cgroup.c 82.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
/*
 *  Generic process-grouping system.
 *
 *  Based originally on the cpuset system, extracted by Paul Menage
 *  Copyright (C) 2006 Google, Inc
 *
 *  Copyright notices from the original cpuset code:
 *  --------------------------------------------------
 *  Copyright (C) 2003 BULL SA.
 *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
 *
 *  Portions derived from Patrick Mochel's sysfs code.
 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
 *
 *  2003-10-10 Written by Simon Derr.
 *  2003-10-22 Updates by Stephen Hemminger.
 *  2004 May-July Rework by Paul Jackson.
 *  ---------------------------------------------------
 *
 *  This file is subject to the terms and conditions of the GNU General Public
 *  License.  See the file COPYING in the main directory of the Linux
 *  distribution for more details.
 */

#include <linux/cgroup.h>
#include <linux/errno.h>
#include <linux/fs.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/mm.h>
#include <linux/mutex.h>
#include <linux/mount.h>
#include <linux/pagemap.h>
34
#include <linux/proc_fs.h>
35 36
#include <linux/rcupdate.h>
#include <linux/sched.h>
37
#include <linux/backing-dev.h>
38 39 40 41 42
#include <linux/seq_file.h>
#include <linux/slab.h>
#include <linux/magic.h>
#include <linux/spinlock.h>
#include <linux/string.h>
43
#include <linux/sort.h>
44
#include <linux/kmod.h>
B
Balbir Singh 已提交
45 46
#include <linux/delayacct.h>
#include <linux/cgroupstats.h>
47
#include <linux/hash.h>
48
#include <linux/namei.h>
B
Balbir Singh 已提交
49

50 51
#include <asm/atomic.h>

52 53
static DEFINE_MUTEX(cgroup_mutex);

54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
/* Generate an array of cgroup subsystem pointers */
#define SUBSYS(_x) &_x ## _subsys,

static struct cgroup_subsys *subsys[] = {
#include <linux/cgroup_subsys.h>
};

/*
 * A cgroupfs_root represents the root of a cgroup hierarchy,
 * and may be associated with a superblock to form an active
 * hierarchy
 */
struct cgroupfs_root {
	struct super_block *sb;

	/*
	 * The bitmask of subsystems intended to be attached to this
	 * hierarchy
	 */
	unsigned long subsys_bits;

	/* The bitmask of subsystems currently attached to this hierarchy */
	unsigned long actual_subsys_bits;

	/* A list running through the attached subsystems */
	struct list_head subsys_list;

	/* The root cgroup for this hierarchy */
	struct cgroup top_cgroup;

	/* Tracks how many cgroups are currently defined in hierarchy.*/
	int number_of_cgroups;

	/* A list running through the mounted hierarchies */
	struct list_head root_list;

	/* Hierarchy-specific flags */
	unsigned long flags;
92

93
	/* The path to use for release notifications. */
94
	char release_agent_path[PATH_MAX];
95 96 97 98 99 100 101 102 103 104 105 106 107
};


/*
 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
 * subsystems that are otherwise unattached - it never has more than a
 * single cgroup, and all tasks are part of that cgroup.
 */
static struct cgroupfs_root rootnode;

/* The list of hierarchy roots */

static LIST_HEAD(roots);
108
static int root_count;
109 110 111 112 113

/* dummytop is a shorthand for the dummy hierarchy's top cgroup */
#define dummytop (&rootnode.top_cgroup)

/* This flag indicates whether tasks in the fork and exit paths should
L
Li Zefan 已提交
114 115 116
 * check for fork/exit handlers to call. This avoids us having to do
 * extra work in the fork/exit path if none of the subsystems need to
 * be called.
117
 */
118
static int need_forkexit_callback __read_mostly;
119
static int need_mm_owner_callback __read_mostly;
120 121

/* convenient tests for these bits */
122
inline int cgroup_is_removed(const struct cgroup *cgrp)
123
{
124
	return test_bit(CGRP_REMOVED, &cgrp->flags);
125 126 127 128 129 130 131
}

/* bits in struct cgroupfs_root flags field */
enum {
	ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
};

132
static int cgroup_is_releasable(const struct cgroup *cgrp)
133 134
{
	const int bits =
135 136 137
		(1 << CGRP_RELEASABLE) |
		(1 << CGRP_NOTIFY_ON_RELEASE);
	return (cgrp->flags & bits) == bits;
138 139
}

140
static int notify_on_release(const struct cgroup *cgrp)
141
{
142
	return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
143 144
}

145 146 147 148 149 150 151 152 153 154 155
/*
 * for_each_subsys() allows you to iterate on each subsystem attached to
 * an active hierarchy
 */
#define for_each_subsys(_root, _ss) \
list_for_each_entry(_ss, &_root->subsys_list, sibling)

/* for_each_root() allows you to iterate across the active hierarchies */
#define for_each_root(_root) \
list_for_each_entry(_root, &roots, root_list)

156 157 158 159 160 161
/* the list of cgroups eligible for automatic release. Protected by
 * release_list_lock */
static LIST_HEAD(release_list);
static DEFINE_SPINLOCK(release_list_lock);
static void cgroup_release_agent(struct work_struct *work);
static DECLARE_WORK(release_agent_work, cgroup_release_agent);
162
static void check_for_release(struct cgroup *cgrp);
163

164 165 166 167 168 169
/* Link structure for associating css_set objects with cgroups */
struct cg_cgroup_link {
	/*
	 * List running through cg_cgroup_links associated with a
	 * cgroup, anchored on cgroup->css_sets
	 */
170
	struct list_head cgrp_link_list;
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
	/*
	 * List running through cg_cgroup_links pointing at a
	 * single css_set object, anchored on css_set->cg_links
	 */
	struct list_head cg_link_list;
	struct css_set *cg;
};

/* The default css_set - used by init and its children prior to any
 * hierarchies being mounted. It contains a pointer to the root state
 * for each subsystem. Also used to anchor the list of css_sets. Not
 * reference-counted, to improve performance when child cgroups
 * haven't been created.
 */

static struct css_set init_css_set;
static struct cg_cgroup_link init_css_set_link;

/* css_set_lock protects the list of css_set objects, and the
 * chain of tasks off each css_set.  Nests outside task->alloc_lock
 * due to cgroup_iter_start() */
static DEFINE_RWLOCK(css_set_lock);
static int css_set_count;

195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
/* hash table for cgroup groups. This improves the performance to
 * find an existing css_set */
#define CSS_SET_HASH_BITS	7
#define CSS_SET_TABLE_SIZE	(1 << CSS_SET_HASH_BITS)
static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];

static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
{
	int i;
	int index;
	unsigned long tmp = 0UL;

	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
		tmp += (unsigned long)css[i];
	tmp = (tmp >> 16) ^ tmp;

	index = hash_long(tmp, CSS_SET_HASH_BITS);

	return &css_set_table[index];
}

216 217 218 219
/* We don't maintain the lists running through each css_set to its
 * task until after the first call to cgroup_iter_start(). This
 * reduces the fork()/exit() overhead for people who have cgroups
 * compiled into their kernel but not actually in use */
220
static int use_task_css_set_links __read_mostly;
221 222 223 224 225 226 227

/* When we create or destroy a css_set, the operation simply
 * takes/releases a reference count on all the cgroups referenced
 * by subsystems in this css_set. This can end up multiple-counting
 * some cgroups, but that's OK - the ref-count is just a
 * busy/not-busy indicator; ensuring that we only count each cgroup
 * once would require taking a global lock to ensure that no
228 229 230 231 232 233 234
 * subsystems moved between hierarchies while we were doing so.
 *
 * Possible TODO: decide at boot time based on the number of
 * registered subsystems and the number of CPUs or NUMA nodes whether
 * it's better for performance to ref-count every subsystem, or to
 * take a global lock and only add one ref count to each hierarchy.
 */
235 236 237 238

/*
 * unlink a css_set from the list and free it
 */
239
static void unlink_css_set(struct css_set *cg)
240
{
K
KOSAKI Motohiro 已提交
241 242 243
	struct cg_cgroup_link *link;
	struct cg_cgroup_link *saved_link;

244
	hlist_del(&cg->hlist);
245
	css_set_count--;
K
KOSAKI Motohiro 已提交
246 247 248

	list_for_each_entry_safe(link, saved_link, &cg->cg_links,
				 cg_link_list) {
249
		list_del(&link->cg_link_list);
250
		list_del(&link->cgrp_link_list);
251 252
		kfree(link);
	}
253 254
}

