i5000_edac.c 42.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*
 * Intel 5000(P/V/X) class Memory Controllers kernel module
 *
 * This file may be distributed under the terms of the
 * GNU General Public License.
 *
 * Written by Douglas Thompson Linux Networx (http://lnxi.com)
 *	norsk5@xmission.com
 *
 * This module is based on the following document:
 *
 * Intel 5000X Chipset Memory Controller Hub (MCH) - Datasheet
 * 	http://developer.intel.com/design/chipsets/datashts/313070.htm
 *
 */

#include <linux/module.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/pci_ids.h>
#include <linux/slab.h>
D
Dave Jiang 已提交
22
#include <linux/edac.h>
23 24
#include <asm/mmzone.h>

25
#include "edac_core.h"
26 27 28 29

/*
 * Alter this version for the I5000 module when modifications are made
 */
M
Michal Marek 已提交
30
#define I5000_REVISION    " Ver: 2.0.12"
31
#define EDAC_MOD_STR      "i5000_edac"
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

#define i5000_printk(level, fmt, arg...) \
        edac_printk(level, "i5000", fmt, ##arg)

#define i5000_mc_printk(mci, level, fmt, arg...) \
        edac_mc_chipset_printk(mci, level, "i5000", fmt, ##arg)

#ifndef PCI_DEVICE_ID_INTEL_FBD_0
#define PCI_DEVICE_ID_INTEL_FBD_0	0x25F5
#endif
#ifndef PCI_DEVICE_ID_INTEL_FBD_1
#define PCI_DEVICE_ID_INTEL_FBD_1	0x25F6
#endif

/* Device 16,
 * Function 0: System Address
 * Function 1: Memory Branch Map, Control, Errors Register
 * Function 2: FSB Error Registers
 *
 * All 3 functions of Device 16 (0,1,2) share the SAME DID
 */
#define	PCI_DEVICE_ID_INTEL_I5000_DEV16	0x25F0

/* OFFSETS for Function 0 */

/* OFFSETS for Function 1 */
#define		AMBASE			0x48
#define		MAXCH			0x56
#define		MAXDIMMPERCH		0x57
#define		TOLM			0x6C
#define		REDMEMB			0x7C
#define			RED_ECC_LOCATOR(x)	((x) & 0x3FFFF)
#define			REC_ECC_LOCATOR_EVEN(x)	((x) & 0x001FF)
#define			REC_ECC_LOCATOR_ODD(x)	((x) & 0x3FE00)
#define		MIR0			0x80
#define		MIR1			0x84
#define		MIR2			0x88
#define		AMIR0			0x8C
#define		AMIR1			0x90
#define		AMIR2			0x94

#define		FERR_FAT_FBD		0x98
#define		NERR_FAT_FBD		0x9C
#define			EXTRACT_FBDCHAN_INDX(x)	(((x)>>28) & 0x3)
#define			FERR_FAT_FBDCHAN 0x30000000
#define			FERR_FAT_M3ERR	0x00000004
#define			FERR_FAT_M2ERR	0x00000002
#define			FERR_FAT_M1ERR	0x00000001
80
#define			FERR_FAT_MASK	(FERR_FAT_M1ERR | \
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
						FERR_FAT_M2ERR | \
						FERR_FAT_M3ERR)

#define		FERR_NF_FBD		0xA0

/* Thermal and SPD or BFD errors */
#define			FERR_NF_M28ERR	0x01000000
#define			FERR_NF_M27ERR	0x00800000
#define			FERR_NF_M26ERR	0x00400000
#define			FERR_NF_M25ERR	0x00200000
#define			FERR_NF_M24ERR	0x00100000
#define			FERR_NF_M23ERR	0x00080000
#define			FERR_NF_M22ERR	0x00040000
#define			FERR_NF_M21ERR	0x00020000

/* Correctable errors */
#define			FERR_NF_M20ERR	0x00010000
#define			FERR_NF_M19ERR	0x00008000
#define			FERR_NF_M18ERR	0x00004000
#define			FERR_NF_M17ERR	0x00002000

/* Non-Retry or redundant Retry errors */
#define			FERR_NF_M16ERR	0x00001000
#define			FERR_NF_M15ERR	0x00000800
#define			FERR_NF_M14ERR	0x00000400
#define			FERR_NF_M13ERR	0x00000200

/* Uncorrectable errors */
#define			FERR_NF_M12ERR	0x00000100
#define			FERR_NF_M11ERR	0x00000080
#define			FERR_NF_M10ERR	0x00000040
#define			FERR_NF_M9ERR	0x00000020
#define			FERR_NF_M8ERR	0x00000010
#define			FERR_NF_M7ERR	0x00000008
#define			FERR_NF_M6ERR	0x00000004
#define			FERR_NF_M5ERR	0x00000002
#define			FERR_NF_M4ERR	0x00000001

#define			FERR_NF_UNCORRECTABLE	(FERR_NF_M12ERR | \
							FERR_NF_M11ERR | \
							FERR_NF_M10ERR | \
A
Aristeu Rozanski 已提交
122
							FERR_NF_M9ERR | \
123
							FERR_NF_M8ERR | \
124 125 126 127 128 129 130 131 132 133 134
							FERR_NF_M7ERR | \
							FERR_NF_M6ERR | \
							FERR_NF_M5ERR | \
							FERR_NF_M4ERR)
#define			FERR_NF_CORRECTABLE	(FERR_NF_M20ERR | \
							FERR_NF_M19ERR | \
							FERR_NF_M18ERR | \
							FERR_NF_M17ERR)
#define			FERR_NF_DIMM_SPARE	(FERR_NF_M27ERR | \
							FERR_NF_M28ERR)
#define			FERR_NF_THERMAL		(FERR_NF_M26ERR | \
135
							FERR_NF_M25ERR | \
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
							FERR_NF_M24ERR | \
							FERR_NF_M23ERR)
#define			FERR_NF_SPD_PROTOCOL	(FERR_NF_M22ERR)
#define			FERR_NF_NORTH_CRC	(FERR_NF_M21ERR)
#define			FERR_NF_NON_RETRY	(FERR_NF_M13ERR | \
							FERR_NF_M14ERR | \
							FERR_NF_M15ERR)

#define		NERR_NF_FBD		0xA4
#define			FERR_NF_MASK		(FERR_NF_UNCORRECTABLE | \
							FERR_NF_CORRECTABLE | \
							FERR_NF_DIMM_SPARE | \
							FERR_NF_THERMAL | \
							FERR_NF_SPD_PROTOCOL | \
							FERR_NF_NORTH_CRC | \
							FERR_NF_NON_RETRY)

#define		EMASK_FBD		0xA8
#define			EMASK_FBD_M28ERR	0x08000000
#define			EMASK_FBD_M27ERR	0x04000000
#define			EMASK_FBD_M26ERR	0x02000000
#define			EMASK_FBD_M25ERR	0x01000000
#define			EMASK_FBD_M24ERR	0x00800000
#define			EMASK_FBD_M23ERR	0x00400000
#define			EMASK_FBD_M22ERR	0x00200000
#define			EMASK_FBD_M21ERR	0x00100000
#define			EMASK_FBD_M20ERR	0x00080000
#define			EMASK_FBD_M19ERR	0x00040000
#define			EMASK_FBD_M18ERR	0x00020000
#define			EMASK_FBD_M17ERR	0x00010000

#define			EMASK_FBD_M15ERR	0x00004000
#define			EMASK_FBD_M14ERR	0x00002000
#define			EMASK_FBD_M13ERR	0x00001000
#define			EMASK_FBD_M12ERR	0x00000800
#define			EMASK_FBD_M11ERR	0x00000400
#define			EMASK_FBD_M10ERR	0x00000200
#define			EMASK_FBD_M9ERR		0x00000100
#define			EMASK_FBD_M8ERR		0x00000080
#define			EMASK_FBD_M7ERR		0x00000040
#define			EMASK_FBD_M6ERR		0x00000020
#define			EMASK_FBD_M5ERR		0x00000010
#define			EMASK_FBD_M4ERR		0x00000008
#define			EMASK_FBD_M3ERR		0x00000004
#define			EMASK_FBD_M2ERR		0x00000002
#define			EMASK_FBD_M1ERR		0x00000001

