dib7000p.c 64.7 KB
Newer Older
1 2 3
/*
 * Linux-DVB Driver for DiBcom's second generation DiB7000P (PC).
 *
4
 * Copyright (C) 2005-7 DiBcom (http://www.dibcom.fr/)
5 6 7 8 9 10
 *
 * This program is free software; you can redistribute it and/or
 *	modify it under the terms of the GNU General Public License as
 *	published by the Free Software Foundation, version 2.
 */
#include <linux/kernel.h>
11
#include <linux/slab.h>
12 13
#include <linux/i2c.h>

14
#include "dvb_math.h"
15 16 17 18 19 20 21 22
#include "dvb_frontend.h"

#include "dib7000p.h"

static int debug;
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "turn on debugging (default: 0)");

23 24
static int buggy_sfn_workaround;
module_param(buggy_sfn_workaround, int, 0644);
25
MODULE_PARM_DESC(buggy_sfn_workaround, "Enable work-around for buggy SFNs (default: 0)");
26

27
#define dprintk(args...) do { if (debug) { printk(KERN_DEBUG "DiB7000P: "); printk(args); printk("\n"); } } while (0)
28

29 30 31 32 33
struct i2c_device {
	struct i2c_adapter *i2c_adap;
	u8 i2c_addr;
};

34 35
struct dib7000p_state {
	struct dvb_frontend demod;
36
	struct dib7000p_config cfg;
37 38

	u8 i2c_addr;
39
	struct i2c_adapter *i2c_adap;
40 41 42 43 44

	struct dibx000_i2c_master i2c_master;

	u16 wbd_ref;

45
	u8 current_band;
46
	u32 current_bandwidth;
47 48 49
	struct dibx000_agc_config *current_agc;
	u32 timf;

50 51
	u8 div_force_off:1;
	u8 div_state:1;
52
	u16 div_sync_wait;
53 54 55

	u8 agc_state;

56 57
	u16 gpio_dir;
	u16 gpio_val;
58

59 60 61 62 63 64 65
	u8 sfn_workaround_active:1;

#define SOC7090 0x7090
	u16 version;

	u16 tuner_enable;
	struct i2c_adapter dib7090_tuner_adap;
66 67 68 69
};

enum dib7000p_power_mode {
	DIB7000P_POWER_ALL = 0,
70
	DIB7000P_POWER_ANALOG_ADC,
71 72 73
	DIB7000P_POWER_INTERFACE_ONLY,
};

74 75 76
static int dib7090_set_output_mode(struct dvb_frontend *fe, int mode);
static int dib7090_set_diversity_in(struct dvb_frontend *fe, int onoff);

77 78 79 80 81
static u16 dib7000p_read_word(struct dib7000p_state *state, u16 reg)
{
	u8 wb[2] = { reg >> 8, reg & 0xff };
	u8 rb[2];
	struct i2c_msg msg[2] = {
82 83
		{.addr = state->i2c_addr >> 1,.flags = 0,.buf = wb,.len = 2},
		{.addr = state->i2c_addr >> 1,.flags = I2C_M_RD,.buf = rb,.len = 2},
84 85 86
	};

	if (i2c_transfer(state->i2c_adap, msg, 2) != 2)
87
		dprintk("i2c read error on %d", reg);
88 89 90 91 92 93 94 95 96 97 98

	return (rb[0] << 8) | rb[1];
}

static int dib7000p_write_word(struct dib7000p_state *state, u16 reg, u16 val)
{
	u8 b[4] = {
		(reg >> 8) & 0xff, reg & 0xff,
		(val >> 8) & 0xff, val & 0xff,
	};
	struct i2c_msg msg = {
99
		.addr = state->i2c_addr >> 1,.flags = 0,.buf = b,.len = 4
100 101 102
	};
	return i2c_transfer(state->i2c_adap, &msg, 1) != 1 ? -EREMOTEIO : 0;
}
103 104

static void dib7000p_write_tab(struct dib7000p_state *state, u16 * buf)
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
{
	u16 l = 0, r, *n;
	n = buf;
	l = *n++;
	while (l) {
		r = *n++;

		do {
			dib7000p_write_word(state, r, *n++);
			r++;
		} while (--l);
		l = *n++;
	}
}

120 121
static int dib7000p_set_output_mode(struct dib7000p_state *state, int mode)
{
122
	int ret = 0;
123 124 125 126
	u16 outreg, fifo_threshold, smo_mode;

	outreg = 0;
	fifo_threshold = 1792;
127
	smo_mode = (dib7000p_read_word(state, 235) & 0x0050) | (1 << 1);
128

129
	dprintk("setting output mode for demod %p to %d", &state->demod, mode);
130 131

	switch (mode) {
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
	case OUTMODE_MPEG2_PAR_GATED_CLK:	// STBs with parallel gated clock
		outreg = (1 << 10);	/* 0x0400 */
		break;
	case OUTMODE_MPEG2_PAR_CONT_CLK:	// STBs with parallel continues clock
		outreg = (1 << 10) | (1 << 6);	/* 0x0440 */
		break;
	case OUTMODE_MPEG2_SERIAL:	// STBs with serial input
		outreg = (1 << 10) | (2 << 6) | (0 << 1);	/* 0x0480 */
		break;
	case OUTMODE_DIVERSITY:
		if (state->cfg.hostbus_diversity)
			outreg = (1 << 10) | (4 << 6);	/* 0x0500 */
		else
			outreg = (1 << 11);
		break;
	case OUTMODE_MPEG2_FIFO:	// e.g. USB feeding
		smo_mode |= (3 << 1);
		fifo_threshold = 512;
		outreg = (1 << 10) | (5 << 6);
		break;
	case OUTMODE_ANALOG_ADC:
		outreg = (1 << 10) | (3 << 6);
		break;
	case OUTMODE_HIGH_Z:	// disable
		outreg = 0;
		break;
	default:
		dprintk("Unhandled output_mode passed to be set for demod %p", &state->demod);
		break;
161 162 163
	}

	if (state->cfg.output_mpeg2_in_188_bytes)
164
		smo_mode |= (1 << 5);
165

166 167 168 169
	ret |= dib7000p_write_word(state, 235, smo_mode);
	ret |= dib7000p_write_word(state, 236, fifo_threshold);	/* synchronous fread */
	if (state->version != SOC7090)
		ret |= dib7000p_write_word(state, 1286, outreg);	/* P_Div_active */
170 171 172 173

	return ret;
}

174 175 176 177 178
static int dib7000p_set_diversity_in(struct dvb_frontend *demod, int onoff)
{
	struct dib7000p_state *state = demod->demodulator_priv;

	if (state->div_force_off) {
179
		dprintk("diversity combination deactivated - forced by COFDM parameters");
180
		onoff = 0;
181 182 183 184
		dib7000p_write_word(state, 207, 0);
	} else
		dib7000p_write_word(state, 207, (state->div_sync_wait << 4) | (1 << 2) | (2 << 0));

185
	state->div_state = (u8) onoff;
186 187 188 189 190 191 192 193 194 195 196 197 198

	if (onoff) {
		dib7000p_write_word(state, 204, 6);
		dib7000p_write_word(state, 205, 16);
		/* P_dvsy_sync_mode = 0, P_dvsy_sync_enable=1, P_dvcb_comb_mode=2 */
	} else {
		dib7000p_write_word(state, 204, 1);
		dib7000p_write_word(state, 205, 0);
	}

	return 0;
}

199 200 201
static int dib7000p_set_power_mode(struct dib7000p_state *state, enum dib7000p_power_mode mode)
{
	/* by default everything is powered off */
202
	u16 reg_774 = 0x3fff, reg_775 = 0xffff, reg_776 = 0x0007, reg_899 = 0x0003, reg_1280 = (0xfe00) | (dib7000p_read_word(state, 1280) & 0x01ff);
203 204 205 206

	/* now, depending on the requested mode, we power on */
	switch (mode) {
		/* power up everything in the demod */
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
	case DIB7000P_POWER_ALL:
		reg_774 = 0x0000;
		reg_775 = 0x0000;
		reg_776 = 0x0;
		reg_899 = 0x0;
		if (state->version == SOC7090)
			reg_1280 &= 0x001f;
		else
			reg_1280 &= 0x01ff;
		break;

	case DIB7000P_POWER_ANALOG_ADC:
		/* dem, cfg, iqc, sad, agc */
		reg_774 &= ~((1 << 15) | (1 << 14) | (1 << 11) | (1 << 10) | (1 << 9));
		/* nud */
		reg_776 &= ~((1 << 0));
		/* Dout */
		if (state->version != SOC7090)
225
			reg_1280 &= ~((1 << 11));
226 227
		reg_1280 &= ~(1 << 6);
		/* fall through wanted to enable the interfaces */
228

229
		/* just leave power on the control-interfaces: GPIO and (I2C or SDIO) */
230 231 232 233
	case DIB7000P_POWER_INTERFACE_ONLY:	/* TODO power up either SDIO or I2C */
		if (state->version == SOC7090)
			reg_1280 &= ~((1 << 7) | (1 << 5));
		else
234
			reg_1280 &= ~((1 << 14) | (1 << 13) | (1 << 12) | (1 << 10));
235
		break;
236

237 238 239
/* TODO following stuff is just converted from the dib7000-driver - check when is used what */
	}

240 241 242 243
	dib7000p_write_word(state, 774, reg_774);
	dib7000p_write_word(state, 775, reg_775);
	dib7000p_write_word(state, 776, reg_776);
	dib7000p_write_word(state, 899, reg_899);
244 245 246 247 248 249 250
	dib7000p_write_word(state, 1280, reg_1280);

	return 0;
}

static void dib7000p_set_adc_state(struct dib7000p_state *state, enum dibx000_adc_states no)
{
251 252
	u16 reg_908 = dib7000p_read_word(state, 908), reg_909 = dib7000p_read_word(state, 909);
	u16 reg;
253 254

	switch (no) {
255 256 257 258 259 260 261 262 263 264 265 266 267
	case DIBX000_SLOW_ADC_ON:
		if (state->version == SOC7090) {
			reg = dib7000p_read_word(state, 1925);

			dib7000p_write_word(state, 1925, reg | (1 << 4) | (1 << 2));	/* en_slowAdc = 1 & reset_sladc = 1 */

			reg = dib7000p_read_word(state, 1925);	/* read acces to make it works... strange ... */
			msleep(200);
			dib7000p_write_word(state, 1925, reg & ~(1 << 4));	/* en_slowAdc = 1 & reset_sladc = 0 */

			reg = dib7000p_read_word(state, 72) & ~((0x3 << 14) | (0x3 << 12));
			dib7000p_write_word(state, 72, reg | (1 << 14) | (3 << 12) | 524);	/* ref = Vin1 => Vbg ; sel = Vin0 or Vin3 ; (Vin2 = Vcm) */
		} else {
268 269 270
			reg_909 |= (1 << 1) | (1 << 0);
			dib7000p_write_word(state, 909, reg_909);
			reg_909 &= ~(1 << 1);
271 272
		}
		break;
273

274 275 276 277 278 279 280
	case DIBX000_SLOW_ADC_OFF:
		if (state->version == SOC7090) {
			reg = dib7000p_read_word(state, 1925);
			dib7000p_write_word(state, 1925, (reg & ~(1 << 2)) | (1 << 4));	/* reset_sladc = 1 en_slowAdc = 0 */
		} else
			reg_909 |= (1 << 1) | (1 << 0);
		break;
281

282 283 284 285
	case DIBX000_ADC_ON:
		reg_908 &= 0x0fff;
		reg_909 &= 0x0003;
		break;
286

287 288 289 290
	case DIBX000_ADC_OFF:	// leave the VBG voltage on
		reg_908 |= (1 << 14) | (1 << 13) | (1 << 12);
		reg_909 |= (1 << 5) | (1 << 4) | (1 << 3) | (1 << 2);
		break;
291

292 293 294
	case DIBX000_VBG_ENABLE:
		reg_908 &= ~(1 << 15);
		break;
295

296 297 298
	case DIBX000_VBG_DISABLE:
		reg_908 |= (1 << 15);
		break;
299

300 301
	default:
		break;
302 303
	}

304
//	dprintk( "908: %x, 909: %x\n", reg_908, reg_909);
305

306
	reg_909 |= (state->cfg.disable_sample_and_hold & 1) << 4;
307 308
	reg_908 |= (state->cfg.enable_current_mirror & 1) << 7;