255
static void __put_css_set(struct css_set *cg, int taskexit)
256 257
{
	int i;
258 259 260 261 262 263 264 265 266 267 268 269
	/*
	 * Ensure that the refcount doesn't hit zero while any readers
	 * can see it. Similar to atomic_dec_and_lock(), but for an
	 * rwlock
	 */
	if (atomic_add_unless(&cg->refcount, -1, 1))
		return;
	write_lock(&css_set_lock);
	if (!atomic_dec_and_test(&cg->refcount)) {
		write_unlock(&css_set_lock);
		return;
	}
270
	unlink_css_set(cg);
271
	write_unlock(&css_set_lock);
272 273 274

	rcu_read_lock();
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
275 276 277
		struct cgroup *cgrp = cg->subsys[i]->cgroup;
		if (atomic_dec_and_test(&cgrp->count) &&
		    notify_on_release(cgrp)) {
278
			if (taskexit)
279 280
				set_bit(CGRP_RELEASABLE, &cgrp->flags);
			check_for_release(cgrp);
281 282 283
		}
	}
	rcu_read_unlock();
284
	kfree(cg);
285 286
}

287 288 289 290 291
/*
 * refcounted get/put for css_set objects
 */
static inline void get_css_set(struct css_set *cg)
{
292
	atomic_inc(&cg->refcount);
293 294 295 296
}

static inline void put_css_set(struct css_set *cg)
{
297
	__put_css_set(cg, 0);
298 299
}

300 301
static inline void put_css_set_taskexit(struct css_set *cg)
{
302
	__put_css_set(cg, 1);
303 304
}

305 306 307
/*
 * find_existing_css_set() is a helper for
 * find_css_set(), and checks to see whether an existing
308
 * css_set is suitable.
309 310 311 312
 *
 * oldcg: the cgroup group that we're using before the cgroup
 * transition
 *
313
 * cgrp: the cgroup that we're moving into
314 315 316 317 318 319
 *
 * template: location in which to build the desired set of subsystem
 * state objects for the new cgroup group
 */
static struct css_set *find_existing_css_set(
	struct css_set *oldcg,
320
	struct cgroup *cgrp,
321
	struct cgroup_subsys_state *template[])
322 323
{
	int i;
324
	struct cgroupfs_root *root = cgrp->root;
325 326 327
	struct hlist_head *hhead;
	struct hlist_node *node;
	struct css_set *cg;
328 329 330 331

	/* Built the set of subsystem state objects that we want to
	 * see in the new css_set */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
L
Li Zefan 已提交
332
		if (root->subsys_bits & (1UL << i)) {
333 334 335
			/* Subsystem is in this hierarchy. So we want
			 * the subsystem state from the new
			 * cgroup */
336
			template[i] = cgrp->subsys[i];
337 338 339 340 341 342 343
		} else {
			/* Subsystem is not in this hierarchy, so we
			 * don't want to change the subsystem state */
			template[i] = oldcg->subsys[i];
		}
	}

344 345
	hhead = css_set_hash(template);
	hlist_for_each_entry(cg, node, hhead, hlist) {
346 347 348 349
		if (!memcmp(template, cg->subsys, sizeof(cg->subsys))) {
			/* All subsystems matched */
			return cg;
		}
350
	}
351 352 353 354 355

	/* No existing cgroup group matched */
	return NULL;
}

356 357 358 359 360 361 362 363 364 365 366
static void free_cg_links(struct list_head *tmp)
{
	struct cg_cgroup_link *link;
	struct cg_cgroup_link *saved_link;

	list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
		list_del(&link->cgrp_link_list);
		kfree(link);
	}
}

367 368
/*
 * allocate_cg_links() allocates "count" cg_cgroup_link structures
369
 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
370 371 372 373 374 375 376 377 378 379
 * success or a negative error
 */
static int allocate_cg_links(int count, struct list_head *tmp)
{
	struct cg_cgroup_link *link;
	int i;
	INIT_LIST_HEAD(tmp);
	for (i = 0; i < count; i++) {
		link = kmalloc(sizeof(*link), GFP_KERNEL);
		if (!link) {
380
			free_cg_links(tmp);
381 382
			return -ENOMEM;
		}
383
		list_add(&link->cgrp_link_list, tmp);
384 385 386 387 388 389 390 391 392 393 394 395
	}
	return 0;
}

/*
 * find_css_set() takes an existing cgroup group and a
 * cgroup object, and returns a css_set object that's
 * equivalent to the old group, but with the given cgroup
 * substituted into the appropriate hierarchy. Must be called with
 * cgroup_mutex held
 */
static struct css_set *find_css_set(
396
	struct css_set *oldcg, struct cgroup *cgrp)
397 398 399 400 401 402 403 404
{
	struct css_set *res;
	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
	int i;

	struct list_head tmp_cg_links;
	struct cg_cgroup_link *link;

405 406
	struct hlist_head *hhead;

407 408
	/* First see if we already have a cgroup group that matches
	 * the desired set */
409
	read_lock(&css_set_lock);
410
	res = find_existing_css_set(oldcg, cgrp, template);
411 412
	if (res)
		get_css_set(res);
413
	read_unlock(&css_set_lock);
414 415 416 417 418 419 420 421 422 423 424 425 426 427

	if (res)
		return res;

	res = kmalloc(sizeof(*res), GFP_KERNEL);
	if (!res)
		return NULL;

	/* Allocate all the cg_cgroup_link objects that we'll need */
	if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
		kfree(res);
		return NULL;
	}

428
	atomic_set(&res->refcount, 1);
429 430
	INIT_LIST_HEAD(&res->cg_links);
	INIT_LIST_HEAD(&res->tasks);
431
	INIT_HLIST_NODE(&res->hlist);
432 433 434 435 436 437 438 439

	/* Copy the set of subsystem state objects generated in
	 * find_existing_css_set() */
	memcpy(res->subsys, template, sizeof(res->subsys));

	write_lock(&css_set_lock);
	/* Add reference counts and links from the new css_set. */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
440
		struct cgroup *cgrp = res->subsys[i]->cgroup;
441
		struct cgroup_subsys *ss = subsys[i];
442
		atomic_inc(&cgrp->count);
443 444 445 446 447 448 449 450 451
		/*
		 * We want to add a link once per cgroup, so we
		 * only do it for the first subsystem in each
		 * hierarchy
		 */
		if (ss->root->subsys_list.next == &ss->sibling) {
			BUG_ON(list_empty(&tmp_cg_links));
			link = list_entry(tmp_cg_links.next,
					  struct cg_cgroup_link,
452 453 454
					  cgrp_link_list);
			list_del(&link->cgrp_link_list);
			list_add(&link->cgrp_link_list, &cgrp->css_sets);
455 456 457 458 459 460 461
			link->cg = res;
			list_add(&link->cg_link_list, &res->cg_links);
		}
	}
	if (list_empty(&rootnode.subsys_list)) {
		link = list_entry(tmp_cg_links.next,
				  struct cg_cgroup_link,
462 463 464
				  cgrp_link_list);
		list_del(&link->cgrp_link_list);
		list_add(&link->cgrp_link_list, &dummytop->css_sets);
465 466 467 468 469 470 471
		link->cg = res;
		list_add(&link->cg_link_list, &res->cg_links);
	}

	BUG_ON(!list_empty(&tmp_cg_links));

	css_set_count++;
472 473 474 475 476

	/* Add this cgroup group to the hash table */
	hhead = css_set_hash(res->subsys);
	hlist_add_head(&res->hlist, hhead);