#define			ENABLE_EMASK_FBD_FATAL_ERRORS	(EMASK_FBD_M1ERR | \
							EMASK_FBD_M2ERR | \
							EMASK_FBD_M3ERR)

#define 		ENABLE_EMASK_FBD_UNCORRECTABLE	(EMASK_FBD_M4ERR | \
							EMASK_FBD_M5ERR | \
							EMASK_FBD_M6ERR | \
							EMASK_FBD_M7ERR | \
							EMASK_FBD_M8ERR | \
							EMASK_FBD_M9ERR | \
							EMASK_FBD_M10ERR | \
							EMASK_FBD_M11ERR | \
							EMASK_FBD_M12ERR)
#define 		ENABLE_EMASK_FBD_CORRECTABLE	(EMASK_FBD_M17ERR | \
							EMASK_FBD_M18ERR | \
							EMASK_FBD_M19ERR | \
							EMASK_FBD_M20ERR)
#define			ENABLE_EMASK_FBD_DIMM_SPARE	(EMASK_FBD_M27ERR | \
							EMASK_FBD_M28ERR)
#define			ENABLE_EMASK_FBD_THERMALS	(EMASK_FBD_M26ERR | \
							EMASK_FBD_M25ERR | \
							EMASK_FBD_M24ERR | \
							EMASK_FBD_M23ERR)
#define			ENABLE_EMASK_FBD_SPD_PROTOCOL	(EMASK_FBD_M22ERR)
#define			ENABLE_EMASK_FBD_NORTH_CRC	(EMASK_FBD_M21ERR)
#define			ENABLE_EMASK_FBD_NON_RETRY	(EMASK_FBD_M15ERR | \
							EMASK_FBD_M14ERR | \
							EMASK_FBD_M13ERR)

#define		ENABLE_EMASK_ALL	(ENABLE_EMASK_FBD_NON_RETRY | \
					ENABLE_EMASK_FBD_NORTH_CRC | \
					ENABLE_EMASK_FBD_SPD_PROTOCOL | \
					ENABLE_EMASK_FBD_THERMALS | \
					ENABLE_EMASK_FBD_DIMM_SPARE | \
					ENABLE_EMASK_FBD_FATAL_ERRORS | \
					ENABLE_EMASK_FBD_CORRECTABLE | \
					ENABLE_EMASK_FBD_UNCORRECTABLE)

#define		ERR0_FBD		0xAC
#define		ERR1_FBD		0xB0
#define		ERR2_FBD		0xB4
#define		MCERR_FBD		0xB8
#define		NRECMEMA		0xBE
#define			NREC_BANK(x)		(((x)>>12) & 0x7)
#define			NREC_RDWR(x)		(((x)>>11) & 1)
#define			NREC_RANK(x)		(((x)>>8) & 0x7)
#define		NRECMEMB		0xC0
#define			NREC_CAS(x)		(((x)>>16) & 0xFFFFFF)
#define			NREC_RAS(x)		((x) & 0x7FFF)
#define		NRECFGLOG		0xC4
#define		NREEECFBDA		0xC8
#define		NREEECFBDB		0xCC
#define		NREEECFBDC		0xD0
#define		NREEECFBDD		0xD4
#define		NREEECFBDE		0xD8
#define		REDMEMA			0xDC
#define		RECMEMA			0xE2
#define			REC_BANK(x)		(((x)>>12) & 0x7)
#define			REC_RDWR(x)		(((x)>>11) & 1)
#define			REC_RANK(x)		(((x)>>8) & 0x7)
#define		RECMEMB			0xE4
#define			REC_CAS(x)		(((x)>>16) & 0xFFFFFF)
#define			REC_RAS(x)		((x) & 0x7FFF)
#define		RECFGLOG		0xE8
#define		RECFBDA			0xEC
#define		RECFBDB			0xF0
#define		RECFBDC			0xF4
#define		RECFBDD			0xF8
#define		RECFBDE			0xFC

/* OFFSETS for Function 2 */

/*
 * Device 21,
 * Function 0: Memory Map Branch 0
 *
 * Device 22,
 * Function 0: Memory Map Branch 1
 */
#define PCI_DEVICE_ID_I5000_BRANCH_0	0x25F5
#define PCI_DEVICE_ID_I5000_BRANCH_1	0x25F6

#define AMB_PRESENT_0	0x64
#define AMB_PRESENT_1	0x66
#define MTR0		0x80
#define MTR1		0x84
#define MTR2		0x88
#define MTR3		0x8C

#define NUM_MTRS		4
273 274
#define CHANNELS_PER_BRANCH	2
#define MAX_BRANCHES		2
275

276
/* Defines to extract the various fields from the
277 278 279 280 281 282 283
 *	MTRx - Memory Technology Registers
 */
#define MTR_DIMMS_PRESENT(mtr)		((mtr) & (0x1 << 8))
#define MTR_DRAM_WIDTH(mtr)		((((mtr) >> 6) & 0x1) ? 8 : 4)
#define MTR_DRAM_BANKS(mtr)		((((mtr) >> 5) & 0x1) ? 8 : 4)
#define MTR_DRAM_BANKS_ADDR_BITS(mtr)	((MTR_DRAM_BANKS(mtr) == 8) ? 3 : 2)
#define MTR_DIMM_RANK(mtr)		(((mtr) >> 4) & 0x1)
284
#define MTR_DIMM_RANK_ADDR_BITS(mtr)	(MTR_DIMM_RANK(mtr) ? 2 : 1)
285 286 287 288 289
#define MTR_DIMM_ROWS(mtr)		(((mtr) >> 2) & 0x3)
#define MTR_DIMM_ROWS_ADDR_BITS(mtr)	(MTR_DIMM_ROWS(mtr) + 13)
#define MTR_DIMM_COLS(mtr)		((mtr) & 0x3)
#define MTR_DIMM_COLS_ADDR_BITS(mtr)	(MTR_DIMM_COLS(mtr) + 10)

A
Aristeu Rozanski 已提交
290 291 292
/* enables the report of miscellaneous messages as CE errors - default off */
static int misc_messages;

293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
/* Enumeration of supported devices */
enum i5000_chips {
	I5000P = 0,
	I5000V = 1,		/* future */
	I5000X = 2		/* future */
};

/* Device name and register DID (Device ID) */
struct i5000_dev_info {
	const char *ctl_name;	/* name for this device */
	u16 fsb_mapping_errors;	/* DID for the branchmap,control */
};

/* Table of devices attributes supported by this driver */
static const struct i5000_dev_info i5000_devs[] = {
	[I5000P] = {
309 310 311
		.ctl_name = "I5000",
		.fsb_mapping_errors = PCI_DEVICE_ID_INTEL_I5000_DEV16,
	},
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
};

struct i5000_dimm_info {
	int megabytes;		/* size, 0 means not present  */
	int dual_rank;
};

#define	MAX_CHANNELS	6	/* max possible channels */
#define MAX_CSROWS	(8*2)	/* max possible csrows per channel */

/* driver private data structure */
struct i5000_pvt {
	struct pci_dev *system_address;	/* 16.0 */
	struct pci_dev *branchmap_werrors;	/* 16.1 */
	struct pci_dev *fsb_error_regs;	/* 16.2 */
	struct pci_dev *branch_0;	/* 21.0 */
	struct pci_dev *branch_1;	/* 22.0 */

	u16 tolm;		/* top of low memory */
331 332 333 334 335 336 337
	union {
		u64 ambase;		/* AMB BAR */
		struct {
			u32 ambase_bottom;
			u32 ambase_top;
		} u __packed;
	};
338 339 340 341 342 343 344 345 346 347 348

	u16 mir0, mir1, mir2;

	u16 b0_mtr[NUM_MTRS];	/* Memory Technlogy Reg */
	u16 b0_ambpresent0;	/* Branch 0, Channel 0 */
	u16 b0_ambpresent1;	/* Brnach 0, Channel 1 */

	u16 b1_mtr[NUM_MTRS];	/* Memory Technlogy Reg */
	u16 b1_ambpresent0;	/* Branch 1, Channel 8 */
	u16 b1_ambpresent1;	/* Branch 1, Channel 1 */

J
Joe Perches 已提交
349
	/* DIMM information matrix, allocating architecture maximums */
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
	struct i5000_dimm_info dimm_info[MAX_CSROWS][MAX_CHANNELS];