309 310 311 312
	dib7000p_write_word(state, 908, reg_908);
	dib7000p_write_word(state, 909, reg_909);
}

313
static int dib7000p_set_bandwidth(struct dib7000p_state *state, u32 bw)
314 315 316 317
{
	u32 timf;

	// store the current bandwidth for later use
318
	state->current_bandwidth = bw;
319 320

	if (state->timf == 0) {
321
		dprintk("using default timf");
322 323
		timf = state->cfg.bw->timf;
	} else {
324
		dprintk("using updated timf");
325 326 327
		timf = state->timf;
	}

328
	timf = timf * (bw / 50) / 160;
329

330
	dib7000p_write_word(state, 23, (u16) ((timf >> 16) & 0xffff));
331
	dib7000p_write_word(state, 24, (u16) ((timf) & 0xffff));
332 333 334 335 336 337 338

	return 0;
}

static int dib7000p_sad_calib(struct dib7000p_state *state)
{
/* internal */
339
//	dib7000p_write_word(state, 72, (3 << 14) | (1 << 12) | (524 << 0)); // sampling clock of the SAD is writting in set_bandwidth
340
	dib7000p_write_word(state, 73, (0 << 1) | (0 << 0));
341 342 343 344 345

	if (state->version == SOC7090)
		dib7000p_write_word(state, 74, 2048);	// P_sad_calib_value = (0.9/1.8)*4096
	else
		dib7000p_write_word(state, 74, 776);	// P_sad_calib_value = 0.625*3.3 / 4096
346 347 348 349 350 351 352 353 354 355

	/* do the calibration */
	dib7000p_write_word(state, 73, (1 << 0));
	dib7000p_write_word(state, 73, (0 << 0));

	msleep(1);

	return 0;
}

356 357 358 359 360 361 362 363 364
int dib7000p_set_wbd_ref(struct dvb_frontend *demod, u16 value)
{
	struct dib7000p_state *state = demod->demodulator_priv;
	if (value > 4095)
		value = 4095;
	state->wbd_ref = value;
	return dib7000p_write_word(state, 105, (dib7000p_read_word(state, 105) & 0xf000) | value);
}
EXPORT_SYMBOL(dib7000p_set_wbd_ref);
365

366 367 368
static void dib7000p_reset_pll(struct dib7000p_state *state)
{
	struct dibx000_bandwidth_config *bw = &state->cfg.bw[0];
369 370
	u16 clk_cfg0;

371 372
	if (state->version == SOC7090) {
		dib7000p_write_word(state, 1856, (!bw->pll_reset << 13) | (bw->pll_range << 12) | (bw->pll_ratio << 6) | (bw->pll_prediv));
373

374 375 376 377 378 379 380 381
		while (((dib7000p_read_word(state, 1856) >> 15) & 0x1) != 1) {
		}

		dib7000p_write_word(state, 1857, dib7000p_read_word(state, 1857) | (!bw->pll_bypass << 15));
	} else {
		/* force PLL bypass */
		clk_cfg0 = (1 << 15) | ((bw->pll_ratio & 0x3f) << 9) |
			(bw->modulo << 7) | (bw->ADClkSrc << 6) | (bw->IO_CLK_en_core << 5) | (bw->bypclk_div << 2) | (bw->enable_refdiv << 1) | (0 << 0);
382

383 384 385 386 387 388 389
		dib7000p_write_word(state, 900, clk_cfg0);

		/* P_pll_cfg */
		dib7000p_write_word(state, 903, (bw->pll_prediv << 5) | (((bw->pll_ratio >> 6) & 0x3) << 3) | (bw->pll_range << 1) | bw->pll_reset);
		clk_cfg0 = (bw->pll_bypass << 15) | (clk_cfg0 & 0x7fff);
		dib7000p_write_word(state, 900, clk_cfg0);
	}
390

391 392 393 394
	dib7000p_write_word(state, 18, (u16) (((bw->internal * 1000) >> 16) & 0xffff));
	dib7000p_write_word(state, 19, (u16) ((bw->internal * 1000) & 0xffff));
	dib7000p_write_word(state, 21, (u16) ((bw->ifreq >> 16) & 0xffff));
	dib7000p_write_word(state, 22, (u16) ((bw->ifreq) & 0xffff));
395 396 397 398

	dib7000p_write_word(state, 72, bw->sad_cfg);
}

399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
static u32 dib7000p_get_internal_freq(struct dib7000p_state *state)
{
	u32 internal = (u32) dib7000p_read_word(state, 18) << 16;
	internal |= (u32) dib7000p_read_word(state, 19);
	internal /= 1000;

	return internal;
}

int dib7000p_update_pll(struct dvb_frontend *fe, struct dibx000_bandwidth_config *bw)
{
	struct dib7000p_state *state = fe->demodulator_priv;
	u16 reg_1857, reg_1856 = dib7000p_read_word(state, 1856);
	u8 loopdiv, prediv;
	u32 internal, xtal;

	/* get back old values */
	prediv = reg_1856 & 0x3f;
	loopdiv = (reg_1856 >> 6) & 0x3f;

	if ((bw != NULL) && (bw->pll_prediv != prediv || bw->pll_ratio != loopdiv)) {
		dprintk("Updating pll (prediv: old =  %d new = %d ; loopdiv : old = %d new = %d)", prediv, bw->pll_prediv, loopdiv, bw->pll_ratio);
		reg_1856 &= 0xf000;
		reg_1857 = dib7000p_read_word(state, 1857);
		dib7000p_write_word(state, 1857, reg_1857 & ~(1 << 15));	// desable pll

		dib7000p_write_word(state, 1856, reg_1856 | ((bw->pll_ratio & 0x3f) << 6) | (bw->pll_prediv & 0x3f));

		/* write new system clk into P_sec_len */
		internal = dib7000p_get_internal_freq(state);
		xtal = (internal / loopdiv) * prediv;
		internal = 1000 * (xtal / bw->pll_prediv) * bw->pll_ratio;	/* new internal */
		dib7000p_write_word(state, 18, (u16) ((internal >> 16) & 0xffff));
		dib7000p_write_word(state, 19, (u16) (internal & 0xffff));

		dib7000p_write_word(state, 1857, reg_1857 | (1 << 15));	// enable pll

		while (((dib7000p_read_word(state, 1856) >> 15) & 0x1) != 1) {
			dprintk("Waiting for PLL to lock");
		}

		return 0;
	}
	return -EIO;
}
EXPORT_SYMBOL(dib7000p_update_pll);

446 447 448
static int dib7000p_reset_gpio(struct dib7000p_state *st)
{
	/* reset the GPIOs */
449
	dprintk("gpio dir: %x: val: %x, pwm_pos: %x", st->gpio_dir, st->gpio_val, st->cfg.gpio_pwm_pos);
450 451 452 453 454 455 456 457 458 459 460 461

	dib7000p_write_word(st, 1029, st->gpio_dir);
	dib7000p_write_word(st, 1030, st->gpio_val);

	/* TODO 1031 is P_gpio_od */

	dib7000p_write_word(st, 1032, st->cfg.gpio_pwm_pos);

	dib7000p_write_word(st, 1037, st->cfg.pwm_freq_div);
	return 0;
}

462 463 464
static int dib7000p_cfg_gpio(struct dib7000p_state *st, u8 num, u8 dir, u8 val)
{
	st->gpio_dir = dib7000p_read_word(st, 1029);
465 466
	st->gpio_dir &= ~(1 << num);	/* reset the direction bit */
	st->gpio_dir |= (dir & 0x1) << num;	/* set the new direction */
467 468 469
	dib7000p_write_word(st, 1029, st->gpio_dir);

	st->gpio_val = dib7000p_read_word(st, 1030);
470 471
	st->gpio_val &= ~(1 << num);	/* reset the direction bit */
	st->gpio_val |= (val & 0x01) << num;	/* set the new value */
472 473 474 475 476 477 478 479 480 481 482
	dib7000p_write_word(st, 1030, st->gpio_val);

	return 0;
}

int dib7000p_set_gpio(struct dvb_frontend *demod, u8 num, u8 dir, u8 val)
{
	struct dib7000p_state *state = demod->demodulator_priv;
	return dib7000p_cfg_gpio(state, num, dir, val);
}
EXPORT_SYMBOL(dib7000p_set_gpio);
483

484
static u16 dib7000p_defaults[] = {
485 486
	// auto search configuration
	3, 2,
487 488 489
	0x0004,
	0x1000,
	0x0814,			/* Equal Lock */
490 491

	12, 6,
492 493 494 495 496 497 498 499 500 501 502 503
	0x001b,
	0x7740,
	0x005b,
	0x8d80,
	0x01c9,
	0xc380,
	0x0000,
	0x0080,
	0x0000,
	0x0090,
	0x0001,
	0xd4c0,
504 505

	1, 26,
506
	0x6680,			// P_timf_alpha=6, P_corm_alpha=6, P_corm_thres=128 default: 6,4,26
507 508 509

	/* set ADC level to -16 */
	11, 79,
510 511 512 513 514 515 516 517 518 519 520
	(1 << 13) - 825 - 117,
	(1 << 13) - 837 - 117,
	(1 << 13) - 811 - 117,
	(1 << 13) - 766 - 117,
	(1 << 13) - 737 - 117,
	(1 << 13) - 693 - 117,
	(1 << 13) - 648 - 117,
	(1 << 13) - 619 - 117,
	(1 << 13) - 575 - 117,
	(1 << 13) - 531 - 117,
	(1 << 13) - 501 - 117,
521 522

	1, 142,
523
	0x0410,			// P_palf_filter_on=1, P_palf_filter_freeze=0, P_palf_alpha_regul=16
524 525 526

	/* disable power smoothing */
	8, 145,
527 528 529 530 531 532 533 534
	0,
	0,
	0,
	0,
	0,
	0,
	0,
	0,
535 536

	1, 154,
537
	1 << 13,		// P_fft_freq_dir=1, P_fft_nb_to_cut=0
538 539

	1, 168,
540
	0x0ccd,			// P_pha3_thres, default 0x3000
541 542 543 544 545

//	1, 169,
//		0x0010, // P_cti_use_cpe=0, P_cti_use_prog=0, P_cti_win_len=16, default: 0x0010

	1, 183,
546 547 548 549
	0x200f,			// P_cspu_regul=512, P_cspu_win_cut=15, default: 0x2005

	1, 212,
		0x169,  // P_vit_ksi_dwn = 5 P_vit_ksi_up = 5       0x1e1, // P_vit_ksi_dwn = 4 P_vit_ksi_up = 7
550 551

	5, 187,
552 553 554 555 556
	0x023d,			// P_adp_regul_cnt=573, default: 410
	0x00a4,			// P_adp_noise_cnt=
	0x00a4,			// P_adp_regul_ext
	0x7ff0,			// P_adp_noise_ext
	0x3ccc,			// P_adp_fil
557 558

	1, 198,
559
	0x800,			// P_equal_thres_wgn
560 561

	1, 222,
562
	0x0010,			// P_fec_ber_rs_len=2
563 564

	1, 235,
565
	0x0062,			// P_smo_mode, P_smo_rs_discard, P_smo_fifo_flush, P_smo_pid_parse, P_smo_error_discard
566 567

	2, 901,
568 569
	0x0006,			// P_clk_cfg1
	(3 << 10) | (1 << 6),	// P_divclksel=3 P_divbitsel=1
570 571

	1, 905,
572
	0x2c8e,			// Tuner IO bank: max drive (14mA) + divout pads max drive
573 574 575 576

	0,
};

577 578 579 580
static int dib7000p_demod_reset(struct dib7000p_state *state)
{
	dib7000p_set_power_mode(state, DIB7000P_POWER_ALL);

581 582 583
	if (state->version == SOC7090)
		dibx000_reset_i2c_master(&state->i2c_master);

584 585 586
	dib7000p_set_adc_state(state, DIBX000_VBG_ENABLE);

	/* restart all parts */
587 588 589 590 591 592 593 594 595 596
	dib7000p_write_word(state, 770, 0xffff);
	dib7000p_write_word(state, 771, 0xffff);
	dib7000p_write_word(state, 772, 0x001f);
	dib7000p_write_word(state, 898, 0x0003);
	dib7000p_write_word(state, 1280, 0x001f - ((1 << 4) | (1 << 3)));

	dib7000p_write_word(state, 770, 0);
	dib7000p_write_word(state, 771, 0);
	dib7000p_write_word(state, 772, 0);
	dib7000p_write_word(state, 898, 0);
597 598 599 600 601 602
	dib7000p_write_word(state, 1280, 0);

