i5000_edac.c 42.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*
 * Intel 5000(P/V/X) class Memory Controllers kernel module
 *
 * This file may be distributed under the terms of the
 * GNU General Public License.
 *
 * Written by Douglas Thompson Linux Networx (http://lnxi.com)
 *	norsk5@xmission.com
 *
 * This module is based on the following document:
 *
 * Intel 5000X Chipset Memory Controller Hub (MCH) - Datasheet
 * 	http://developer.intel.com/design/chipsets/datashts/313070.htm
 *
 */

#include <linux/module.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/pci_ids.h>
#include <linux/slab.h>
D
Dave Jiang 已提交
22
#include <linux/edac.h>
23 24
#include <asm/mmzone.h>

25
#include "edac_core.h"
26 27 28 29

/*
 * Alter this version for the I5000 module when modifications are made
 */
M
Michal Marek 已提交
30
#define I5000_REVISION    " Ver: 2.0.12"
31
#define EDAC_MOD_STR      "i5000_edac"
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

#define i5000_printk(level, fmt, arg...) \
        edac_printk(level, "i5000", fmt, ##arg)

#define i5000_mc_printk(mci, level, fmt, arg...) \
        edac_mc_chipset_printk(mci, level, "i5000", fmt, ##arg)

#ifndef PCI_DEVICE_ID_INTEL_FBD_0
#define PCI_DEVICE_ID_INTEL_FBD_0	0x25F5
#endif
#ifndef PCI_DEVICE_ID_INTEL_FBD_1
#define PCI_DEVICE_ID_INTEL_FBD_1	0x25F6
#endif

/* Device 16,
 * Function 0: System Address
 * Function 1: Memory Branch Map, Control, Errors Register
 * Function 2: FSB Error Registers
 *
 * All 3 functions of Device 16 (0,1,2) share the SAME DID
 */
#define	PCI_DEVICE_ID_INTEL_I5000_DEV16	0x25F0

/* OFFSETS for Function 0 */

/* OFFSETS for Function 1 */
#define		AMBASE			0x48
#define		MAXCH			0x56
#define		MAXDIMMPERCH		0x57
#define		TOLM			0x6C
#define		REDMEMB			0x7C
#define			RED_ECC_LOCATOR(x)	((x) & 0x3FFFF)
#define			REC_ECC_LOCATOR_EVEN(x)	((x) & 0x001FF)
#define			REC_ECC_LOCATOR_ODD(x)	((x) & 0x3FE00)
#define		MIR0			0x80
#define		MIR1			0x84
#define		MIR2			0x88
#define		AMIR0			0x8C
#define		AMIR1			0x90
#define		AMIR2			0x94

#define		FERR_FAT_FBD		0x98
#define		NERR_FAT_FBD		0x9C
#define			EXTRACT_FBDCHAN_INDX(x)	(((x)>>28) & 0x3)
#define			FERR_FAT_FBDCHAN 0x30000000
#define			FERR_FAT_M3ERR	0x00000004
#define			FERR_FAT_M2ERR	0x00000002
#define			FERR_FAT_M1ERR	0x00000001
80
#define			FERR_FAT_MASK	(FERR_FAT_M1ERR | \
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
						FERR_FAT_M2ERR | \
						FERR_FAT_M3ERR)

#define		FERR_NF_FBD		0xA0

/* Thermal and SPD or BFD errors */
#define			FERR_NF_M28ERR	0x01000000
#define			FERR_NF_M27ERR	0x00800000
#define			FERR_NF_M26ERR	0x00400000
#define			FERR_NF_M25ERR	0x00200000
#define			FERR_NF_M24ERR	0x00100000
#define			FERR_NF_M23ERR	0x00080000
#define			FERR_NF_M22ERR	0x00040000
#define			FERR_NF_M21ERR	0x00020000

/* Correctable errors */
#define			FERR_NF_M20ERR	0x00010000
#define			FERR_NF_M19ERR	0x00008000
#define			FERR_NF_M18ERR	0x00004000
#define			FERR_NF_M17ERR	0x00002000

/* Non-Retry or redundant Retry errors */
#define			FERR_NF_M16ERR	0x00001000
#define			FERR_NF_M15ERR	0x00000800
#define			FERR_NF_M14ERR	0x00000400
#define			FERR_NF_M13ERR	0x00000200

/* Uncorrectable errors */
#define			FERR_NF_M12ERR	0x00000100
#define			FERR_NF_M11ERR	0x00000080
#define			FERR_NF_M10ERR	0x00000040
#define			FERR_NF_M9ERR	0x00000020
#define			FERR_NF_M8ERR	0x00000010
#define			FERR_NF_M7ERR	0x00000008
#define			FERR_NF_M6ERR	0x00000004
#define			FERR_NF_M5ERR	0x00000002
#define			FERR_NF_M4ERR	0x00000001

#define			FERR_NF_UNCORRECTABLE	(FERR_NF_M12ERR | \
							FERR_NF_M11ERR | \
							FERR_NF_M10ERR | \
A
Aristeu Rozanski 已提交
122
							FERR_NF_M9ERR | \
123
							FERR_NF_M8ERR | \
124 125 126 127 128 129 130 131 132 133 134
							FERR_NF_M7ERR | \
							FERR_NF_M6ERR | \
							FERR_NF_M5ERR | \
							FERR_NF_M4ERR)
#define			FERR_NF_CORRECTABLE	(FERR_NF_M20ERR | \
							FERR_NF_M19ERR | \
							FERR_NF_M18ERR | \
							FERR_NF_M17ERR)
#define			FERR_NF_DIMM_SPARE	(FERR_NF_M27ERR | \
							FERR_NF_M28ERR)
#define			FERR_NF_THERMAL		(FERR_NF_M26ERR | \
135
							FERR_NF_M25ERR | \
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
							FERR_NF_M24ERR | \
							FERR_NF_M23ERR)
#define			FERR_NF_SPD_PROTOCOL	(FERR_NF_M22ERR)
#define			FERR_NF_NORTH_CRC	(FERR_NF_M21ERR)
#define			FERR_NF_NON_RETRY	(FERR_NF_M13ERR | \
							FERR_NF_M14ERR | \
							FERR_NF_M15ERR)

#define		NERR_NF_FBD		0xA4
#define			FERR_NF_MASK		(FERR_NF_UNCORRECTABLE | \
							FERR_NF_CORRECTABLE | \
							FERR_NF_DIMM_SPARE | \
							FERR_NF_THERMAL | \
							FERR_NF_SPD_PROTOCOL | \
							FERR_NF_NORTH_CRC | \
							FERR_NF_NON_RETRY)

#define		EMASK_FBD		0xA8
#define			EMASK_FBD_M28ERR	0x08000000
#define			EMASK_FBD_M27ERR	0x04000000
#define			EMASK_FBD_M26ERR	0x02000000
#define			EMASK_FBD_M25ERR	0x01000000
#define			EMASK_FBD_M24ERR	0x00800000
#define			EMASK_FBD_M23ERR	0x00400000
#define			EMASK_FBD_M22ERR	0x00200000
#define			EMASK_FBD_M21ERR	0x00100000
#define			EMASK_FBD_M20ERR	0x00080000
#define			EMASK_FBD_M19ERR	0x00040000
#define			EMASK_FBD_M18ERR	0x00020000
#define			EMASK_FBD_M17ERR	0x00010000

#define			EMASK_FBD_M15ERR	0x00004000
#define			EMASK_FBD_M14ERR	0x00002000
#define			EMASK_FBD_M13ERR	0x00001000
#define			EMASK_FBD_M12ERR	0x00000800
#define			EMASK_FBD_M11ERR	0x00000400
#define			EMASK_FBD_M10ERR	0x00000200
#define			EMASK_FBD_M9ERR		0x00000100
#define			EMASK_FBD_M8ERR		0x00000080
#define			EMASK_FBD_M7ERR		0x00000040
#define			EMASK_FBD_M6ERR		0x00000020
#define			EMASK_FBD_M5ERR		0x00000010
#define			EMASK_FBD_M4ERR		0x00000008
#define			EMASK_FBD_M3ERR		0x00000004
#define			EMASK_FBD_M2ERR		0x00000002
#define			EMASK_FBD_M1ERR		0x00000001