	/* Actual values for this controller */
	int maxch;		/* Max channels */
	int maxdimmperch;	/* Max DIMMs per channel */
};

/* I5000 MCH error information retrieved from Hardware */
struct i5000_error_info {

	/* These registers are always read from the MC */
	u32 ferr_fat_fbd;	/* First Errors Fatal */
	u32 nerr_fat_fbd;	/* Next Errors Fatal */
	u32 ferr_nf_fbd;	/* First Errors Non-Fatal */
	u32 nerr_nf_fbd;	/* Next Errors Non-Fatal */

	/* These registers are input ONLY if there was a Recoverable  Error */
	u32 redmemb;		/* Recoverable Mem Data Error log B */
	u16 recmema;		/* Recoverable Mem Error log A */
	u32 recmemb;		/* Recoverable Mem Error log B */

	/* These registers are input ONLY if there was a
	 * Non-Recoverable Error */
	u16 nrecmema;		/* Non-Recoverable Mem log A */
	u16 nrecmemb;		/* Non-Recoverable Mem log B */

};

378 379
static struct edac_pci_ctl_info *i5000_pci;

380
/*
381 382 383 384 385
 *	i5000_get_error_info	Retrieve the hardware error information from
 *				the hardware and cache it in the 'info'
 *				structure
 */
static void i5000_get_error_info(struct mem_ctl_info *mci,
386
				 struct i5000_error_info *info)
387 388 389 390
{
	struct i5000_pvt *pvt;
	u32 value;

391
	pvt = mci->pvt_info;
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406

	/* read in the 1st FATAL error register */
	pci_read_config_dword(pvt->branchmap_werrors, FERR_FAT_FBD, &value);

	/* Mask only the bits that the doc says are valid
	 */
	value &= (FERR_FAT_FBDCHAN | FERR_FAT_MASK);

	/* If there is an error, then read in the */
	/* NEXT FATAL error register and the Memory Error Log Register A */
	if (value & FERR_FAT_MASK) {
		info->ferr_fat_fbd = value;

		/* harvest the various error data we need */
		pci_read_config_dword(pvt->branchmap_werrors,
407
				NERR_FAT_FBD, &info->nerr_fat_fbd);
408
		pci_read_config_word(pvt->branchmap_werrors,
409
				NRECMEMA, &info->nrecmema);
410
		pci_read_config_word(pvt->branchmap_werrors,
411
				NRECMEMB, &info->nrecmemb);
412 413 414

		/* Clear the error bits, by writing them back */
		pci_write_config_dword(pvt->branchmap_werrors,
415
				FERR_FAT_FBD, value);
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
	} else {
		info->ferr_fat_fbd = 0;
		info->nerr_fat_fbd = 0;
		info->nrecmema = 0;
		info->nrecmemb = 0;
	}

	/* read in the 1st NON-FATAL error register */
	pci_read_config_dword(pvt->branchmap_werrors, FERR_NF_FBD, &value);

	/* If there is an error, then read in the 1st NON-FATAL error
	 * register as well */
	if (value & FERR_NF_MASK) {
		info->ferr_nf_fbd = value;

		/* harvest the various error data we need */
		pci_read_config_dword(pvt->branchmap_werrors,
433
				NERR_NF_FBD, &info->nerr_nf_fbd);
434
		pci_read_config_word(pvt->branchmap_werrors,
435
				RECMEMA, &info->recmema);
436
		pci_read_config_dword(pvt->branchmap_werrors,
437
				RECMEMB, &info->recmemb);
438
		pci_read_config_dword(pvt->branchmap_werrors,
439
				REDMEMB, &info->redmemb);
440 441 442

		/* Clear the error bits, by writing them back */
		pci_write_config_dword(pvt->branchmap_werrors,
443
				FERR_NF_FBD, value);
444 445 446 447 448 449 450 451 452
	} else {
		info->ferr_nf_fbd = 0;
		info->nerr_nf_fbd = 0;
		info->recmema = 0;
		info->recmemb = 0;
		info->redmemb = 0;
	}
}

453
/*
454 455 456 457 458 459 460
 * i5000_process_fatal_error_info(struct mem_ctl_info *mci,
 * 					struct i5000_error_info *info,
 * 					int handle_errors);
 *
 *	handle the Intel FATAL errors, if any
 */
static void i5000_process_fatal_error_info(struct mem_ctl_info *mci,
461
					struct i5000_error_info *info,
462
					int handle_errors)
463
{
A
Aristeu Rozanski 已提交
464 465
	char msg[EDAC_MC_LABEL_LEN + 1 + 160];
	char *specific = NULL;
466 467 468 469 470 471 472 473 474 475 476 477
	u32 allErrors;
	int channel;
	int bank;
	int rank;
	int rdwr;
	int ras, cas;

	/* mask off the Error bits that are possible */
	allErrors = (info->ferr_fat_fbd & FERR_FAT_MASK);
	if (!allErrors)
		return;		/* if no error, return now */

478
	channel = EXTRACT_FBDCHAN_INDX(info->ferr_fat_fbd);
479 480 481 482 483 484 485 486

	/* Use the NON-Recoverable macros to extract data */
	bank = NREC_BANK(info->nrecmema);
	rank = NREC_RANK(info->nrecmema);
	rdwr = NREC_RDWR(info->nrecmema);
	ras = NREC_RAS(info->nrecmemb);
	cas = NREC_CAS(info->nrecmemb);

487 488 489
	edac_dbg(0, "\t\tCSROW= %d  Channel= %d (DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
		 rank, channel, bank,
		 rdwr ? "Write" : "Read", ras, cas);
490 491

	/* Only 1 bit will be on */
A
Aristeu Rozanski 已提交
492 493 494 495 496 497 498 499 500 501
	switch (allErrors) {
	case FERR_FAT_M1ERR:
		specific = "Alert on non-redundant retry or fast "
				"reset timeout";
		break;
	case FERR_FAT_M2ERR:
		specific = "Northbound CRC error on non-redundant "
				"retry";
		break;
	case FERR_FAT_M3ERR:
A
Aristeu Rozanski 已提交
502 503 504 505 506 507 508 509 510 511 512 513 514 515
		{
		static int done;

		/*
		 * This error is generated to inform that the intelligent
		 * throttling is disabled and the temperature passed the
		 * specified middle point. Since this is something the BIOS
		 * should take care of, we'll warn only once to avoid
		 * worthlessly flooding the log.
		 */
		if (done)
			return;
		done++;

A
Aristeu Rozanski 已提交
516
		specific = ">Tmid Thermal event with intelligent "
A
Aristeu Rozanski 已提交
517 518
			   "throttling disabled";
		}
A
Aristeu Rozanski 已提交
519
		break;
520 521 522 523
	}

	/* Form out message */
	snprintf(msg, sizeof(msg),
524 525
		 "Bank=%d RAS=%d CAS=%d FATAL Err=0x%x (%s)",
		 bank, ras, cas, allErrors, specific);
526 527

	/* Call the helper to output message */
528
	edac_mc_handle_error(HW_EVENT_ERR_FATAL, mci, 1, 0, 0, 0,
529
			     channel >> 1, channel & 1, rank,
530
			     rdwr ? "Write error" : "Read error",
531
			     msg);
532 533
}

534
/*
535
 * i5000_process_fatal_error_info(struct mem_ctl_info *mci,
536 537
 * 				struct i5000_error_info *info,
 * 				int handle_errors);
538 539 540 541
 *
 *	handle the Intel NON-FATAL errors, if any
 */
static void i5000_process_nonfatal_error_info(struct mem_ctl_info *mci,
542
					struct i5000_error_info *info,
543
					int handle_errors)
544
{
A
Aristeu Rozanski 已提交
545 546
	char msg[EDAC_MC_LABEL_LEN + 1 + 170];
	char *specific = NULL;
547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
	u32 allErrors;
	u32 ue_errors;
	u32 ce_errors;
	u32 misc_errors;
	int branch;
	int channel;
	int bank;
	int rank;
	int rdwr;
	int ras, cas;

	/* mask off the Error bits that are possible */
	allErrors = (info->ferr_nf_fbd & FERR_NF_MASK);
	if (!allErrors)
		return;		/* if no error, return now */