	/* default */
	dib7000p_reset_pll(state);

	if (dib7000p_reset_gpio(state) != 0)
603
		dprintk("GPIO reset was not successful.");
604

605 606
	if (state->version == SOC7090) {
		dib7000p_write_word(state, 899, 0);
607

608 609 610 611 612 613 614 615 616
		/* impulse noise */
		dib7000p_write_word(state, 42, (1<<5) | 3); /* P_iqc_thsat_ipc = 1 ; P_iqc_win2 = 3 */
		dib7000p_write_word(state, 43, 0x2d4); /*-300 fag P_iqc_dect_min = -280 */
		dib7000p_write_word(state, 44, 300); /* 300 fag P_iqc_dect_min = +280 */
		//dib7000p_write_word(state, 273, (1<<6) | 10); /* P_vit_inoise_sel = 1, P_vit_inoise_gain = 10*/
		dib7000p_write_word(state, 273, (1<<6) | 30); //26/* P_vit_inoise_sel = 1, P_vit_inoise_gain = 26*/// FAG
	}
	if (dib7000p_set_output_mode(state, OUTMODE_HIGH_Z) != 0)
		dprintk("OUTPUT_MODE could not be reset.");
617 618 619 620 621

	dib7000p_set_adc_state(state, DIBX000_SLOW_ADC_ON);
	dib7000p_sad_calib(state);
	dib7000p_set_adc_state(state, DIBX000_SLOW_ADC_OFF);

622 623 624 625 626 627 628 629 630 631 632 633 634
	/* unforce divstr regardless whether i2c enumeration was done or not */
	dib7000p_write_word(state, 1285, dib7000p_read_word(state, 1285) & ~(1 << 1));

	dib7000p_set_bandwidth(state, 8000);

	if(state->version == SOC7090) {
		dib7000p_write_word(state, 36, 0x5755);/* P_iqc_impnc_on =1 & P_iqc_corr_inh = 1 for impulsive noise */
	} else { // P_iqc_alpha_pha, P_iqc_alpha_amp_dcc_alpha, ...
		if (state->cfg.tuner_is_baseband)
			dib7000p_write_word(state, 36, 0x0755);
		else
			dib7000p_write_word(state, 36, 0x1f55);
	}
635 636 637

	dib7000p_write_tab(state, dib7000p_defaults);

638 639 640 641 642
	dib7000p_set_power_mode(state, DIB7000P_POWER_INTERFACE_ONLY);

	return 0;
}

643 644 645 646
static void dib7000p_pll_clk_cfg(struct dib7000p_state *state)
{
	u16 tmp = 0;
	tmp = dib7000p_read_word(state, 903);
647
	dib7000p_write_word(state, 903, (tmp | 0x1));	//pwr-up pll
648
	tmp = dib7000p_read_word(state, 900);
649
	dib7000p_write_word(state, 900, (tmp & 0x7fff) | (1 << 6));	//use High freq clock
650 651
}

652 653 654
static void dib7000p_restart_agc(struct dib7000p_state *state)
{
	// P_restart_iqc & P_restart_agc
655
	dib7000p_write_word(state, 770, (1 << 11) | (1 << 9));
656 657 658
	dib7000p_write_word(state, 770, 0x0000);
}

659
static int dib7000p_update_lna(struct dib7000p_state *state)
660 661 662 663
{
	u16 dyn_gain;

	// when there is no LNA to program return immediatly
664
	if (state->cfg.update_lna) {
665
		// read dyn_gain here (because it is demod-dependent and not fe)
666
		dyn_gain = dib7000p_read_word(state, 394);
667
		if (state->cfg.update_lna(&state->demod, dyn_gain)) {	// LNA has changed
668
			dib7000p_restart_agc(state);
669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
			return 1;
		}
	}

	return 0;
}

static int dib7000p_set_agc_config(struct dib7000p_state *state, u8 band)
{
	struct dibx000_agc_config *agc = NULL;
	int i;
	if (state->current_band == band && state->current_agc != NULL)
		return 0;
	state->current_band = band;

	for (i = 0; i < state->cfg.agc_config_count; i++)
		if (state->cfg.agc[i].band_caps & band) {
			agc = &state->cfg.agc[i];
687
			break;
688 689 690
		}

	if (agc == NULL) {
691
		dprintk("no valid AGC configuration found for band 0x%02x", band);
692
		return -EINVAL;
693
	}
694 695 696 697

	state->current_agc = agc;

	/* AGC */
698 699 700
	dib7000p_write_word(state, 75, agc->setup);
	dib7000p_write_word(state, 76, agc->inv_gain);
	dib7000p_write_word(state, 77, agc->time_stabiliz);
701 702 703 704
	dib7000p_write_word(state, 100, (agc->alpha_level << 12) | agc->thlock);

	// Demod AGC loop configuration
	dib7000p_write_word(state, 101, (agc->alpha_mant << 5) | agc->alpha_exp);
705
	dib7000p_write_word(state, 102, (agc->beta_mant << 6) | agc->beta_exp);
706 707

	/* AGC continued */
708
	dprintk("WBD: ref: %d, sel: %d, active: %d, alpha: %d",
709 710 711 712 713 714 715 716 717
		state->wbd_ref != 0 ? state->wbd_ref : agc->wbd_ref, agc->wbd_sel, !agc->perform_agc_softsplit, agc->wbd_sel);

	if (state->wbd_ref != 0)
		dib7000p_write_word(state, 105, (agc->wbd_inv << 12) | state->wbd_ref);
	else
		dib7000p_write_word(state, 105, (agc->wbd_inv << 12) | agc->wbd_ref);

	dib7000p_write_word(state, 106, (agc->wbd_sel << 13) | (agc->wbd_alpha << 9) | (agc->perform_agc_softsplit << 8));

718 719 720 721 722 723
	dib7000p_write_word(state, 107, agc->agc1_max);
	dib7000p_write_word(state, 108, agc->agc1_min);
	dib7000p_write_word(state, 109, agc->agc2_max);
	dib7000p_write_word(state, 110, agc->agc2_min);
	dib7000p_write_word(state, 111, (agc->agc1_pt1 << 8) | agc->agc1_pt2);
	dib7000p_write_word(state, 112, agc->agc1_pt3);
724
	dib7000p_write_word(state, 113, (agc->agc1_slope1 << 8) | agc->agc1_slope2);
725
	dib7000p_write_word(state, 114, (agc->agc2_pt1 << 8) | agc->agc2_pt2);
726 727
	dib7000p_write_word(state, 115, (agc->agc2_slope1 << 8) | agc->agc2_slope2);
	return 0;
728 729
}

730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
static void dib7000p_set_dds(struct dib7000p_state *state, s32 offset_khz)
{
	u32 internal = dib7000p_get_internal_freq(state);
	s32 unit_khz_dds_val = 67108864 / (internal);	/* 2**26 / Fsampling is the unit 1KHz offset */
	u32 abs_offset_khz = ABS(offset_khz);
	u32 dds = state->cfg.bw->ifreq & 0x1ffffff;
	u8 invert = !!(state->cfg.bw->ifreq & (1 << 25));

	dprintk("setting a frequency offset of %dkHz internal freq = %d invert = %d", offset_khz, internal, invert);

	if (offset_khz < 0)
		unit_khz_dds_val *= -1;

	/* IF tuner */
	if (invert)
		dds -= (abs_offset_khz * unit_khz_dds_val);	/* /100 because of /100 on the unit_khz_dds_val line calc for better accuracy */
	else
		dds += (abs_offset_khz * unit_khz_dds_val);

	if (abs_offset_khz <= (internal / 2)) {	/* Max dds offset is the half of the demod freq */
		dib7000p_write_word(state, 21, (u16) (((dds >> 16) & 0x1ff) | (0 << 10) | (invert << 9)));
		dib7000p_write_word(state, 22, (u16) (dds & 0xffff));
	}
}

755
static int dib7000p_agc_startup(struct dvb_frontend *demod, struct dvb_frontend_parameters *ch)
756
{
757 758 759 760
	struct dib7000p_state *state = demod->demodulator_priv;
	int ret = -1;
	u8 *agc_state = &state->agc_state;
	u8 agc_split;
761 762
	u16 reg;
	u32 upd_demod_gain_period = 0x1000;
763 764

	switch (state->agc_state) {
765 766 767 768 769 770 771 772 773 774 775 776
	case 0:
		// set power-up level: interf+analog+AGC
		dib7000p_set_power_mode(state, DIB7000P_POWER_ALL);
		if (state->version == SOC7090) {
			reg = dib7000p_read_word(state, 0x79b) & 0xff00;
			dib7000p_write_word(state, 0x79a, upd_demod_gain_period & 0xFFFF);	/* lsb */
			dib7000p_write_word(state, 0x79b, reg | (1 << 14) | ((upd_demod_gain_period >> 16) & 0xFF));	// bit 14 = enDemodGain

			/* enable adc i & q */
			reg = dib7000p_read_word(state, 0x780);
			dib7000p_write_word(state, 0x780, (reg | (0x3)) & (~(1 << 7)));
		} else {
777 778
			dib7000p_set_adc_state(state, DIBX000_ADC_ON);
			dib7000p_pll_clk_cfg(state);
779
		}
780

781 782
		if (dib7000p_set_agc_config(state, BAND_OF_FREQUENCY(ch->frequency / 1000)) != 0)
			return -1;
783

784 785 786 787
		dib7000p_set_dds(state, 0);
		ret = 7;
		(*agc_state)++;
		break;
788

789 790 791 792
	case 1:
		// AGC initialization
		if (state->cfg.agc_control)
			state->cfg.agc_control(&state->demod, 1);
793

794 795 796 797 798
		dib7000p_write_word(state, 78, 32768);
		if (!state->current_agc->perform_agc_softsplit) {
			/* we are using the wbd - so slow AGC startup */
			/* force 0 split on WBD and restart AGC */
			dib7000p_write_word(state, 106, (state->current_agc->wbd_sel << 13) | (state->current_agc->wbd_alpha << 9) | (1 << 8));
799
			(*agc_state)++;
800 801 802 803 804 805 806
			ret = 5;
		} else {
			/* default AGC startup */
			(*agc_state) = 4;
			/* wait AGC rough lock time */
			ret = 7;
		}
807

808 809
		dib7000p_restart_agc(state);
		break;
810

811 812 813 814 815 816
	case 2:		/* fast split search path after 5sec */
		dib7000p_write_word(state, 75, state->current_agc->setup | (1 << 4));	/* freeze AGC loop */
		dib7000p_write_word(state, 106, (state->current_agc->wbd_sel << 13) | (2 << 9) | (0 << 8));	/* fast split search 0.25kHz */
		(*agc_state)++;
		ret = 14;
		break;
817

818 819 820
	case 3:		/* split search ended */
		agc_split = (u8) dib7000p_read_word(state, 396);	/* store the split value for the next time */
		dib7000p_write_word(state, 78, dib7000p_read_word(state, 394));	/* set AGC gain start value */
821

822 823
		dib7000p_write_word(state, 75, state->current_agc->setup);	/* std AGC loop */
		dib7000p_write_word(state, 106, (state->current_agc->wbd_sel << 13) | (state->current_agc->wbd_alpha << 9) | agc_split);	/* standard split search */
824

825
		dib7000p_restart_agc(state);
826

827
		dprintk("SPLIT %p: %hd", demod, agc_split);
828

829 830 831
		(*agc_state)++;
		ret = 5;
		break;
832

833 834 835 836 837 838 839 840
	case 4:		/* LNA startup */
		// wait AGC accurate lock time
		ret = 7;

		if (dib7000p_update_lna(state))
			// wait only AGC rough lock time
			ret = 5;
		else		// nothing was done, go to the next state
841
			(*agc_state)++;
842 843 844 845 846 847 848 849 850
		break;

	case 5:
		if (state->cfg.agc_control)
			state->cfg.agc_control(&state->demod, 0);
		(*agc_state)++;
		break;
	default:
		break;
851 852
	}
	return ret;
853 854
}

855
static void dib7000p_update_timf(struct dib7000p_state *state)
856 857
{
	u32 timf = (dib7000p_read_word(state, 427) << 16) | dib7000p_read_word(state, 428);
858
	state->timf = timf * 160 / (state->current_bandwidth / 50);
859 860
	dib7000p_write_word(state, 23, (u16) (timf >> 16));
	dib7000p_write_word(state, 24, (u16) (timf & 0xffff));
861 862 863
	dprintk("updated timf_frequency: %d (default: %d)", state->timf, state->cfg.bw->timf);

