc_state)++;
		ret = 5;
		break;
837

838 839 840 841 842
	case 4:		/* LNA startup */
		ret = 7;

		if (dib7000p_update_lna(state))
			ret = 5;
843
		else
844
			(*agc_state)++;
845 846 847 848 849 850 851 852 853
		break;

	case 5:
		if (state->cfg.agc_control)
			state->cfg.agc_control(&state->demod, 0);
		(*agc_state)++;
		break;
	default:
		break;
854 855
	}
	return ret;
856 857
}

858
static void dib7000p_update_timf(struct dib7000p_state *state)
859 860
{
	u32 timf = (dib7000p_read_word(state, 427) << 16) | dib7000p_read_word(state, 428);
861
	state->timf = timf * 160 / (state->current_bandwidth / 50);
862 863
	dib7000p_write_word(state, 23, (u16) (timf >> 16));
	dib7000p_write_word(state, 24, (u16) (timf & 0xffff));
864 865 866
	dprintk("updated timf_frequency: %d (default: %d)", state->timf, state->cfg.bw->timf);

}
867

868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
u32 dib7000p_ctrl_timf(struct dvb_frontend *fe, u8 op, u32 timf)
{
	struct dib7000p_state *state = fe->demodulator_priv;
	switch (op) {
	case DEMOD_TIMF_SET:
		state->timf = timf;
		break;
	case DEMOD_TIMF_UPDATE:
		dib7000p_update_timf(state);
		break;
	case DEMOD_TIMF_GET:
		break;
	}
	dib7000p_set_bandwidth(state, state->current_bandwidth);
	return state->timf;
883
}
884
EXPORT_SYMBOL(dib7000p_ctrl_timf);
885

886
static void dib7000p_set_channel(struct dib7000p_state *state, struct dvb_frontend_parameters *ch, u8 seq)
887
{
888 889
	u16 value, est[4];

890
	dib7000p_set_bandwidth(state, BANDWIDTH_TO_KHZ(ch->u.ofdm.bandwidth));
891 892

	/* nfft, guard, qam, alpha */
893 894
	value = 0;
	switch (ch->u.ofdm.transmission_mode) {
895 896 897
	case TRANSMISSION_MODE_2K:
		value |= (0 << 7);
		break;
898
	case TRANSMISSION_MODE_4K:
899 900 901 902 903 904
		value |= (2 << 7);
		break;
	default:
	case TRANSMISSION_MODE_8K:
		value |= (1 << 7);
		break;
905 906
	}
	switch (ch->u.ofdm.guard_interval) {
907 908 909 910 911 912 913 914 915 916 917 918 919
	case GUARD_INTERVAL_1_32:
		value |= (0 << 5);
		break;
	case GUARD_INTERVAL_1_16:
		value |= (1 << 5);
		break;
	case GUARD_INTERVAL_1_4:
		value |= (3 << 5);
		break;
	default:
	case GUARD_INTERVAL_1_8:
		value |= (2 << 5);
		break;
920 921
	}
	switch (ch->u.ofdm.constellation) {
922 923 924 925 926 927 928 929 930 931
	case QPSK:
		value |= (0 << 3);
		break;
	case QAM_16:
		value |= (1 << 3);
		break;
	default:
	case QAM_64:
		value |= (2 << 3);
		break;
932 933
	}
	switch (HIERARCHY_1) {
934 935 936 937 938 939 940 941 942 943
	case HIERARCHY_2:
		value |= 2;
		break;
	case HIERARCHY_4:
		value |= 4;
		break;
	default:
	case HIERARCHY_1:
		value |= 1;
		break;
944 945
	}
	dib7000p_write_word(state, 0, value);
946
	dib7000p_write_word(state, 5, (seq << 4) | 1);	/* do not force tps, search list 0 */
947

948 949 950 951 952 953 954 955 956
	/* P_dintl_native, P_dintlv_inv, P_hrch, P_code_rate, P_select_hp */
	value = 0;
	if (1 != 0)
		value |= (1 << 6);
	if (ch->u.ofdm.hierarchy_information == 1)
		value |= (1 << 4);
	if (1 == 1)
		value |= 1;
	switch ((ch->u.ofdm.hierarchy_information == 0 || 1 == 1) ? ch->u.ofdm.code_rate_HP : ch->u.ofdm.code_rate_LP) {
957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
	case FEC_2_3:
		value |= (2 << 1);
		break;
	case FEC_3_4:
		value |= (3 << 1);
		break;
	case FEC_5_6:
		value |= (5 << 1);
		break;
	case FEC_7_8:
		value |= (7 << 1);
		break;
	default:
	case FEC_1_2:
		value |= (1 << 1);
		break;
973 974 975 976
	}
	dib7000p_write_word(state, 208, value);

	/* offset loop parameters */
977 978 979 980
	dib7000p_write_word(state, 26, 0x6680);
	dib7000p_write_word(state, 32, 0x0003);
	dib7000p_write_word(state, 29, 0x1273);
	dib7000p_write_word(state, 33, 0x0005);
981 982

	/* P_dvsy_sync_wait */
983
	switch (ch->u.ofdm.transmission_mode) {
984 985 986 987 988 989 990 991 992 993
	case TRANSMISSION_MODE_8K:
		value = 256;
		break;
	case TRANSMISSION_MODE_4K:
		value = 128;
		break;
	case TRANSMISSION_MODE_2K:
	default:
		value = 64;
		break;
994
	}
995
	switch (ch->u.ofdm.guard_interval) {
996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
	case GUARD_INTERVAL_1_16:
		value *= 2;
		break;
	case GUARD_INTERVAL_1_8:
		value *= 4;
		break;
	case GUARD_INTERVAL_1_4:
		value *= 8;
		break;
	default:
	case GUARD_INTERVAL_1_32:
		value *= 1;
		break;
1009
	}
1010
	if (state->cfg.diversity_delay == 0)
1011
		state->div_sync_wait = (value * 3) / 2 + 48;
1012
	else
1013
		state->div_sync_wait = (value * 3) / 2 + state->cfg.diversity_delay;
1014

1015 1016 1017
	/* deactive the possibility of diversity reception if extended interleaver */
	state->div_force_off = !1 && ch->u.ofdm.transmission_mode != TRANSMISSION_MODE_8K;
	dib7000p_set_diversity_in(&state->demod, state->div_state);
1018 1019

	/* channel estimation fine configuration */
1020
	switch (ch->u.ofdm.constellation) {
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
	case QAM_64:
		est[0] = 0x0148;	/* P_adp_regul_cnt 0.04 */
		est[1] = 0xfff0;	/* P_adp_noise_cnt -0.002 */
		est[2] = 0x00a4;	/* P_adp_regul_ext 0.02 */
		est[3] = 0xfff8;	/* P_adp_noise_ext -0.001 */
		break;
	case QAM_16:
		est[0] = 0x023d;	/* P_adp_regul_cnt 0.07 */
		est[1] = 0xffdf;	/* P_adp_noise_cnt -0.004 */
		est[2] = 0x00a4;	/* P_adp_regul_ext 0.02 */
		est[3] = 0xfff0;	/* P_adp_noise_ext -0.002 */
		break;
	default:
		est[0] = 0x099a;	/* P_adp_regul_cnt 0.3 */
		est[1] = 0xffae;	/* P_adp_noise_cnt -0.01 */
		est[2] = 0x0333;	/* P_adp_regul_ext 0.1 */
		est[3] = 0xfff8;	/* P_adp_noise_ext -0.002 */
		break;
1039
	}
1040 1041
	for (value = 0; value < 4; value++)
		dib7000p_write_word(state, 187 + value, est[value]);
1042 1043
}