	/* ONLY ONE of the possible error bits will be set, as per the docs */
	ue_errors = allErrors & FERR_NF_UNCORRECTABLE;
	if (ue_errors) {
566
		edac_dbg(0, "\tUncorrected bits= 0x%x\n", ue_errors);
567 568

		branch = EXTRACT_FBDCHAN_INDX(info->ferr_nf_fbd);
569 570 571 572 573 574 575

		/*
		 * According with i5000 datasheet, bit 28 has no significance
		 * for errors M4Err-M12Err and M17Err-M21Err, on FERR_NF_FBD
		 */
		channel = branch & 2;

576 577 578 579 580 581
		bank = NREC_BANK(info->nrecmema);
		rank = NREC_RANK(info->nrecmema);
		rdwr = NREC_RDWR(info->nrecmema);
		ras = NREC_RAS(info->nrecmemb);
		cas = NREC_CAS(info->nrecmemb);

582 583 584
		edac_dbg(0, "\t\tCSROW= %d  Channels= %d,%d  (Branch= %d DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
			 rank, channel, channel + 1, branch >> 1, bank,
			 rdwr ? "Write" : "Read", ras, cas);
585

A
Aristeu Rozanski 已提交
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
		switch (ue_errors) {
		case FERR_NF_M12ERR:
			specific = "Non-Aliased Uncorrectable Patrol Data ECC";
			break;
		case FERR_NF_M11ERR:
			specific = "Non-Aliased Uncorrectable Spare-Copy "
					"Data ECC";
			break;
		case FERR_NF_M10ERR:
			specific = "Non-Aliased Uncorrectable Mirrored Demand "
					"Data ECC";
			break;
		case FERR_NF_M9ERR:
			specific = "Non-Aliased Uncorrectable Non-Mirrored "
					"Demand Data ECC";
			break;
		case FERR_NF_M8ERR:
			specific = "Aliased Uncorrectable Patrol Data ECC";
			break;
		case FERR_NF_M7ERR:
			specific = "Aliased Uncorrectable Spare-Copy Data ECC";
			break;
		case FERR_NF_M6ERR:
			specific = "Aliased Uncorrectable Mirrored Demand "
					"Data ECC";
			break;
		case FERR_NF_M5ERR:
			specific = "Aliased Uncorrectable Non-Mirrored Demand "
					"Data ECC";
			break;
		case FERR_NF_M4ERR:
			specific = "Uncorrectable Data ECC on Replay";
			break;
		}

621 622
		/* Form out message */
		snprintf(msg, sizeof(msg),
623 624
			 "Rank=%d Bank=%d RAS=%d CAS=%d, UE Err=0x%x (%s)",
			 rank, bank, ras, cas, ue_errors, specific);
625 626

		/* Call the helper to output message */
627
		edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1, 0, 0, 0,
628 629
				channel >> 1, -1, rank,
				rdwr ? "Write error" : "Read error",
630
				msg);
631 632 633 634 635
	}

	/* Check correctable errors */
	ce_errors = allErrors & FERR_NF_CORRECTABLE;
	if (ce_errors) {
636
		edac_dbg(0, "\tCorrected bits= 0x%x\n", ce_errors);
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653

		branch = EXTRACT_FBDCHAN_INDX(info->ferr_nf_fbd);

		channel = 0;
		if (REC_ECC_LOCATOR_ODD(info->redmemb))
			channel = 1;

		/* Convert channel to be based from zero, instead of
		 * from branch base of 0 */
		channel += branch;

		bank = REC_BANK(info->recmema);
		rank = REC_RANK(info->recmema);
		rdwr = REC_RDWR(info->recmema);
		ras = REC_RAS(info->recmemb);
		cas = REC_CAS(info->recmemb);

654 655 656
		edac_dbg(0, "\t\tCSROW= %d Channel= %d  (Branch %d DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
			 rank, channel, branch >> 1, bank,
			 rdwr ? "Write" : "Read", ras, cas);
657

A
Aristeu Rozanski 已提交
658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
		switch (ce_errors) {
		case FERR_NF_M17ERR:
			specific = "Correctable Non-Mirrored Demand Data ECC";
			break;
		case FERR_NF_M18ERR:
			specific = "Correctable Mirrored Demand Data ECC";
			break;
		case FERR_NF_M19ERR:
			specific = "Correctable Spare-Copy Data ECC";
			break;
		case FERR_NF_M20ERR:
			specific = "Correctable Patrol Data ECC";
			break;
		}

673 674
		/* Form out message */
		snprintf(msg, sizeof(msg),
675
			 "Rank=%d Bank=%d RDWR=%s RAS=%d "
A
Aristeu Rozanski 已提交
676 677 678
			 "CAS=%d, CE Err=0x%x (%s))", branch >> 1, bank,
			 rdwr ? "Write" : "Read", ras, cas, ce_errors,
			 specific);
679 680

		/* Call the helper to output message */
681
		edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1, 0, 0, 0,
682 683
				channel >> 1, channel % 2, rank,
				rdwr ? "Write error" : "Read error",
684
				msg);
685 686
	}

A
Aristeu Rozanski 已提交
687 688
	if (!misc_messages)
		return;
689

A
Aristeu Rozanski 已提交
690 691
	misc_errors = allErrors & (FERR_NF_NON_RETRY | FERR_NF_NORTH_CRC |
				   FERR_NF_SPD_PROTOCOL | FERR_NF_DIMM_SPARE);
692
	if (misc_errors) {
A
Aristeu Rozanski 已提交
693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
		switch (misc_errors) {
		case FERR_NF_M13ERR:
			specific = "Non-Retry or Redundant Retry FBD Memory "
					"Alert or Redundant Fast Reset Timeout";
			break;
		case FERR_NF_M14ERR:
			specific = "Non-Retry or Redundant Retry FBD "
					"Configuration Alert";
			break;
		case FERR_NF_M15ERR:
			specific = "Non-Retry or Redundant Retry FBD "
					"Northbound CRC error on read data";
			break;
		case FERR_NF_M21ERR:
			specific = "FBD Northbound CRC error on "
					"FBD Sync Status";
			break;
		case FERR_NF_M22ERR:
			specific = "SPD protocol error";
			break;
		case FERR_NF_M27ERR:
			specific = "DIMM-spare copy started";
			break;
		case FERR_NF_M28ERR:
			specific = "DIMM-spare copy completed";
			break;
		}
		branch = EXTRACT_FBDCHAN_INDX(info->ferr_nf_fbd);
721

A
Aristeu Rozanski 已提交
722 723
		/* Form out message */
		snprintf(msg, sizeof(msg),
724
			 "Err=%#x (%s)", misc_errors, specific);
725

A
Aristeu Rozanski 已提交
726
		/* Call the helper to output message */
727
		edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1, 0, 0, 0,
728
				branch >> 1, -1, -1,
729
				"Misc error", msg);
730 731 732
	}
}

733
/*
734 735 736 737
 *	i5000_process_error_info	Process the error info that is
 *	in the 'info' structure, previously retrieved from hardware
 */
static void i5000_process_error_info(struct mem_ctl_info *mci,
738
				struct i5000_error_info *info,
739
				int handle_errors)
740 741 742 743 744 745 746 747
{
	/* First handle any fatal errors that occurred */
	i5000_process_fatal_error_info(mci, info, handle_errors);

	/* now handle any non-fatal errors that occurred */
	i5000_process_nonfatal_error_info(mci, info, handle_errors);
}

748
/*
749 750 751 752 753 754 755 756 757 758 759 760
 *	i5000_clear_error	Retrieve any error from the hardware
 *				but do NOT process that error.
 *				Used for 'clearing' out of previous errors
 *				Called by the Core module.
 */
static void i5000_clear_error(struct mem_ctl_info *mci)
{
	struct i5000_error_info info;

	i5000_get_error_info(mci, &info);
}

761
/*
762 763 764 765 766 767
 *	i5000_check_error	Retrieve and process errors reported by the
 *				hardware. Called by the Core module.
 */
static void i5000_check_error(struct mem_ctl_info *mci)
{
	struct i5000_error_info info;
768
	edac_dbg(4, "MC%d\n", mci->mc_idx);
769 770 771 772
	i5000_get_error_info(mci, &info);
	i5000_process_error_info(mci, &info, 1);
}