477 478 479
	write_unlock(&css_set_lock);

	return res;
480 481
}

482 483 484 485 486 487 488 489 490 491
/*
 * There is one global cgroup mutex. We also require taking
 * task_lock() when dereferencing a task's cgroup subsys pointers.
 * See "The task_lock() exception", at the end of this comment.
 *
 * A task must hold cgroup_mutex to modify cgroups.
 *
 * Any task can increment and decrement the count field without lock.
 * So in general, code holding cgroup_mutex can't rely on the count
 * field not changing.  However, if the count goes to zero, then only
492
 * cgroup_attach_task() can increment it again.  Because a count of zero
493 494 495 496 497 498 499 500 501 502 503 504 505
 * means that no tasks are currently attached, therefore there is no
 * way a task attached to that cgroup can fork (the other way to
 * increment the count).  So code holding cgroup_mutex can safely
 * assume that if the count is zero, it will stay zero. Similarly, if
 * a task holds cgroup_mutex on a cgroup with zero count, it
 * knows that the cgroup won't be removed, as cgroup_rmdir()
 * needs that mutex.
 *
 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
 * (usually) take cgroup_mutex.  These are the two most performance
 * critical pieces of code here.  The exception occurs on cgroup_exit(),
 * when a task in a notify_on_release cgroup exits.  Then cgroup_mutex
 * is taken, and if the cgroup count is zero, a usermode call made
L
Li Zefan 已提交
506 507
 * to the release agent with the name of the cgroup (path relative to
 * the root of cgroup file system) as the argument.
508 509 510 511 512 513 514 515 516 517 518
 *
 * A cgroup can only be deleted if both its 'count' of using tasks
 * is zero, and its list of 'children' cgroups is empty.  Since all
 * tasks in the system use _some_ cgroup, and since there is always at
 * least one task in the system (init, pid == 1), therefore, top_cgroup
 * always has either children cgroups and/or using tasks.  So we don't
 * need a special hack to ensure that top_cgroup cannot be deleted.
 *
 *	The task_lock() exception
 *
 * The need for this exception arises from the action of
519
 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
L
Li Zefan 已提交
520
 * another.  It does so using cgroup_mutex, however there are
521 522 523
 * several performance critical places that need to reference
 * task->cgroup without the expense of grabbing a system global
 * mutex.  Therefore except as noted below, when dereferencing or, as
524
 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
525 526 527 528
 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
 * the task_struct routinely used for such matters.
 *
 * P.S.  One more locking exception.  RCU is used to guard the
529
 * update of a tasks cgroup pointer by cgroup_attach_task()
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
 */

/**
 * cgroup_lock - lock out any changes to cgroup structures
 *
 */
void cgroup_lock(void)
{
	mutex_lock(&cgroup_mutex);
}

/**
 * cgroup_unlock - release lock on cgroup changes
 *
 * Undo the lock taken in a previous cgroup_lock() call.
 */
void cgroup_unlock(void)
{
	mutex_unlock(&cgroup_mutex);
}

/*
 * A couple of forward declarations required, due to cyclic reference loop:
 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
 * -> cgroup_mkdir.
 */

static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode);
static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
560
static int cgroup_populate_dir(struct cgroup *cgrp);
561
static struct inode_operations cgroup_dir_inode_operations;
562 563 564
static struct file_operations proc_cgroupstats_operations;

static struct backing_dev_info cgroup_backing_dev_info = {
565
	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK,
566
};
567 568 569 570 571 572 573

static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb)
{
	struct inode *inode = new_inode(sb);

	if (inode) {
		inode->i_mode = mode;
574 575
		inode->i_uid = current_fsuid();
		inode->i_gid = current_fsgid();
576 577 578 579 580 581
		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
		inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
	}
	return inode;
}

582 583 584 585 586 587 588 589 590 591 592 593 594
/*
 * Call subsys's pre_destroy handler.
 * This is called before css refcnt check.
 */
static void cgroup_call_pre_destroy(struct cgroup *cgrp)
{
	struct cgroup_subsys *ss;
	for_each_subsys(cgrp->root, ss)
		if (ss->pre_destroy && cgrp->subsys[ss->subsys_id])
			ss->pre_destroy(ss, cgrp);
	return;
}

595 596 597 598
static void cgroup_diput(struct dentry *dentry, struct inode *inode)
{
	/* is dentry a directory ? if so, kfree() associated cgroup */
	if (S_ISDIR(inode->i_mode)) {
599
		struct cgroup *cgrp = dentry->d_fsdata;
600
		struct cgroup_subsys *ss;
601
		BUG_ON(!(cgroup_is_removed(cgrp)));
602 603 604 605 606 607 608
		/* It's possible for external users to be holding css
		 * reference counts on a cgroup; css_put() needs to
		 * be able to access the cgroup after decrementing
		 * the reference count in order to know if it needs to
		 * queue the cgroup to be handled by the release
		 * agent */
		synchronize_rcu();
609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625

		mutex_lock(&cgroup_mutex);
		/*
		 * Release the subsystem state objects.
		 */
		for_each_subsys(cgrp->root, ss) {
			if (cgrp->subsys[ss->subsys_id])
				ss->destroy(ss, cgrp);
		}

		cgrp->root->number_of_cgroups--;
		mutex_unlock(&cgroup_mutex);

		/* Drop the active superblock reference that we took when we
		 * created the cgroup */
		deactivate_super(cgrp->root->sb);

626
		kfree(cgrp);
627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
	}
	iput(inode);
}

static void remove_dir(struct dentry *d)
{
	struct dentry *parent = dget(d->d_parent);

	d_delete(d);
	simple_rmdir(parent->d_inode, d);
	dput(parent);
}

static void cgroup_clear_directory(struct dentry *dentry)
{
	struct list_head *node;

	BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
	spin_lock(&dcache_lock);
	node = dentry->d_subdirs.next;
	while (node != &dentry->d_subdirs) {
		struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
		list_del_init(node);
		if (d->d_inode) {
			/* This should never be called on a cgroup
			 * directory with child cgroups */
			BUG_ON(d->d_inode->i_mode & S_IFDIR);
			d = dget_locked(d);
			spin_unlock(&dcache_lock);
			d_delete(d);
			simple_unlink(dentry->d_inode, d);
			dput(d);
			spin_lock(&dcache_lock);
		}
		node = dentry->d_subdirs.next;
	}
	spin_unlock(&dcache_lock);
}

/*
 * NOTE : the dentry must have been dget()'ed
 */
static void cgroup_d_remove_dir(struct dentry *dentry)
{
	cgroup_clear_directory(dentry);

	spin_lock(&dcache_lock);
	list_del_init(&dentry->d_u.d_child);
	spin_unlock(&dcache_lock);
	remove_dir(dentry);
}

static int rebind_subsystems(struct cgroupfs_root *root,
			      unsigned long final_bits)
{
	unsigned long added_bits, removed_bits;
683
	struct cgroup *cgrp = &root->top_cgroup;
684 685 686 687 688 689
	int i;

	removed_bits = root->actual_subsys_bits & ~final_bits;
	added_bits = final_bits & ~root->actual_subsys_bits;
	/* Check that any added subsystems are currently free */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
L
Li Zefan 已提交
690
		unsigned long bit = 1UL << i;
691 692 693 694 695 696 697 698 699 700 701 702 703
		struct cgroup_subsys *ss = subsys[i];
		if (!(bit & added_bits))
			continue;
		if (ss->root != &rootnode) {
			/* Subsystem isn't free */
			return -EBUSY;
		}
	}

	/* Currently we don't handle adding/removing subsystems when
	 * any child cgroups exist. This is theoretically supportable
	 * but involves complex error handling, so it's being left until
	 * later */
704
	if (root->number_of_cgroups > 1)
705 706 707 708 709 710 711 712
		return -EBUSY;

	/* Process each subsystem */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		unsigned long bit = 1UL << i;
		if (bit & added_bits) {
			/* We're binding this subsystem to this hierarchy */
713
			BUG_ON(cgrp->subsys[i]);
714 715
			BUG_ON(!dummytop->subsys[i]);
			BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
716 717
			cgrp->subsys[i] = dummytop->subsys[i];
			cgrp->subsys[i]->cgroup = cgrp;
718 719 720
			list_add(&ss->sibling, &root->subsys_list);
			rcu_assign_pointer(ss->root, root);
			if (ss->bind)
721
				ss->bind(ss, cgrp);
722 723 724

		} else if (bit & removed_bits) {
			/* We're removing this subsystem */
725 726
			BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
			BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
727 728 729
			if (ss->bind)
				ss->bind(ss, dummytop);
			dummytop->subsys[i]->cgroup = dummytop;
730
			cgrp->subsys[i] = NULL;
731 732 733 734
			rcu_assign_pointer(subsys[i]->root, &rootnode);
			list_del(&ss->sibling);
		} else if (bit & final_bits) {
			/* Subsystem state should already exist */
735
			BUG_ON(!cgrp->subsys[i]);
736 737
		} else {
			/* Subsystem state shouldn't exist */
738
			BUG_ON(cgrp->subsys[i]);
739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
		}
	}
	root->subsys_bits = root->actual_subsys_bits = final_bits;
	synchronize_rcu();

	return 0;
}

static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs)
{
	struct cgroupfs_root *root = vfs->mnt_sb->s_fs_info;
	struct cgroup_subsys *ss;

	mutex_lock(&cgroup_mutex);
	for_each_subsys(root, ss)
		seq_printf(seq, ",%s", ss->name);
	if (test_bit(ROOT_NOPREFIX, &root->flags))
		seq_puts(seq, ",noprefix");
757 758
	if (strlen(root->release_agent_path))
		seq_printf(seq, ",release_agent=%s", root->release_agent_path);
759 760 761 762 763 764 765
	mutex_unlock(&cgroup_mutex);
	return 0;
}

struct cgroup_sb_opts {
	unsigned long subsys_bits;
	unsigned long flags;
766
	char *release_agent;
767 768 769 770 771 772 773 774 775 776 777
};