}
864

865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
u32 dib7000p_ctrl_timf(struct dvb_frontend *fe, u8 op, u32 timf)
{
	struct dib7000p_state *state = fe->demodulator_priv;
	switch (op) {
	case DEMOD_TIMF_SET:
		state->timf = timf;
		break;
	case DEMOD_TIMF_UPDATE:
		dib7000p_update_timf(state);
		break;
	case DEMOD_TIMF_GET:
		break;
	}
	dib7000p_set_bandwidth(state, state->current_bandwidth);
	return state->timf;
880
}
881
EXPORT_SYMBOL(dib7000p_ctrl_timf);
882

883
static void dib7000p_set_channel(struct dib7000p_state *state, struct dvb_frontend_parameters *ch, u8 seq)
884
{
885 886
	u16 value, est[4];

887
	dib7000p_set_bandwidth(state, BANDWIDTH_TO_KHZ(ch->u.ofdm.bandwidth));
888 889

	/* nfft, guard, qam, alpha */
890 891
	value = 0;
	switch (ch->u.ofdm.transmission_mode) {
892 893 894 895 896 897 898 899 900 901
	case TRANSMISSION_MODE_2K:
		value |= (0 << 7);
		break;
    case TRANSMISSION_MODE_4K:
		value |= (2 << 7);
		break;
	default:
	case TRANSMISSION_MODE_8K:
		value |= (1 << 7);
		break;
902 903
	}
	switch (ch->u.ofdm.guard_interval) {
904 905 906 907 908 909 910 911 912 913 914 915 916
	case GUARD_INTERVAL_1_32:
		value |= (0 << 5);
		break;
	case GUARD_INTERVAL_1_16:
		value |= (1 << 5);
		break;
	case GUARD_INTERVAL_1_4:
		value |= (3 << 5);
		break;
	default:
	case GUARD_INTERVAL_1_8:
		value |= (2 << 5);
		break;
917 918
	}
	switch (ch->u.ofdm.constellation) {
919 920 921 922 923 924 925 926 927 928
	case QPSK:
		value |= (0 << 3);
		break;
	case QAM_16:
		value |= (1 << 3);
		break;
	default:
	case QAM_64:
		value |= (2 << 3);
		break;
929 930
	}
	switch (HIERARCHY_1) {
931 932 933 934 935 936 937 938 939 940
	case HIERARCHY_2:
		value |= 2;
		break;
	case HIERARCHY_4:
		value |= 4;
		break;
	default:
	case HIERARCHY_1:
		value |= 1;
		break;
941 942
	}
	dib7000p_write_word(state, 0, value);
943
	dib7000p_write_word(state, 5, (seq << 4) | 1);	/* do not force tps, search list 0 */
944

945 946 947 948 949 950 951 952 953
	/* P_dintl_native, P_dintlv_inv, P_hrch, P_code_rate, P_select_hp */
	value = 0;
	if (1 != 0)
		value |= (1 << 6);
	if (ch->u.ofdm.hierarchy_information == 1)
		value |= (1 << 4);
	if (1 == 1)
		value |= 1;
	switch ((ch->u.ofdm.hierarchy_information == 0 || 1 == 1) ? ch->u.ofdm.code_rate_HP : ch->u.ofdm.code_rate_LP) {
954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969
	case FEC_2_3:
		value |= (2 << 1);
		break;
	case FEC_3_4:
		value |= (3 << 1);
		break;
	case FEC_5_6:
		value |= (5 << 1);
		break;
	case FEC_7_8:
		value |= (7 << 1);
		break;
	default:
	case FEC_1_2:
		value |= (1 << 1);
		break;
970 971 972 973
	}
	dib7000p_write_word(state, 208, value);

	/* offset loop parameters */
974 975 976 977
	dib7000p_write_word(state, 26, 0x6680);	// timf(6xxx)
	dib7000p_write_word(state, 32, 0x0003);	// pha_off_max(xxx3)
	dib7000p_write_word(state, 29, 0x1273);	// isi
	dib7000p_write_word(state, 33, 0x0005);	// sfreq(xxx5)
978 979

	/* P_dvsy_sync_wait */
980
	switch (ch->u.ofdm.transmission_mode) {
981 982 983 984 985 986 987 988 989 990
	case TRANSMISSION_MODE_8K:
		value = 256;
		break;
	case TRANSMISSION_MODE_4K:
		value = 128;
		break;
	case TRANSMISSION_MODE_2K:
	default:
		value = 64;
		break;
991
	}
992
	switch (ch->u.ofdm.guard_interval) {
993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
	case GUARD_INTERVAL_1_16:
		value *= 2;
		break;
	case GUARD_INTERVAL_1_8:
		value *= 4;
		break;
	case GUARD_INTERVAL_1_4:
		value *= 8;
		break;
	default:
	case GUARD_INTERVAL_1_32:
		value *= 1;
		break;
1006
	}
1007
	if (state->cfg.diversity_delay == 0)
1008
		state->div_sync_wait = (value * 3) / 2 + 48;	// add 50% SFN margin + compensate for one DVSY-fifo
1009
	else
1010
		state->div_sync_wait = (value * 3) / 2 + state->cfg.diversity_delay;	// add 50% SFN margin + compensate for one DVSY-fifo
1011

1012 1013 1014
	/* deactive the possibility of diversity reception if extended interleaver */
	state->div_force_off = !1 && ch->u.ofdm.transmission_mode != TRANSMISSION_MODE_8K;
	dib7000p_set_diversity_in(&state->demod, state->div_state);
1015 1016

	/* channel estimation fine configuration */
1017
	switch (ch->u.ofdm.constellation) {
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
	case QAM_64:
		est[0] = 0x0148;	/* P_adp_regul_cnt 0.04 */
		est[1] = 0xfff0;	/* P_adp_noise_cnt -0.002 */
		est[2] = 0x00a4;	/* P_adp_regul_ext 0.02 */
		est[3] = 0xfff8;	/* P_adp_noise_ext -0.001 */
		break;
	case QAM_16:
		est[0] = 0x023d;	/* P_adp_regul_cnt 0.07 */
		est[1] = 0xffdf;	/* P_adp_noise_cnt -0.004 */
		est[2] = 0x00a4;	/* P_adp_regul_ext 0.02 */
		est[3] = 0xfff0;	/* P_adp_noise_ext -0.002 */
		break;
	default:
		est[0] = 0x099a;	/* P_adp_regul_cnt 0.3 */
		est[1] = 0xffae;	/* P_adp_noise_cnt -0.01 */
		est[2] = 0x0333;	/* P_adp_regul_ext 0.1 */
		est[3] = 0xfff8;	/* P_adp_noise_ext -0.002 */
		break;
1036
	}
1037 1038
	for (value = 0; value < 4; value++)
		dib7000p_write_word(state, 187 + value, est[value]);
1039 1040
}

1041
static int dib7000p_autosearch_start(struct dvb_frontend *demod, struct dvb_frontend_parameters *ch)
1042 1043
{
	struct dib7000p_state *state = demod->demodulator_priv;
1044 1045
	struct dvb_frontend_parameters schan;
	u32 value, factor;
1046
	u32 internal = dib7000p_get_internal_freq(state);
1047 1048 1049

	schan = *ch;
	schan.u.ofdm.constellation = QAM_64;
1050 1051 1052 1053 1054
	schan.u.ofdm.guard_interval = GUARD_INTERVAL_1_32;
	schan.u.ofdm.transmission_mode = TRANSMISSION_MODE_8K;
	schan.u.ofdm.code_rate_HP = FEC_2_3;
	schan.u.ofdm.code_rate_LP = FEC_3_4;
	schan.u.ofdm.hierarchy_information = 0;
1055 1056 1057 1058 1059 1060 1061 1062

	dib7000p_set_channel(state, &schan, 7);

	factor = BANDWIDTH_TO_KHZ(ch->u.ofdm.bandwidth);
	if (factor >= 5000)
		factor = 1;
	else
		factor = 6;
1063 1064

	// always use the setting for 8MHz here lock_time for 7,6 MHz are longer
1065 1066 1067 1068 1069 1070 1071 1072 1073
	value = 30 * internal * factor;
	dib7000p_write_word(state, 6, (u16) ((value >> 16) & 0xffff));	// lock0 wait time
	dib7000p_write_word(state, 7, (u16) (value & 0xffff));	// lock0 wait time
	value = 100 * internal * factor;
	dib7000p_write_word(state, 8, (u16) ((value >> 16) & 0xffff));	// lock1 wait time
	dib7000p_write_word(state, 9, (u16) (value & 0xffff));	// lock1 wait time
	value = 500 * internal * factor;
	dib7000p_write_word(state, 10, (u16) ((value >> 16) & 0xffff));	// lock2 wait time
	dib7000p_write_word(state, 11, (u16) (value & 0xffff));	// lock2 wait time
1074 1075

	value = dib7000p_read_word(state, 0);
1076
	dib7000p_write_word(state, 0, (u16) ((1 << 9) | value));
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
	dib7000p_read_word(state, 1284);
	dib7000p_write_word(state, 0, (u16) value);

	return 0;
}

static int dib7000p_autosearch_is_irq(struct dvb_frontend *demod)
{
	struct dib7000p_state *state = demod->demodulator_priv;
	u16 irq_pending = dib7000p_read_word(state, 1284);

1088
	if (irq_pending & 0x1)	// failed
1089 1090
		return 1;

1091
	if (irq_pending & 0x2)	// succeeded
1092 1093
		return 2;

1094
	return 0;		// still pending
1095 1096
}

1097 1098
static void dib7000p_spur_protect(struct dib7000p_state *state, u32 rf_khz, u32 bw)
{
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
	static s16 notch[] = { 16143, 14402, 12238, 9713, 6902, 3888, 759, -2392 };
	static u8 sine[] = { 0, 2, 3, 5, 6, 8, 9, 11, 13, 14, 16, 17, 19, 20, 22,
		24, 25, 27, 28, 30, 31, 33, 34, 36, 38, 39, 41, 42, 44, 45, 47, 48, 50, 51,
		53, 55, 56, 58, 59, 61, 62, 64, 65, 67, 68, 70, 71, 73, 74, 76, 77, 79, 80,
		82, 83, 85, 86, 88, 89, 91, 92, 94, 95, 97, 98, 99, 101, 102, 104, 105,
		107, 108, 109, 111, 112, 114, 115, 117, 118, 119, 121, 122, 123, 125, 126,
		128, 129, 130, 132, 133, 134, 136, 137, 138, 140, 141, 142, 144, 145, 146,
		147, 149, 150, 151, 152, 154, 155, 156, 157, 159, 160, 161, 162, 164, 165,
		166, 167, 168, 170, 171, 172, 173, 174, 175, 177, 178, 179, 180, 181, 182,
		183, 184, 185, 186, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198,
		199, 200, 201, 202, 203, 204, 205, 206, 207, 207, 208, 209, 210, 211, 212,
		213, 214, 215, 215, 216, 217, 218, 219, 220, 220, 221, 222, 223, 224, 224,
		225, 226, 227, 227, 228, 229, 229, 230, 231, 231, 232, 233, 233, 234, 235,
		235, 236, 237, 237, 238, 238, 239, 239, 240, 241, 241, 242, 242, 243, 243,
		244, 244, 245, 245, 245, 246, 246, 247, 247, 248, 248, 248, 249, 249, 249,
		250, 250, 250, 251, 251, 251, 252, 252, 252, 252, 253, 253, 253, 253, 254,
		254, 254, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
		255, 255, 255, 255, 255, 255
	};
1118 1119

	u32 xtal = state->cfg.bw->xtal_hz / 1000;
1120
	int f_rel = DIV_ROUND_CLOSEST(rf_khz, xtal) * xtal - rf_khz;
1121
	int k;
1122
	int coef_re[8], coef_im[8];
1123 1124 1125
	int bw_khz = bw;
	u32 pha;

1126
	dprintk("relative position of the Spur: %dk (RF: %dk, XTAL: %dk)", f_rel, rf_khz, xtal);
1127

1128
	if (f_rel < -bw_khz / 2 || f_rel > bw_khz / 2)
1129 1130 1131 1132
		return;

	bw_khz /= 100;