773
/*
774 775 776 777 778 779 780 781 782 783 784
 *	i5000_get_devices	Find and perform 'get' operation on the MCH's
 *			device/functions we want to reference for this driver
 *
 *			Need to 'get' device 16 func 1 and func 2
 */
static int i5000_get_devices(struct mem_ctl_info *mci, int dev_idx)
{
	//const struct i5000_dev_info *i5000_dev = &i5000_devs[dev_idx];
	struct i5000_pvt *pvt;
	struct pci_dev *pdev;

785
	pvt = mci->pvt_info;
786 787 788 789 790

	/* Attempt to 'get' the MCH register we want */
	pdev = NULL;
	while (1) {
		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
791
				PCI_DEVICE_ID_INTEL_I5000_DEV16, pdev);
792 793 794 795

		/* End of list, leave */
		if (pdev == NULL) {
			i5000_printk(KERN_ERR,
796 797 798 799 800 801
				"'system address,Process Bus' "
				"device not found:"
				"vendor 0x%x device 0x%x FUNC 1 "
				"(broken BIOS?)\n",
				PCI_VENDOR_ID_INTEL,
				PCI_DEVICE_ID_INTEL_I5000_DEV16);
802 803 804 805 806 807 808 809 810 811 812 813 814 815 816

			return 1;
		}

		/* Scan for device 16 func 1 */
		if (PCI_FUNC(pdev->devfn) == 1)
			break;
	}

	pvt->branchmap_werrors = pdev;

	/* Attempt to 'get' the MCH register we want */
	pdev = NULL;
	while (1) {
		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
817
				PCI_DEVICE_ID_INTEL_I5000_DEV16, pdev);
818 819 820

		if (pdev == NULL) {
			i5000_printk(KERN_ERR,
821 822 823 824 825 826
				"MC: 'branchmap,control,errors' "
				"device not found:"
				"vendor 0x%x device 0x%x Func 2 "
				"(broken BIOS?)\n",
				PCI_VENDOR_ID_INTEL,
				PCI_DEVICE_ID_INTEL_I5000_DEV16);
827 828 829 830 831 832 833 834 835 836 837 838

			pci_dev_put(pvt->branchmap_werrors);
			return 1;
		}

		/* Scan for device 16 func 1 */
		if (PCI_FUNC(pdev->devfn) == 2)
			break;
	}

	pvt->fsb_error_regs = pdev;

839 840 841 842 843 844 845 846 847 848
	edac_dbg(1, "System Address, processor bus- PCI Bus ID: %s  %x:%x\n",
		 pci_name(pvt->system_address),
		 pvt->system_address->vendor, pvt->system_address->device);
	edac_dbg(1, "Branchmap, control and errors - PCI Bus ID: %s  %x:%x\n",
		 pci_name(pvt->branchmap_werrors),
		 pvt->branchmap_werrors->vendor,
		 pvt->branchmap_werrors->device);
	edac_dbg(1, "FSB Error Regs - PCI Bus ID: %s  %x:%x\n",
		 pci_name(pvt->fsb_error_regs),
		 pvt->fsb_error_regs->vendor, pvt->fsb_error_regs->device);
849 850 851

	pdev = NULL;
	pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
852
			PCI_DEVICE_ID_I5000_BRANCH_0, pdev);
853 854 855

	if (pdev == NULL) {
		i5000_printk(KERN_ERR,
856 857 858
			"MC: 'BRANCH 0' device not found:"
			"vendor 0x%x device 0x%x Func 0 (broken BIOS?)\n",
			PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_I5000_BRANCH_0);
859 860 861 862 863 864 865 866 867 868 869 870 871 872

		pci_dev_put(pvt->branchmap_werrors);
		pci_dev_put(pvt->fsb_error_regs);
		return 1;
	}

	pvt->branch_0 = pdev;

	/* If this device claims to have more than 2 channels then
	 * fetch Branch 1's information
	 */
	if (pvt->maxch >= CHANNELS_PER_BRANCH) {
		pdev = NULL;
		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
873
				PCI_DEVICE_ID_I5000_BRANCH_1, pdev);
874 875 876

		if (pdev == NULL) {
			i5000_printk(KERN_ERR,
877 878 879 880 881
				"MC: 'BRANCH 1' device not found:"
				"vendor 0x%x device 0x%x Func 0 "
				"(broken BIOS?)\n",
				PCI_VENDOR_ID_INTEL,
				PCI_DEVICE_ID_I5000_BRANCH_1);
882 883 884 885 886 887 888 889 890 891 892 893 894

			pci_dev_put(pvt->branchmap_werrors);
			pci_dev_put(pvt->fsb_error_regs);
			pci_dev_put(pvt->branch_0);
			return 1;
		}

		pvt->branch_1 = pdev;
	}

	return 0;
}

895
/*
896 897 898 899 900 901 902
 *	i5000_put_devices	'put' all the devices that we have
 *				reserved via 'get'
 */
static void i5000_put_devices(struct mem_ctl_info *mci)
{
	struct i5000_pvt *pvt;

903
	pvt = mci->pvt_info;
904 905 906 907 908 909

	pci_dev_put(pvt->branchmap_werrors);	/* FUNC 1 */
	pci_dev_put(pvt->fsb_error_regs);	/* FUNC 2 */
	pci_dev_put(pvt->branch_0);	/* DEV 21 */

	/* Only if more than 2 channels do we release the second branch */
910
	if (pvt->maxch >= CHANNELS_PER_BRANCH)
911 912 913
		pci_dev_put(pvt->branch_1);	/* DEV 22 */
}

914
/*
915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
 *	determine_amb_resent
 *
 *		the information is contained in NUM_MTRS different registers
 *		determineing which of the NUM_MTRS requires knowing
 *		which channel is in question
 *
 *	2 branches, each with 2 channels
 *		b0_ambpresent0 for channel '0'
 *		b0_ambpresent1 for channel '1'
 *		b1_ambpresent0 for channel '2'
 *		b1_ambpresent1 for channel '3'
 */
static int determine_amb_present_reg(struct i5000_pvt *pvt, int channel)
{
	int amb_present;

	if (channel < CHANNELS_PER_BRANCH) {
		if (channel & 0x1)
			amb_present = pvt->b0_ambpresent1;
		else
			amb_present = pvt->b0_ambpresent0;
	} else {
		if (channel & 0x1)
			amb_present = pvt->b1_ambpresent1;
		else
			amb_present = pvt->b1_ambpresent0;
	}

	return amb_present;
}

946
/*
947 948 949 950
 * determine_mtr(pvt, csrow, channel)
 *
 *	return the proper MTR register as determine by the csrow and channel desired
 */
951
static int determine_mtr(struct i5000_pvt *pvt, int slot, int channel)
952 953 954 955
{
	int mtr;

	if (channel < CHANNELS_PER_BRANCH)
956
		mtr = pvt->b0_mtr[slot];
957
	else
958
		mtr = pvt->b1_mtr[slot];
959 960 961 962

	return mtr;
}

963
/*
964 965 966 967 968 969 970
 */
static void decode_mtr(int slot_row, u16 mtr)
{
	int ans;

	ans = MTR_DIMMS_PRESENT(mtr);

971 972
	edac_dbg(2, "\tMTR%d=0x%x:  DIMMs are %sPresent\n",
		 slot_row, mtr, ans ? "" : "NOT ");
973 974 975
	if (!ans)
		return;

976 977 978 979 980 981 982 983 984 985 986 987 988 989
	edac_dbg(2, "\t\tWIDTH: x%d\n", MTR_DRAM_WIDTH(mtr));
	edac_dbg(2, "\t\tNUMBANK: %d bank(s)\n", MTR_DRAM_BANKS(mtr));
	edac_dbg(2, "\t\tNUMRANK: %s\n",
		 MTR_DIMM_RANK(mtr) ? "double" : "single");
	edac_dbg(2, "\t\tNUMROW: %s\n",
		 MTR_DIMM_ROWS(mtr) == 0 ? "8,192 - 13 rows" :
		 MTR_DIMM_ROWS(mtr) == 1 ? "16,384 - 14 rows" :
		 MTR_DIMM_ROWS(mtr) == 2 ? "32,768 - 15 rows" :
		 "reserved");
	edac_dbg(2, "\t\tNUMCOL: %s\n",
		 MTR_DIMM_COLS(mtr) == 0 ? "1,024 - 10 columns" :
		 MTR_DIMM_COLS(mtr) == 1 ? "2,048 - 11 columns" :
		 MTR_DIMM_COLS(mtr) == 2 ? "4,096 - 12 columns" :
		 "reserved");
990 991
}