#define			ENABLE_EMASK_FBD_FATAL_ERRORS	(EMASK_FBD_M1ERR | \
							EMASK_FBD_M2ERR | \
							EMASK_FBD_M3ERR)

#define 		ENABLE_EMASK_FBD_UNCORRECTABLE	(EMASK_FBD_M4ERR | \
							EMASK_FBD_M5ERR | \
							EMASK_FBD_M6ERR | \
							EMASK_FBD_M7ERR | \
							EMASK_FBD_M8ERR | \
							EMASK_FBD_M9ERR | \
							EMASK_FBD_M10ERR | \
							EMASK_FBD_M11ERR | \
							EMASK_FBD_M12ERR)
#define 		ENABLE_EMASK_FBD_CORRECTABLE	(EMASK_FBD_M17ERR | \
							EMASK_FBD_M18ERR | \
							EMASK_FBD_M19ERR | \
							EMASK_FBD_M20ERR)
#define			ENABLE_EMASK_FBD_DIMM_SPARE	(EMASK_FBD_M27ERR | \
							EMASK_FBD_M28ERR)
#define			ENABLE_EMASK_FBD_THERMALS	(EMASK_FBD_M26ERR | \
							EMASK_FBD_M25ERR | \
							EMASK_FBD_M24ERR | \
							EMASK_FBD_M23ERR)
#define			ENABLE_EMASK_FBD_SPD_PROTOCOL	(EMASK_FBD_M22ERR)
#define			ENABLE_EMASK_FBD_NORTH_CRC	(EMASK_FBD_M21ERR)
#define			ENABLE_EMASK_FBD_NON_RETRY	(EMASK_FBD_M15ERR | \
							EMASK_FBD_M14ERR | \
							EMASK_FBD_M13ERR)

#define		ENABLE_EMASK_ALL	(ENABLE_EMASK_FBD_NON_RETRY | \
					ENABLE_EMASK_FBD_NORTH_CRC | \
					ENABLE_EMASK_FBD_SPD_PROTOCOL | \
					ENABLE_EMASK_FBD_THERMALS | \
					ENABLE_EMASK_FBD_DIMM_SPARE | \
					ENABLE_EMASK_FBD_FATAL_ERRORS | \
					ENABLE_EMASK_FBD_CORRECTABLE | \
					ENABLE_EMASK_FBD_UNCORRECTABLE)

#define		ERR0_FBD		0xAC
#define		ERR1_FBD		0xB0
#define		ERR2_FBD		0xB4
#define		MCERR_FBD		0xB8
#define		NRECMEMA		0xBE
#define			NREC_BANK(x)		(((x)>>12) & 0x7)
#define			NREC_RDWR(x)		(((x)>>11) & 1)
#define			NREC_RANK(x)		(((x)>>8) & 0x7)
#define		NRECMEMB		0xC0
#define			NREC_CAS(x)		(((x)>>16) & 0xFFFFFF)
#define			NREC_RAS(x)		((x) & 0x7FFF)
#define		NRECFGLOG		0xC4
#define		NREEECFBDA		0xC8
#define		NREEECFBDB		0xCC
#define		NREEECFBDC		0xD0
#define		NREEECFBDD		0xD4
#define		NREEECFBDE		0xD8
#define		REDMEMA			0xDC
#define		RECMEMA			0xE2
#define			REC_BANK(x)		(((x)>>12) & 0x7)
#define			REC_RDWR(x)		(((x)>>11) & 1)
#define			REC_RANK(x)		(((x)>>8) & 0x7)
#define		RECMEMB			0xE4
#define			REC_CAS(x)		(((x)>>16) & 0xFFFFFF)
#define			REC_RAS(x)		((x) & 0x7FFF)
#define		RECFGLOG		0xE8
#define		RECFBDA			0xEC
#define		RECFBDB			0xF0
#define		RECFBDC			0xF4
#define		RECFBDD			0xF8
#define		RECFBDE			0xFC

/* OFFSETS for Function 2 */

/*
 * Device 21,
 * Function 0: Memory Map Branch 0
 *
 * Device 22,
 * Function 0: Memory Map Branch 1
 */
#define PCI_DEVICE_ID_I5000_BRANCH_0	0x25F5
#define PCI_DEVICE_ID_I5000_BRANCH_1	0x25F6

#define AMB_PRESENT_0	0x64
#define AMB_PRESENT_1	0x66
#define MTR0		0x80
#define MTR1		0x84
#define MTR2		0x88
#define MTR3		0x8C

#define NUM_MTRS		4
273 274
#define CHANNELS_PER_BRANCH	2
#define MAX_BRANCHES		2
275

276
/* Defines to extract the various fields from the
277 278 279 280 281 282 283
 *	MTRx - Memory Technology Registers
 */
#define MTR_DIMMS_PRESENT(mtr)		((mtr) & (0x1 << 8))
#define MTR_DRAM_WIDTH(mtr)		((((mtr) >> 6) & 0x1) ? 8 : 4)
#define MTR_DRAM_BANKS(mtr)		((((mtr) >> 5) & 0x1) ? 8 : 4)
#define MTR_DRAM_BANKS_ADDR_BITS(mtr)	((MTR_DRAM_BANKS(mtr) == 8) ? 3 : 2)
#define MTR_DIMM_RANK(mtr)		(((mtr) >> 4) & 0x1)
284
#define MTR_DIMM_RANK_ADDR_BITS(mtr)	(MTR_DIMM_RANK(mtr) ? 2 : 1)
285 286 287 288 289
#define MTR_DIMM_ROWS(mtr)		(((mtr) >> 2) & 0x3)
#define MTR_DIMM_ROWS_ADDR_BITS(mtr)	(MTR_DIMM_ROWS(mtr) + 13)
#define MTR_DIMM_COLS(mtr)		((mtr) & 0x3)
#define MTR_DIMM_COLS_ADDR_BITS(mtr)	(MTR_DIMM_COLS(mtr) + 10)

A
Aristeu Rozanski 已提交
290 291 292
/* enables the report of miscellaneous messages as CE errors - default off */
static int misc_messages;

293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
/* Enumeration of supported devices */
enum i5000_chips {
	I5000P = 0,
	I5000V = 1,		/* future */
	I5000X = 2		/* future */
};

/* Device name and register DID (Device ID) */
struct i5000_dev_info {
	const char *ctl_name;	/* name for this device */
	u16 fsb_mapping_errors;	/* DID for the branchmap,control */
};

/* Table of devices attributes supported by this driver */
static const struct i5000_dev_info i5000_devs[] = {
	[I5000P] = {
309 310 311
		.ctl_name = "I5000",
		.fsb_mapping_errors = PCI_DEVICE_ID_INTEL_I5000_DEV16,
	},
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
};

struct i5000_dimm_info {
	int megabytes;		/* size, 0 means not present  */
	int dual_rank;
};

#define	MAX_CHANNELS	6	/* max possible channels */
#define MAX_CSROWS	(8*2)	/* max possible csrows per channel */

/* driver private data structure */
struct i5000_pvt {
	struct pci_dev *system_address;	/* 16.0 */
	struct pci_dev *branchmap_werrors;	/* 16.1 */
	struct pci_dev *fsb_error_regs;	/* 16.2 */
	struct pci_dev *branch_0;	/* 21.0 */
	struct pci_dev *branch_1;	/* 22.0 */

	u16 tolm;		/* top of low memory */
	u64 ambase;		/* AMB BAR */

	u16 mir0, mir1, mir2;

	u16 b0_mtr[NUM_MTRS];	/* Memory Technlogy Reg */
	u16 b0_ambpresent0;	/* Branch 0, Channel 0 */
	u16 b0_ambpresent1;	/* Brnach 0, Channel 1 */

	u16 b1_mtr[NUM_MTRS];	/* Memory Technlogy Reg */
	u16 b1_ambpresent0;	/* Branch 1, Channel 8 */
	u16 b1_ambpresent1;	/* Branch 1, Channel 1 */

J
Joe Perches 已提交
343
	/* DIMM information matrix, allocating architecture maximums */
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
	struct i5000_dimm_info dimm_info[MAX_CSROWS][MAX_CHANNELS];

	/* Actual values for this controller */
	int maxch;		/* Max channels */
	int maxdimmperch;	/* Max DIMMs per channel */
};