1133
	dib7000p_write_word(state, 142, 0x0610);
1134 1135

	for (k = 0; k < 8; k++) {
1136
		pha = ((f_rel * (k + 1) * 112 * 80 / bw_khz) / 1000) & 0x3ff;
1137

1138
		if (pha == 0) {
1139 1140
			coef_re[k] = 256;
			coef_im[k] = 0;
1141 1142 1143
		} else if (pha < 256) {
			coef_re[k] = sine[256 - (pha & 0xff)];
			coef_im[k] = sine[pha & 0xff];
1144 1145 1146 1147
		} else if (pha == 256) {
			coef_re[k] = 0;
			coef_im[k] = 256;
		} else if (pha < 512) {
1148 1149
			coef_re[k] = -sine[pha & 0xff];
			coef_im[k] = sine[256 - (pha & 0xff)];
1150 1151 1152 1153
		} else if (pha == 512) {
			coef_re[k] = -256;
			coef_im[k] = 0;
		} else if (pha < 768) {
1154 1155
			coef_re[k] = -sine[256 - (pha & 0xff)];
			coef_im[k] = -sine[pha & 0xff];
1156 1157 1158 1159
		} else if (pha == 768) {
			coef_re[k] = 0;
			coef_im[k] = -256;
		} else {
1160 1161
			coef_re[k] = sine[pha & 0xff];
			coef_im[k] = -sine[256 - (pha & 0xff)];
1162 1163 1164
		}

		coef_re[k] *= notch[k];
1165 1166 1167 1168
		coef_re[k] += (1 << 14);
		if (coef_re[k] >= (1 << 24))
			coef_re[k] = (1 << 24) - 1;
		coef_re[k] /= (1 << 15);
1169 1170

		coef_im[k] *= notch[k];
1171 1172 1173 1174
		coef_im[k] += (1 << 14);
		if (coef_im[k] >= (1 << 24))
			coef_im[k] = (1 << 24) - 1;
		coef_im[k] /= (1 << 15);
1175

1176
		dprintk("PALF COEF: %d re: %d im: %d", k, coef_re[k], coef_im[k]);
1177 1178 1179 1180 1181

		dib7000p_write_word(state, 143, (0 << 14) | (k << 10) | (coef_re[k] & 0x3ff));
		dib7000p_write_word(state, 144, coef_im[k] & 0x3ff);
		dib7000p_write_word(state, 143, (1 << 14) | (k << 10) | (coef_re[k] & 0x3ff));
	}
1182
	dib7000p_write_word(state, 143, 0);
1183 1184 1185
}

static int dib7000p_tune(struct dvb_frontend *demod, struct dvb_frontend_parameters *ch)
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
{
	struct dib7000p_state *state = demod->demodulator_priv;
	u16 tmp = 0;

	if (ch != NULL)
		dib7000p_set_channel(state, ch, 0);
	else
		return -EINVAL;

	// restart demod
	dib7000p_write_word(state, 770, 0x4000);
	dib7000p_write_word(state, 770, 0x0000);
	msleep(45);

	/* P_ctrl_inh_cor=0, P_ctrl_alpha_cor=4, P_ctrl_inh_isi=0, P_ctrl_alpha_isi=3, P_ctrl_inh_cor4=1, P_ctrl_alpha_cor4=3 */
1201 1202
	tmp = (0 << 14) | (4 << 10) | (0 << 9) | (3 << 5) | (1 << 4) | (0x3);
	if (state->sfn_workaround_active) {
1203
		dprintk("SFN workaround is active");
1204
		tmp |= (1 << 9);
1205
		dib7000p_write_word(state, 166, 0x4000);	// P_pha3_force_pha_shift
1206
	} else {
1207
		dib7000p_write_word(state, 166, 0x0000);	// P_pha3_force_pha_shift
1208 1209
	}
	dib7000p_write_word(state, 29, tmp);
1210 1211 1212 1213 1214 1215 1216 1217 1218

	// never achieved a lock with that bandwidth so far - wait for osc-freq to update
	if (state->timf == 0)
		msleep(200);

	/* offset loop parameters */

	/* P_timf_alpha, P_corm_alpha=6, P_corm_thres=0x80 */
	tmp = (6 << 8) | 0x80;
1219
	switch (ch->u.ofdm.transmission_mode) {
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
	case TRANSMISSION_MODE_2K:
		tmp |= (2 << 12);
		break;
    case TRANSMISSION_MODE_4K:
		tmp |= (3 << 12);
		break;
	default:
	case TRANSMISSION_MODE_8K:
		tmp |= (4 << 12);
		break;
1230
	}
1231
	dib7000p_write_word(state, 26, tmp);	/* timf_a(6xxx) */
1232 1233 1234

	/* P_ctrl_freeze_pha_shift=0, P_ctrl_pha_off_max */
	tmp = (0 << 4);
1235
	switch (ch->u.ofdm.transmission_mode) {
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
	case TRANSMISSION_MODE_2K:
		tmp |= 0x6;
		break;
    case TRANSMISSION_MODE_4K:
		tmp |= 0x7;
		break;
	default:
	case TRANSMISSION_MODE_8K:
		tmp |= 0x8;
		break;
1246
	}
1247
	dib7000p_write_word(state, 32, tmp);
1248 1249 1250

	/* P_ctrl_sfreq_inh=0, P_ctrl_sfreq_step */
	tmp = (0 << 4);
1251
	switch (ch->u.ofdm.transmission_mode) {
1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
	case TRANSMISSION_MODE_2K:
		tmp |= 0x6;
		break;
	case TRANSMISSION_MODE_4K:
		tmp |= 0x7;
		break;
	default:
	case TRANSMISSION_MODE_8K:
		tmp |= 0x8;
		break;
1262
	}
1263
	dib7000p_write_word(state, 33, tmp);
1264

1265
	tmp = dib7000p_read_word(state, 509);
1266 1267
	if (!((tmp >> 6) & 0x1)) {
		/* restart the fec */
1268
		tmp = dib7000p_read_word(state, 771);
1269 1270
		dib7000p_write_word(state, 771, tmp | (1 << 1));
		dib7000p_write_word(state, 771, tmp);
1271 1272
		msleep(40);
		tmp = dib7000p_read_word(state, 509);
1273 1274
	}
	// we achieved a lock - it's time to update the osc freq
1275
	if ((tmp >> 6) & 0x1) {
1276
		dib7000p_update_timf(state);
1277 1278 1279 1280
		/* P_timf_alpha += 2 */
		tmp = dib7000p_read_word(state, 26);
		dib7000p_write_word(state, 26, (tmp & ~(0xf << 12)) | ((((tmp >> 12) & 0xf) + 5) << 12));
	}
1281 1282

	if (state->cfg.spur_protect)
1283
		dib7000p_spur_protect(state, ch->frequency / 1000, BANDWIDTH_TO_KHZ(ch->u.ofdm.bandwidth));
1284

1285
	dib7000p_set_bandwidth(state, BANDWIDTH_TO_KHZ(ch->u.ofdm.bandwidth));
1286 1287 1288
	return 0;
}

1289
static int dib7000p_wakeup(struct dvb_frontend *demod)
1290 1291 1292 1293
{
	struct dib7000p_state *state = demod->demodulator_priv;
	dib7000p_set_power_mode(state, DIB7000P_POWER_ALL);
	dib7000p_set_adc_state(state, DIBX000_SLOW_ADC_ON);
1294 1295
	if (state->version == SOC7090)
		dib7000p_sad_calib(state);
1296
	return 0;
1297 1298 1299 1300 1301
}

static int dib7000p_sleep(struct dvb_frontend *demod)
{
	struct dib7000p_state *state = demod->demodulator_priv;
1302 1303
	if (state->version == SOC7090)
		return dib7090_set_output_mode(demod, OUTMODE_HIGH_Z) | dib7000p_set_power_mode(state, DIB7000P_POWER_INTERFACE_ONLY);
1304 1305 1306 1307 1308 1309
	return dib7000p_set_output_mode(state, OUTMODE_HIGH_Z) | dib7000p_set_power_mode(state, DIB7000P_POWER_INTERFACE_ONLY);
}

static int dib7000p_identify(struct dib7000p_state *st)
{
	u16 value;
1310
	dprintk("checking demod on I2C address: %d (%x)", st->i2c_addr, st->i2c_addr);
1311 1312

	if ((value = dib7000p_read_word(st, 768)) != 0x01b3) {
1313
		dprintk("wrong Vendor ID (read=0x%x)", value);
1314 1315 1316 1317
		return -EREMOTEIO;
	}

	if ((value = dib7000p_read_word(st, 769)) != 0x4000) {
1318
		dprintk("wrong Device ID (%x)", value);
1319 1320 1321 1322 1323 1324
		return -EREMOTEIO;
	}

	return 0;
}

1325
static int dib7000p_get_frontend(struct dvb_frontend *fe, struct dvb_frontend_parameters *fep)
1326 1327
{
	struct dib7000p_state *state = fe->demodulator_priv;
1328
	u16 tps = dib7000p_read_word(state, 463);
1329 1330 1331

	fep->inversion = INVERSION_AUTO;

1332
	fep->u.ofdm.bandwidth = BANDWIDTH_TO_INDEX(state->current_bandwidth);
1333 1334

	switch ((tps >> 8) & 0x3) {
1335 1336 1337 1338 1339 1340
	case 0:
		fep->u.ofdm.transmission_mode = TRANSMISSION_MODE_2K;
		break;
	case 1:
		fep->u.ofdm.transmission_mode = TRANSMISSION_MODE_8K;
		break;
1341 1342 1343 1344
		/* case 2: fep->u.ofdm.transmission_mode = TRANSMISSION_MODE_4K; break; */
	}

	switch (tps & 0x3) {
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
	case 0:
		fep->u.ofdm.guard_interval = GUARD_INTERVAL_1_32;
		break;
	case 1:
		fep->u.ofdm.guard_interval = GUARD_INTERVAL_1_16;
		break;
	case 2:
		fep->u.ofdm.guard_interval = GUARD_INTERVAL_1_8;
		break;
	case 3:
		fep->u.ofdm.guard_interval = GUARD_INTERVAL_1_4;
		break;
1357 1358 1359
	}

	switch ((tps >> 14) & 0x3) {
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
	case 0:
		fep->u.ofdm.constellation = QPSK;
		break;
	case 1:
		fep->u.ofdm.constellation = QAM_16;
		break;
	case 2:
	default:
		fep->u.ofdm.constellation = QAM_64;
		break;
1370 1371 1372 1373 1374 1375 1376
	}

	/* as long as the frontend_param structure is fixed for hierarchical transmission I refuse to use it */
	/* (tps >> 13) & 0x1 == hrch is used, (tps >> 10) & 0x7 == alpha */

	fep->u.ofdm.hierarchy_information = HIERARCHY_NONE;
	switch ((tps >> 5) & 0x7) {
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
	case 1:
		fep->u.ofdm.code_rate_HP = FEC_1_2;
		break;
	case 2:
		fep->u.ofdm.code_rate_HP = FEC_2_3;
		break;
	case 3:
		fep->u.ofdm.code_rate_HP = FEC_3_4;
		break;
	case 5:
		fep->u.ofdm.code_rate_HP = FEC_5_6;
		break;
	case 7:
	default:
		fep->u.ofdm.code_rate_HP = FEC_7_8;
		break;
1393 1394 1395 1396

	}

	switch ((tps >> 2) & 0x7) {
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
	case 1:
		fep->u.ofdm.code_rate_LP = FEC_1_2;
		break;
	case 2:
		fep->u.ofdm.code_rate_LP = FEC_2_3;
		break;
	case 3:
		fep->u.ofdm.code_rate_LP = FEC_3_4;
		break;
	case 5:
		fep->u.ofdm.code_rate_LP = FEC_5_6;
		break;
	case 7:
	default:
		fep->u.ofdm.code_rate_LP = FEC_7_8;
		break;
1413 1414 1415 1416 1417 1418 1419
	}

	/* native interleaver: (dib7000p_read_word(state, 464) >>  5) & 0x1 */

	return 0;
}

1420
static int dib7000p_set_frontend(struct dvb_frontend *fe, struct dvb_frontend_parameters *fep)
1421 1422
{
	struct dib7000p_state *state = fe->demodulator_priv;
1423
	int time, ret;
1424

1425 1426 1427 1428 1429 1430
	if (state->version == SOC7090) {
		dib7090_set_diversity_in(fe, 0);
		dib7090_set_output_mode(fe, OUTMODE_HIGH_Z);
	}
	else
		dib7000p_set_output_mode(state, OUTMODE_HIGH_Z);
1431