1044
static int dib7000p_autosearch_start(struct dvb_frontend *demod, struct dvb_frontend_parameters *ch)
1045 1046
{
	struct dib7000p_state *state = demod->demodulator_priv;
1047 1048
	struct dvb_frontend_parameters schan;
	u32 value, factor;
1049
	u32 internal = dib7000p_get_internal_freq(state);
1050 1051 1052

	schan = *ch;
	schan.u.ofdm.constellation = QAM_64;
1053 1054 1055 1056 1057
	schan.u.ofdm.guard_interval = GUARD_INTERVAL_1_32;
	schan.u.ofdm.transmission_mode = TRANSMISSION_MODE_8K;
	schan.u.ofdm.code_rate_HP = FEC_2_3;
	schan.u.ofdm.code_rate_LP = FEC_3_4;
	schan.u.ofdm.hierarchy_information = 0;
1058 1059 1060 1061 1062 1063 1064 1065

	dib7000p_set_channel(state, &schan, 7);

	factor = BANDWIDTH_TO_KHZ(ch->u.ofdm.bandwidth);
	if (factor >= 5000)
		factor = 1;
	else
		factor = 6;
1066

1067
	value = 30 * internal * factor;
1068 1069
	dib7000p_write_word(state, 6, (u16) ((value >> 16) & 0xffff));
	dib7000p_write_word(state, 7, (u16) (value & 0xffff));
1070
	value = 100 * internal * factor;
1071 1072
	dib7000p_write_word(state, 8, (u16) ((value >> 16) & 0xffff));
	dib7000p_write_word(state, 9, (u16) (value & 0xffff));
1073
	value = 500 * internal * factor;
1074 1075
	dib7000p_write_word(state, 10, (u16) ((value >> 16) & 0xffff));
	dib7000p_write_word(state, 11, (u16) (value & 0xffff));
1076 1077

	value = dib7000p_read_word(state, 0);
1078
	dib7000p_write_word(state, 0, (u16) ((1 << 9) | value));
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
	dib7000p_read_word(state, 1284);
	dib7000p_write_word(state, 0, (u16) value);

	return 0;
}

static int dib7000p_autosearch_is_irq(struct dvb_frontend *demod)
{
	struct dib7000p_state *state = demod->demodulator_priv;
	u16 irq_pending = dib7000p_read_word(state, 1284);

1090
	if (irq_pending & 0x1)
1091 1092
		return 1;

1093
	if (irq_pending & 0x2)
1094 1095
		return 2;

1096
	return 0;
1097 1098
}

1099 1100
static void dib7000p_spur_protect(struct dib7000p_state *state, u32 rf_khz, u32 bw)
{
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
	static s16 notch[] = { 16143, 14402, 12238, 9713, 6902, 3888, 759, -2392 };
	static u8 sine[] = { 0, 2, 3, 5, 6, 8, 9, 11, 13, 14, 16, 17, 19, 20, 22,
		24, 25, 27, 28, 30, 31, 33, 34, 36, 38, 39, 41, 42, 44, 45, 47, 48, 50, 51,
		53, 55, 56, 58, 59, 61, 62, 64, 65, 67, 68, 70, 71, 73, 74, 76, 77, 79, 80,
		82, 83, 85, 86, 88, 89, 91, 92, 94, 95, 97, 98, 99, 101, 102, 104, 105,
		107, 108, 109, 111, 112, 114, 115, 117, 118, 119, 121, 122, 123, 125, 126,
		128, 129, 130, 132, 133, 134, 136, 137, 138, 140, 141, 142, 144, 145, 146,
		147, 149, 150, 151, 152, 154, 155, 156, 157, 159, 160, 161, 162, 164, 165,
		166, 167, 168, 170, 171, 172, 173, 174, 175, 177, 178, 179, 180, 181, 182,
		183, 184, 185, 186, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198,
		199, 200, 201, 202, 203, 204, 205, 206, 207, 207, 208, 209, 210, 211, 212,
		213, 214, 215, 215, 216, 217, 218, 219, 220, 220, 221, 222, 223, 224, 224,
		225, 226, 227, 227, 228, 229, 229, 230, 231, 231, 232, 233, 233, 234, 235,
		235, 236, 237, 237, 238, 238, 239, 239, 240, 241, 241, 242, 242, 243, 243,
		244, 244, 245, 245, 245, 246, 246, 247, 247, 248, 248, 248, 249, 249, 249,
		250, 250, 250, 251, 251, 251, 252, 252, 252, 252, 253, 253, 253, 253, 254,
		254, 254, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
		255, 255, 255, 255, 255, 255
	};
1120 1121

	u32 xtal = state->cfg.bw->xtal_hz / 1000;
1122
	int f_rel = DIV_ROUND_CLOSEST(rf_khz, xtal) * xtal - rf_khz;
1123
	int k;
1124
	int coef_re[8], coef_im[8];
1125 1126 1127
	int bw_khz = bw;
	u32 pha;

1128
	dprintk("relative position of the Spur: %dk (RF: %dk, XTAL: %dk)", f_rel, rf_khz, xtal);
1129

1130
	if (f_rel < -bw_khz / 2 || f_rel > bw_khz / 2)
1131 1132 1133 1134
		return;

	bw_khz /= 100;

1135
	dib7000p_write_word(state, 142, 0x0610);
1136 1137

	for (k = 0; k < 8; k++) {
1138
		pha = ((f_rel * (k + 1) * 112 * 80 / bw_khz) / 1000) & 0x3ff;
1139

1140
		if (pha == 0) {
1141 1142
			coef_re[k] = 256;
			coef_im[k] = 0;
1143 1144 1145
		} else if (pha < 256) {
			coef_re[k] = sine[256 - (pha & 0xff)];
			coef_im[k] = sine[pha & 0xff];
1146 1147 1148 1149
		} else if (pha == 256) {
			coef_re[k] = 0;
			coef_im[k] = 256;
		} else if (pha < 512) {
1150 1151
			coef_re[k] = -sine[pha & 0xff];
			coef_im[k] = sine[256 - (pha & 0xff)];
1152 1153 1154 1155
		} else if (pha == 512) {
			coef_re[k] = -256;
			coef_im[k] = 0;
		} else if (pha < 768) {
1156 1157
			coef_re[k] = -sine[256 - (pha & 0xff)];
			coef_im[k] = -sine[pha & 0xff];
1158 1159 1160 1161
		} else if (pha == 768) {
			coef_re[k] = 0;
			coef_im[k] = -256;
		} else {
1162 1163
			coef_re[k] = sine[pha & 0xff];
			coef_im[k] = -sine[256 - (pha & 0xff)];
1164 1165 1166
		}

		coef_re[k] *= notch[k];
1167 1168 1169 1170
		coef_re[k] += (1 << 14);
		if (coef_re[k] >= (1 << 24))
			coef_re[k] = (1 << 24) - 1;
		coef_re[k] /= (1 << 15);
1171 1172

		coef_im[k] *= notch[k];
1173 1174 1175 1176
		coef_im[k] += (1 << 14);
		if (coef_im[k] >= (1 << 24))
			coef_im[k] = (1 << 24) - 1;
		coef_im[k] /= (1 << 15);
1177

1178
		dprintk("PALF COEF: %d re: %d im: %d", k, coef_re[k], coef_im[k]);
1179 1180 1181 1182 1183

		dib7000p_write_word(state, 143, (0 << 14) | (k << 10) | (coef_re[k] & 0x3ff));
		dib7000p_write_word(state, 144, coef_im[k] & 0x3ff);
		dib7000p_write_word(state, 143, (1 << 14) | (k << 10) | (coef_re[k] & 0x3ff));
	}
1184
	dib7000p_write_word(state, 143, 0);
1185 1186 1187
}

static int dib7000p_tune(struct dvb_frontend *demod, struct dvb_frontend_parameters *ch)
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
{
	struct dib7000p_state *state = demod->demodulator_priv;
	u16 tmp = 0;

	if (ch != NULL)
		dib7000p_set_channel(state, ch, 0);
	else
		return -EINVAL;

	// restart demod
	dib7000p_write_word(state, 770, 0x4000);
	dib7000p_write_word(state, 770, 0x0000);
	msleep(45);