/* I5000 MCH error information retrieved from Hardware */
struct i5000_error_info {

	/* These registers are always read from the MC */
	u32 ferr_fat_fbd;	/* First Errors Fatal */
	u32 nerr_fat_fbd;	/* Next Errors Fatal */
	u32 ferr_nf_fbd;	/* First Errors Non-Fatal */
	u32 nerr_nf_fbd;	/* Next Errors Non-Fatal */

	/* These registers are input ONLY if there was a Recoverable  Error */
	u32 redmemb;		/* Recoverable Mem Data Error log B */
	u16 recmema;		/* Recoverable Mem Error log A */
	u32 recmemb;		/* Recoverable Mem Error log B */

	/* These registers are input ONLY if there was a
	 * Non-Recoverable Error */
	u16 nrecmema;		/* Non-Recoverable Mem log A */
	u16 nrecmemb;		/* Non-Recoverable Mem log B */

};

372 373
static struct edac_pci_ctl_info *i5000_pci;

374
/*
375 376 377 378 379
 *	i5000_get_error_info	Retrieve the hardware error information from
 *				the hardware and cache it in the 'info'
 *				structure
 */
static void i5000_get_error_info(struct mem_ctl_info *mci,
380
				 struct i5000_error_info *info)
381 382 383 384
{
	struct i5000_pvt *pvt;
	u32 value;

385
	pvt = mci->pvt_info;
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400

	/* read in the 1st FATAL error register */
	pci_read_config_dword(pvt->branchmap_werrors, FERR_FAT_FBD, &value);

	/* Mask only the bits that the doc says are valid
	 */
	value &= (FERR_FAT_FBDCHAN | FERR_FAT_MASK);

	/* If there is an error, then read in the */
	/* NEXT FATAL error register and the Memory Error Log Register A */
	if (value & FERR_FAT_MASK) {
		info->ferr_fat_fbd = value;

		/* harvest the various error data we need */
		pci_read_config_dword(pvt->branchmap_werrors,
401
				NERR_FAT_FBD, &info->nerr_fat_fbd);
402
		pci_read_config_word(pvt->branchmap_werrors,
403
				NRECMEMA, &info->nrecmema);
404
		pci_read_config_word(pvt->branchmap_werrors,
405
				NRECMEMB, &info->nrecmemb);
406 407 408

		/* Clear the error bits, by writing them back */
		pci_write_config_dword(pvt->branchmap_werrors,
409
				FERR_FAT_FBD, value);
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
	} else {
		info->ferr_fat_fbd = 0;
		info->nerr_fat_fbd = 0;
		info->nrecmema = 0;
		info->nrecmemb = 0;
	}

	/* read in the 1st NON-FATAL error register */
	pci_read_config_dword(pvt->branchmap_werrors, FERR_NF_FBD, &value);

	/* If there is an error, then read in the 1st NON-FATAL error
	 * register as well */
	if (value & FERR_NF_MASK) {
		info->ferr_nf_fbd = value;

		/* harvest the various error data we need */
		pci_read_config_dword(pvt->branchmap_werrors,
427
				NERR_NF_FBD, &info->nerr_nf_fbd);
428
		pci_read_config_word(pvt->branchmap_werrors,
429
				RECMEMA, &info->recmema);
430
		pci_read_config_dword(pvt->branchmap_werrors,
431
				RECMEMB, &info->recmemb);
432
		pci_read_config_dword(pvt->branchmap_werrors,
433
				REDMEMB, &info->redmemb);
434 435 436

		/* Clear the error bits, by writing them back */
		pci_write_config_dword(pvt->branchmap_werrors,
437
				FERR_NF_FBD, value);
438 439 440 441 442 443 444 445 446
	} else {
		info->ferr_nf_fbd = 0;
		info->nerr_nf_fbd = 0;
		info->recmema = 0;
		info->recmemb = 0;
		info->redmemb = 0;
	}
}

447
/*
448 449 450 451 452 453 454
 * i5000_process_fatal_error_info(struct mem_ctl_info *mci,
 * 					struct i5000_error_info *info,
 * 					int handle_errors);
 *
 *	handle the Intel FATAL errors, if any
 */
static void i5000_process_fatal_error_info(struct mem_ctl_info *mci,
455
					struct i5000_error_info *info,
456
					int handle_errors)
457
{
A
Aristeu Rozanski 已提交
458 459
	char msg[EDAC_MC_LABEL_LEN + 1 + 160];
	char *specific = NULL;
460 461 462 463 464 465 466 467 468 469 470 471
	u32 allErrors;
	int channel;
	int bank;
	int rank;
	int rdwr;
	int ras, cas;

	/* mask off the Error bits that are possible */
	allErrors = (info->ferr_fat_fbd & FERR_FAT_MASK);
	if (!allErrors)
		return;		/* if no error, return now */

472
	channel = EXTRACT_FBDCHAN_INDX(info->ferr_fat_fbd);
473 474 475 476 477 478 479 480

	/* Use the NON-Recoverable macros to extract data */
	bank = NREC_BANK(info->nrecmema);
	rank = NREC_RANK(info->nrecmema);
	rdwr = NREC_RDWR(info->nrecmema);
	ras = NREC_RAS(info->nrecmemb);
	cas = NREC_CAS(info->nrecmemb);

481 482 483
	edac_dbg(0, "\t\tCSROW= %d  Channel= %d (DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
		 rank, channel, bank,
		 rdwr ? "Write" : "Read", ras, cas);
484 485

	/* Only 1 bit will be on */
A
Aristeu Rozanski 已提交
486 487 488 489 490 491 492 493 494 495
	switch (allErrors) {
	case FERR_FAT_M1ERR:
		specific = "Alert on non-redundant retry or fast "
				"reset timeout";
		break;
	case FERR_FAT_M2ERR:
		specific = "Northbound CRC error on non-redundant "
				"retry";
		break;
	case FERR_FAT_M3ERR:
A
Aristeu Rozanski 已提交
496 497 498 499 500 501 502 503 504 505 506 507 508 509
		{
		static int done;

		/*
		 * This error is generated to inform that the intelligent
		 * throttling is disabled and the temperature passed the
		 * specified middle point. Since this is something the BIOS
		 * should take care of, we'll warn only once to avoid
		 * worthlessly flooding the log.
		 */
		if (done)
			return;
		done++;

A
Aristeu Rozanski 已提交
510
		specific = ">Tmid Thermal event with intelligent "
A
Aristeu Rozanski 已提交
511 512
			   "throttling disabled";
		}
A
Aristeu Rozanski 已提交
513
		break;
514 515 516 517
	}

	/* Form out message */
	snprintf(msg, sizeof(msg),
518 519
		 "Bank=%d RAS=%d CAS=%d FATAL Err=0x%x (%s)",
		 bank, ras, cas, allErrors, specific);
520 521

	/* Call the helper to output message */
522
	edac_mc_handle_error(HW_EVENT_ERR_FATAL, mci, 1, 0, 0, 0,
523
			     channel >> 1, channel & 1, rank,
524
			     rdwr ? "Write error" : "Read error",
525
			     msg);
526 527
}

528
/*
529
 * i5000_process_fatal_error_info(struct mem_ctl_info *mci,
530 531
 * 				struct i5000_error_info *info,
 * 				int handle_errors);
532 533 534 535
 *
 *	handle the Intel NON-FATAL errors, if any
 */
static void i5000_process_nonfatal_error_info(struct mem_ctl_info *mci,
536
					struct i5000_error_info *info,
537
					int handle_errors)
538
{
A
Aristeu Rozanski 已提交
539 540
	char msg[EDAC_MC_LABEL_LEN + 1 + 170];
	char *specific = NULL;
541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
	u32 allErrors;
	u32 ue_errors;
	u32 ce_errors;
	u32 misc_errors;
	int branch;
	int channel;
	int bank;
	int rank;
	int rdwr;
	int ras, cas;

	/* mask off the Error bits that are possible */
	allErrors = (info->ferr_nf_fbd & FERR_NF_MASK);
	if (!allErrors)
		return;		/* if no error, return now */