992
static void handle_channel(struct i5000_pvt *pvt, int slot, int channel,
993
			struct i5000_dimm_info *dinfo)
994 995 996 997 998
{
	int mtr;
	int amb_present_reg;
	int addrBits;

999
	mtr = determine_mtr(pvt, slot, channel);
1000 1001 1002
	if (MTR_DIMMS_PRESENT(mtr)) {
		amb_present_reg = determine_amb_present_reg(pvt, channel);

1003 1004
		/* Determine if there is a DIMM present in this DIMM slot */
		if (amb_present_reg) {
1005 1006
			dinfo->dual_rank = MTR_DIMM_RANK(mtr);

1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
			/* Start with the number of bits for a Bank
				* on the DRAM */
			addrBits = MTR_DRAM_BANKS_ADDR_BITS(mtr);
			/* Add the number of ROW bits */
			addrBits += MTR_DIMM_ROWS_ADDR_BITS(mtr);
			/* add the number of COLUMN bits */
			addrBits += MTR_DIMM_COLS_ADDR_BITS(mtr);

			addrBits += 6;	/* add 64 bits per DIMM */
			addrBits -= 20;	/* divide by 2^^20 */
			addrBits -= 3;	/* 8 bits per bytes */

			dinfo->megabytes = 1 << addrBits;
1020 1021 1022 1023
		}
	}
}

1024
/*
1025 1026 1027 1028 1029 1030 1031 1032
 *	calculate_dimm_size
 *
 *	also will output a DIMM matrix map, if debug is enabled, for viewing
 *	how the DIMMs are populated
 */
static void calculate_dimm_size(struct i5000_pvt *pvt)
{
	struct i5000_dimm_info *dinfo;
1033
	int slot, channel, branch;
1034 1035 1036 1037 1038 1039 1040 1041
	char *p, *mem_buffer;
	int space, n;

	/* ================= Generate some debug output ================= */
	space = PAGE_SIZE;
	mem_buffer = p = kmalloc(space, GFP_KERNEL);
	if (p == NULL) {
		i5000_printk(KERN_ERR, "MC: %s:%s() kmalloc() failed\n",
1042
			__FILE__, __func__);
1043 1044 1045
		return;
	}

1046
	/* Scan all the actual slots
1047
	 * and calculate the information for each DIMM
1048 1049
	 * Start with the highest slot first, to display it first
	 * and work toward the 0th slot
1050
	 */
1051
	for (slot = pvt->maxdimmperch - 1; slot >= 0; slot--) {
1052

1053
		/* on an odd slot, first output a 'boundary' marker,
1054
		 * then reset the message buffer  */
1055 1056
		if (slot & 0x1) {
			n = snprintf(p, space, "--------------------------"
1057
				"--------------------------------");
1058 1059
			p += n;
			space -= n;
1060
			edac_dbg(2, "%s\n", mem_buffer);
1061 1062 1063
			p = mem_buffer;
			space = PAGE_SIZE;
		}
1064
		n = snprintf(p, space, "slot %2d    ", slot);
1065 1066 1067 1068
		p += n;
		space -= n;

		for (channel = 0; channel < pvt->maxch; channel++) {
1069 1070 1071 1072 1073 1074 1075
			dinfo = &pvt->dimm_info[slot][channel];
			handle_channel(pvt, slot, channel, dinfo);
			if (dinfo->megabytes)
				n = snprintf(p, space, "%4d MB %dR| ",
					     dinfo->megabytes, dinfo->dual_rank + 1);
			else
				n = snprintf(p, space, "%4d MB   | ", 0);
1076 1077 1078 1079 1080
			p += n;
			space -= n;
		}
		p += n;
		space -= n;
1081
		edac_dbg(2, "%s\n", mem_buffer);
1082 1083
		p = mem_buffer;
		space = PAGE_SIZE;
1084 1085 1086
	}

	/* Output the last bottom 'boundary' marker */
1087 1088
	n = snprintf(p, space, "--------------------------"
		"--------------------------------");
1089 1090
	p += n;
	space -= n;
1091
	edac_dbg(2, "%s\n", mem_buffer);
1092 1093
	p = mem_buffer;
	space = PAGE_SIZE;
1094 1095

	/* now output the 'channel' labels */
1096
	n = snprintf(p, space, "           ");
1097 1098 1099 1100 1101 1102 1103
	p += n;
	space -= n;
	for (channel = 0; channel < pvt->maxch; channel++) {
		n = snprintf(p, space, "channel %d | ", channel);
		p += n;
		space -= n;
	}
1104
	edac_dbg(2, "%s\n", mem_buffer);
1105 1106 1107 1108
	p = mem_buffer;
	space = PAGE_SIZE;

	n = snprintf(p, space, "           ");
1109
	p += n;
1110 1111 1112 1113 1114
	for (branch = 0; branch < MAX_BRANCHES; branch++) {
		n = snprintf(p, space, "       branch %d       | ", branch);
		p += n;
		space -= n;
	}
1115 1116

	/* output the last message and free buffer */
1117
	edac_dbg(2, "%s\n", mem_buffer);
1118 1119 1120
	kfree(mem_buffer);
}

1121
/*
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
 *	i5000_get_mc_regs	read in the necessary registers and
 *				cache locally
 *
 *			Fills in the private data members
 */
static void i5000_get_mc_regs(struct mem_ctl_info *mci)
{
	struct i5000_pvt *pvt;
	u32 actual_tolm;
	u16 limit;
	int slot_row;
	int maxch;
	int maxdimmperch;
	int way0, way1;

1137
	pvt = mci->pvt_info;
1138 1139

	pci_read_config_dword(pvt->system_address, AMBASE,
1140
			&pvt->u.ambase_bottom);
1141
	pci_read_config_dword(pvt->system_address, AMBASE + sizeof(u32),
1142
			&pvt->u.ambase_top);
1143 1144 1145 1146

	maxdimmperch = pvt->maxdimmperch;
	maxch = pvt->maxch;

1147 1148
	edac_dbg(2, "AMBASE= 0x%lx  MAXCH= %d  MAX-DIMM-Per-CH= %d\n",
		 (long unsigned int)pvt->ambase, pvt->maxch, pvt->maxdimmperch);
1149 1150 1151 1152

	/* Get the Branch Map regs */
	pci_read_config_word(pvt->branchmap_werrors, TOLM, &pvt->tolm);
	pvt->tolm >>= 12;
1153 1154
	edac_dbg(2, "TOLM (number of 256M regions) =%u (0x%x)\n",
		 pvt->tolm, pvt->tolm);
1155 1156

	actual_tolm = pvt->tolm << 28;
1157 1158
	edac_dbg(2, "Actual TOLM byte addr=%u (0x%x)\n",
		 actual_tolm, actual_tolm);
1159 1160 1161 1162 1163 1164 1165 1166 1167

	pci_read_config_word(pvt->branchmap_werrors, MIR0, &pvt->mir0);
	pci_read_config_word(pvt->branchmap_werrors, MIR1, &pvt->mir1);
	pci_read_config_word(pvt->branchmap_werrors, MIR2, &pvt->mir2);

	/* Get the MIR[0-2] regs */
	limit = (pvt->mir0 >> 4) & 0x0FFF;
	way0 = pvt->mir0 & 0x1;
	way1 = pvt->mir0 & 0x2;
1168 1169
	edac_dbg(2, "MIR0: limit= 0x%x  WAY1= %u  WAY0= %x\n",
		 limit, way1, way0);
1170 1171 1172
	limit = (pvt->mir1 >> 4) & 0x0FFF;
	way0 = pvt->mir1 & 0x1;
	way1 = pvt->mir1 & 0x2;
1173 1174
	edac_dbg(2, "MIR1: limit= 0x%x  WAY1= %u  WAY0= %x\n",
		 limit, way1, way0);
1175 1176 1177
	limit = (pvt->mir2 >> 4) & 0x0FFF;
	way0 = pvt->mir2 & 0x1;
	way1 = pvt->mir2 & 0x2;
1178 1179
	edac_dbg(2, "MIR2: limit= 0x%x  WAY1= %u  WAY0= %x\n",
		 limit, way1, way0);
1180 1181 1182 1183 1184 1185