	/* P_ctrl_inh_cor=0, P_ctrl_alpha_cor=4, P_ctrl_inh_isi=0, P_ctrl_alpha_isi=3, P_ctrl_inh_cor4=1, P_ctrl_alpha_cor4=3 */
1203 1204
	tmp = (0 << 14) | (4 << 10) | (0 << 9) | (3 << 5) | (1 << 4) | (0x3);
	if (state->sfn_workaround_active) {
1205
		dprintk("SFN workaround is active");
1206
		tmp |= (1 << 9);
1207
		dib7000p_write_word(state, 166, 0x4000);
1208
	} else {
1209
		dib7000p_write_word(state, 166, 0x0000);
1210 1211
	}
	dib7000p_write_word(state, 29, tmp);
1212 1213 1214 1215 1216 1217 1218 1219 1220

	// never achieved a lock with that bandwidth so far - wait for osc-freq to update
	if (state->timf == 0)
		msleep(200);

	/* offset loop parameters */

	/* P_timf_alpha, P_corm_alpha=6, P_corm_thres=0x80 */
	tmp = (6 << 8) | 0x80;
1221
	switch (ch->u.ofdm.transmission_mode) {
1222 1223 1224
	case TRANSMISSION_MODE_2K:
		tmp |= (2 << 12);
		break;
1225
	case TRANSMISSION_MODE_4K:
1226 1227 1228 1229 1230 1231
		tmp |= (3 << 12);
		break;
	default:
	case TRANSMISSION_MODE_8K:
		tmp |= (4 << 12);
		break;
1232
	}
1233
	dib7000p_write_word(state, 26, tmp);	/* timf_a(6xxx) */
1234 1235 1236

	/* P_ctrl_freeze_pha_shift=0, P_ctrl_pha_off_max */
	tmp = (0 << 4);
1237
	switch (ch->u.ofdm.transmission_mode) {
1238 1239 1240
	case TRANSMISSION_MODE_2K:
		tmp |= 0x6;
		break;
1241
	case TRANSMISSION_MODE_4K:
1242 1243 1244 1245 1246 1247
		tmp |= 0x7;
		break;
	default:
	case TRANSMISSION_MODE_8K:
		tmp |= 0x8;
		break;
1248
	}
1249
	dib7000p_write_word(state, 32, tmp);
1250 1251 1252

	/* P_ctrl_sfreq_inh=0, P_ctrl_sfreq_step */
	tmp = (0 << 4);
1253
	switch (ch->u.ofdm.transmission_mode) {
1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
	case TRANSMISSION_MODE_2K:
		tmp |= 0x6;
		break;
	case TRANSMISSION_MODE_4K:
		tmp |= 0x7;
		break;
	default:
	case TRANSMISSION_MODE_8K:
		tmp |= 0x8;
		break;
1264
	}
1265
	dib7000p_write_word(state, 33, tmp);
1266

1267
	tmp = dib7000p_read_word(state, 509);
1268 1269
	if (!((tmp >> 6) & 0x1)) {
		/* restart the fec */
1270
		tmp = dib7000p_read_word(state, 771);
1271 1272
		dib7000p_write_word(state, 771, tmp | (1 << 1));
		dib7000p_write_word(state, 771, tmp);
1273 1274
		msleep(40);
		tmp = dib7000p_read_word(state, 509);
1275 1276
	}
	// we achieved a lock - it's time to update the osc freq
1277
	if ((tmp >> 6) & 0x1) {
1278
		dib7000p_update_timf(state);
1279 1280 1281 1282
		/* P_timf_alpha += 2 */
		tmp = dib7000p_read_word(state, 26);
		dib7000p_write_word(state, 26, (tmp & ~(0xf << 12)) | ((((tmp >> 12) & 0xf) + 5) << 12));
	}
1283 1284

	if (state->cfg.spur_protect)
1285
		dib7000p_spur_protect(state, ch->frequency / 1000, BANDWIDTH_TO_KHZ(ch->u.ofdm.bandwidth));
1286

1287
	dib7000p_set_bandwidth(state, BANDWIDTH_TO_KHZ(ch->u.ofdm.bandwidth));
1288 1289 1290
	return 0;
}

1291
static int dib7000p_wakeup(struct dvb_frontend *demod)
1292 1293 1294 1295
{
	struct dib7000p_state *state = demod->demodulator_priv;
	dib7000p_set_power_mode(state, DIB7000P_POWER_ALL);
	dib7000p_set_adc_state(state, DIBX000_SLOW_ADC_ON);
1296 1297
	if (state->version == SOC7090)
		dib7000p_sad_calib(state);
1298
	return 0;
1299 1300 1301 1302 1303
}

static int dib7000p_sleep(struct dvb_frontend *demod)
{
	struct dib7000p_state *state = demod->demodulator_priv;
1304 1305
	if (state->version == SOC7090)
		return dib7090_set_output_mode(demod, OUTMODE_HIGH_Z) | dib7000p_set_power_mode(state, DIB7000P_POWER_INTERFACE_ONLY);
1306 1307 1308 1309 1310 1311
	return dib7000p_set_output_mode(state, OUTMODE_HIGH_Z) | dib7000p_set_power_mode(state, DIB7000P_POWER_INTERFACE_ONLY);
}

static int dib7000p_identify(struct dib7000p_state *st)
{
	u16 value;
1312
	dprintk("checking demod on I2C address: %d (%x)", st->i2c_addr, st->i2c_addr);
1313 1314

	if ((value = dib7000p_read_word(st, 768)) != 0x01b3) {
1315
		dprintk("wrong Vendor ID (read=0x%x)", value);
1316 1317 1318 1319
		return -EREMOTEIO;
	}

	if ((value = dib7000p_read_word(st, 769)) != 0x4000) {
1320
		dprintk("wrong Device ID (%x)", value);
1321 1322 1323 1324 1325 1326
		return -EREMOTEIO;
	}

	return 0;
}

1327
static int dib7000p_get_frontend(struct dvb_frontend *fe, struct dvb_frontend_parameters *fep)
1328 1329
{
	struct dib7000p_state *state = fe->demodulator_priv;
1330
	u16 tps = dib7000p_read_word(state, 463);
1331 1332 1333

	fep->inversion = INVERSION_AUTO;

1334
	fep->u.ofdm.bandwidth = BANDWIDTH_TO_INDEX(state->current_bandwidth);
1335 1336

	switch ((tps >> 8) & 0x3) {
1337 1338 1339 1340 1341 1342
	case 0:
		fep->u.ofdm.transmission_mode = TRANSMISSION_MODE_2K;
		break;
	case 1:
		fep->u.ofdm.transmission_mode = TRANSMISSION_MODE_8K;
		break;
1343
	/* case 2: fep->u.ofdm.transmission_mode = TRANSMISSION_MODE_4K; break; */
1344 1345 1346
	}

	switch (tps & 0x3) {
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
	case 0:
		fep->u.ofdm.guard_interval = GUARD_INTERVAL_1_32;
		break;
	case 1:
		fep->u.ofdm.guard_interval = GUARD_INTERVAL_1_16;
		break;
	case 2:
		fep->u.ofdm.guard_interval = GUARD_INTERVAL_1_8;
		break;
	case 3:
		fep->u.ofdm.guard_interval = GUARD_INTERVAL_1_4;
		break;
1359 1360 1361
	}

	switch ((tps >> 14) & 0x3) {
1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
	case 0:
		fep->u.ofdm.constellation = QPSK;
		break;
	case 1:
		fep->u.ofdm.constellation = QAM_16;
		break;
	case 2:
	default:
		fep->u.ofdm.constellation = QAM_64;
		break;
1372 1373 1374 1375 1376 1377 1378
	}