	/* ONLY ONE of the possible error bits will be set, as per the docs */
	ue_errors = allErrors & FERR_NF_UNCORRECTABLE;
	if (ue_errors) {
560
		edac_dbg(0, "\tUncorrected bits= 0x%x\n", ue_errors);
561 562

		branch = EXTRACT_FBDCHAN_INDX(info->ferr_nf_fbd);
563 564 565 566 567 568 569

		/*
		 * According with i5000 datasheet, bit 28 has no significance
		 * for errors M4Err-M12Err and M17Err-M21Err, on FERR_NF_FBD
		 */
		channel = branch & 2;

570 571 572 573 574 575
		bank = NREC_BANK(info->nrecmema);
		rank = NREC_RANK(info->nrecmema);
		rdwr = NREC_RDWR(info->nrecmema);
		ras = NREC_RAS(info->nrecmemb);
		cas = NREC_CAS(info->nrecmemb);

576 577 578
		edac_dbg(0, "\t\tCSROW= %d  Channels= %d,%d  (Branch= %d DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
			 rank, channel, channel + 1, branch >> 1, bank,
			 rdwr ? "Write" : "Read", ras, cas);
579

A
Aristeu Rozanski 已提交
580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
		switch (ue_errors) {
		case FERR_NF_M12ERR:
			specific = "Non-Aliased Uncorrectable Patrol Data ECC";
			break;
		case FERR_NF_M11ERR:
			specific = "Non-Aliased Uncorrectable Spare-Copy "
					"Data ECC";
			break;
		case FERR_NF_M10ERR:
			specific = "Non-Aliased Uncorrectable Mirrored Demand "
					"Data ECC";
			break;
		case FERR_NF_M9ERR:
			specific = "Non-Aliased Uncorrectable Non-Mirrored "
					"Demand Data ECC";
			break;
		case FERR_NF_M8ERR:
			specific = "Aliased Uncorrectable Patrol Data ECC";
			break;
		case FERR_NF_M7ERR:
			specific = "Aliased Uncorrectable Spare-Copy Data ECC";
			break;
		case FERR_NF_M6ERR:
			specific = "Aliased Uncorrectable Mirrored Demand "
					"Data ECC";
			break;
		case FERR_NF_M5ERR:
			specific = "Aliased Uncorrectable Non-Mirrored Demand "
					"Data ECC";
			break;
		case FERR_NF_M4ERR:
			specific = "Uncorrectable Data ECC on Replay";
			break;
		}

615 616
		/* Form out message */
		snprintf(msg, sizeof(msg),
617 618
			 "Rank=%d Bank=%d RAS=%d CAS=%d, UE Err=0x%x (%s)",
			 rank, bank, ras, cas, ue_errors, specific);
619 620

		/* Call the helper to output message */
621
		edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1, 0, 0, 0,
622 623
				channel >> 1, -1, rank,
				rdwr ? "Write error" : "Read error",
624
				msg);
625 626 627 628 629
	}

	/* Check correctable errors */
	ce_errors = allErrors & FERR_NF_CORRECTABLE;
	if (ce_errors) {
630
		edac_dbg(0, "\tCorrected bits= 0x%x\n", ce_errors);
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647

		branch = EXTRACT_FBDCHAN_INDX(info->ferr_nf_fbd);

		channel = 0;
		if (REC_ECC_LOCATOR_ODD(info->redmemb))
			channel = 1;

		/* Convert channel to be based from zero, instead of
		 * from branch base of 0 */
		channel += branch;

		bank = REC_BANK(info->recmema);
		rank = REC_RANK(info->recmema);
		rdwr = REC_RDWR(info->recmema);
		ras = REC_RAS(info->recmemb);
		cas = REC_CAS(info->recmemb);

648 649 650
		edac_dbg(0, "\t\tCSROW= %d Channel= %d  (Branch %d DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
			 rank, channel, branch >> 1, bank,
			 rdwr ? "Write" : "Read", ras, cas);
651

A
Aristeu Rozanski 已提交
652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
		switch (ce_errors) {
		case FERR_NF_M17ERR:
			specific = "Correctable Non-Mirrored Demand Data ECC";
			break;
		case FERR_NF_M18ERR:
			specific = "Correctable Mirrored Demand Data ECC";
			break;
		case FERR_NF_M19ERR:
			specific = "Correctable Spare-Copy Data ECC";
			break;
		case FERR_NF_M20ERR:
			specific = "Correctable Patrol Data ECC";
			break;
		}

667 668
		/* Form out message */
		snprintf(msg, sizeof(msg),
669
			 "Rank=%d Bank=%d RDWR=%s RAS=%d "
A
Aristeu Rozanski 已提交
670 671 672
			 "CAS=%d, CE Err=0x%x (%s))", branch >> 1, bank,
			 rdwr ? "Write" : "Read", ras, cas, ce_errors,
			 specific);
673 674

		/* Call the helper to output message */
675
		edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1, 0, 0, 0,
676 677
				channel >> 1, channel % 2, rank,
				rdwr ? "Write error" : "Read error",
678
				msg);
679 680
	}

A
Aristeu Rozanski 已提交
681 682
	if (!misc_messages)
		return;
683

A
Aristeu Rozanski 已提交
684 685
	misc_errors = allErrors & (FERR_NF_NON_RETRY | FERR_NF_NORTH_CRC |
				   FERR_NF_SPD_PROTOCOL | FERR_NF_DIMM_SPARE);
686
	if (misc_errors) {
A
Aristeu Rozanski 已提交
687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
		switch (misc_errors) {
		case FERR_NF_M13ERR:
			specific = "Non-Retry or Redundant Retry FBD Memory "
					"Alert or Redundant Fast Reset Timeout";
			break;
		case FERR_NF_M14ERR:
			specific = "Non-Retry or Redundant Retry FBD "
					"Configuration Alert";
			break;
		case FERR_NF_M15ERR:
			specific = "Non-Retry or Redundant Retry FBD "
					"Northbound CRC error on read data";
			break;
		case FERR_NF_M21ERR:
			specific = "FBD Northbound CRC error on "
					"FBD Sync Status";
			break;
		case FERR_NF_M22ERR:
			specific = "SPD protocol error";
			break;
		case FERR_NF_M27ERR:
			specific = "DIMM-spare copy started";
			break;
		case FERR_NF_M28ERR:
			specific = "DIMM-spare copy completed";
			break;
		}
		branch = EXTRACT_FBDCHAN_INDX(info->ferr_nf_fbd);
715

A
Aristeu Rozanski 已提交
716 717
		/* Form out message */
		snprintf(msg, sizeof(msg),
718
			 "Err=%#x (%s)", misc_errors, specific);
719

A
Aristeu Rozanski 已提交
720
		/* Call the helper to output message */
721
		edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1, 0, 0, 0,
722
				branch >> 1, -1, -1,
723
				"Misc error", msg);
724 725 726
	}
}

727
/*
728 729 730 731
 *	i5000_process_error_info	Process the error info that is
 *	in the 'info' structure, previously retrieved from hardware
 */
static void i5000_process_error_info(struct mem_ctl_info *mci,
732
				struct i5000_error_info *info,
733
				int handle_errors)
734 735 736 737 738 739 740 741
{
	/* First handle any fatal errors that occurred */
	i5000_process_fatal_error_info(mci, info, handle_errors);

	/* now handle any non-fatal errors that occurred */
	i5000_process_nonfatal_error_info(mci, info, handle_errors);
}

742
/*
743 744 745 746 747 748 749 750 751 752 753 754
 *	i5000_clear_error	Retrieve any error from the hardware
 *				but do NOT process that error.
 *				Used for 'clearing' out of previous errors
 *				Called by the Core module.
 */
static void i5000_clear_error(struct mem_ctl_info *mci)
{
	struct i5000_error_info info;

	i5000_get_error_info(mci, &info);
}

755
/*
756 757 758 759 760 761
 *	i5000_check_error	Retrieve and process errors reported by the
 *				hardware. Called by the Core module.
 */
static void i5000_check_error(struct mem_ctl_info *mci)
{
	struct i5000_error_info info;
762
	edac_dbg(4, "MC%d\n", mci->mc_idx);
763 764 765 766
	i5000_get_error_info(mci, &info);
	i5000_process_error_info(mci, &info, 1);
}