/* Convert a hierarchy specifier into a bitmask of subsystems and
 * flags. */
static int parse_cgroupfs_options(char *data,
				     struct cgroup_sb_opts *opts)
{
	char *token, *o = data ?: "all";

	opts->subsys_bits = 0;
	opts->flags = 0;
778
	opts->release_agent = NULL;
779 780 781 782 783

	while ((token = strsep(&o, ",")) != NULL) {
		if (!*token)
			return -EINVAL;
		if (!strcmp(token, "all")) {
784 785 786 787 788 789 790 791
			/* Add all non-disabled subsystems */
			int i;
			opts->subsys_bits = 0;
			for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
				struct cgroup_subsys *ss = subsys[i];
				if (!ss->disabled)
					opts->subsys_bits |= 1ul << i;
			}
792 793
		} else if (!strcmp(token, "noprefix")) {
			set_bit(ROOT_NOPREFIX, &opts->flags);
794 795 796 797 798 799 800 801 802
		} else if (!strncmp(token, "release_agent=", 14)) {
			/* Specifying two release agents is forbidden */
			if (opts->release_agent)
				return -EINVAL;
			opts->release_agent = kzalloc(PATH_MAX, GFP_KERNEL);
			if (!opts->release_agent)
				return -ENOMEM;
			strncpy(opts->release_agent, token + 14, PATH_MAX - 1);
			opts->release_agent[PATH_MAX - 1] = 0;
803 804 805 806 807 808
		} else {
			struct cgroup_subsys *ss;
			int i;
			for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
				ss = subsys[i];
				if (!strcmp(token, ss->name)) {
809 810
					if (!ss->disabled)
						set_bit(i, &opts->subsys_bits);
811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
					break;
				}
			}
			if (i == CGROUP_SUBSYS_COUNT)
				return -ENOENT;
		}
	}

	/* We can't have an empty hierarchy */
	if (!opts->subsys_bits)
		return -EINVAL;

	return 0;
}

static int cgroup_remount(struct super_block *sb, int *flags, char *data)
{
	int ret = 0;
	struct cgroupfs_root *root = sb->s_fs_info;
830
	struct cgroup *cgrp = &root->top_cgroup;
831 832
	struct cgroup_sb_opts opts;

833
	mutex_lock(&cgrp->dentry->d_inode->i_mutex);
834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
	mutex_lock(&cgroup_mutex);

	/* See what subsystems are wanted */
	ret = parse_cgroupfs_options(data, &opts);
	if (ret)
		goto out_unlock;

	/* Don't allow flags to change at remount */
	if (opts.flags != root->flags) {
		ret = -EINVAL;
		goto out_unlock;
	}

	ret = rebind_subsystems(root, opts.subsys_bits);

	/* (re)populate subsystem files */
	if (!ret)
851
		cgroup_populate_dir(cgrp);
852

853 854
	if (opts.release_agent)
		strcpy(root->release_agent_path, opts.release_agent);
855
 out_unlock:
856 857
	if (opts.release_agent)
		kfree(opts.release_agent);
858
	mutex_unlock(&cgroup_mutex);
859
	mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
860 861 862 863 864 865 866 867 868 869
	return ret;
}

static struct super_operations cgroup_ops = {
	.statfs = simple_statfs,
	.drop_inode = generic_delete_inode,
	.show_options = cgroup_show_options,
	.remount_fs = cgroup_remount,
};

870 871 872 873 874 875 876 877
static void init_cgroup_housekeeping(struct cgroup *cgrp)
{
	INIT_LIST_HEAD(&cgrp->sibling);
	INIT_LIST_HEAD(&cgrp->children);
	INIT_LIST_HEAD(&cgrp->css_sets);
	INIT_LIST_HEAD(&cgrp->release_list);
	init_rwsem(&cgrp->pids_mutex);
}
878 879
static void init_cgroup_root(struct cgroupfs_root *root)
{
880
	struct cgroup *cgrp = &root->top_cgroup;
881 882 883
	INIT_LIST_HEAD(&root->subsys_list);
	INIT_LIST_HEAD(&root->root_list);
	root->number_of_cgroups = 1;
884 885
	cgrp->root = root;
	cgrp->top_cgroup = cgrp;
886
	init_cgroup_housekeeping(cgrp);
887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
}

static int cgroup_test_super(struct super_block *sb, void *data)
{
	struct cgroupfs_root *new = data;
	struct cgroupfs_root *root = sb->s_fs_info;

	/* First check subsystems */
	if (new->subsys_bits != root->subsys_bits)
	    return 0;

	/* Next check flags */
	if (new->flags != root->flags)
		return 0;

	return 1;
}

static int cgroup_set_super(struct super_block *sb, void *data)
{
	int ret;
	struct cgroupfs_root *root = data;

	ret = set_anon_super(sb, NULL);
	if (ret)
		return ret;

	sb->s_fs_info = root;
	root->sb = sb;

	sb->s_blocksize = PAGE_CACHE_SIZE;
	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
	sb->s_magic = CGROUP_SUPER_MAGIC;
	sb->s_op = &cgroup_ops;

	return 0;
}

static int cgroup_get_rootdir(struct super_block *sb)
{
	struct inode *inode =
		cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
	struct dentry *dentry;

	if (!inode)
		return -ENOMEM;

	inode->i_fop = &simple_dir_operations;
	inode->i_op = &cgroup_dir_inode_operations;
	/* directories start off with i_nlink == 2 (for "." entry) */
	inc_nlink(inode);
	dentry = d_alloc_root(inode);
	if (!dentry) {
		iput(inode);
		return -ENOMEM;
	}
	sb->s_root = dentry;
	return 0;
}

static int cgroup_get_sb(struct file_system_type *fs_type,
			 int flags, const char *unused_dev_name,
			 void *data, struct vfsmount *mnt)
{
	struct cgroup_sb_opts opts;
	int ret = 0;
	struct super_block *sb;
	struct cgroupfs_root *root;
955
	struct list_head tmp_cg_links;
956 957 958

	/* First find the desired set of subsystems */
	ret = parse_cgroupfs_options(data, &opts);
959 960 961
	if (ret) {
		if (opts.release_agent)
			kfree(opts.release_agent);
962
		return ret;
963
	}
964 965

	root = kzalloc(sizeof(*root), GFP_KERNEL);
966 967 968
	if (!root) {
		if (opts.release_agent)
			kfree(opts.release_agent);
969
		return -ENOMEM;
970
	}
971 972 973 974

	init_cgroup_root(root);
	root->subsys_bits = opts.subsys_bits;
	root->flags = opts.flags;
975 976 977 978
	if (opts.release_agent) {
		strcpy(root->release_agent_path, opts.release_agent);
		kfree(opts.release_agent);
	}
979 980 981 982 983 984 985 986 987 988 989 990 991 992 993

	sb = sget(fs_type, cgroup_test_super, cgroup_set_super, root);

	if (IS_ERR(sb)) {
		kfree(root);
		return PTR_ERR(sb);
	}

	if (sb->s_fs_info != root) {
		/* Reusing an existing superblock */
		BUG_ON(sb->s_root == NULL);
		kfree(root);
		root = NULL;
	} else {
		/* New superblock */
994
		struct cgroup *cgrp = &root->top_cgroup;
995
		struct inode *inode;
996
		int i;
997 998 999 1000 1001 1002

		BUG_ON(sb->s_root != NULL);

		ret = cgroup_get_rootdir(sb);
		if (ret)
			goto drop_new_super;
1003
		inode = sb->s_root->d_inode;
1004

1005
		mutex_lock(&inode->i_mutex);
1006 1007
		mutex_lock(&cgroup_mutex);

1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
		/*
		 * We're accessing css_set_count without locking
		 * css_set_lock here, but that's OK - it can only be
		 * increased by someone holding cgroup_lock, and
		 * that's us. The worst that can happen is that we
		 * have some link structures left over
		 */
		ret = allocate_cg_links(css_set_count, &tmp_cg_links);
		if (ret) {
			mutex_unlock(&cgroup_mutex);
			mutex_unlock(&inode->i_mutex);
			goto drop_new_super;
		}