	/* as long as the frontend_param structure is fixed for hierarchical transmission I refuse to use it */
	/* (tps >> 13) & 0x1 == hrch is used, (tps >> 10) & 0x7 == alpha */

	fep->u.ofdm.hierarchy_information = HIERARCHY_NONE;
	switch ((tps >> 5) & 0x7) {
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
	case 1:
		fep->u.ofdm.code_rate_HP = FEC_1_2;
		break;
	case 2:
		fep->u.ofdm.code_rate_HP = FEC_2_3;
		break;
	case 3:
		fep->u.ofdm.code_rate_HP = FEC_3_4;
		break;
	case 5:
		fep->u.ofdm.code_rate_HP = FEC_5_6;
		break;
	case 7:
	default:
		fep->u.ofdm.code_rate_HP = FEC_7_8;
		break;
1395 1396 1397 1398

	}

	switch ((tps >> 2) & 0x7) {
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
	case 1:
		fep->u.ofdm.code_rate_LP = FEC_1_2;
		break;
	case 2:
		fep->u.ofdm.code_rate_LP = FEC_2_3;
		break;
	case 3:
		fep->u.ofdm.code_rate_LP = FEC_3_4;
		break;
	case 5:
		fep->u.ofdm.code_rate_LP = FEC_5_6;
		break;
	case 7:
	default:
		fep->u.ofdm.code_rate_LP = FEC_7_8;
		break;
1415 1416 1417 1418 1419 1420 1421
	}

	/* native interleaver: (dib7000p_read_word(state, 464) >>  5) & 0x1 */

	return 0;
}

1422
static int dib7000p_set_frontend(struct dvb_frontend *fe, struct dvb_frontend_parameters *fep)
1423 1424
{
	struct dib7000p_state *state = fe->demodulator_priv;
1425
	int time, ret;
1426

1427 1428 1429
	if (state->version == SOC7090) {
		dib7090_set_diversity_in(fe, 0);
		dib7090_set_output_mode(fe, OUTMODE_HIGH_Z);
1430
	} else
1431
		dib7000p_set_output_mode(state, OUTMODE_HIGH_Z);
1432

1433
	/* maybe the parameter has been changed */
1434 1435
	state->sfn_workaround_active = buggy_sfn_workaround;

1436 1437 1438
	if (fe->ops.tuner_ops.set_params)
		fe->ops.tuner_ops.set_params(fe, fep);

1439 1440 1441 1442 1443 1444 1445 1446
	/* start up the AGC */
	state->agc_state = 0;
	do {
		time = dib7000p_agc_startup(fe, fep);
		if (time != -1)
			msleep(time);
	} while (time != -1);

1447
	if (fep->u.ofdm.transmission_mode == TRANSMISSION_MODE_AUTO ||
1448
		fep->u.ofdm.guard_interval == GUARD_INTERVAL_AUTO || fep->u.ofdm.constellation == QAM_AUTO || fep->u.ofdm.code_rate_HP == FEC_AUTO) {
1449 1450
		int i = 800, found;

1451
		dib7000p_autosearch_start(fe, fep);
1452 1453 1454 1455 1456
		do {
			msleep(1);
			found = dib7000p_autosearch_is_irq(fe);
		} while (found == 0 && i--);

1457
		dprintk("autosearch returns: %d", found);
1458
		if (found == 0 || found == 1)
1459
			return 0;
1460 1461 1462 1463

		dib7000p_get_frontend(fe, fep);
	}

1464 1465
	ret = dib7000p_tune(fe, fep);

1466
	/* make this a config parameter */
1467 1468 1469 1470 1471 1472
	if (state->version == SOC7090)
		dib7090_set_output_mode(fe, state->cfg.output_mode);
	else
		dib7000p_set_output_mode(state, state->cfg.output_mode);

	return ret;
1473 1474
}

1475
static int dib7000p_read_status(struct dvb_frontend *fe, fe_status_t * stat)
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
{
	struct dib7000p_state *state = fe->demodulator_priv;
	u16 lock = dib7000p_read_word(state, 509);

	*stat = 0;

	if (lock & 0x8000)
		*stat |= FE_HAS_SIGNAL;
	if (lock & 0x3000)
		*stat |= FE_HAS_CARRIER;
	if (lock & 0x0100)
		*stat |= FE_HAS_VITERBI;
	if (lock & 0x0010)
		*stat |= FE_HAS_SYNC;
1490
	if ((lock & 0x0038) == 0x38)
1491 1492 1493 1494 1495
		*stat |= FE_HAS_LOCK;

	return 0;
}

1496
static int dib7000p_read_ber(struct dvb_frontend *fe, u32 * ber)
1497 1498 1499 1500 1501 1502
{
	struct dib7000p_state *state = fe->demodulator_priv;
	*ber = (dib7000p_read_word(state, 500) << 16) | dib7000p_read_word(state, 501);
	return 0;
}

1503
static int dib7000p_read_unc_blocks(struct dvb_frontend *fe, u32 * unc)
1504 1505 1506 1507 1508 1509
{
	struct dib7000p_state *state = fe->demodulator_priv;
	*unc = dib7000p_read_word(state, 506);
	return 0;
}

1510
static int dib7000p_read_signal_strength(struct dvb_frontend *fe, u16 * strength)
1511 1512 1513 1514 1515 1516 1517
{
	struct dib7000p_state *state = fe->demodulator_priv;
	u16 val = dib7000p_read_word(state, 394);
	*strength = 65535 - val;
	return 0;
}

1518
static int dib7000p_read_snr(struct dvb_frontend *fe, u16 * snr)
1519
{
1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
	struct dib7000p_state *state = fe->demodulator_priv;
	u16 val;
	s32 signal_mant, signal_exp, noise_mant, noise_exp;
	u32 result = 0;

	val = dib7000p_read_word(state, 479);
	noise_mant = (val >> 4) & 0xff;
	noise_exp = ((val & 0xf) << 2);
	val = dib7000p_read_word(state, 480);
	noise_exp += ((val >> 14) & 0x3);
	if ((noise_exp & 0x20) != 0)
		noise_exp -= 0x40;

	signal_mant = (val >> 6) & 0xFF;
1534
	signal_exp = (val & 0x3F);
1535 1536 1537 1538
	if ((signal_exp & 0x20) != 0)
		signal_exp -= 0x40;

	if (signal_mant != 0)
1539
		result = intlog10(2) * 10 * signal_exp + 10 * intlog10(signal_mant);
1540 1541 1542 1543
	else
		result = intlog10(2) * 10 * signal_exp - 100;

	if (noise_mant != 0)
1544
		result -= intlog10(2) * 10 * noise_exp + 10 * intlog10(noise_mant);
1545 1546 1547 1548
	else
		result -= intlog10(2) * 10 * noise_exp - 100;

	*snr = result / ((1 << 24) / 10);
1549 1550 1551
	return 0;
}

1552
static int dib7000p_fe_get_tune_settings(struct dvb_frontend *fe, struct dvb_frontend_tune_settings *tune)
1553 1554 1555 1556 1557 1558 1559 1560 1561
{
	tune->min_delay_ms = 1000;
	return 0;
}

static void dib7000p_release(struct dvb_frontend *demod)
{
	struct dib7000p_state *st = demod->demodulator_priv;
	dibx000_exit_i2c_master(&st->i2c_master);
1562
	i2c_del_adapter(&st->dib7090_tuner_adap);
1563 1564 1565 1566 1567
	kfree(st);
}

int dib7000pc_detection(struct i2c_adapter *i2c_adap)
{
1568
	u8 *tx, *rx;
1569
	struct i2c_msg msg[2] = {
1570 1571
		{.addr = 18 >> 1, .flags = 0, .len = 2},
		{.addr = 18 >> 1, .flags = I2C_M_RD, .len = 2},
1572
	};
1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
	int ret = 0;

	tx = kzalloc(2*sizeof(u8), GFP_KERNEL);
	if (!tx)
		return -ENOMEM;
	rx = kzalloc(2*sizeof(u8), GFP_KERNEL);
	if (!rx) {
		goto rx_memory_error;
		ret = -ENOMEM;
	}

	msg[0].buf = tx;
	msg[1].buf = rx;
1586 1587 1588 1589 1590 1591

	tx[0] = 0x03;
	tx[1] = 0x00;

	if (i2c_transfer(i2c_adap, msg, 2) == 2)
		if (rx[0] == 0x01 && rx[1] == 0xb3) {
1592
			dprintk("-D-  DiB7000PC detected");
1593 1594 1595 1596 1597 1598 1599
			return 1;
		}

	msg[0].addr = msg[1].addr = 0x40;

	if (i2c_transfer(i2c_adap, msg, 2) == 2)
		if (rx[0] == 0x01 && rx[1] == 0xb3) {
1600
			dprintk("-D-  DiB7000PC detected");
1601 1602 1603
			return 1;
		}