767
/*
768 769 770 771 772 773 774 775 776 777 778
 *	i5000_get_devices	Find and perform 'get' operation on the MCH's
 *			device/functions we want to reference for this driver
 *
 *			Need to 'get' device 16 func 1 and func 2
 */
static int i5000_get_devices(struct mem_ctl_info *mci, int dev_idx)
{
	//const struct i5000_dev_info *i5000_dev = &i5000_devs[dev_idx];
	struct i5000_pvt *pvt;
	struct pci_dev *pdev;

779
	pvt = mci->pvt_info;
780 781 782 783 784

	/* Attempt to 'get' the MCH register we want */
	pdev = NULL;
	while (1) {
		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
785
				PCI_DEVICE_ID_INTEL_I5000_DEV16, pdev);
786 787 788 789

		/* End of list, leave */
		if (pdev == NULL) {
			i5000_printk(KERN_ERR,
790 791 792 793 794 795
				"'system address,Process Bus' "
				"device not found:"
				"vendor 0x%x device 0x%x FUNC 1 "
				"(broken BIOS?)\n",
				PCI_VENDOR_ID_INTEL,
				PCI_DEVICE_ID_INTEL_I5000_DEV16);
796 797 798 799 800 801 802 803 804 805 806 807 808 809 810

			return 1;
		}

		/* Scan for device 16 func 1 */
		if (PCI_FUNC(pdev->devfn) == 1)
			break;
	}

	pvt->branchmap_werrors = pdev;

	/* Attempt to 'get' the MCH register we want */
	pdev = NULL;
	while (1) {
		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
811
				PCI_DEVICE_ID_INTEL_I5000_DEV16, pdev);
812 813 814

		if (pdev == NULL) {
			i5000_printk(KERN_ERR,
815 816 817 818 819 820
				"MC: 'branchmap,control,errors' "
				"device not found:"
				"vendor 0x%x device 0x%x Func 2 "
				"(broken BIOS?)\n",
				PCI_VENDOR_ID_INTEL,
				PCI_DEVICE_ID_INTEL_I5000_DEV16);
821 822 823 824 825 826 827 828 829 830 831 832

			pci_dev_put(pvt->branchmap_werrors);
			return 1;
		}

		/* Scan for device 16 func 1 */
		if (PCI_FUNC(pdev->devfn) == 2)
			break;
	}

	pvt->fsb_error_regs = pdev;

833 834 835 836 837 838 839 840 841 842
	edac_dbg(1, "System Address, processor bus- PCI Bus ID: %s  %x:%x\n",
		 pci_name(pvt->system_address),
		 pvt->system_address->vendor, pvt->system_address->device);
	edac_dbg(1, "Branchmap, control and errors - PCI Bus ID: %s  %x:%x\n",
		 pci_name(pvt->branchmap_werrors),
		 pvt->branchmap_werrors->vendor,
		 pvt->branchmap_werrors->device);
	edac_dbg(1, "FSB Error Regs - PCI Bus ID: %s  %x:%x\n",
		 pci_name(pvt->fsb_error_regs),
		 pvt->fsb_error_regs->vendor, pvt->fsb_error_regs->device);
843 844 845

	pdev = NULL;
	pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
846
			PCI_DEVICE_ID_I5000_BRANCH_0, pdev);
847 848 849

	if (pdev == NULL) {
		i5000_printk(KERN_ERR,
850 851 852
			"MC: 'BRANCH 0' device not found:"
			"vendor 0x%x device 0x%x Func 0 (broken BIOS?)\n",
			PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_I5000_BRANCH_0);
853 854 855 856 857 858 859 860 861 862 863 864 865 866

		pci_dev_put(pvt->branchmap_werrors);
		pci_dev_put(pvt->fsb_error_regs);
		return 1;
	}

	pvt->branch_0 = pdev;

	/* If this device claims to have more than 2 channels then
	 * fetch Branch 1's information
	 */
	if (pvt->maxch >= CHANNELS_PER_BRANCH) {
		pdev = NULL;
		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
867
				PCI_DEVICE_ID_I5000_BRANCH_1, pdev);
868 869 870

		if (pdev == NULL) {
			i5000_printk(KERN_ERR,
871 872 873 874 875
				"MC: 'BRANCH 1' device not found:"
				"vendor 0x%x device 0x%x Func 0 "
				"(broken BIOS?)\n",
				PCI_VENDOR_ID_INTEL,
				PCI_DEVICE_ID_I5000_BRANCH_1);
876 877 878 879 880 881 882 883 884 885 886 887 888

			pci_dev_put(pvt->branchmap_werrors);
			pci_dev_put(pvt->fsb_error_regs);
			pci_dev_put(pvt->branch_0);
			return 1;
		}

		pvt->branch_1 = pdev;
	}

	return 0;
}

889
/*
890 891 892 893 894 895 896
 *	i5000_put_devices	'put' all the devices that we have
 *				reserved via 'get'
 */
static void i5000_put_devices(struct mem_ctl_info *mci)
{
	struct i5000_pvt *pvt;

897
	pvt = mci->pvt_info;
898 899 900 901 902 903

	pci_dev_put(pvt->branchmap_werrors);	/* FUNC 1 */
	pci_dev_put(pvt->fsb_error_regs);	/* FUNC 2 */
	pci_dev_put(pvt->branch_0);	/* DEV 21 */

	/* Only if more than 2 channels do we release the second branch */
904
	if (pvt->maxch >= CHANNELS_PER_BRANCH)
905 906 907
		pci_dev_put(pvt->branch_1);	/* DEV 22 */
}

908
/*
909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
 *	determine_amb_resent
 *
 *		the information is contained in NUM_MTRS different registers
 *		determineing which of the NUM_MTRS requires knowing
 *		which channel is in question
 *
 *	2 branches, each with 2 channels
 *		b0_ambpresent0 for channel '0'
 *		b0_ambpresent1 for channel '1'
 *		b1_ambpresent0 for channel '2'
 *		b1_ambpresent1 for channel '3'
 */
static int determine_amb_present_reg(struct i5000_pvt *pvt, int channel)
{
	int amb_present;

	if (channel < CHANNELS_PER_BRANCH) {
		if (channel & 0x1)
			amb_present = pvt->b0_ambpresent1;
		else
			amb_present = pvt->b0_ambpresent0;
	} else {
		if (channel & 0x1)
			amb_present = pvt->b1_ambpresent1;
		else
			amb_present = pvt->b1_ambpresent0;
	}

	return amb_present;
}

940
/*
941 942 943 944
 * determine_mtr(pvt, csrow, channel)
 *
 *	return the proper MTR register as determine by the csrow and channel desired
 */
945
static int determine_mtr(struct i5000_pvt *pvt, int slot, int channel)
946 947 948 949
{
	int mtr;

	if (channel < CHANNELS_PER_BRANCH)
950
		mtr = pvt->b0_mtr[slot];
951
	else
952
		mtr = pvt->b1_mtr[slot];
953 954 955 956

	return mtr;
}

957
/*
958 959 960 961 962 963 964
 */
static void decode_mtr(int slot_row, u16 mtr)
{
	int ans;

	ans = MTR_DIMMS_PRESENT(mtr);

965 966
	edac_dbg(2, "\tMTR%d=0x%x:  DIMMs are %sPresent\n",
		 slot_row, mtr, ans ? "" : "NOT ");
967 968 969
	if (!ans)
		return;

970 971 972 973 974 975 976 977 978 979 980 981 982 983
	edac_dbg(2, "\t\tWIDTH: x%d\n", MTR_DRAM_WIDTH(mtr));
	edac_dbg(2, "\t\tNUMBANK: %d bank(s)\n", MTR_DRAM_BANKS(mtr));
	edac_dbg(2, "\t\tNUMRANK: %s\n",
		 MTR_DIMM_RANK(mtr) ? "double" : "single");
	edac_dbg(2, "\t\tNUMROW: %s\n",
		 MTR_DIMM_ROWS(mtr) == 0 ? "8,192 - 13 rows" :
		 MTR_DIMM_ROWS(mtr) == 1 ? "16,384 - 14 rows" :
		 MTR_DIMM_ROWS(mtr) == 2 ? "32,768 - 15 rows" :
		 "reserved");
	edac_dbg(2, "\t\tNUMCOL: %s\n",
		 MTR_DIMM_COLS(mtr) == 0 ? "1,024 - 10 columns" :
		 MTR_DIMM_COLS(mtr) == 1 ? "2,048 - 11 columns" :
		 MTR_DIMM_COLS(mtr) == 2 ? "4,096 - 12 columns" :
		 "reserved");
984 985
}