	/* Get the MTR[0-3] regs */
	for (slot_row = 0; slot_row < NUM_MTRS; slot_row++) {
		int where = MTR0 + (slot_row * sizeof(u32));

		pci_read_config_word(pvt->branch_0, where,
1186
				&pvt->b0_mtr[slot_row]);
1187

1188 1189
		edac_dbg(2, "MTR%d where=0x%x B0 value=0x%x\n",
			 slot_row, where, pvt->b0_mtr[slot_row]);
1190 1191 1192

		if (pvt->maxch >= CHANNELS_PER_BRANCH) {
			pci_read_config_word(pvt->branch_1, where,
1193
					&pvt->b1_mtr[slot_row]);
1194 1195
			edac_dbg(2, "MTR%d where=0x%x B1 value=0x%x\n",
				 slot_row, where, pvt->b1_mtr[slot_row]);
1196 1197 1198 1199 1200 1201
		} else {
			pvt->b1_mtr[slot_row] = 0;
		}
	}

	/* Read and dump branch 0's MTRs */
1202 1203
	edac_dbg(2, "Memory Technology Registers:\n");
	edac_dbg(2, "   Branch 0:\n");
1204 1205 1206 1207
	for (slot_row = 0; slot_row < NUM_MTRS; slot_row++) {
		decode_mtr(slot_row, pvt->b0_mtr[slot_row]);
	}
	pci_read_config_word(pvt->branch_0, AMB_PRESENT_0,
1208
			&pvt->b0_ambpresent0);
1209
	edac_dbg(2, "\t\tAMB-Branch 0-present0 0x%x:\n", pvt->b0_ambpresent0);
1210
	pci_read_config_word(pvt->branch_0, AMB_PRESENT_1,
1211
			&pvt->b0_ambpresent1);
1212
	edac_dbg(2, "\t\tAMB-Branch 0-present1 0x%x:\n", pvt->b0_ambpresent1);
1213 1214 1215 1216 1217 1218 1219

	/* Only if we have 2 branchs (4 channels) */
	if (pvt->maxch < CHANNELS_PER_BRANCH) {
		pvt->b1_ambpresent0 = 0;
		pvt->b1_ambpresent1 = 0;
	} else {
		/* Read and dump  branch 1's MTRs */
1220
		edac_dbg(2, "   Branch 1:\n");
1221 1222 1223 1224
		for (slot_row = 0; slot_row < NUM_MTRS; slot_row++) {
			decode_mtr(slot_row, pvt->b1_mtr[slot_row]);
		}
		pci_read_config_word(pvt->branch_1, AMB_PRESENT_0,
1225
				&pvt->b1_ambpresent0);
1226 1227
		edac_dbg(2, "\t\tAMB-Branch 1-present0 0x%x:\n",
			 pvt->b1_ambpresent0);
1228
		pci_read_config_word(pvt->branch_1, AMB_PRESENT_1,
1229
				&pvt->b1_ambpresent1);
1230 1231
		edac_dbg(2, "\t\tAMB-Branch 1-present1 0x%x:\n",
			 pvt->b1_ambpresent1);
1232 1233 1234 1235 1236 1237 1238
	}

	/* Go and determine the size of each DIMM and place in an
	 * orderly matrix */
	calculate_dimm_size(pvt);
}

1239
/*
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
 *	i5000_init_csrows	Initialize the 'csrows' table within
 *				the mci control	structure with the
 *				addressing of memory.
 *
 *	return:
 *		0	success
 *		1	no actual memory found on this MC
 */
static int i5000_init_csrows(struct mem_ctl_info *mci)
{
	struct i5000_pvt *pvt;
1251
	struct dimm_info *dimm;
1252 1253
	int empty, channel_count;
	int max_csrows;
1254
	int mtr;
1255 1256
	int csrow_megs;
	int channel;
1257
	int slot;
1258

1259
	pvt = mci->pvt_info;
1260 1261 1262 1263 1264 1265

	channel_count = pvt->maxch;
	max_csrows = pvt->maxdimmperch * 2;

	empty = 1;		/* Assume NO memory */

1266
	/*
1267 1268 1269 1270 1271
	 * FIXME: The memory layout used to map slot/channel into the
	 * real memory architecture is weird: branch+slot are "csrows"
	 * and channel is channel. That required an extra array (dimm_info)
	 * to map the dimms. A good cleanup would be to remove this array,
	 * and do a loop here with branch, channel, slot
1272
	 */
1273 1274
	for (slot = 0; slot < max_csrows; slot++) {
		for (channel = 0; channel < pvt->maxch; channel++) {
1275

1276
			mtr = determine_mtr(pvt, slot, channel);
1277

1278 1279
			if (!MTR_DIMMS_PRESENT(mtr))
				continue;
1280

1281 1282 1283
			dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers,
				       channel / MAX_BRANCHES,
				       channel % MAX_BRANCHES, slot);
1284

1285
			csrow_megs = pvt->dimm_info[slot][channel].megabytes;
1286
			dimm->grain = 8;
1287

1288
			/* Assume DDR2 for now */
1289
			dimm->mtype = MEM_FB_DDR2;
1290

1291 1292
			/* ask what device type on this row */
			if (MTR_DRAM_WIDTH(mtr))
1293
				dimm->dtype = DEV_X8;
1294
			else
1295
				dimm->dtype = DEV_X4;
1296

1297
			dimm->edac_mode = EDAC_S8ECD8ED;
1298
			dimm->nr_pages = csrow_megs << 8;
1299
		}
1300 1301 1302 1303 1304 1305 1306

		empty = 0;
	}

	return empty;
}

1307
/*
1308 1309 1310 1311 1312 1313 1314 1315
 *	i5000_enable_error_reporting
 *			Turn on the memory reporting features of the hardware
 */
static void i5000_enable_error_reporting(struct mem_ctl_info *mci)
{
	struct i5000_pvt *pvt;
	u32 fbd_error_mask;

1316
	pvt = mci->pvt_info;
1317 1318 1319

	/* Read the FBD Error Mask Register */
	pci_read_config_dword(pvt->branchmap_werrors, EMASK_FBD,
1320
			&fbd_error_mask);
1321 1322 1323 1324 1325

	/* Enable with a '0' */
	fbd_error_mask &= ~(ENABLE_EMASK_ALL);

	pci_write_config_dword(pvt->branchmap_werrors, EMASK_FBD,
1326
			fbd_error_mask);
1327 1328
}

1329
/*
1330
 * i5000_get_dimm_and_channel_counts(pdev, &nr_csrows, &num_channels)
1331 1332 1333 1334 1335
 *
 *	ask the device how many channels are present and how many CSROWS
 *	 as well
 */
static void i5000_get_dimm_and_channel_counts(struct pci_dev *pdev,
1336 1337
					int *num_dimms_per_channel,
					int *num_channels)
1338 1339 1340 1341 1342 1343 1344
{
	u8 value;

	/* Need to retrieve just how many channels and dimms per channel are
	 * supported on this memory controller
	 */
	pci_read_config_byte(pdev, MAXDIMMPERCH, &value);
1345
	*num_dimms_per_channel = (int)value;
1346 1347 1348 1349 1350

	pci_read_config_byte(pdev, MAXCH, &value);
	*num_channels = (int)value;
}

1351
/*
1352 1353 1354 1355 1356 1357 1358 1359 1360
 *	i5000_probe1	Probe for ONE instance of device to see if it is
 *			present.
 *	return:
 *		0 for FOUND a device
 *		< 0 for error code
 */
static int i5000_probe1(struct pci_dev *pdev, int dev_idx)
{
	struct mem_ctl_info *mci;
1361
	struct edac_mc_layer layers[3];
1362 1363 1364 1365
	struct i5000_pvt *pvt;
	int num_channels;
	int num_dimms_per_channel;

1366 1367 1368
	edac_dbg(0, "MC: pdev bus %u dev=0x%x fn=0x%x\n",
		 pdev->bus->number,
		 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383