1604
	dprintk("-D-  DiB7000PC not detected");
1605 1606 1607 1608 1609

	kfree(rx);
rx_memory_error:
	kfree(tx);
	return ret;
1610 1611 1612
}
EXPORT_SYMBOL(dib7000pc_detection);

1613
struct i2c_adapter *dib7000p_get_i2c_master(struct dvb_frontend *demod, enum dibx000_i2c_interface intf, int gating)
1614 1615 1616 1617 1618 1619
{
	struct dib7000p_state *st = demod->demodulator_priv;
	return dibx000_get_i2c_adapter(&st->i2c_master, intf, gating);
}
EXPORT_SYMBOL(dib7000p_get_i2c_master);

1620 1621
int dib7000p_pid_filter_ctrl(struct dvb_frontend *fe, u8 onoff)
{
1622 1623 1624 1625 1626
	struct dib7000p_state *state = fe->demodulator_priv;
	u16 val = dib7000p_read_word(state, 235) & 0xffef;
	val |= (onoff & 0x1) << 4;
	dprintk("PID filter enabled %d", onoff);
	return dib7000p_write_word(state, 235, val);
1627 1628 1629 1630 1631
}
EXPORT_SYMBOL(dib7000p_pid_filter_ctrl);

int dib7000p_pid_filter(struct dvb_frontend *fe, u8 id, u16 pid, u8 onoff)
{
1632 1633 1634
	struct dib7000p_state *state = fe->demodulator_priv;
	dprintk("PID filter: index %x, PID %d, OnOff %d", id, pid, onoff);
	return dib7000p_write_word(state, 241 + id, onoff ? (1 << 13) | pid : 0);
1635 1636 1637
}
EXPORT_SYMBOL(dib7000p_pid_filter);

1638 1639
int dib7000p_i2c_enumeration(struct i2c_adapter *i2c, int no_of_demods, u8 default_addr, struct dib7000p_config cfg[])
{
1640
	struct dib7000p_state *dpst;
1641 1642 1643
	int k = 0;
	u8 new_addr = 0;

1644 1645
	dpst = kzalloc(sizeof(struct dib7000p_state), GFP_KERNEL);
	if (!dpst)
1646
		return -ENOMEM;
1647 1648 1649

	dpst->i2c_adap = i2c;

1650
	for (k = no_of_demods - 1; k >= 0; k--) {
1651
		dpst->cfg = cfg[k];
1652 1653

		/* designated i2c address */
1654 1655 1656 1657
		if (cfg[k].default_i2c_addr != 0)
			new_addr = cfg[k].default_i2c_addr + (k << 1);
		else
			new_addr = (0x40 + k) << 1;
1658
		dpst->i2c_addr = new_addr;
1659
		dib7000p_write_word(dpst, 1287, 0x0003);	/* sram lead in, rdy */
1660 1661
		if (dib7000p_identify(dpst) != 0) {
			dpst->i2c_addr = default_addr;
1662
			dib7000p_write_word(dpst, 1287, 0x0003);	/* sram lead in, rdy */
1663
			if (dib7000p_identify(dpst) != 0) {
1664
				dprintk("DiB7000P #%d: not identified\n", k);
1665
				kfree(dpst);
1666 1667 1668 1669 1670
				return -EIO;
			}
		}

		/* start diversity to pull_down div_str - just for i2c-enumeration */
1671
		dib7000p_set_output_mode(dpst, OUTMODE_DIVERSITY);
1672 1673

		/* set new i2c address and force divstart */
1674
		dib7000p_write_word(dpst, 1285, (new_addr << 2) | 0x2);
1675

1676
		dprintk("IC %d initialized (to i2c_address 0x%x)", k, new_addr);
1677 1678 1679
	}

	for (k = 0; k < no_of_demods; k++) {
1680
		dpst->cfg = cfg[k];
1681 1682 1683 1684
		if (cfg[k].default_i2c_addr != 0)
			dpst->i2c_addr = (cfg[k].default_i2c_addr + k) << 1;
		else
			dpst->i2c_addr = (0x40 + k) << 1;
1685 1686

		// unforce divstr
1687
		dib7000p_write_word(dpst, 1285, dpst->i2c_addr << 2);
1688 1689

		/* deactivate div - it was just for i2c-enumeration */
1690
		dib7000p_set_output_mode(dpst, OUTMODE_HIGH_Z);
1691 1692
	}

1693
	kfree(dpst);
1694 1695 1696 1697
	return 0;
}
EXPORT_SYMBOL(dib7000p_i2c_enumeration);

1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
static const s32 lut_1000ln_mant[] = {
	6908, 6956, 7003, 7047, 7090, 7131, 7170, 7208, 7244, 7279, 7313, 7346, 7377, 7408, 7438, 7467, 7495, 7523, 7549, 7575, 7600
};

static s32 dib7000p_get_adc_power(struct dvb_frontend *fe)
{
	struct dib7000p_state *state = fe->demodulator_priv;
	u32 tmp_val = 0, exp = 0, mant = 0;
	s32 pow_i;
	u16 buf[2];
	u8 ix = 0;

	buf[0] = dib7000p_read_word(state, 0x184);
	buf[1] = dib7000p_read_word(state, 0x185);
	pow_i = (buf[0] << 16) | buf[1];
	dprintk("raw pow_i = %d", pow_i);

	tmp_val = pow_i;
	while (tmp_val >>= 1)
		exp++;

	mant = (pow_i * 1000 / (1 << exp));
	dprintk(" mant = %d exp = %d", mant / 1000, exp);

	ix = (u8) ((mant - 1000) / 100);	/* index of the LUT */
	dprintk(" ix = %d", ix);

	pow_i = (lut_1000ln_mant[ix] + 693 * (exp - 20) - 6908);
	pow_i = (pow_i << 8) / 1000;
	dprintk(" pow_i = %d", pow_i);

	return pow_i;
}

static int map_addr_to_serpar_number(struct i2c_msg *msg)
{
	if ((msg->buf[0] <= 15))
		msg->buf[0] -= 1;
	else if (msg->buf[0] == 17)
		msg->buf[0] = 15;
	else if (msg->buf[0] == 16)
		msg->buf[0] = 17;
	else if (msg->buf[0] == 19)
		msg->buf[0] = 16;
	else if (msg->buf[0] >= 21 && msg->buf[0] <= 25)
		msg->buf[0] -= 3;
	else if (msg->buf[0] == 28)
		msg->buf[0] = 23;
1746
	else
1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928
		return -EINVAL;
	return 0;
}

static int w7090p_tuner_write_serpar(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num)
{
	struct dib7000p_state *state = i2c_get_adapdata(i2c_adap);
	u8 n_overflow = 1;
	u16 i = 1000;
	u16 serpar_num = msg[0].buf[0];

	while (n_overflow == 1 && i) {
		n_overflow = (dib7000p_read_word(state, 1984) >> 1) & 0x1;
		i--;
		if (i == 0)
			dprintk("Tuner ITF: write busy (overflow)");
	}
	dib7000p_write_word(state, 1985, (1 << 6) | (serpar_num & 0x3f));
	dib7000p_write_word(state, 1986, (msg[0].buf[1] << 8) | msg[0].buf[2]);