986
static void handle_channel(struct i5000_pvt *pvt, int slot, int channel,
987
			struct i5000_dimm_info *dinfo)
988 989 990 991 992
{
	int mtr;
	int amb_present_reg;
	int addrBits;

993
	mtr = determine_mtr(pvt, slot, channel);
994 995 996
	if (MTR_DIMMS_PRESENT(mtr)) {
		amb_present_reg = determine_amb_present_reg(pvt, channel);

997 998
		/* Determine if there is a DIMM present in this DIMM slot */
		if (amb_present_reg) {
999 1000
			dinfo->dual_rank = MTR_DIMM_RANK(mtr);

1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
			/* Start with the number of bits for a Bank
				* on the DRAM */
			addrBits = MTR_DRAM_BANKS_ADDR_BITS(mtr);
			/* Add the number of ROW bits */
			addrBits += MTR_DIMM_ROWS_ADDR_BITS(mtr);
			/* add the number of COLUMN bits */
			addrBits += MTR_DIMM_COLS_ADDR_BITS(mtr);

			addrBits += 6;	/* add 64 bits per DIMM */
			addrBits -= 20;	/* divide by 2^^20 */
			addrBits -= 3;	/* 8 bits per bytes */

			dinfo->megabytes = 1 << addrBits;
1014 1015 1016 1017
		}
	}
}

1018
/*
1019 1020 1021 1022 1023 1024 1025 1026
 *	calculate_dimm_size
 *
 *	also will output a DIMM matrix map, if debug is enabled, for viewing
 *	how the DIMMs are populated
 */
static void calculate_dimm_size(struct i5000_pvt *pvt)
{
	struct i5000_dimm_info *dinfo;
1027
	int slot, channel, branch;
1028 1029 1030 1031 1032 1033 1034 1035
	char *p, *mem_buffer;
	int space, n;

	/* ================= Generate some debug output ================= */
	space = PAGE_SIZE;
	mem_buffer = p = kmalloc(space, GFP_KERNEL);
	if (p == NULL) {
		i5000_printk(KERN_ERR, "MC: %s:%s() kmalloc() failed\n",
1036
			__FILE__, __func__);
1037 1038 1039
		return;
	}

1040
	/* Scan all the actual slots
1041
	 * and calculate the information for each DIMM
1042 1043
	 * Start with the highest slot first, to display it first
	 * and work toward the 0th slot
1044
	 */
1045
	for (slot = pvt->maxdimmperch - 1; slot >= 0; slot--) {
1046

1047
		/* on an odd slot, first output a 'boundary' marker,
1048
		 * then reset the message buffer  */
1049 1050
		if (slot & 0x1) {
			n = snprintf(p, space, "--------------------------"
1051
				"--------------------------------");
1052 1053
			p += n;
			space -= n;
1054
			edac_dbg(2, "%s\n", mem_buffer);
1055 1056 1057
			p = mem_buffer;
			space = PAGE_SIZE;
		}
1058
		n = snprintf(p, space, "slot %2d    ", slot);
1059 1060 1061 1062
		p += n;
		space -= n;

		for (channel = 0; channel < pvt->maxch; channel++) {
1063 1064 1065 1066 1067 1068 1069
			dinfo = &pvt->dimm_info[slot][channel];
			handle_channel(pvt, slot, channel, dinfo);
			if (dinfo->megabytes)
				n = snprintf(p, space, "%4d MB %dR| ",
					     dinfo->megabytes, dinfo->dual_rank + 1);
			else
				n = snprintf(p, space, "%4d MB   | ", 0);
1070 1071 1072 1073 1074
			p += n;
			space -= n;
		}
		p += n;
		space -= n;
1075
		edac_dbg(2, "%s\n", mem_buffer);
1076 1077
		p = mem_buffer;
		space = PAGE_SIZE;
1078 1079 1080
	}

	/* Output the last bottom 'boundary' marker */
1081 1082
	n = snprintf(p, space, "--------------------------"
		"--------------------------------");
1083 1084
	p += n;
	space -= n;
1085
	edac_dbg(2, "%s\n", mem_buffer);
1086 1087
	p = mem_buffer;
	space = PAGE_SIZE;
1088 1089

	/* now output the 'channel' labels */
1090
	n = snprintf(p, space, "           ");
1091 1092 1093 1094 1095 1096 1097
	p += n;
	space -= n;
	for (channel = 0; channel < pvt->maxch; channel++) {
		n = snprintf(p, space, "channel %d | ", channel);
		p += n;
		space -= n;
	}
1098
	edac_dbg(2, "%s\n", mem_buffer);
1099 1100 1101 1102
	p = mem_buffer;
	space = PAGE_SIZE;

	n = snprintf(p, space, "           ");
1103
	p += n;
1104 1105 1106 1107 1108
	for (branch = 0; branch < MAX_BRANCHES; branch++) {
		n = snprintf(p, space, "       branch %d       | ", branch);
		p += n;
		space -= n;
	}
1109 1110

	/* output the last message and free buffer */
1111
	edac_dbg(2, "%s\n", mem_buffer);
1112 1113 1114
	kfree(mem_buffer);
}

1115
/*
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
 *	i5000_get_mc_regs	read in the necessary registers and
 *				cache locally
 *
 *			Fills in the private data members
 */
static void i5000_get_mc_regs(struct mem_ctl_info *mci)
{
	struct i5000_pvt *pvt;
	u32 actual_tolm;
	u16 limit;
	int slot_row;
	int maxch;
	int maxdimmperch;
	int way0, way1;

1131
	pvt = mci->pvt_info;
1132 1133

	pci_read_config_dword(pvt->system_address, AMBASE,
1134
			(u32 *) & pvt->ambase);
1135
	pci_read_config_dword(pvt->system_address, AMBASE + sizeof(u32),
1136
			((u32 *) & pvt->ambase) + sizeof(u32));
1137 1138 1139 1140

	maxdimmperch = pvt->maxdimmperch;
	maxch = pvt->maxch;

1141 1142
	edac_dbg(2, "AMBASE= 0x%lx  MAXCH= %d  MAX-DIMM-Per-CH= %d\n",
		 (long unsigned int)pvt->ambase, pvt->maxch, pvt->maxdimmperch);
1143 1144 1145 1146

	/* Get the Branch Map regs */
	pci_read_config_word(pvt->branchmap_werrors, TOLM, &pvt->tolm);
	pvt->tolm >>= 12;
1147 1148
	edac_dbg(2, "TOLM (number of 256M regions) =%u (0x%x)\n",
		 pvt->tolm, pvt->tolm);
1149 1150

	actual_tolm = pvt->tolm << 28;
1151 1152
	edac_dbg(2, "Actual TOLM byte addr=%u (0x%x)\n",
		 actual_tolm, actual_tolm);
1153 1154 1155 1156 1157 1158 1159 1160 1161

	pci_read_config_word(pvt->branchmap_werrors, MIR0, &pvt->mir0);
	pci_read_config_word(pvt->branchmap_werrors, MIR1, &pvt->mir1);
	pci_read_config_word(pvt->branchmap_werrors, MIR2, &pvt->mir2);

	/* Get the MIR[0-2] regs */
	limit = (pvt->mir0 >> 4) & 0x0FFF;
	way0 = pvt->mir0 & 0x1;
	way1 = pvt->mir0 & 0x2;
1162 1163
	edac_dbg(2, "MIR0: limit= 0x%x  WAY1= %u  WAY0= %x\n",
		 limit, way1, way0);
1164 1165 1166
	limit = (pvt->mir1 >> 4) & 0x0FFF;
	way0 = pvt->mir1 & 0x1;
	way1 = pvt->mir1 & 0x2;
1167 1168
	edac_dbg(2, "MIR1: limit= 0x%x  WAY1= %u  WAY0= %x\n",
		 limit, way1, way0);
1169 1170 1171
	limit = (pvt->mir2 >> 4) & 0x0FFF;
	way0 = pvt->mir2 & 0x1;
	way1 = pvt->mir2 & 0x2;
1172 1173
	edac_dbg(2, "MIR2: limit= 0x%x  WAY1= %u  WAY0= %x\n",
		 limit, way1, way0);
1174 1175 1176 1177 1178 1179