1022 1023 1024
		ret = rebind_subsystems(root, root->subsys_bits);
		if (ret == -EBUSY) {
			mutex_unlock(&cgroup_mutex);
1025
			mutex_unlock(&inode->i_mutex);
1026
			goto free_cg_links;
1027 1028 1029 1030 1031 1032
		}

		/* EBUSY should be the only error here */
		BUG_ON(ret);

		list_add(&root->root_list, &roots);
1033
		root_count++;
1034 1035 1036 1037

		sb->s_root->d_fsdata = &root->top_cgroup;
		root->top_cgroup.dentry = sb->s_root;

1038 1039 1040
		/* Link the top cgroup in this hierarchy into all
		 * the css_set objects */
		write_lock(&css_set_lock);
1041 1042 1043
		for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
			struct hlist_head *hhead = &css_set_table[i];
			struct hlist_node *node;
1044
			struct css_set *cg;
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059

			hlist_for_each_entry(cg, node, hhead, hlist) {
				struct cg_cgroup_link *link;

				BUG_ON(list_empty(&tmp_cg_links));
				link = list_entry(tmp_cg_links.next,
						  struct cg_cgroup_link,
						  cgrp_link_list);
				list_del(&link->cgrp_link_list);
				link->cg = cg;
				list_add(&link->cgrp_link_list,
					 &root->top_cgroup.css_sets);
				list_add(&link->cg_link_list, &cg->cg_links);
			}
		}
1060 1061 1062 1063
		write_unlock(&css_set_lock);

		free_cg_links(&tmp_cg_links);

1064 1065
		BUG_ON(!list_empty(&cgrp->sibling));
		BUG_ON(!list_empty(&cgrp->children));
1066 1067
		BUG_ON(root->number_of_cgroups != 1);

1068
		cgroup_populate_dir(cgrp);
1069
		mutex_unlock(&inode->i_mutex);
1070 1071 1072 1073 1074
		mutex_unlock(&cgroup_mutex);
	}

	return simple_set_mnt(mnt, sb);

1075 1076
 free_cg_links:
	free_cg_links(&tmp_cg_links);
1077 1078 1079 1080 1081 1082 1083 1084
 drop_new_super:
	up_write(&sb->s_umount);
	deactivate_super(sb);
	return ret;
}

static void cgroup_kill_sb(struct super_block *sb) {
	struct cgroupfs_root *root = sb->s_fs_info;
1085
	struct cgroup *cgrp = &root->top_cgroup;
1086
	int ret;
K
KOSAKI Motohiro 已提交
1087 1088
	struct cg_cgroup_link *link;
	struct cg_cgroup_link *saved_link;
1089 1090 1091 1092

	BUG_ON(!root);

	BUG_ON(root->number_of_cgroups != 1);
1093 1094
	BUG_ON(!list_empty(&cgrp->children));
	BUG_ON(!list_empty(&cgrp->sibling));
1095 1096 1097 1098 1099 1100 1101 1102

	mutex_lock(&cgroup_mutex);

	/* Rebind all subsystems back to the default hierarchy */
	ret = rebind_subsystems(root, 0);
	/* Shouldn't be able to fail ... */
	BUG_ON(ret);

1103 1104 1105 1106 1107
	/*
	 * Release all the links from css_sets to this hierarchy's
	 * root cgroup
	 */
	write_lock(&css_set_lock);
K
KOSAKI Motohiro 已提交
1108 1109 1110

	list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
				 cgrp_link_list) {
1111
		list_del(&link->cg_link_list);
1112
		list_del(&link->cgrp_link_list);
1113 1114 1115 1116 1117
		kfree(link);
	}
	write_unlock(&css_set_lock);

	if (!list_empty(&root->root_list)) {
1118
		list_del(&root->root_list);
1119 1120
		root_count--;
	}
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
	mutex_unlock(&cgroup_mutex);

	kfree(root);
	kill_litter_super(sb);
}

static struct file_system_type cgroup_fs_type = {
	.name = "cgroup",
	.get_sb = cgroup_get_sb,
	.kill_sb = cgroup_kill_sb,
};

1133
static inline struct cgroup *__d_cgrp(struct dentry *dentry)
1134 1135 1136 1137 1138 1139 1140 1141 1142
{
	return dentry->d_fsdata;
}

static inline struct cftype *__d_cft(struct dentry *dentry)
{
	return dentry->d_fsdata;
}

L
Li Zefan 已提交
1143 1144 1145 1146 1147 1148 1149
/**
 * cgroup_path - generate the path of a cgroup
 * @cgrp: the cgroup in question
 * @buf: the buffer to write the path into
 * @buflen: the length of the buffer
 *
 * Called with cgroup_mutex held. Writes path of cgroup into buf.
1150 1151
 * Returns 0 on success, -errno on error.
 */
1152
int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1153 1154 1155
{
	char *start;

1156
	if (cgrp == dummytop) {
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
		/*
		 * Inactive subsystems have no dentry for their root
		 * cgroup
		 */
		strcpy(buf, "/");
		return 0;
	}

	start = buf + buflen;

	*--start = '\0';
	for (;;) {
1169
		int len = cgrp->dentry->d_name.len;
1170 1171
		if ((start -= len) < buf)
			return -ENAMETOOLONG;
1172 1173 1174
		memcpy(start, cgrp->dentry->d_name.name, len);
		cgrp = cgrp->parent;
		if (!cgrp)
1175
			break;
1176
		if (!cgrp->parent)
1177 1178 1179 1180 1181 1182 1183 1184 1185
			continue;
		if (--start < buf)
			return -ENAMETOOLONG;
		*start = '/';
	}
	memmove(buf, start, buf + buflen - start);
	return 0;
}

1186 1187 1188 1189 1190
/*
 * Return the first subsystem attached to a cgroup's hierarchy, and
 * its subsystem id.
 */

1191
static void get_first_subsys(const struct cgroup *cgrp,
1192 1193
			struct cgroup_subsys_state **css, int *subsys_id)
{
1194
	const struct cgroupfs_root *root = cgrp->root;
1195 1196 1197 1198 1199
	const struct cgroup_subsys *test_ss;
	BUG_ON(list_empty(&root->subsys_list));
	test_ss = list_entry(root->subsys_list.next,
			     struct cgroup_subsys, sibling);
	if (css) {
1200
		*css = cgrp->subsys[test_ss->subsys_id];
1201 1202 1203 1204 1205 1206
		BUG_ON(!*css);
	}
	if (subsys_id)
		*subsys_id = test_ss->subsys_id;
}

L
Li Zefan 已提交
1207 1208 1209 1210
/**
 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
 * @cgrp: the cgroup the task is attaching to
 * @tsk: the task to be attached
1211
 *
L
Li Zefan 已提交
1212 1213
 * Call holding cgroup_mutex. May take task_lock of
 * the task 'tsk' during call.
1214
 */
1215
int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1216 1217 1218
{
	int retval = 0;
	struct cgroup_subsys *ss;
1219
	struct cgroup *oldcgrp;
1220 1221
	struct css_set *cg = tsk->cgroups;
	struct css_set *newcg;
1222
	struct cgroupfs_root *root = cgrp->root;
1223 1224
	int subsys_id;

1225
	get_first_subsys(cgrp, NULL, &subsys_id);
1226 1227

	/* Nothing to do if the task is already in that cgroup */
1228 1229
	oldcgrp = task_cgroup(tsk, subsys_id);
	if (cgrp == oldcgrp)
1230 1231 1232 1233
		return 0;

	for_each_subsys(root, ss) {
		if (ss->can_attach) {
1234
			retval = ss->can_attach(ss, cgrp, tsk);
P
Paul Jackson 已提交
1235
			if (retval)
1236 1237 1238 1239
				return retval;
		}
	}

1240 1241 1242 1243
	/*
	 * Locate or allocate a new css_set for this task,
	 * based on its final set of cgroups
	 */
1244
	newcg = find_css_set(cg, cgrp);
P
Paul Jackson 已提交
1245
	if (!newcg)
1246 1247
		return -ENOMEM;

1248 1249 1250
	task_lock(tsk);
	if (tsk->flags & PF_EXITING) {
		task_unlock(tsk);
1251
		put_css_set(newcg);
1252 1253
		return -ESRCH;
	}
1254
	rcu_assign_pointer(tsk->cgroups, newcg);
1255 1256
	task_unlock(tsk);

1257 1258 1259 1260 1261 1262 1263 1264
	/* Update the css_set linked lists if we're using them */
	write_lock(&css_set_lock);
	if (!list_empty(&tsk->cg_list)) {
		list_del(&tsk->cg_list);
		list_add(&tsk->cg_list, &newcg->tasks);
	}
	write_unlock(&css_set_lock);