	return num;
}

static int w7090p_tuner_read_serpar(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num)
{
	struct dib7000p_state *state = i2c_get_adapdata(i2c_adap);
	u8 n_overflow = 1, n_empty = 1;
	u16 i = 1000;
	u16 serpar_num = msg[0].buf[0];
	u16 read_word;

	while (n_overflow == 1 && i) {
		n_overflow = (dib7000p_read_word(state, 1984) >> 1) & 0x1;
		i--;
		if (i == 0)
			dprintk("TunerITF: read busy (overflow)");
	}
	dib7000p_write_word(state, 1985, (0 << 6) | (serpar_num & 0x3f));

	i = 1000;
	while (n_empty == 1 && i) {
		n_empty = dib7000p_read_word(state, 1984) & 0x1;
		i--;
		if (i == 0)
			dprintk("TunerITF: read busy (empty)");
	}
	read_word = dib7000p_read_word(state, 1987);
	msg[1].buf[0] = (read_word >> 8) & 0xff;
	msg[1].buf[1] = (read_word) & 0xff;

	return num;
}

static int w7090p_tuner_rw_serpar(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num)
{
	if (map_addr_to_serpar_number(&msg[0]) == 0) {	/* else = Tuner regs to ignore : DIG_CFG, CTRL_RF_LT, PLL_CFG, PWM1_REG, ADCCLK, DIG_CFG_3; SLEEP_EN... */
		if (num == 1) {	/* write */
			return w7090p_tuner_write_serpar(i2c_adap, msg, 1);
		} else {	/* read */
			return w7090p_tuner_read_serpar(i2c_adap, msg, 2);
		}
	}
	return num;
}

int dib7090p_rw_on_apb(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num, u16 apb_address)
{
	struct dib7000p_state *state = i2c_get_adapdata(i2c_adap);
	u16 word;

	if (num == 1) {		/* write */
		dib7000p_write_word(state, apb_address, ((msg[0].buf[1] << 8) | (msg[0].buf[2])));
	} else {
		word = dib7000p_read_word(state, apb_address);
		msg[1].buf[0] = (word >> 8) & 0xff;
		msg[1].buf[1] = (word) & 0xff;
	}

	return num;
}

static int dib7090_tuner_xfer(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num)
{
	struct dib7000p_state *state = i2c_get_adapdata(i2c_adap);

	u16 apb_address = 0, word;
	int i = 0;
	switch (msg[0].buf[0]) {
	case 0x12:
		apb_address = 1920;
		break;
	case 0x14:
		apb_address = 1921;
		break;
	case 0x24:
		apb_address = 1922;
		break;
	case 0x1a:
		apb_address = 1923;
		break;
	case 0x22:
		apb_address = 1924;
		break;
	case 0x33:
		apb_address = 1926;
		break;
	case 0x34:
		apb_address = 1927;
		break;
	case 0x35:
		apb_address = 1928;
		break;
	case 0x36:
		apb_address = 1929;
		break;
	case 0x37:
		apb_address = 1930;
		break;
	case 0x38:
		apb_address = 1931;
		break;
	case 0x39:
		apb_address = 1932;
		break;
	case 0x2a:
		apb_address = 1935;
		break;
	case 0x2b:
		apb_address = 1936;
		break;
	case 0x2c:
		apb_address = 1937;
		break;
	case 0x2d:
		apb_address = 1938;
		break;
	case 0x2e:
		apb_address = 1939;
		break;
	case 0x2f:
		apb_address = 1940;
		break;
	case 0x30:
		apb_address = 1941;
		break;
	case 0x31:
		apb_address = 1942;
		break;
	case 0x32:
		apb_address = 1943;
		break;
	case 0x3e:
		apb_address = 1944;
		break;
	case 0x3f:
		apb_address = 1945;
		break;
	case 0x40:
		apb_address = 1948;
		break;
	case 0x25:
		apb_address = 914;
		break;
	case 0x26:
		apb_address = 915;
		break;
	case 0x27:
		apb_address = 916;
		break;
	case 0x28:
		apb_address = 917;
		break;
	case 0x1d:
		i = ((dib7000p_read_word(state, 72) >> 12) & 0x3);
		word = dib7000p_read_word(state, 384 + i);
		msg[1].buf[0] = (word >> 8) & 0xff;
		msg[1].buf[1] = (word) & 0xff;
		return num;
	case 0x1f:
		if (num == 1) {	/* write */
			word = (u16) ((msg[0].buf[1] << 8) | msg[0].buf[2]);
			word &= 0x3;
1929
			word = (dib7000p_read_word(state, 72) & ~(3 << 12)) | (word << 12);
1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
			dib7000p_write_word(state, 72, word);	/* Set the proper input */
			return num;
		}
	}

	if (apb_address != 0)	/* R/W acces via APB */
		return dib7090p_rw_on_apb(i2c_adap, msg, num, apb_address);
	else			/* R/W access via SERPAR  */
		return w7090p_tuner_rw_serpar(i2c_adap, msg, num);

	return 0;
}

static u32 dib7000p_i2c_func(struct i2c_adapter *adapter)
{
	return I2C_FUNC_I2C;
}

static struct i2c_algorithm dib7090_tuner_xfer_algo = {
	.master_xfer = dib7090_tuner_xfer,
	.functionality = dib7000p_i2c_func,
};

struct i2c_adapter *dib7090_get_i2c_tuner(struct dvb_frontend *fe)
{
	struct dib7000p_state *st = fe->demodulator_priv;
	return &st->dib7090_tuner_adap;
}
EXPORT_SYMBOL(dib7090_get_i2c_tuner);

static int dib7090_host_bus_drive(struct dib7000p_state *state, u8 drive)
{
	u16 reg;

	/* drive host bus 2, 3, 4 */
	reg = dib7000p_read_word(state, 1798) & ~((0x7) | (0x7 << 6) | (0x7 << 12));
	reg |= (drive << 12) | (drive << 6) | drive;
	dib7000p_write_word(state, 1798, reg);

	/* drive host bus 5,6 */
	reg = dib7000p_read_word(state, 1799) & ~((0x7 << 2) | (0x7 << 8));
	reg |= (drive << 8) | (drive << 2);
	dib7000p_write_word(state, 1799, reg);

	/* drive host bus 7, 8, 9 */
	reg = dib7000p_read_word(state, 1800) & ~((0x7) | (0x7 << 6) | (0x7 << 12));
	reg |= (drive << 12) | (drive << 6) | drive;
	dib7000p_write_word(state, 1800, reg);

	/* drive host bus 10, 11 */
	reg = dib7000p_read_word(state, 1801) & ~((0x7 << 2) | (0x7 << 8));
	reg |= (drive << 8) | (drive << 2);
	dib7000p_write_word(state, 1801, reg);

	/* drive host bus 12, 13, 14 */
	reg = dib7000p_read_word(state, 1802) & ~((0x7) | (0x7 << 6) | (0x7 << 12));
	reg |= (drive << 12) | (drive << 6) | drive;
	dib7000p_write_word(state, 1802, reg);

	return 0;
}

static u32 dib7090_calcSyncFreq(u32 P_Kin, u32 P_Kout, u32 insertExtSynchro, u32 syncSize)
{
	u32 quantif = 3;
	u32 nom = (insertExtSynchro * P_Kin + syncSize);
	u32 denom = P_Kout;
	u32 syncFreq = ((nom << quantif) / denom);

	if ((syncFreq & ((1 << quantif) - 1)) != 0)
		syncFreq = (syncFreq >> quantif) + 1;
	else
		syncFreq = (syncFreq >> quantif);

	if (syncFreq != 0)
		syncFreq = syncFreq - 1;

	return syncFreq;
}

static int dib7090_cfg_DibTx(struct dib7000p_state *state, u32 P_Kin, u32 P_Kout, u32 insertExtSynchro, u32 synchroMode, u32 syncWord, u32 syncSize)
{
	u8 index_buf;
	u16 rx_copy_buf[22];

	dprintk("Configure DibStream Tx");
2016
	for (index_buf = 0; index_buf < 22; index_buf++)
2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028
		rx_copy_buf[index_buf] = dib7000p_read_word(state, 1536+index_buf);

	dib7000p_write_word(state, 1615, 1);
	dib7000p_write_word(state, 1603, P_Kin);
	dib7000p_write_word(state, 1605, P_Kout);
	dib7000p_write_word(state, 1606, insertExtSynchro);
	dib7000p_write_word(state, 1608, synchroMode);
	dib7000p_write_word(state, 1609, (syncWord >> 16) & 0xffff);
	dib7000p_write_word(state, 1610, syncWord & 0xffff);
	dib7000p_write_word(state, 1612, syncSize);
	dib7000p_write_word(state, 1615, 0);