1432
	/* maybe the parameter has been changed */
1433 1434
	state->sfn_workaround_active = buggy_sfn_workaround;

1435 1436 1437
	if (fe->ops.tuner_ops.set_params)
		fe->ops.tuner_ops.set_params(fe, fep);

1438 1439 1440 1441 1442 1443 1444 1445
	/* start up the AGC */
	state->agc_state = 0;
	do {
		time = dib7000p_agc_startup(fe, fep);
		if (time != -1)
			msleep(time);
	} while (time != -1);

1446
	if (fep->u.ofdm.transmission_mode == TRANSMISSION_MODE_AUTO ||
1447
		fep->u.ofdm.guard_interval == GUARD_INTERVAL_AUTO || fep->u.ofdm.constellation == QAM_AUTO || fep->u.ofdm.code_rate_HP == FEC_AUTO) {
1448 1449
		int i = 800, found;

1450
		dib7000p_autosearch_start(fe, fep);
1451 1452 1453 1454 1455
		do {
			msleep(1);
			found = dib7000p_autosearch_is_irq(fe);
		} while (found == 0 && i--);

1456
		dprintk("autosearch returns: %d", found);
1457
		if (found == 0 || found == 1)
1458
			return 0;	// no channel found
1459 1460 1461 1462

		dib7000p_get_frontend(fe, fep);
	}

1463 1464
	ret = dib7000p_tune(fe, fep);

1465
	/* make this a config parameter */
1466 1467 1468 1469 1470 1471
	if (state->version == SOC7090)
		dib7090_set_output_mode(fe, state->cfg.output_mode);
	else
		dib7000p_set_output_mode(state, state->cfg.output_mode);

	return ret;
1472 1473
}

1474
static int dib7000p_read_status(struct dvb_frontend *fe, fe_status_t * stat)
1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
{
	struct dib7000p_state *state = fe->demodulator_priv;
	u16 lock = dib7000p_read_word(state, 509);

	*stat = 0;

	if (lock & 0x8000)
		*stat |= FE_HAS_SIGNAL;
	if (lock & 0x3000)
		*stat |= FE_HAS_CARRIER;
	if (lock & 0x0100)
		*stat |= FE_HAS_VITERBI;
	if (lock & 0x0010)
		*stat |= FE_HAS_SYNC;
1489
	if ((lock & 0x0038) == 0x38)
1490 1491 1492 1493 1494
		*stat |= FE_HAS_LOCK;

	return 0;
}

1495
static int dib7000p_read_ber(struct dvb_frontend *fe, u32 * ber)
1496 1497 1498 1499 1500 1501
{
	struct dib7000p_state *state = fe->demodulator_priv;
	*ber = (dib7000p_read_word(state, 500) << 16) | dib7000p_read_word(state, 501);
	return 0;
}

1502
static int dib7000p_read_unc_blocks(struct dvb_frontend *fe, u32 * unc)
1503 1504 1505 1506 1507 1508
{
	struct dib7000p_state *state = fe->demodulator_priv;
	*unc = dib7000p_read_word(state, 506);
	return 0;
}

1509
static int dib7000p_read_signal_strength(struct dvb_frontend *fe, u16 * strength)
1510 1511 1512 1513 1514 1515 1516
{
	struct dib7000p_state *state = fe->demodulator_priv;
	u16 val = dib7000p_read_word(state, 394);
	*strength = 65535 - val;
	return 0;
}

1517
static int dib7000p_read_snr(struct dvb_frontend *fe, u16 * snr)
1518
{
1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
	struct dib7000p_state *state = fe->demodulator_priv;
	u16 val;
	s32 signal_mant, signal_exp, noise_mant, noise_exp;
	u32 result = 0;

	val = dib7000p_read_word(state, 479);
	noise_mant = (val >> 4) & 0xff;
	noise_exp = ((val & 0xf) << 2);
	val = dib7000p_read_word(state, 480);
	noise_exp += ((val >> 14) & 0x3);
	if ((noise_exp & 0x20) != 0)
		noise_exp -= 0x40;

	signal_mant = (val >> 6) & 0xFF;
1533
	signal_exp = (val & 0x3F);
1534 1535 1536 1537
	if ((signal_exp & 0x20) != 0)
		signal_exp -= 0x40;

	if (signal_mant != 0)
1538
		result = intlog10(2) * 10 * signal_exp + 10 * intlog10(signal_mant);
1539 1540 1541 1542
	else
		result = intlog10(2) * 10 * signal_exp - 100;

	if (noise_mant != 0)
1543
		result -= intlog10(2) * 10 * noise_exp + 10 * intlog10(noise_mant);
1544 1545 1546 1547
	else
		result -= intlog10(2) * 10 * noise_exp - 100;

	*snr = result / ((1 << 24) / 10);
1548 1549 1550
	return 0;
}

1551
static int dib7000p_fe_get_tune_settings(struct dvb_frontend *fe, struct dvb_frontend_tune_settings *tune)
1552 1553 1554 1555 1556 1557 1558 1559 1560
{
	tune->min_delay_ms = 1000;
	return 0;
}

static void dib7000p_release(struct dvb_frontend *demod)
{
	struct dib7000p_state *st = demod->demodulator_priv;
	dibx000_exit_i2c_master(&st->i2c_master);
1561
	i2c_del_adapter(&st->dib7090_tuner_adap);
1562 1563 1564 1565 1566 1567 1568
	kfree(st);
}

int dib7000pc_detection(struct i2c_adapter *i2c_adap)
{
	u8 tx[2], rx[2];
	struct i2c_msg msg[2] = {
1569 1570
		{.addr = 18 >> 1,.flags = 0,.buf = tx,.len = 2},
		{.addr = 18 >> 1,.flags = I2C_M_RD,.buf = rx,.len = 2},
1571 1572 1573 1574 1575 1576 1577
	};

	tx[0] = 0x03;
	tx[1] = 0x00;

	if (i2c_transfer(i2c_adap, msg, 2) == 2)
		if (rx[0] == 0x01 && rx[1] == 0xb3) {
1578
			dprintk("-D-  DiB7000PC detected");
1579 1580 1581 1582 1583 1584 1585
			return 1;
		}

	msg[0].addr = msg[1].addr = 0x40;

	if (i2c_transfer(i2c_adap, msg, 2) == 2)
		if (rx[0] == 0x01 && rx[1] == 0xb3) {
1586
			dprintk("-D-  DiB7000PC detected");
1587 1588 1589
			return 1;
		}

1590
	dprintk("-D-  DiB7000PC not detected");
1591 1592 1593 1594
	return 0;
}
EXPORT_SYMBOL(dib7000pc_detection);

1595
struct i2c_adapter *dib7000p_get_i2c_master(struct dvb_frontend *demod, enum dibx000_i2c_interface intf, int gating)
1596 1597 1598 1599 1600 1601
{
	struct dib7000p_state *st = demod->demodulator_priv;
	return dibx000_get_i2c_adapter(&st->i2c_master, intf, gating);
}
EXPORT_SYMBOL(dib7000p_get_i2c_master);

1602 1603
int dib7000p_pid_filter_ctrl(struct dvb_frontend *fe, u8 onoff)
{
1604 1605 1606 1607 1608
	struct dib7000p_state *state = fe->demodulator_priv;
	u16 val = dib7000p_read_word(state, 235) & 0xffef;
	val |= (onoff & 0x1) << 4;
	dprintk("PID filter enabled %d", onoff);
	return dib7000p_write_word(state, 235, val);
1609 1610 1611 1612 1613
}
EXPORT_SYMBOL(dib7000p_pid_filter_ctrl);

int dib7000p_pid_filter(struct dvb_frontend *fe, u8 id, u16 pid, u8 onoff)
{
1614 1615 1616
	struct dib7000p_state *state = fe->demodulator_priv;
	dprintk("PID filter: index %x, PID %d, OnOff %d", id, pid, onoff);
	return dib7000p_write_word(state, 241 + id, onoff ? (1 << 13) | pid : 0);
1617 1618 1619
}
EXPORT_SYMBOL(dib7000p_pid_filter);

1620 1621
int dib7000p_i2c_enumeration(struct i2c_adapter *i2c, int no_of_demods, u8 default_addr, struct dib7000p_config cfg[])
{
1622
	struct dib7000p_state *dpst;
1623 1624 1625
	int k = 0;
	u8 new_addr = 0;

1626 1627
	dpst = kzalloc(sizeof(struct dib7000p_state), GFP_KERNEL);
	if (!dpst)
1628
		return -ENOMEM;
1629 1630 1631

	dpst->i2c_adap = i2c;

1632
	for (k = no_of_demods - 1; k >= 0; k--) {
1633
		dpst->cfg = cfg[k];
1634 1635

		/* designated i2c address */
1636 1637 1638 1639
		if (cfg[k].default_i2c_addr != 0)
			new_addr = cfg[k].default_i2c_addr + (k << 1);
		else
			new_addr = (0x40 + k) << 1;
1640
		dpst->i2c_addr = new_addr;
1641
		dib7000p_write_word(dpst, 1287, 0x0003);	/* sram lead in, rdy */
1642 1643
		if (dib7000p_identify(dpst) != 0) {
			dpst->i2c_addr = default_addr;
1644
			dib7000p_write_word(dpst, 1287, 0x0003);	/* sram lead in, rdy */
1645
			if (dib7000p_identify(dpst) != 0) {
1646
				dprintk("DiB7000P #%d: not identified\n", k);
1647
				kfree(dpst);
1648 1649 1650 1651 1652
				return -EIO;
			}
		}

		/* start diversity to pull_down div_str - just for i2c-enumeration */
1653
		dib7000p_set_output_mode(dpst, OUTMODE_DIVERSITY);
1654 1655

		/* set new i2c address and force divstart */
1656
		dib7000p_write_word(dpst, 1285, (new_addr << 2) | 0x2);
1657

1658
		dprintk("IC %d initialized (to i2c_address 0x%x)", k, new_addr);
1659 1660 1661
	}

	for (k = 0; k < no_of_demods; k++) {
1662
		dpst->cfg = cfg[k];
1663 1664 1665 1666
		if (cfg[k].default_i2c_addr != 0)
			dpst->i2c_addr = (cfg[k].default_i2c_addr + k) << 1;
		else
			dpst->i2c_addr = (0x40 + k) << 1;
1667 1668

		// unforce divstr
1669
		dib7000p_write_word(dpst, 1285, dpst->i2c_addr << 2);
1670 1671

		/* deactivate div - it was just for i2c-enumeration */
1672
		dib7000p_set_output_mode(dpst, OUTMODE_HIGH_Z);
1673 1674
	}

1675
	kfree(dpst);
1676 1677 1678 1679
	return 0;
}
EXPORT_SYMBOL(dib7000p_i2c_enumeration);