1265
	for_each_subsys(root, ss) {
P
Paul Jackson 已提交
1266
		if (ss->attach)
1267
			ss->attach(ss, cgrp, oldcgrp, tsk);
1268
	}
1269
	set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1270
	synchronize_rcu();
1271
	put_css_set(cg);
1272 1273 1274 1275
	return 0;
}

/*
1276 1277
 * Attach task with pid 'pid' to cgroup 'cgrp'. Call with cgroup_mutex
 * held. May take task_lock of task
1278
 */
1279
static int attach_task_by_pid(struct cgroup *cgrp, u64 pid)
1280 1281
{
	struct task_struct *tsk;
1282
	const struct cred *cred = current_cred(), *tcred;
1283 1284 1285 1286
	int ret;

	if (pid) {
		rcu_read_lock();
1287
		tsk = find_task_by_vpid(pid);
1288 1289 1290 1291 1292
		if (!tsk || tsk->flags & PF_EXITING) {
			rcu_read_unlock();
			return -ESRCH;
		}

1293 1294 1295 1296 1297
		tcred = __task_cred(tsk);
		if (cred->euid &&
		    cred->euid != tcred->uid &&
		    cred->euid != tcred->suid) {
			rcu_read_unlock();
1298 1299
			return -EACCES;
		}
1300 1301
		get_task_struct(tsk);
		rcu_read_unlock();
1302 1303 1304 1305 1306
	} else {
		tsk = current;
		get_task_struct(tsk);
	}

1307
	ret = cgroup_attach_task(cgrp, tsk);
1308 1309 1310 1311
	put_task_struct(tsk);
	return ret;
}

1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
{
	int ret;
	if (!cgroup_lock_live_group(cgrp))
		return -ENODEV;
	ret = attach_task_by_pid(cgrp, pid);
	cgroup_unlock();
	return ret;
}

1322 1323 1324 1325 1326
/* The various types of files and directories in a cgroup file system */
enum cgroup_filetype {
	FILE_ROOT,
	FILE_DIR,
	FILE_TASKLIST,
1327 1328
	FILE_NOTIFY_ON_RELEASE,
	FILE_RELEASE_AGENT,
1329 1330
};

1331 1332 1333 1334
/**
 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
 * @cgrp: the cgroup to be checked for liveness
 *
1335 1336
 * On success, returns true; the lock should be later released with
 * cgroup_unlock(). On failure returns false with no lock held.
1337
 */
1338
bool cgroup_lock_live_group(struct cgroup *cgrp)
1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
{
	mutex_lock(&cgroup_mutex);
	if (cgroup_is_removed(cgrp)) {
		mutex_unlock(&cgroup_mutex);
		return false;
	}
	return true;
}

static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
				      const char *buffer)
{
	BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
	if (!cgroup_lock_live_group(cgrp))
		return -ENODEV;
	strcpy(cgrp->root->release_agent_path, buffer);
1355
	cgroup_unlock();
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
	return 0;
}

static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
				     struct seq_file *seq)
{
	if (!cgroup_lock_live_group(cgrp))
		return -ENODEV;
	seq_puts(seq, cgrp->root->release_agent_path);
	seq_putc(seq, '\n');
1366
	cgroup_unlock();
1367 1368 1369
	return 0;
}

1370 1371 1372
/* A buffer size big enough for numbers or short strings */
#define CGROUP_LOCAL_BUFFER_SIZE 64

1373
static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
1374 1375 1376
				struct file *file,
				const char __user *userbuf,
				size_t nbytes, loff_t *unused_ppos)
1377
{
1378
	char buffer[CGROUP_LOCAL_BUFFER_SIZE];
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
	int retval = 0;
	char *end;

	if (!nbytes)
		return -EINVAL;
	if (nbytes >= sizeof(buffer))
		return -E2BIG;
	if (copy_from_user(buffer, userbuf, nbytes))
		return -EFAULT;

	buffer[nbytes] = 0;     /* nul-terminate */
1390
	strstrip(buffer);
1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
	if (cft->write_u64) {
		u64 val = simple_strtoull(buffer, &end, 0);
		if (*end)
			return -EINVAL;
		retval = cft->write_u64(cgrp, cft, val);
	} else {
		s64 val = simple_strtoll(buffer, &end, 0);
		if (*end)
			return -EINVAL;
		retval = cft->write_s64(cgrp, cft, val);
	}
1402 1403 1404 1405 1406
	if (!retval)
		retval = nbytes;
	return retval;
}

1407 1408 1409 1410 1411
static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
				   struct file *file,
				   const char __user *userbuf,
				   size_t nbytes, loff_t *unused_ppos)
{
1412
	char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
	int retval = 0;
	size_t max_bytes = cft->max_write_len;
	char *buffer = local_buffer;

	if (!max_bytes)
		max_bytes = sizeof(local_buffer) - 1;
	if (nbytes >= max_bytes)
		return -E2BIG;
	/* Allocate a dynamic buffer if we need one */
	if (nbytes >= sizeof(local_buffer)) {
		buffer = kmalloc(nbytes + 1, GFP_KERNEL);
		if (buffer == NULL)
			return -ENOMEM;
	}
L
Li Zefan 已提交
1427 1428 1429 1430
	if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
		retval = -EFAULT;
		goto out;
	}
1431 1432 1433 1434 1435 1436

	buffer[nbytes] = 0;     /* nul-terminate */
	strstrip(buffer);
	retval = cft->write_string(cgrp, cft, buffer);
	if (!retval)
		retval = nbytes;
L
Li Zefan 已提交
1437
out:
1438 1439 1440 1441 1442
	if (buffer != local_buffer)
		kfree(buffer);
	return retval;
}

1443 1444 1445 1446
static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
						size_t nbytes, loff_t *ppos)
{
	struct cftype *cft = __d_cft(file->f_dentry);
1447
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1448

1449
	if (!cft || cgroup_is_removed(cgrp))
1450
		return -ENODEV;
1451
	if (cft->write)
1452
		return cft->write(cgrp, cft, file, buf, nbytes, ppos);
1453 1454
	if (cft->write_u64 || cft->write_s64)
		return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
1455 1456
	if (cft->write_string)
		return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
1457 1458 1459 1460
	if (cft->trigger) {
		int ret = cft->trigger(cgrp, (unsigned int)cft->private);
		return ret ? ret : nbytes;
	}
1461
	return -EINVAL;
1462 1463
}

1464 1465 1466 1467
static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
			       struct file *file,
			       char __user *buf, size_t nbytes,
			       loff_t *ppos)
1468
{
1469
	char tmp[CGROUP_LOCAL_BUFFER_SIZE];
1470
	u64 val = cft->read_u64(cgrp, cft);
1471 1472 1473 1474 1475
	int len = sprintf(tmp, "%llu\n", (unsigned long long) val);

	return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
}

1476 1477 1478 1479 1480
static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
			       struct file *file,
			       char __user *buf, size_t nbytes,
			       loff_t *ppos)
{
1481
	char tmp[CGROUP_LOCAL_BUFFER_SIZE];
1482 1483 1484 1485 1486 1487
	s64 val = cft->read_s64(cgrp, cft);
	int len = sprintf(tmp, "%lld\n", (long long) val);

	return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
}

1488 1489 1490 1491
static ssize_t cgroup_file_read(struct file *file, char __user *buf,
				   size_t nbytes, loff_t *ppos)
{
	struct cftype *cft = __d_cft(file->f_dentry);
1492
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1493

1494
	if (!cft || cgroup_is_removed(cgrp))
1495 1496 1497
		return -ENODEV;

	if (cft->read)
1498
		return cft->read(cgrp, cft, file, buf, nbytes, ppos);
1499 1500
	if (cft->read_u64)
		return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
1501 1502
	if (cft->read_s64)
		return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
1503 1504 1505
	return -EINVAL;
}

1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
/*
 * seqfile ops/methods for returning structured data. Currently just
 * supports string->u64 maps, but can be extended in future.
 */

struct cgroup_seqfile_state {
	struct cftype *cft;
	struct cgroup *cgroup;
};

static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
{
	struct seq_file *sf = cb->state;
	return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
}

static int cgroup_seqfile_show(struct seq_file *m, void *arg)
{
	struct cgroup_seqfile_state *state = m->private;
	struct cftype *cft = state->cft;
1526 1527 1528 1529 1530 1531 1532 1533
	if (cft->read_map) {
		struct cgroup_map_cb cb = {
			.fill = cgroup_map_add,
			.state = m,
		};
		return cft->read_map(state->cgroup, cft, &cb);
	}
	return cft->read_seq_string(state->cgroup, cft, m);
1534 1535
}