2029
	for (index_buf = 0; index_buf < 22; index_buf++)
2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040
		dib7000p_write_word(state, 1536+index_buf, rx_copy_buf[index_buf]);

	return 0;
}

static int dib7090_cfg_DibRx(struct dib7000p_state *state, u32 P_Kin, u32 P_Kout, u32 synchroMode, u32 insertExtSynchro, u32 syncWord, u32 syncSize,
		u32 dataOutRate)
{
	u32 syncFreq;

	dprintk("Configure DibStream Rx");
2041
	if ((P_Kin != 0) && (P_Kout != 0)) {
2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062
		syncFreq = dib7090_calcSyncFreq(P_Kin, P_Kout, insertExtSynchro, syncSize);
		dib7000p_write_word(state, 1542, syncFreq);
	}
	dib7000p_write_word(state, 1554, 1);
	dib7000p_write_word(state, 1536, P_Kin);
	dib7000p_write_word(state, 1537, P_Kout);
	dib7000p_write_word(state, 1539, synchroMode);
	dib7000p_write_word(state, 1540, (syncWord >> 16) & 0xffff);
	dib7000p_write_word(state, 1541, syncWord & 0xffff);
	dib7000p_write_word(state, 1543, syncSize);
	dib7000p_write_word(state, 1544, dataOutRate);
	dib7000p_write_word(state, 1554, 0);

	return 0;
}

static int dib7090_enDivOnHostBus(struct dib7000p_state *state)
{
	u16 reg;

	dprintk("Enable Diversity on host bus");
2063
	reg = (1 << 8) | (1 << 5);
2064 2065 2066 2067 2068 2069 2070 2071 2072 2073
	dib7000p_write_word(state, 1288, reg);

	return dib7090_cfg_DibTx(state, 5, 5, 0, 0, 0, 0);
}

static int dib7090_enAdcOnHostBus(struct dib7000p_state *state)
{
	u16 reg;

	dprintk("Enable ADC on host bus");
2074
	reg = (1 << 7) | (1 << 5);
2075 2076 2077 2078 2079 2080 2081 2082 2083 2084
	dib7000p_write_word(state, 1288, reg);

	return dib7090_cfg_DibTx(state, 20, 5, 10, 0, 0, 0);
}

static int dib7090_enMpegOnHostBus(struct dib7000p_state *state)
{
	u16 reg;

	dprintk("Enable Mpeg on host bus");
2085
	reg = (1 << 9) | (1 << 5);
2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103
	dib7000p_write_word(state, 1288, reg);

	return dib7090_cfg_DibTx(state, 8, 5, 0, 0, 0, 0);
}

static int dib7090_enMpegInput(struct dib7000p_state *state)
{
	dprintk("Enable Mpeg input");
	return dib7090_cfg_DibRx(state, 8, 5, 0, 0, 0, 8, 0);	/*outputRate = 8 */
}

static int dib7090_enMpegMux(struct dib7000p_state *state, u16 pulseWidth, u16 enSerialMode, u16 enSerialClkDiv2)
{
	u16 reg = (1 << 7) | ((pulseWidth & 0x1f) << 2) | ((enSerialMode & 0x1) << 1) | (enSerialClkDiv2 & 0x1);

	dprintk("Enable Mpeg mux");
	dib7000p_write_word(state, 1287, reg);

2104
	reg &= ~(1 << 7);
2105 2106
	dib7000p_write_word(state, 1287, reg);

2107
	reg = (1 << 4);
2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
	dib7000p_write_word(state, 1288, reg);

	return 0;
}

static int dib7090_disableMpegMux(struct dib7000p_state *state)
{
	u16 reg;

	dprintk("Disable Mpeg mux");
2118
	dib7000p_write_word(state, 1288, 0);
2119 2120

	reg = dib7000p_read_word(state, 1287);
2121
	reg &= ~(1 << 7);
2122 2123 2124 2125 2126 2127 2128 2129 2130
	dib7000p_write_word(state, 1287, reg);

	return 0;
}

static int dib7090_set_input_mode(struct dvb_frontend *fe, int mode)
{
	struct dib7000p_state *state = fe->demodulator_priv;

2131 2132
	switch (mode) {
	case INPUT_MODE_DIVERSITY:
2133
			dprintk("Enable diversity INPUT");
2134
			dib7090_cfg_DibRx(state, 5, 5, 0, 0, 0, 0, 0);
2135
			break;
2136
	case INPUT_MODE_MPEG:
2137
			dprintk("Enable Mpeg INPUT");
2138
			dib7090_cfg_DibRx(state, 8, 5, 0, 0, 0, 8, 0); /*outputRate = 8 */
2139
			break;
2140 2141
	case INPUT_MODE_OFF:
	default:
2142
			dprintk("Disable INPUT");
2143
			dib7090_cfg_DibRx(state, 0, 0, 0, 0, 0, 0, 0);
2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193
			break;
	}
	return 0;
}

static int dib7090_set_diversity_in(struct dvb_frontend *fe, int onoff)
{
	switch (onoff) {
	case 0:		/* only use the internal way - not the diversity input */
		dib7090_set_input_mode(fe, INPUT_MODE_MPEG);
		break;
	case 1:		/* both ways */
	case 2:		/* only the diversity input */
		dib7090_set_input_mode(fe, INPUT_MODE_DIVERSITY);
		break;
	}

	return 0;
}

static int dib7090_set_output_mode(struct dvb_frontend *fe, int mode)
{
	struct dib7000p_state *state = fe->demodulator_priv;

	u16 outreg, smo_mode, fifo_threshold;
	u8 prefer_mpeg_mux_use = 1;
	int ret = 0;

	dib7090_host_bus_drive(state, 1);

	fifo_threshold = 1792;
	smo_mode = (dib7000p_read_word(state, 235) & 0x0050) | (1 << 1);
	outreg = dib7000p_read_word(state, 1286) & ~((1 << 10) | (0x7 << 6) | (1 << 1));

	switch (mode) {
	case OUTMODE_HIGH_Z:
		outreg = 0;
		break;

	case OUTMODE_MPEG2_SERIAL:
		if (prefer_mpeg_mux_use) {
			dprintk("Sip 7090P setting output mode TS_SERIAL using Mpeg Mux");
			dib7090_enMpegOnHostBus(state);
			dib7090_enMpegInput(state);
			if (state->cfg.enMpegOutput == 1)
				dib7090_enMpegMux(state, 3, 1, 1);