1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
static const s32 lut_1000ln_mant[] = {
	6908, 6956, 7003, 7047, 7090, 7131, 7170, 7208, 7244, 7279, 7313, 7346, 7377, 7408, 7438, 7467, 7495, 7523, 7549, 7575, 7600
};

static s32 dib7000p_get_adc_power(struct dvb_frontend *fe)
{
	struct dib7000p_state *state = fe->demodulator_priv;
	u32 tmp_val = 0, exp = 0, mant = 0;
	s32 pow_i;
	u16 buf[2];
	u8 ix = 0;

	buf[0] = dib7000p_read_word(state, 0x184);
	buf[1] = dib7000p_read_word(state, 0x185);
	pow_i = (buf[0] << 16) | buf[1];
	dprintk("raw pow_i = %d", pow_i);

	tmp_val = pow_i;
	while (tmp_val >>= 1)
		exp++;

	mant = (pow_i * 1000 / (1 << exp));
	dprintk(" mant = %d exp = %d", mant / 1000, exp);

	ix = (u8) ((mant - 1000) / 100);	/* index of the LUT */
	dprintk(" ix = %d", ix);

	pow_i = (lut_1000ln_mant[ix] + 693 * (exp - 20) - 6908);
	pow_i = (pow_i << 8) / 1000;
	dprintk(" pow_i = %d", pow_i);

	return pow_i;
}

static int map_addr_to_serpar_number(struct i2c_msg *msg)
{
	if ((msg->buf[0] <= 15))
		msg->buf[0] -= 1;
	else if (msg->buf[0] == 17)
		msg->buf[0] = 15;
	else if (msg->buf[0] == 16)
		msg->buf[0] = 17;
	else if (msg->buf[0] == 19)
		msg->buf[0] = 16;
	else if (msg->buf[0] >= 21 && msg->buf[0] <= 25)
		msg->buf[0] -= 3;
	else if (msg->buf[0] == 28)
		msg->buf[0] = 23;
	else {
		return -EINVAL;
	}
	return 0;
}

static int w7090p_tuner_write_serpar(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num)
{
	struct dib7000p_state *state = i2c_get_adapdata(i2c_adap);
	u8 n_overflow = 1;
	u16 i = 1000;
	u16 serpar_num = msg[0].buf[0];

	while (n_overflow == 1 && i) {
		n_overflow = (dib7000p_read_word(state, 1984) >> 1) & 0x1;
		i--;
		if (i == 0)
			dprintk("Tuner ITF: write busy (overflow)");
	}
	dib7000p_write_word(state, 1985, (1 << 6) | (serpar_num & 0x3f));
	dib7000p_write_word(state, 1986, (msg[0].buf[1] << 8) | msg[0].buf[2]);

	return num;
}

static int w7090p_tuner_read_serpar(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num)
{
	struct dib7000p_state *state = i2c_get_adapdata(i2c_adap);
	u8 n_overflow = 1, n_empty = 1;
	u16 i = 1000;
	u16 serpar_num = msg[0].buf[0];
	u16 read_word;

	while (n_overflow == 1 && i) {
		n_overflow = (dib7000p_read_word(state, 1984) >> 1) & 0x1;
		i--;
		if (i == 0)
			dprintk("TunerITF: read busy (overflow)");
	}
	dib7000p_write_word(state, 1985, (0 << 6) | (serpar_num & 0x3f));

	i = 1000;
	while (n_empty == 1 && i) {
		n_empty = dib7000p_read_word(state, 1984) & 0x1;
		i--;
		if (i == 0)
			dprintk("TunerITF: read busy (empty)");
	}
	read_word = dib7000p_read_word(state, 1987);
	msg[1].buf[0] = (read_word >> 8) & 0xff;
	msg[1].buf[1] = (read_word) & 0xff;

	return num;
}

static int w7090p_tuner_rw_serpar(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num)
{
	if (map_addr_to_serpar_number(&msg[0]) == 0) {	/* else = Tuner regs to ignore : DIG_CFG, CTRL_RF_LT, PLL_CFG, PWM1_REG, ADCCLK, DIG_CFG_3; SLEEP_EN... */
		if (num == 1) {	/* write */
			return w7090p_tuner_write_serpar(i2c_adap, msg, 1);
		} else {	/* read */
			return w7090p_tuner_read_serpar(i2c_adap, msg, 2);
		}
	}
	return num;
}

int dib7090p_rw_on_apb(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num, u16 apb_address)
{
	struct dib7000p_state *state = i2c_get_adapdata(i2c_adap);
	u16 word;

	if (num == 1) {		/* write */
		dib7000p_write_word(state, apb_address, ((msg[0].buf[1] << 8) | (msg[0].buf[2])));
	} else {
		word = dib7000p_read_word(state, apb_address);
		msg[1].buf[0] = (word >> 8) & 0xff;
		msg[1].buf[1] = (word) & 0xff;
	}

	return num;
}

static int dib7090_tuner_xfer(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num)
{
	struct dib7000p_state *state = i2c_get_adapdata(i2c_adap);

	u16 apb_address = 0, word;
	int i = 0;
	switch (msg[0].buf[0]) {
	case 0x12:
		apb_address = 1920;
		break;
	case 0x14:
		apb_address = 1921;
		break;
	case 0x24:
		apb_address = 1922;
		break;
	case 0x1a:
		apb_address = 1923;
		break;
	case 0x22:
		apb_address = 1924;
		break;
	case 0x33:
		apb_address = 1926;
		break;
	case 0x34:
		apb_address = 1927;
		break;
	case 0x35:
		apb_address = 1928;
		break;
	case 0x36:
		apb_address = 1929;
		break;
	case 0x37:
		apb_address = 1930;
		break;
	case 0x38:
		apb_address = 1931;
		break;
	case 0x39:
		apb_address = 1932;
		break;
	case 0x2a:
		apb_address = 1935;
		break;
	case 0x2b:
		apb_address = 1936;
		break;
	case 0x2c:
		apb_address = 1937;
		break;
	case 0x2d:
		apb_address = 1938;
		break;
	case 0x2e:
		apb_address = 1939;
		break;
	case 0x2f:
		apb_address = 1940;
		break;
	case 0x30:
		apb_address = 1941;
		break;
	case 0x31:
		apb_address = 1942;
		break;
	case 0x32:
		apb_address = 1943;
		break;
	case 0x3e:
		apb_address = 1944;
		break;
	case 0x3f:
		apb_address = 1945;
		break;
	case 0x40:
		apb_address = 1948;
		break;
	case 0x25:
		apb_address = 914;
		break;
	case 0x26:
		apb_address = 915;
		break;
	case 0x27:
		apb_address = 916;
		break;
	case 0x28:
		apb_address = 917;
		break;
	case 0x1d:
		i = ((dib7000p_read_word(state, 72) >> 12) & 0x3);
		word = dib7000p_read_word(state, 384 + i);
		msg[1].buf[0] = (word >> 8) & 0xff;
		msg[1].buf[1] = (word) & 0xff;
		return num;
	case 0x1f:
		if (num == 1) {	/* write */
			word = (u16) ((msg[0].buf[1] << 8) | msg[0].buf[2]);
			word &= 0x3;
			word = (dib7000p_read_word(state, 72) & ~(3 << 12)) | (word << 12);	//Mask bit 12,13
			dib7000p_write_word(state, 72, word);	/* Set the proper input */
			return num;
		}
	}

	if (apb_address != 0)	/* R/W acces via APB */
		return dib7090p_rw_on_apb(i2c_adap, msg, num, apb_address);
	else			/* R/W access via SERPAR  */
		return w7090p_tuner_rw_serpar(i2c_adap, msg, num);

	return 0;
}

static u32 dib7000p_i2c_func(struct i2c_adapter *adapter)
{
	return I2C_FUNC_I2C;
}

static struct i2c_algorithm dib7090_tuner_xfer_algo = {
	.master_xfer = dib7090_tuner_xfer,
	.functionality = dib7000p_i2c_func,
};

struct i2c_adapter *dib7090_get_i2c_tuner(struct dvb_frontend *fe)
{
	struct dib7000p_state *st = fe->demodulator_priv;
	return &st->dib7090_tuner_adap;
}
EXPORT_SYMBOL(dib7090_get_i2c_tuner);

static int dib7090_host_bus_drive(struct dib7000p_state *state, u8 drive)
{
	u16 reg;

	/* drive host bus 2, 3, 4 */
	reg = dib7000p_read_word(state, 1798) & ~((0x7) | (0x7 << 6) | (0x7 << 12));
	reg |= (drive << 12) | (drive << 6) | drive;
	dib7000p_write_word(state, 1798, reg);

	/* drive host bus 5,6 */
	reg = dib7000p_read_word(state, 1799) & ~((0x7 << 2) | (0x7 << 8));
	reg |= (drive << 8) | (drive << 2);
	dib7000p_write_word(state, 1799, reg);

	/* drive host bus 7, 8, 9 */
	reg = dib7000p_read_word(state, 1800) & ~((0x7) | (0x7 << 6) | (0x7 << 12));
	reg |= (drive << 12) | (drive << 6) | drive;
	dib7000p_write_word(state, 1800, reg);

	/* drive host bus 10, 11 */
	reg = dib7000p_read_word(state, 1801) & ~((0x7 << 2) | (0x7 << 8));
	reg |= (drive << 8) | (drive << 2);
	dib7000p_write_word(state, 1801, reg);

	/* drive host bus 12, 13, 14 */
	reg = dib7000p_read_word(state, 1802) & ~((0x7) | (0x7 << 6) | (0x7 << 12));
	reg |= (drive << 12) | (drive << 6) | drive;
	dib7000p_write_word(state, 1802, reg);

	return 0;
}

static u32 dib7090_calcSyncFreq(u32 P_Kin, u32 P_Kout, u32 insertExtSynchro, u32 syncSize)
{
	u32 quantif = 3;
	u32 nom = (insertExtSynchro * P_Kin + syncSize);
	u32 denom = P_Kout;
	u32 syncFreq = ((nom << quantif) / denom);

	if ((syncFreq & ((1 << quantif) - 1)) != 0)
		syncFreq = (syncFreq >> quantif) + 1;
	else
		syncFreq = (syncFreq >> quantif);

	if (syncFreq != 0)
		syncFreq = syncFreq - 1;

	return syncFreq;
}

static int dib7090_cfg_DibTx(struct dib7000p_state *state, u32 P_Kin, u32 P_Kout, u32 insertExtSynchro, u32 synchroMode, u32 syncWord, u32 syncSize)
{
	u8 index_buf;
	u16 rx_copy_buf[22];

	dprintk("Configure DibStream Tx");
	for (index_buf = 0; index_buf<22; index_buf++)
		rx_copy_buf[index_buf] = dib7000p_read_word(state, 1536+index_buf);

	dib7000p_write_word(state, 1615, 1);
	dib7000p_write_word(state, 1603, P_Kin);
	dib7000p_write_word(state, 1605, P_Kout);
	dib7000p_write_word(state, 1606, insertExtSynchro);
	dib7000p_write_word(state, 1608, synchroMode);
	dib7000p_write_word(state, 1609, (syncWord >> 16) & 0xffff);
	dib7000p_write_word(state, 1610, syncWord & 0xffff);
	dib7000p_write_word(state, 1612, syncSize);
	dib7000p_write_word(state, 1615, 0);

	for (index_buf = 0; index_buf<22; index_buf++)
		dib7000p_write_word(state, 1536+index_buf, rx_copy_buf[index_buf]);

	return 0;
}

static int dib7090_cfg_DibRx(struct dib7000p_state *state, u32 P_Kin, u32 P_Kout, u32 synchroMode, u32 insertExtSynchro, u32 syncWord, u32 syncSize,
		u32 dataOutRate)
{
	u32 syncFreq;

	dprintk("Configure DibStream Rx");
	if ((P_Kin != 0) && (P_Kout != 0))
	{
		syncFreq = dib7090_calcSyncFreq(P_Kin, P_Kout, insertExtSynchro, syncSize);
		dib7000p_write_word(state, 1542, syncFreq);
	}
	dib7000p_write_word(state, 1554, 1);
	dib7000p_write_word(state, 1536, P_Kin);
	dib7000p_write_word(state, 1537, P_Kout);
	dib7000p_write_word(state, 1539, synchroMode);
	dib7000p_write_word(state, 1540, (syncWord >> 16) & 0xffff);
	dib7000p_write_word(state, 1541, syncWord & 0xffff);
	dib7000p_write_word(state, 1543, syncSize);
	dib7000p_write_word(state, 1544, dataOutRate);
	dib7000p_write_word(state, 1554, 0);

	return 0;
}

static int dib7090_enDivOnHostBus(struct dib7000p_state *state)
{
	u16 reg;

	dprintk("Enable Diversity on host bus");
	reg = (1 << 8) | (1 << 5);	// P_enDivOutOnDibTx = 1 ; P_enDibTxOnHostBus = 1
	dib7000p_write_word(state, 1288, reg);

	return dib7090_cfg_DibTx(state, 5, 5, 0, 0, 0, 0);
}

static int dib7090_enAdcOnHostBus(struct dib7000p_state *state)
{
	u16 reg;

	dprintk("Enable ADC on host bus");
	reg = (1 << 7) | (1 << 5);	//P_enAdcOnDibTx = 1 ; P_enDibTxOnHostBus = 1
	dib7000p_write_word(state, 1288, reg);

	return dib7090_cfg_DibTx(state, 20, 5, 10, 0, 0, 0);
}

static int dib7090_enMpegOnHostBus(struct dib7000p_state *state)
{
	u16 reg;

	dprintk("Enable Mpeg on host bus");
	reg = (1 << 9) | (1 << 5);	//P_enMpegOnDibTx = 1 ; P_enDibTxOnHostBus = 1
	dib7000p_write_word(state, 1288, reg);