	/* We only are looking for func 0 of the set */
	if (PCI_FUNC(pdev->devfn) != 0)
		return -ENODEV;

	/* Ask the devices for the number of CSROWS and CHANNELS so
	 * that we can calculate the memory resources, etc
	 *
	 * The Chipset will report what it can handle which will be greater
	 * or equal to what the motherboard manufacturer will implement.
	 *
	 * As we don't have a motherboard identification routine to determine
	 * actual number of slots/dimms per channel, we thus utilize the
	 * resource as specified by the chipset. Thus, we might have
	 * have more DIMMs per channel than actually on the mobo, but this
L
Lucas De Marchi 已提交
1384
	 * allows the driver to support up to the chipset max, without
1385 1386 1387
	 * some fancy mobo determination.
	 */
	i5000_get_dimm_and_channel_counts(pdev, &num_dimms_per_channel,
1388
					&num_channels);
1389

1390 1391
	edac_dbg(0, "MC: Number of Branches=2 Channels= %d  DIMMS= %d\n",
		 num_channels, num_dimms_per_channel);
1392 1393

	/* allocate a new MC control structure */
1394

1395
	layers[0].type = EDAC_MC_LAYER_BRANCH;
1396 1397
	layers[0].size = MAX_BRANCHES;
	layers[0].is_virt_csrow = false;
1398
	layers[1].type = EDAC_MC_LAYER_CHANNEL;
1399
	layers[1].size = num_channels / MAX_BRANCHES;
1400 1401 1402 1403
	layers[1].is_virt_csrow = false;
	layers[2].type = EDAC_MC_LAYER_SLOT;
	layers[2].size = num_dimms_per_channel;
	layers[2].is_virt_csrow = true;
1404
	mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, sizeof(*pvt));
1405 1406 1407
	if (mci == NULL)
		return -ENOMEM;

1408
	edac_dbg(0, "MC: mci = %p\n", mci);
1409

1410
	mci->pdev = &pdev->dev;	/* record ptr  to the generic device */
1411

1412
	pvt = mci->pvt_info;
1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
	pvt->system_address = pdev;	/* Record this device in our private */
	pvt->maxch = num_channels;
	pvt->maxdimmperch = num_dimms_per_channel;

	/* 'get' the pci devices we want to reserve for our use */
	if (i5000_get_devices(mci, dev_idx))
		goto fail0;

	/* Time to get serious */
	i5000_get_mc_regs(mci);	/* retrieve the hardware registers */

	mci->mc_idx = 0;
	mci->mtype_cap = MEM_FLAG_FB_DDR2;
	mci->edac_ctl_cap = EDAC_FLAG_NONE;
	mci->edac_cap = EDAC_FLAG_NONE;
	mci->mod_name = "i5000_edac.c";
	mci->mod_ver = I5000_REVISION;
	mci->ctl_name = i5000_devs[dev_idx].ctl_name;
1431
	mci->dev_name = pci_name(pdev);
1432 1433 1434 1435 1436 1437 1438 1439
	mci->ctl_page_to_phys = NULL;

	/* Set the function pointer to an actual operation function */
	mci->edac_check = i5000_check_error;

	/* initialize the MC control structure 'csrows' table
	 * with the mapping and control information */
	if (i5000_init_csrows(mci)) {
1440
		edac_dbg(0, "MC: Setting mci->edac_cap to EDAC_FLAG_NONE because i5000_init_csrows() returned nonzero value\n");
1441 1442
		mci->edac_cap = EDAC_FLAG_NONE;	/* no csrows found */
	} else {
1443
		edac_dbg(1, "MC: Enable error reporting now\n");
1444 1445 1446 1447
		i5000_enable_error_reporting(mci);
	}

	/* add this new MC control structure to EDAC's list of MCs */
1448
	if (edac_mc_add_mc(mci)) {
1449
		edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
1450 1451 1452 1453 1454 1455 1456 1457
		/* FIXME: perhaps some code should go here that disables error
		 * reporting if we just enabled it
		 */
		goto fail1;
	}

	i5000_clear_error(mci);

1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
	/* allocating generic PCI control info */
	i5000_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR);
	if (!i5000_pci) {
		printk(KERN_WARNING
			"%s(): Unable to create PCI control\n",
			__func__);
		printk(KERN_WARNING
			"%s(): PCI error report via EDAC not setup\n",
			__func__);
	}

1469 1470 1471
	return 0;

	/* Error exit unwinding stack */
1472
fail1:
1473 1474 1475

	i5000_put_devices(mci);

1476
fail0:
1477 1478 1479 1480
	edac_mc_free(mci);
	return -ENODEV;
}

1481
/*
1482 1483 1484 1485 1486 1487 1488
 *	i5000_init_one	constructor for one instance of device
 *
 * 	returns:
 *		negative on error
 *		count (>= 0)
 */
static int __devinit i5000_init_one(struct pci_dev *pdev,
1489
				const struct pci_device_id *id)
1490 1491 1492
{
	int rc;

1493
	edac_dbg(0, "MC:\n");
1494 1495 1496

	/* wake up device */
	rc = pci_enable_device(pdev);
1497
	if (rc)
1498 1499 1500 1501 1502 1503
		return rc;

	/* now probe and enable the device */
	return i5000_probe1(pdev, id->driver_data);
}

1504
/*
1505 1506 1507 1508 1509 1510 1511
 *	i5000_remove_one	destructor for one instance of device
 *
 */
static void __devexit i5000_remove_one(struct pci_dev *pdev)
{
	struct mem_ctl_info *mci;

1512
	edac_dbg(0, "\n");
1513

1514 1515 1516
	if (i5000_pci)
		edac_pci_release_generic_ctl(i5000_pci);

1517 1518 1519 1520 1521 1522 1523 1524
	if ((mci = edac_mc_del_mc(&pdev->dev)) == NULL)
		return;

	/* retrieve references to resources, and free those resources */
	i5000_put_devices(mci);
	edac_mc_free(mci);
}

1525
/*
1526 1527 1528 1529
 *	pci_device_id	table for which devices we are looking for
 *
 *	The "E500P" device is the first device supported.
 */
1530
static DEFINE_PCI_DEVICE_TABLE(i5000_pci_tbl) = {
1531 1532 1533 1534 1535 1536 1537 1538
	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I5000_DEV16),
	 .driver_data = I5000P},

	{0,}			/* 0 terminated list. */
};

MODULE_DEVICE_TABLE(pci, i5000_pci_tbl);

1539
/*
1540 1541 1542 1543
 *	i5000_driver	pci_driver structure for this module
 *
 */
static struct pci_driver i5000_driver = {
1544
	.name = KBUILD_BASENAME,
1545 1546 1547 1548 1549
	.probe = i5000_init_one,
	.remove = __devexit_p(i5000_remove_one),
	.id_table = i5000_pci_tbl,
};

1550
/*
1551 1552 1553 1554 1555 1556 1557
 *	i5000_init		Module entry function
 *			Try to initialize this module for its devices
 */
static int __init i5000_init(void)
{
	int pci_rc;

1558
	edac_dbg(2, "MC:\n");
1559

1560 1561 1562
       /* Ensure that the OPSTATE is set correctly for POLL or NMI */
       opstate_init();

1563 1564 1565 1566 1567
	pci_rc = pci_register_driver(&i5000_driver);

	return (pci_rc < 0) ? pci_rc : 0;
}

1568
/*
1569 1570 1571 1572 1573
 *	i5000_exit()	Module exit function
 *			Unregister the driver
 */
static void __exit i5000_exit(void)
{
1574
	edac_dbg(2, "MC:\n");
1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
	pci_unregister_driver(&i5000_driver);
}

module_init(i5000_init);
module_exit(i5000_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR
    ("Linux Networx (http://lnxi.com) Doug Thompson <norsk5@xmission.com>");
MODULE_DESCRIPTION("MC Driver for Intel I5000 memory controllers - "
1585
		I5000_REVISION);
1586

D
Dave Jiang 已提交
1587 1588
module_param(edac_op_state, int, 0444);
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
A
Aristeu Rozanski 已提交
1589 1590 1591
module_param(misc_messages, int, 0444);
MODULE_PARM_DESC(misc_messages, "Log miscellaneous non fatal messages");