1536
static int cgroup_seqfile_release(struct inode *inode, struct file *file)
1537 1538 1539 1540 1541 1542 1543 1544
{
	struct seq_file *seq = file->private_data;
	kfree(seq->private);
	return single_release(inode, file);
}

static struct file_operations cgroup_seqfile_operations = {
	.read = seq_read,
1545
	.write = cgroup_file_write,
1546 1547 1548 1549
	.llseek = seq_lseek,
	.release = cgroup_seqfile_release,
};

1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
static int cgroup_file_open(struct inode *inode, struct file *file)
{
	int err;
	struct cftype *cft;

	err = generic_file_open(inode, file);
	if (err)
		return err;

	cft = __d_cft(file->f_dentry);
	if (!cft)
		return -ENODEV;
1562
	if (cft->read_map || cft->read_seq_string) {
1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
		struct cgroup_seqfile_state *state =
			kzalloc(sizeof(*state), GFP_USER);
		if (!state)
			return -ENOMEM;
		state->cft = cft;
		state->cgroup = __d_cgrp(file->f_dentry->d_parent);
		file->f_op = &cgroup_seqfile_operations;
		err = single_open(file, cgroup_seqfile_show, state);
		if (err < 0)
			kfree(state);
	} else if (cft->open)
1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
		err = cft->open(inode, file);
	else
		err = 0;

	return err;
}

static int cgroup_file_release(struct inode *inode, struct file *file)
{
	struct cftype *cft = __d_cft(file->f_dentry);
	if (cft->release)
		return cft->release(inode, file);
	return 0;
}

/*
 * cgroup_rename - Only allow simple rename of directories in place.
 */
static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
			    struct inode *new_dir, struct dentry *new_dentry)
{
	if (!S_ISDIR(old_dentry->d_inode->i_mode))
		return -ENOTDIR;
	if (new_dentry->d_inode)
		return -EEXIST;
	if (old_dir != new_dir)
		return -EIO;
	return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
}

static struct file_operations cgroup_file_operations = {
	.read = cgroup_file_read,
	.write = cgroup_file_write,
	.llseek = generic_file_llseek,
	.open = cgroup_file_open,
	.release = cgroup_file_release,
};

static struct inode_operations cgroup_dir_inode_operations = {
	.lookup = simple_lookup,
	.mkdir = cgroup_mkdir,
	.rmdir = cgroup_rmdir,
	.rename = cgroup_rename,
};

static int cgroup_create_file(struct dentry *dentry, int mode,
				struct super_block *sb)
{
	static struct dentry_operations cgroup_dops = {
		.d_iput = cgroup_diput,
	};

	struct inode *inode;

	if (!dentry)
		return -ENOENT;
	if (dentry->d_inode)
		return -EEXIST;

	inode = cgroup_new_inode(mode, sb);
	if (!inode)
		return -ENOMEM;

	if (S_ISDIR(mode)) {
		inode->i_op = &cgroup_dir_inode_operations;
		inode->i_fop = &simple_dir_operations;

		/* start off with i_nlink == 2 (for "." entry) */
		inc_nlink(inode);

		/* start with the directory inode held, so that we can
		 * populate it without racing with another mkdir */
1646
		mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
	} else if (S_ISREG(mode)) {
		inode->i_size = 0;
		inode->i_fop = &cgroup_file_operations;
	}
	dentry->d_op = &cgroup_dops;
	d_instantiate(dentry, inode);
	dget(dentry);	/* Extra count - pin the dentry in core */
	return 0;
}

/*
L
Li Zefan 已提交
1658 1659 1660 1661 1662
 * cgroup_create_dir - create a directory for an object.
 * @cgrp: the cgroup we create the directory for. It must have a valid
 *        ->parent field. And we are going to fill its ->dentry field.
 * @dentry: dentry of the new cgroup
 * @mode: mode to set on new directory.
1663
 */
1664
static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
1665 1666 1667 1668 1669
				int mode)
{
	struct dentry *parent;
	int error = 0;

1670 1671
	parent = cgrp->parent->dentry;
	error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
1672
	if (!error) {
1673
		dentry->d_fsdata = cgrp;
1674
		inc_nlink(parent->d_inode);
1675
		cgrp->dentry = dentry;
1676 1677 1678 1679 1680 1681 1682
		dget(dentry);
	}
	dput(dentry);

	return error;
}

1683
int cgroup_add_file(struct cgroup *cgrp,
1684 1685 1686
		       struct cgroup_subsys *subsys,
		       const struct cftype *cft)
{
1687
	struct dentry *dir = cgrp->dentry;
1688 1689 1690 1691
	struct dentry *dentry;
	int error;

	char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
1692
	if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
1693 1694 1695 1696 1697 1698 1699 1700
		strcpy(name, subsys->name);
		strcat(name, ".");
	}
	strcat(name, cft->name);
	BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
	dentry = lookup_one_len(name, dir, strlen(name));
	if (!IS_ERR(dentry)) {
		error = cgroup_create_file(dentry, 0644 | S_IFREG,
1701
						cgrp->root->sb);
1702 1703 1704 1705 1706 1707 1708 1709
		if (!error)
			dentry->d_fsdata = (void *)cft;
		dput(dentry);
	} else
		error = PTR_ERR(dentry);
	return error;
}

1710
int cgroup_add_files(struct cgroup *cgrp,
1711 1712 1713 1714 1715 1716
			struct cgroup_subsys *subsys,
			const struct cftype cft[],
			int count)
{
	int i, err;
	for (i = 0; i < count; i++) {
1717
		err = cgroup_add_file(cgrp, subsys, &cft[i]);
1718 1719 1720 1721 1722 1723
		if (err)
			return err;
	}
	return 0;
}

L
Li Zefan 已提交
1724 1725 1726 1727 1728 1729
/**
 * cgroup_task_count - count the number of tasks in a cgroup.
 * @cgrp: the cgroup in question
 *
 * Return the number of tasks in the cgroup.
 */
1730
int cgroup_task_count(const struct cgroup *cgrp)
1731 1732
{
	int count = 0;
K
KOSAKI Motohiro 已提交
1733
	struct cg_cgroup_link *link;
1734 1735

	read_lock(&css_set_lock);
K
KOSAKI Motohiro 已提交
1736
	list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
1737
		count += atomic_read(&link->cg->refcount);
1738 1739
	}
	read_unlock(&css_set_lock);
1740 1741 1742
	return count;
}

1743 1744 1745 1746
/*
 * Advance a list_head iterator.  The iterator should be positioned at
 * the start of a css_set
 */
1747
static void cgroup_advance_iter(struct cgroup *cgrp,
1748 1749 1750 1751 1752 1753 1754 1755 1756
					  struct cgroup_iter *it)
{
	struct list_head *l = it->cg_link;
	struct cg_cgroup_link *link;
	struct css_set *cg;

	/* Advance to the next non-empty css_set */
	do {
		l = l->next;
1757
		if (l == &cgrp->css_sets) {
1758 1759 1760
			it->cg_link = NULL;
			return;
		}
1761
		link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
1762 1763 1764 1765 1766 1767
		cg = link->cg;
	} while (list_empty(&cg->tasks));
	it->cg_link = l;
	it->task = cg->tasks.next;
}

1768 1769 1770 1771 1772 1773 1774 1775 1776
/*
 * To reduce the fork() overhead for systems that are not actually
 * using their cgroups capability, we don't maintain the lists running
 * through each css_set to its tasks until we see the list actually
 * used - in other words after the first call to cgroup_iter_start().
 *
 * The tasklist_lock is not held here, as do_each_thread() and
 * while_each_thread() are protected by RCU.
 */
1777
static void cgroup_enable_task_cg_lists(void)
1778 1779 1780 1781 1782 1783
{
	struct task_struct *p, *g;
	write_lock(&css_set_lock);
	use_task_css_set_links = 1;
	do_each_thread(g, p) {
		task_lock(p);
1784 1785 1786 1787 1788 1789
		/*
		 * We should check if the process is exiting, otherwise
		 * it will race with cgroup_exit() in that the list
		 * entry won't be deleted though the process has exited.
		 */
		if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
1790 1791 1792 1793 1794 1795
			list_add(&p->cg_list, &p->cgroups->tasks);
		task_unlock(p);
	} while_each_thread(g, p);
	write_unlock(&css_set_lock);
}

1796
void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
1797 1798 1799 1800 1801 1802
{
	/*
	 * The first time anyone tries to iterate across a cgroup,
	 * we need to enable the list linking each css_set to its
	 * tasks, and fix up all existing tasks.
	 */
1803 1804 1805
	if (!use_task_css_set_links)
		cgroup_enable_task_cg_lists();