	return dib7090_cfg_DibTx(state, 8, 5, 0, 0, 0, 0);
}

static int dib7090_enMpegInput(struct dib7000p_state *state)
{
	dprintk("Enable Mpeg input");
	return dib7090_cfg_DibRx(state, 8, 5, 0, 0, 0, 8, 0);	/*outputRate = 8 */
}

static int dib7090_enMpegMux(struct dib7000p_state *state, u16 pulseWidth, u16 enSerialMode, u16 enSerialClkDiv2)
{
	u16 reg = (1 << 7) | ((pulseWidth & 0x1f) << 2) | ((enSerialMode & 0x1) << 1) | (enSerialClkDiv2 & 0x1);

	dprintk("Enable Mpeg mux");
	dib7000p_write_word(state, 1287, reg);

	reg &= ~(1 << 7);	// P_restart_mpegMux = 0
	dib7000p_write_word(state, 1287, reg);

	reg = (1 << 4);		//P_enMpegMuxOnHostBus = 1
	dib7000p_write_word(state, 1288, reg);

	return 0;
}

static int dib7090_disableMpegMux(struct dib7000p_state *state)
{
	u16 reg;

	dprintk("Disable Mpeg mux");
	dib7000p_write_word(state, 1288, 0);	//P_enMpegMuxOnHostBus = 0

	reg = dib7000p_read_word(state, 1287);
	reg &= ~(1 << 7);	// P_restart_mpegMux = 0
	dib7000p_write_word(state, 1287, reg);

	return 0;
}

static int dib7090_set_input_mode(struct dvb_frontend *fe, int mode)
{
	struct dib7000p_state *state = fe->demodulator_priv;

	switch(mode) {
		case INPUT_MODE_DIVERSITY:
			dprintk("Enable diversity INPUT");
			dib7090_cfg_DibRx(state, 5,5,0,0,0,0,0);
			break;
		case INPUT_MODE_MPEG:
			dprintk("Enable Mpeg INPUT");
			dib7090_cfg_DibRx(state, 8,5,0,0,0,8,0); /*outputRate = 8 */
			break;
		case INPUT_MODE_OFF:
		default:
			dprintk("Disable INPUT");
			dib7090_cfg_DibRx(state, 0,0,0,0,0,0,0);
			break;
	}
	return 0;
}

static int dib7090_set_diversity_in(struct dvb_frontend *fe, int onoff)
{
	switch (onoff) {
	case 0:		/* only use the internal way - not the diversity input */
		dib7090_set_input_mode(fe, INPUT_MODE_MPEG);
		break;
	case 1:		/* both ways */
	case 2:		/* only the diversity input */
		dib7090_set_input_mode(fe, INPUT_MODE_DIVERSITY);
		break;
	}

	return 0;
}

static int dib7090_set_output_mode(struct dvb_frontend *fe, int mode)
{
	struct dib7000p_state *state = fe->demodulator_priv;

	u16 outreg, smo_mode, fifo_threshold;
	u8 prefer_mpeg_mux_use = 1;
	int ret = 0;

	dib7090_host_bus_drive(state, 1);

	fifo_threshold = 1792;
	smo_mode = (dib7000p_read_word(state, 235) & 0x0050) | (1 << 1);
	outreg = dib7000p_read_word(state, 1286) & ~((1 << 10) | (0x7 << 6) | (1 << 1));

	switch (mode) {
	case OUTMODE_HIGH_Z:
		outreg = 0;
		break;

	case OUTMODE_MPEG2_SERIAL:
		if (prefer_mpeg_mux_use) {
			dprintk("Sip 7090P setting output mode TS_SERIAL using Mpeg Mux");
			dib7090_enMpegOnHostBus(state);
			dib7090_enMpegInput(state);
			if (state->cfg.enMpegOutput == 1)
				dib7090_enMpegMux(state, 3, 1, 1);

		} else {	/* Use Smooth block */
			dprintk("Sip 7090P setting output mode TS_SERIAL using Smooth bloc");
			dib7090_disableMpegMux(state);
			dib7000p_write_word(state, 1288, (1 << 6));	//P_enDemOutInterfOnHostBus = 1
			outreg |= (2 << 6) | (0 << 1);
		}
		break;

	case OUTMODE_MPEG2_PAR_GATED_CLK:
		if (prefer_mpeg_mux_use) {
			dprintk("Sip 7090P setting output mode TS_PARALLEL_GATED using Mpeg Mux");
			dib7090_enMpegOnHostBus(state);
			dib7090_enMpegInput(state);
			if (state->cfg.enMpegOutput == 1)
				dib7090_enMpegMux(state, 2, 0, 0);
		} else {	/* Use Smooth block */
			dprintk("Sip 7090P setting output mode TS_PARALLEL_GATED using Smooth block");
			dib7090_disableMpegMux(state);
			dib7000p_write_word(state, 1288, (1 << 6));	//P_enDemOutInterfOnHostBus = 1
			outreg |= (0 << 6);
		}
		break;

	case OUTMODE_MPEG2_PAR_CONT_CLK:	/* Using Smooth block only */
		dprintk("Sip 7090P setting output mode TS_PARALLEL_CONT using Smooth block");
		dib7090_disableMpegMux(state);
		dib7000p_write_word(state, 1288, (1 << 6));	//P_enDemOutInterfOnHostBus = 1
		outreg |= (1 << 6);
		break;

	case OUTMODE_MPEG2_FIFO:	/* Using Smooth block because not supported by new Mpeg Mux bloc */
		dprintk("Sip 7090P setting output mode TS_FIFO using Smooth block");
		dib7090_disableMpegMux(state);
		dib7000p_write_word(state, 1288, (1 << 6));	//P_enDemOutInterfOnHostBus = 1
		outreg |= (5 << 6);
		smo_mode |= (3 << 1);
		fifo_threshold = 512;
		break;

	case OUTMODE_DIVERSITY:
		dprintk("Sip 7090P setting output mode MODE_DIVERSITY");
		dib7090_disableMpegMux(state);
		dib7090_enDivOnHostBus(state);
		break;

	case OUTMODE_ANALOG_ADC:
		dprintk("Sip 7090P setting output mode MODE_ANALOG_ADC");
		dib7090_enAdcOnHostBus(state);
		break;
	}

	if (state->cfg.output_mpeg2_in_188_bytes)
		smo_mode |= (1 << 5);

	ret |= dib7000p_write_word(state, 235, smo_mode);
	ret |= dib7000p_write_word(state, 236, fifo_threshold);	/* synchronous fread */
	ret |= dib7000p_write_word(state, 1286, outreg | (1 << 10));	/* allways set Dout active = 1 !!! */

	return ret;
}

int dib7090_tuner_sleep(struct dvb_frontend *fe, int onoff)
{
	struct dib7000p_state *state = fe->demodulator_priv;
	u16 en_cur_state;

	dprintk("sleep dib7090: %d", onoff);

	en_cur_state = dib7000p_read_word(state, 1922);

	if (en_cur_state > 0xff) {	//LNAs and MIX are ON and therefore it is a valid configuration
		state->tuner_enable = en_cur_state;
	}

	if (onoff)
		en_cur_state &= 0x00ff;	//Mask to be applied
	else {
		if (state->tuner_enable != 0)
			en_cur_state = state->tuner_enable;
	}

	dib7000p_write_word(state, 1922, en_cur_state);

	return 0;
}
EXPORT_SYMBOL(dib7090_tuner_sleep);

int dib7090_agc_restart(struct dvb_frontend *fe, u8 restart)
{
	dprintk("AGC restart callback: %d", restart);
	return 0;
}
EXPORT_SYMBOL(dib7090_agc_restart);

int dib7090_get_adc_power(struct dvb_frontend *fe)
{
	return dib7000p_get_adc_power(fe);
}
EXPORT_SYMBOL(dib7090_get_adc_power);

int dib7090_slave_reset(struct dvb_frontend *fe)
{
	struct dib7000p_state *state = fe->demodulator_priv;
    u16 reg;

    reg = dib7000p_read_word(state, 1794);
    dib7000p_write_word(state, 1794, reg | (4 << 12));

    dib7000p_write_word(state, 1032, 0xffff);
    return 0;
}
EXPORT_SYMBOL(dib7090_slave_reset);

2288
static struct dvb_frontend_ops dib7000p_ops;
2289
struct dvb_frontend *dib7000p_attach(struct i2c_adapter *i2c_adap, u8 i2c_addr, struct dib7000p_config *cfg)
2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302
{
	struct dvb_frontend *demod;
	struct dib7000p_state *st;
	st = kzalloc(sizeof(struct dib7000p_state), GFP_KERNEL);
	if (st == NULL)
		return NULL;

	memcpy(&st->cfg, cfg, sizeof(struct dib7000p_config));
	st->i2c_adap = i2c_adap;
	st->i2c_addr = i2c_addr;
	st->gpio_val = cfg->gpio_val;
	st->gpio_dir = cfg->gpio_dir;

2303 2304 2305
	/* Ensure the output mode remains at the previous default if it's
	 * not specifically set by the caller.
	 */
2306
	if ((st->cfg.output_mode != OUTMODE_MPEG2_SERIAL) && (st->cfg.output_mode != OUTMODE_MPEG2_PAR_GATED_CLK))
2307 2308
		st->cfg.output_mode = OUTMODE_MPEG2_FIFO;

2309
	demod = &st->demod;
2310 2311 2312
	demod->demodulator_priv = st;
	memcpy(&st->demod.ops, &dib7000p_ops, sizeof(struct dvb_frontend_ops));

2313
	dib7000p_write_word(st, 1287, 0x0003);	/* sram lead in, rdy */
2314

2315 2316 2317
	if (dib7000p_identify(st) != 0)
		goto error;

2318 2319
	st->version = dib7000p_read_word(st, 897);

2320
	/* FIXME: make sure the dev.parent field is initialized, or else
2321 2322
		request_firmware() will hit an OOPS (this should be moved somewhere
		more common) */
2323

2324 2325
	dibx000_init_i2c_master(&st->i2c_master, DIB7000P, st->i2c_adap, st->i2c_addr);

2326 2327 2328 2329 2330 2331 2332 2333
	/* init 7090 tuner adapter */
	strncpy(st->dib7090_tuner_adap.name, "DiB7090 tuner interface", sizeof(st->dib7090_tuner_adap.name));
	st->dib7090_tuner_adap.algo = &dib7090_tuner_xfer_algo;
	st->dib7090_tuner_adap.algo_data = NULL;
	st->dib7090_tuner_adap.dev.parent = st->i2c_adap->dev.parent;
	i2c_set_adapdata(&st->dib7090_tuner_adap, st);
	i2c_add_adapter(&st->dib7090_tuner_adap);

2334 2335
	dib7000p_demod_reset(st);

2336 2337 2338 2339 2340
	if (st->version == SOC7090) {
		dib7090_set_output_mode(demod, st->cfg.output_mode);
		dib7090_set_diversity_in(demod, 0);
	}

2341 2342
	return demod;

2343
 error:
2344 2345 2346 2347 2348 2349 2350
	kfree(st);
	return NULL;
}
EXPORT_SYMBOL(dib7000p_attach);

static struct dvb_frontend_ops dib7000p_ops = {
	.info = {
2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373
		 .name = "DiBcom 7000PC",
		 .type = FE_OFDM,
		 .frequency_min = 44250000,
		 .frequency_max = 867250000,
		 .frequency_stepsize = 62500,
		 .caps = FE_CAN_INVERSION_AUTO |
		 FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
		 FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
		 FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
		 FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO | FE_CAN_RECOVER | FE_CAN_HIERARCHY_AUTO,
		 },

	.release = dib7000p_release,

	.init = dib7000p_wakeup,
	.sleep = dib7000p_sleep,

	.set_frontend = dib7000p_set_frontend,
	.get_tune_settings = dib7000p_fe_get_tune_settings,
	.get_frontend = dib7000p_get_frontend,

	.read_status = dib7000p_read_status,
	.read_ber = dib7000p_read_ber,
2374
	.read_signal_strength = dib7000p_read_signal_strength,
2375 2376
	.read_snr = dib7000p_read_snr,
	.read_ucblocks = dib7000p_read_unc_blocks,
2377 2378
};

2379
MODULE_AUTHOR("Olivier Grenie <ogrenie@dibcom.fr>");
2380 2381 2382
MODULE_AUTHOR("Patrick Boettcher <pboettcher@dibcom.fr>");
MODULE_DESCRIPTION("Driver for the DiBcom 7000PC COFDM demodulator");
MODULE_LICENSE("GPL");