	/* Get the MTR[0-3] regs */
	for (slot_row = 0; slot_row < NUM_MTRS; slot_row++) {
		int where = MTR0 + (slot_row * sizeof(u32));

		pci_read_config_word(pvt->branch_0, where,
1180
				&pvt->b0_mtr[slot_row]);
1181

1182 1183
		edac_dbg(2, "MTR%d where=0x%x B0 value=0x%x\n",
			 slot_row, where, pvt->b0_mtr[slot_row]);
1184 1185 1186

		if (pvt->maxch >= CHANNELS_PER_BRANCH) {
			pci_read_config_word(pvt->branch_1, where,
1187
					&pvt->b1_mtr[slot_row]);
1188 1189
			edac_dbg(2, "MTR%d where=0x%x B1 value=0x%x\n",
				 slot_row, where, pvt->b1_mtr[slot_row]);
1190 1191 1192 1193 1194 1195
		} else {
			pvt->b1_mtr[slot_row] = 0;
		}
	}

	/* Read and dump branch 0's MTRs */
1196 1197
	edac_dbg(2, "Memory Technology Registers:\n");
	edac_dbg(2, "   Branch 0:\n");
1198 1199 1200 1201
	for (slot_row = 0; slot_row < NUM_MTRS; slot_row++) {
		decode_mtr(slot_row, pvt->b0_mtr[slot_row]);
	}
	pci_read_config_word(pvt->branch_0, AMB_PRESENT_0,
1202
			&pvt->b0_ambpresent0);
1203
	edac_dbg(2, "\t\tAMB-Branch 0-present0 0x%x:\n", pvt->b0_ambpresent0);
1204
	pci_read_config_word(pvt->branch_0, AMB_PRESENT_1,
1205
			&pvt->b0_ambpresent1);
1206
	edac_dbg(2, "\t\tAMB-Branch 0-present1 0x%x:\n", pvt->b0_ambpresent1);
1207 1208 1209 1210 1211 1212 1213

	/* Only if we have 2 branchs (4 channels) */
	if (pvt->maxch < CHANNELS_PER_BRANCH) {
		pvt->b1_ambpresent0 = 0;
		pvt->b1_ambpresent1 = 0;
	} else {
		/* Read and dump  branch 1's MTRs */
1214
		edac_dbg(2, "   Branch 1:\n");
1215 1216 1217 1218
		for (slot_row = 0; slot_row < NUM_MTRS; slot_row++) {
			decode_mtr(slot_row, pvt->b1_mtr[slot_row]);
		}
		pci_read_config_word(pvt->branch_1, AMB_PRESENT_0,
1219
				&pvt->b1_ambpresent0);
1220 1221
		edac_dbg(2, "\t\tAMB-Branch 1-present0 0x%x:\n",
			 pvt->b1_ambpresent0);
1222
		pci_read_config_word(pvt->branch_1, AMB_PRESENT_1,
1223
				&pvt->b1_ambpresent1);
1224 1225
		edac_dbg(2, "\t\tAMB-Branch 1-present1 0x%x:\n",
			 pvt->b1_ambpresent1);
1226 1227 1228 1229 1230 1231 1232
	}

	/* Go and determine the size of each DIMM and place in an
	 * orderly matrix */
	calculate_dimm_size(pvt);
}

1233
/*
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
 *	i5000_init_csrows	Initialize the 'csrows' table within
 *				the mci control	structure with the
 *				addressing of memory.
 *
 *	return:
 *		0	success
 *		1	no actual memory found on this MC
 */
static int i5000_init_csrows(struct mem_ctl_info *mci)
{
	struct i5000_pvt *pvt;
1245
	struct dimm_info *dimm;
1246 1247
	int empty, channel_count;
	int max_csrows;
1248
	int mtr;
1249 1250
	int csrow_megs;
	int channel;
1251
	int slot;
1252

1253
	pvt = mci->pvt_info;
1254 1255 1256 1257 1258 1259

	channel_count = pvt->maxch;
	max_csrows = pvt->maxdimmperch * 2;

	empty = 1;		/* Assume NO memory */

1260
	/*
1261 1262 1263 1264 1265
	 * FIXME: The memory layout used to map slot/channel into the
	 * real memory architecture is weird: branch+slot are "csrows"
	 * and channel is channel. That required an extra array (dimm_info)
	 * to map the dimms. A good cleanup would be to remove this array,
	 * and do a loop here with branch, channel, slot
1266
	 */
1267 1268
	for (slot = 0; slot < max_csrows; slot++) {
		for (channel = 0; channel < pvt->maxch; channel++) {
1269

1270
			mtr = determine_mtr(pvt, slot, channel);
1271

1272 1273
			if (!MTR_DIMMS_PRESENT(mtr))
				continue;
1274

1275 1276 1277
			dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers,
				       channel / MAX_BRANCHES,
				       channel % MAX_BRANCHES, slot);
1278

1279
			csrow_megs = pvt->dimm_info[slot][channel].megabytes;
1280
			dimm->grain = 8;
1281

1282
			/* Assume DDR2 for now */
1283
			dimm->mtype = MEM_FB_DDR2;
1284

1285 1286
			/* ask what device type on this row */
			if (MTR_DRAM_WIDTH(mtr))
1287
				dimm->dtype = DEV_X8;
1288
			else
1289
				dimm->dtype = DEV_X4;
1290

1291
			dimm->edac_mode = EDAC_S8ECD8ED;
1292
			dimm->nr_pages = csrow_megs << 8;
1293
		}
1294 1295 1296 1297 1298 1299 1300

		empty = 0;
	}

	return empty;
}

1301
/*
1302 1303 1304 1305 1306 1307 1308 1309
 *	i5000_enable_error_reporting
 *			Turn on the memory reporting features of the hardware
 */
static void i5000_enable_error_reporting(struct mem_ctl_info *mci)
{
	struct i5000_pvt *pvt;
	u32 fbd_error_mask;

1310
	pvt = mci->pvt_info;
1311 1312 1313

	/* Read the FBD Error Mask Register */
	pci_read_config_dword(pvt->branchmap_werrors, EMASK_FBD,
1314
			&fbd_error_mask);
1315 1316 1317 1318 1319

	/* Enable with a '0' */
	fbd_error_mask &= ~(ENABLE_EMASK_ALL);

	pci_write_config_dword(pvt->branchmap_werrors, EMASK_FBD,
1320
			fbd_error_mask);
1321 1322
}

1323
/*
1324
 * i5000_get_dimm_and_channel_counts(pdev, &nr_csrows, &num_channels)
1325 1326 1327 1328 1329
 *
 *	ask the device how many channels are present and how many CSROWS
 *	 as well
 */
static void i5000_get_dimm_and_channel_counts(struct pci_dev *pdev,
1330 1331
					int *num_dimms_per_channel,
					int *num_channels)
1332 1333 1334 1335 1336 1337 1338
{
	u8 value;

	/* Need to retrieve just how many channels and dimms per channel are
	 * supported on this memory controller
	 */
	pci_read_config_byte(pdev, MAXDIMMPERCH, &value);
1339
	*num_dimms_per_channel = (int)value;
1340 1341 1342 1343 1344

	pci_read_config_byte(pdev, MAXCH, &value);
	*num_channels = (int)value;
}

1345
/*
1346 1347 1348 1349 1350 1351 1352 1353 1354
 *	i5000_probe1	Probe for ONE instance of device to see if it is
 *			present.
 *	return:
 *		0 for FOUND a device
 *		< 0 for error code
 */
static int i5000_probe1(struct pci_dev *pdev, int dev_idx)
{
	struct mem_ctl_info *mci;
1355
	struct edac_mc_layer layers[3];
1356 1357 1358 1359
	struct i5000_pvt *pvt;
	int num_channels;
	int num_dimms_per_channel;

1360 1361 1362
	edac_dbg(0, "MC: pdev bus %u dev=0x%x fn=0x%x\n",
		 pdev->bus->number,
		 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377