		} else {	/* Use Smooth block */
			dprintk("Sip 7090P setting output mode TS_SERIAL using Smooth bloc");
			dib7090_disableMpegMux(state);
2194
			dib7000p_write_word(state, 1288, (1 << 6));
2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208
			outreg |= (2 << 6) | (0 << 1);
		}
		break;

	case OUTMODE_MPEG2_PAR_GATED_CLK:
		if (prefer_mpeg_mux_use) {
			dprintk("Sip 7090P setting output mode TS_PARALLEL_GATED using Mpeg Mux");
			dib7090_enMpegOnHostBus(state);
			dib7090_enMpegInput(state);
			if (state->cfg.enMpegOutput == 1)
				dib7090_enMpegMux(state, 2, 0, 0);
		} else {	/* Use Smooth block */
			dprintk("Sip 7090P setting output mode TS_PARALLEL_GATED using Smooth block");
			dib7090_disableMpegMux(state);
2209
			dib7000p_write_word(state, 1288, (1 << 6));
2210 2211 2212 2213 2214 2215 2216
			outreg |= (0 << 6);
		}
		break;

	case OUTMODE_MPEG2_PAR_CONT_CLK:	/* Using Smooth block only */
		dprintk("Sip 7090P setting output mode TS_PARALLEL_CONT using Smooth block");
		dib7090_disableMpegMux(state);
2217
		dib7000p_write_word(state, 1288, (1 << 6));
2218 2219 2220 2221 2222 2223
		outreg |= (1 << 6);
		break;

	case OUTMODE_MPEG2_FIFO:	/* Using Smooth block because not supported by new Mpeg Mux bloc */
		dprintk("Sip 7090P setting output mode TS_FIFO using Smooth block");
		dib7090_disableMpegMux(state);
2224
		dib7000p_write_word(state, 1288, (1 << 6));
2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260
		outreg |= (5 << 6);
		smo_mode |= (3 << 1);
		fifo_threshold = 512;
		break;

	case OUTMODE_DIVERSITY:
		dprintk("Sip 7090P setting output mode MODE_DIVERSITY");
		dib7090_disableMpegMux(state);
		dib7090_enDivOnHostBus(state);
		break;

	case OUTMODE_ANALOG_ADC:
		dprintk("Sip 7090P setting output mode MODE_ANALOG_ADC");
		dib7090_enAdcOnHostBus(state);
		break;
	}

	if (state->cfg.output_mpeg2_in_188_bytes)
		smo_mode |= (1 << 5);

	ret |= dib7000p_write_word(state, 235, smo_mode);
	ret |= dib7000p_write_word(state, 236, fifo_threshold);	/* synchronous fread */
	ret |= dib7000p_write_word(state, 1286, outreg | (1 << 10));	/* allways set Dout active = 1 !!! */

	return ret;
}

int dib7090_tuner_sleep(struct dvb_frontend *fe, int onoff)
{
	struct dib7000p_state *state = fe->demodulator_priv;
	u16 en_cur_state;

	dprintk("sleep dib7090: %d", onoff);

	en_cur_state = dib7000p_read_word(state, 1922);

2261
	if (en_cur_state > 0xff)
2262 2263 2264
		state->tuner_enable = en_cur_state;

	if (onoff)
2265
		en_cur_state &= 0x00ff;
2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292
	else {
		if (state->tuner_enable != 0)
			en_cur_state = state->tuner_enable;
	}

	dib7000p_write_word(state, 1922, en_cur_state);

	return 0;
}
EXPORT_SYMBOL(dib7090_tuner_sleep);

int dib7090_agc_restart(struct dvb_frontend *fe, u8 restart)
{
	dprintk("AGC restart callback: %d", restart);
	return 0;
}
EXPORT_SYMBOL(dib7090_agc_restart);

int dib7090_get_adc_power(struct dvb_frontend *fe)
{
	return dib7000p_get_adc_power(fe);
}
EXPORT_SYMBOL(dib7090_get_adc_power);

int dib7090_slave_reset(struct dvb_frontend *fe)
{
	struct dib7000p_state *state = fe->demodulator_priv;
2293
	u16 reg;
2294

2295 2296
	reg = dib7000p_read_word(state, 1794);
	dib7000p_write_word(state, 1794, reg | (4 << 12));
2297

2298 2299
	dib7000p_write_word(state, 1032, 0xffff);
	return 0;
2300 2301 2302
}
EXPORT_SYMBOL(dib7090_slave_reset);

2303
static struct dvb_frontend_ops dib7000p_ops;
2304
struct dvb_frontend *dib7000p_attach(struct i2c_adapter *i2c_adap, u8 i2c_addr, struct dib7000p_config *cfg)
2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317
{
	struct dvb_frontend *demod;
	struct dib7000p_state *st;
	st = kzalloc(sizeof(struct dib7000p_state), GFP_KERNEL);
	if (st == NULL)
		return NULL;

	memcpy(&st->cfg, cfg, sizeof(struct dib7000p_config));
	st->i2c_adap = i2c_adap;
	st->i2c_addr = i2c_addr;
	st->gpio_val = cfg->gpio_val;
	st->gpio_dir = cfg->gpio_dir;

2318 2319 2320
	/* Ensure the output mode remains at the previous default if it's
	 * not specifically set by the caller.
	 */
2321
	if ((st->cfg.output_mode != OUTMODE_MPEG2_SERIAL) && (st->cfg.output_mode != OUTMODE_MPEG2_PAR_GATED_CLK))
2322 2323
		st->cfg.output_mode = OUTMODE_MPEG2_FIFO;

2324
	demod = &st->demod;
2325 2326 2327
	demod->demodulator_priv = st;
	memcpy(&st->demod.ops, &dib7000p_ops, sizeof(struct dvb_frontend_ops));

2328
	dib7000p_write_word(st, 1287, 0x0003);	/* sram lead in, rdy */
2329

2330 2331 2332
	if (dib7000p_identify(st) != 0)
		goto error;

2333 2334
	st->version = dib7000p_read_word(st, 897);

2335
	/* FIXME: make sure the dev.parent field is initialized, or else
2336 2337
		request_firmware() will hit an OOPS (this should be moved somewhere
		more common) */
2338

2339 2340
	dibx000_init_i2c_master(&st->i2c_master, DIB7000P, st->i2c_adap, st->i2c_addr);

2341 2342 2343 2344 2345 2346 2347 2348
	/* init 7090 tuner adapter */
	strncpy(st->dib7090_tuner_adap.name, "DiB7090 tuner interface", sizeof(st->dib7090_tuner_adap.name));
	st->dib7090_tuner_adap.algo = &dib7090_tuner_xfer_algo;
	st->dib7090_tuner_adap.algo_data = NULL;
	st->dib7090_tuner_adap.dev.parent = st->i2c_adap->dev.parent;
	i2c_set_adapdata(&st->dib7090_tuner_adap, st);
	i2c_add_adapter(&st->dib7090_tuner_adap);

2349 2350
	dib7000p_demod_reset(st);

2351 2352 2353 2354 2355
	if (st->version == SOC7090) {
		dib7090_set_output_mode(demod, st->cfg.output_mode);
		dib7090_set_diversity_in(demod, 0);
	}

2356 2357
	return demod;

2358
error:
2359 2360 2361 2362 2363 2364 2365
	kfree(st);
	return NULL;
}
EXPORT_SYMBOL(dib7000p_attach);

static struct dvb_frontend_ops dib7000p_ops = {
	.info = {
2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388
		 .name = "DiBcom 7000PC",
		 .type = FE_OFDM,
		 .frequency_min = 44250000,
		 .frequency_max = 867250000,
		 .frequency_stepsize = 62500,
		 .caps = FE_CAN_INVERSION_AUTO |
		 FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
		 FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
		 FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
		 FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO | FE_CAN_RECOVER | FE_CAN_HIERARCHY_AUTO,
		 },

	.release = dib7000p_release,

	.init = dib7000p_wakeup,
	.sleep = dib7000p_sleep,

	.set_frontend = dib7000p_set_frontend,
	.get_tune_settings = dib7000p_fe_get_tune_settings,
	.get_frontend = dib7000p_get_frontend,

	.read_status = dib7000p_read_status,
	.read_ber = dib7000p_read_ber,
2389
	.read_signal_strength = dib7000p_read_signal_strength,
2390 2391
	.read_snr = dib7000p_read_snr,
	.read_ucblocks = dib7000p_read_unc_blocks,
2392 2393
};

2394
MODULE_AUTHOR("Olivier Grenie <ogrenie@dibcom.fr>");
2395 2396 2397
MODULE_AUTHOR("Patrick Boettcher <pboettcher@dibcom.fr>");
MODULE_DESCRIPTION("Driver for the DiBcom 7000PC COFDM demodulator");
MODULE_LICENSE("GPL");