	/* We only are looking for func 0 of the set */
	if (PCI_FUNC(pdev->devfn) != 0)
		return -ENODEV;

	/* Ask the devices for the number of CSROWS and CHANNELS so
	 * that we can calculate the memory resources, etc
	 *
	 * The Chipset will report what it can handle which will be greater
	 * or equal to what the motherboard manufacturer will implement.
	 *
	 * As we don't have a motherboard identification routine to determine
	 * actual number of slots/dimms per channel, we thus utilize the
	 * resource as specified by the chipset. Thus, we might have
	 * have more DIMMs per channel than actually on the mobo, but this
L
Lucas De Marchi 已提交
1378
	 * allows the driver to support up to the chipset max, without
1379 1380 1381
	 * some fancy mobo determination.
	 */
	i5000_get_dimm_and_channel_counts(pdev, &num_dimms_per_channel,
1382
					&num_channels);
1383

1384 1385
	edac_dbg(0, "MC: Number of Branches=2 Channels= %d  DIMMS= %d\n",
		 num_channels, num_dimms_per_channel);
1386 1387

	/* allocate a new MC control structure */
1388

1389
	layers[0].type = EDAC_MC_LAYER_BRANCH;
1390 1391
	layers[0].size = MAX_BRANCHES;
	layers[0].is_virt_csrow = false;
1392
	layers[1].type = EDAC_MC_LAYER_CHANNEL;
1393
	layers[1].size = num_channels / MAX_BRANCHES;
1394 1395 1396 1397
	layers[1].is_virt_csrow = false;
	layers[2].type = EDAC_MC_LAYER_SLOT;
	layers[2].size = num_dimms_per_channel;
	layers[2].is_virt_csrow = true;
1398
	mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, sizeof(*pvt));
1399 1400 1401
	if (mci == NULL)
		return -ENOMEM;

1402
	edac_dbg(0, "MC: mci = %p\n", mci);
1403

1404
	mci->pdev = &pdev->dev;	/* record ptr  to the generic device */
1405

1406
	pvt = mci->pvt_info;
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
	pvt->system_address = pdev;	/* Record this device in our private */
	pvt->maxch = num_channels;
	pvt->maxdimmperch = num_dimms_per_channel;

	/* 'get' the pci devices we want to reserve for our use */
	if (i5000_get_devices(mci, dev_idx))
		goto fail0;

	/* Time to get serious */
	i5000_get_mc_regs(mci);	/* retrieve the hardware registers */

	mci->mc_idx = 0;
	mci->mtype_cap = MEM_FLAG_FB_DDR2;
	mci->edac_ctl_cap = EDAC_FLAG_NONE;
	mci->edac_cap = EDAC_FLAG_NONE;
	mci->mod_name = "i5000_edac.c";
	mci->mod_ver = I5000_REVISION;
	mci->ctl_name = i5000_devs[dev_idx].ctl_name;
1425
	mci->dev_name = pci_name(pdev);
1426 1427 1428 1429 1430 1431 1432 1433
	mci->ctl_page_to_phys = NULL;

	/* Set the function pointer to an actual operation function */
	mci->edac_check = i5000_check_error;

	/* initialize the MC control structure 'csrows' table
	 * with the mapping and control information */
	if (i5000_init_csrows(mci)) {
1434
		edac_dbg(0, "MC: Setting mci->edac_cap to EDAC_FLAG_NONE because i5000_init_csrows() returned nonzero value\n");
1435 1436
		mci->edac_cap = EDAC_FLAG_NONE;	/* no csrows found */
	} else {
1437
		edac_dbg(1, "MC: Enable error reporting now\n");
1438 1439 1440 1441
		i5000_enable_error_reporting(mci);
	}

	/* add this new MC control structure to EDAC's list of MCs */
1442
	if (edac_mc_add_mc(mci)) {
1443
		edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
1444 1445 1446 1447 1448 1449 1450 1451
		/* FIXME: perhaps some code should go here that disables error
		 * reporting if we just enabled it
		 */
		goto fail1;
	}

	i5000_clear_error(mci);

1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
	/* allocating generic PCI control info */
	i5000_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR);
	if (!i5000_pci) {
		printk(KERN_WARNING
			"%s(): Unable to create PCI control\n",
			__func__);
		printk(KERN_WARNING
			"%s(): PCI error report via EDAC not setup\n",
			__func__);
	}

1463 1464 1465
	return 0;

	/* Error exit unwinding stack */
1466
fail1:
1467 1468 1469

	i5000_put_devices(mci);

1470
fail0:
1471 1472 1473 1474
	edac_mc_free(mci);
	return -ENODEV;
}

1475
/*
1476 1477 1478 1479 1480 1481 1482
 *	i5000_init_one	constructor for one instance of device
 *
 * 	returns:
 *		negative on error
 *		count (>= 0)
 */
static int __devinit i5000_init_one(struct pci_dev *pdev,
1483
				const struct pci_device_id *id)
1484 1485 1486
{
	int rc;

1487
	edac_dbg(0, "MC:\n");
1488 1489 1490

	/* wake up device */
	rc = pci_enable_device(pdev);
1491
	if (rc)
1492 1493 1494 1495 1496 1497
		return rc;

	/* now probe and enable the device */
	return i5000_probe1(pdev, id->driver_data);
}

1498
/*
1499 1500 1501 1502 1503 1504 1505
 *	i5000_remove_one	destructor for one instance of device
 *
 */
static void __devexit i5000_remove_one(struct pci_dev *pdev)
{
	struct mem_ctl_info *mci;

1506
	edac_dbg(0, "\n");
1507

1508 1509 1510
	if (i5000_pci)
		edac_pci_release_generic_ctl(i5000_pci);

1511 1512 1513 1514 1515 1516 1517 1518
	if ((mci = edac_mc_del_mc(&pdev->dev)) == NULL)
		return;

	/* retrieve references to resources, and free those resources */
	i5000_put_devices(mci);
	edac_mc_free(mci);
}

1519
/*
1520 1521 1522 1523
 *	pci_device_id	table for which devices we are looking for
 *
 *	The "E500P" device is the first device supported.
 */
1524
static DEFINE_PCI_DEVICE_TABLE(i5000_pci_tbl) = {
1525 1526 1527 1528 1529 1530 1531 1532
	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I5000_DEV16),
	 .driver_data = I5000P},

	{0,}			/* 0 terminated list. */
};

MODULE_DEVICE_TABLE(pci, i5000_pci_tbl);

1533
/*
1534 1535 1536 1537
 *	i5000_driver	pci_driver structure for this module
 *
 */
static struct pci_driver i5000_driver = {
1538
	.name = KBUILD_BASENAME,
1539 1540 1541 1542 1543
	.probe = i5000_init_one,
	.remove = __devexit_p(i5000_remove_one),
	.id_table = i5000_pci_tbl,
};

1544
/*
1545 1546 1547 1548 1549 1550 1551
 *	i5000_init		Module entry function
 *			Try to initialize this module for its devices
 */
static int __init i5000_init(void)
{
	int pci_rc;

1552
	edac_dbg(2, "MC:\n");
1553

1554 1555 1556
       /* Ensure that the OPSTATE is set correctly for POLL or NMI */
       opstate_init();

1557 1558 1559 1560 1561
	pci_rc = pci_register_driver(&i5000_driver);

	return (pci_rc < 0) ? pci_rc : 0;
}

1562
/*
1563 1564 1565 1566 1567
 *	i5000_exit()	Module exit function
 *			Unregister the driver
 */
static void __exit i5000_exit(void)
{
1568
	edac_dbg(2, "MC:\n");
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
	pci_unregister_driver(&i5000_driver);
}

module_init(i5000_init);
module_exit(i5000_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR
    ("Linux Networx (http://lnxi.com) Doug Thompson <norsk5@xmission.com>");
MODULE_DESCRIPTION("MC Driver for Intel I5000 memory controllers - "
1579
		I5000_REVISION);
1580

D
Dave Jiang 已提交
1581 1582
module_param(edac_op_state, int, 0444);
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
A
Aristeu Rozanski 已提交
1583 1584 1585
module_param(misc_messages, int, 0444);
MODULE_PARM_DESC(misc_messages, "Log miscellaneous non fatal messages");