1806
	read_lock(&css_set_lock);
1807 1808
	it->cg_link = &cgrp->css_sets;
	cgroup_advance_iter(cgrp, it);
1809 1810
}

1811
struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825
					struct cgroup_iter *it)
{
	struct task_struct *res;
	struct list_head *l = it->task;

	/* If the iterator cg is NULL, we have no tasks */
	if (!it->cg_link)
		return NULL;
	res = list_entry(l, struct task_struct, cg_list);
	/* Advance iterator to find next entry */
	l = l->next;
	if (l == &res->cgroups->tasks) {
		/* We reached the end of this task list - move on to
		 * the next cg_cgroup_link */
1826
		cgroup_advance_iter(cgrp, it);
1827 1828 1829 1830 1831 1832
	} else {
		it->task = l;
	}
	return res;
}

1833
void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
1834 1835 1836 1837
{
	read_unlock(&css_set_lock);
}

1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
static inline int started_after_time(struct task_struct *t1,
				     struct timespec *time,
				     struct task_struct *t2)
{
	int start_diff = timespec_compare(&t1->start_time, time);
	if (start_diff > 0) {
		return 1;
	} else if (start_diff < 0) {
		return 0;
	} else {
		/*
		 * Arbitrarily, if two processes started at the same
		 * time, we'll say that the lower pointer value
		 * started first. Note that t2 may have exited by now
		 * so this may not be a valid pointer any longer, but
		 * that's fine - it still serves to distinguish
		 * between two tasks started (effectively) simultaneously.
		 */
		return t1 > t2;
	}
}

/*
 * This function is a callback from heap_insert() and is used to order
 * the heap.
 * In this case we order the heap in descending task start time.
 */
static inline int started_after(void *p1, void *p2)
{
	struct task_struct *t1 = p1;
	struct task_struct *t2 = p2;
	return started_after_time(t1, &t2->start_time, t2);
}

/**
 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
 * @scan: struct cgroup_scanner containing arguments for the scan
 *
 * Arguments include pointers to callback functions test_task() and
 * process_task().
 * Iterate through all the tasks in a cgroup, calling test_task() for each,
 * and if it returns true, call process_task() for it also.
 * The test_task pointer may be NULL, meaning always true (select all tasks).
 * Effectively duplicates cgroup_iter_{start,next,end}()
 * but does not lock css_set_lock for the call to process_task().
 * The struct cgroup_scanner may be embedded in any structure of the caller's
 * creation.
 * It is guaranteed that process_task() will act on every task that
 * is a member of the cgroup for the duration of this call. This
 * function may or may not call process_task() for tasks that exit
 * or move to a different cgroup during the call, or are forked or
 * move into the cgroup during the call.
 *
 * Note that test_task() may be called with locks held, and may in some
 * situations be called multiple times for the same task, so it should
 * be cheap.
 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
 * pre-allocated and will be used for heap operations (and its "gt" member will
 * be overwritten), else a temporary heap will be used (allocation of which
 * may cause this function to fail).
 */
int cgroup_scan_tasks(struct cgroup_scanner *scan)
{
	int retval, i;
	struct cgroup_iter it;
	struct task_struct *p, *dropped;
	/* Never dereference latest_task, since it's not refcounted */
	struct task_struct *latest_task = NULL;
	struct ptr_heap tmp_heap;
	struct ptr_heap *heap;
	struct timespec latest_time = { 0, 0 };

	if (scan->heap) {
		/* The caller supplied our heap and pre-allocated its memory */
		heap = scan->heap;
		heap->gt = &started_after;
	} else {
		/* We need to allocate our own heap memory */
		heap = &tmp_heap;
		retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
		if (retval)
			/* cannot allocate the heap */
			return retval;
	}

 again:
	/*
	 * Scan tasks in the cgroup, using the scanner's "test_task" callback
	 * to determine which are of interest, and using the scanner's
	 * "process_task" callback to process any of them that need an update.
	 * Since we don't want to hold any locks during the task updates,
	 * gather tasks to be processed in a heap structure.
	 * The heap is sorted by descending task start time.
	 * If the statically-sized heap fills up, we overflow tasks that
	 * started later, and in future iterations only consider tasks that
	 * started after the latest task in the previous pass. This
	 * guarantees forward progress and that we don't miss any tasks.
	 */
	heap->size = 0;
	cgroup_iter_start(scan->cg, &it);
	while ((p = cgroup_iter_next(scan->cg, &it))) {
		/*
		 * Only affect tasks that qualify per the caller's callback,
		 * if he provided one
		 */
		if (scan->test_task && !scan->test_task(p, scan))
			continue;
		/*
		 * Only process tasks that started after the last task
		 * we processed
		 */
		if (!started_after_time(p, &latest_time, latest_task))
			continue;
		dropped = heap_insert(heap, p);
		if (dropped == NULL) {
			/*
			 * The new task was inserted; the heap wasn't
			 * previously full
			 */
			get_task_struct(p);
		} else if (dropped != p) {
			/*
			 * The new task was inserted, and pushed out a
			 * different task
			 */
			get_task_struct(p);
			put_task_struct(dropped);
		}
		/*
		 * Else the new task was newer than anything already in
		 * the heap and wasn't inserted
		 */
	}
	cgroup_iter_end(scan->cg, &it);

	if (heap->size) {
		for (i = 0; i < heap->size; i++) {
1975
			struct task_struct *q = heap->ptrs[i];
1976
			if (i == 0) {
1977 1978
				latest_time = q->start_time;
				latest_task = q;
1979 1980
			}
			/* Process the task per the caller's callback */
1981 1982
			scan->process_task(q, scan);
			put_task_struct(q);
1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
		}
		/*
		 * If we had to process any tasks at all, scan again
		 * in case some of them were in the middle of forking
		 * children that didn't get processed.
		 * Not the most efficient way to do it, but it avoids
		 * having to take callback_mutex in the fork path
		 */
		goto again;
	}
	if (heap == &tmp_heap)
		heap_free(&tmp_heap);
	return 0;
}

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
/*
 * Stuff for reading the 'tasks' file.
 *
 * Reading this file can return large amounts of data if a cgroup has
 * *lots* of attached tasks. So it may need several calls to read(),
 * but we cannot guarantee that the information we produce is correct
 * unless we produce it entirely atomically.
 *
 */

/*
 * Load into 'pidarray' up to 'npids' of the tasks using cgroup
2010
 * 'cgrp'.  Return actual number of pids loaded.  No need to
2011 2012 2013 2014
 * task_lock(p) when reading out p->cgroup, since we're in an RCU
 * read section, so the css_set can't go away, and is
 * immutable after creation.
 */
2015
static int pid_array_load(pid_t *pidarray, int npids, struct cgroup *cgrp)
2016 2017
{
	int n = 0;
2018 2019
	struct cgroup_iter it;
	struct task_struct *tsk;
2020 2021
	cgroup_iter_start(cgrp, &it);
	while ((tsk = cgroup_iter_next(cgrp, &it))) {
2022 2023
		if (unlikely(n == npids))
			break;
2024
		pidarray[n++] = task_pid_vnr(tsk);
2025
	}
2026
	cgroup_iter_end(cgrp, &it);
2027 2028 2029
	return n;
}

B
Balbir Singh 已提交
2030
/**
L
Li Zefan 已提交
2031
 * cgroupstats_build - build and fill cgroupstats
B
Balbir Singh 已提交
2032 2033 2034
 * @stats: cgroupstats to fill information into
 * @dentry: A dentry entry belonging to the cgroup for which stats have
 * been requested.
L
Li Zefan 已提交
2035 2036 2037
 *
 * Build and fill cgroupstats so that taskstats can export it to user
 * space.
B
Balbir Singh 已提交
2038 2039 2040 2041
 */
int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
{
	int ret = -EINVAL;
2042
	struct cgroup *cgrp;
B
Balbir Singh 已提交
2043 2044
	struct cgroup_iter it;
	struct task_struct *tsk;
2045

B
Balbir Singh 已提交
2046
	/*
2047 2048
	 * Validate dentry by checking the superblock operations,
	 * and make sure it's a directory.
B
Balbir Singh 已提交
2049
	 */
2050 2051
	if (dentry->d_sb->s_op != &cgroup_ops ||
	    !S_ISDIR(dentry->d_inode->i_mode))
B
Balbir Singh 已提交
2052 2053 2054
		 goto err;

	ret = 0;
2055
	cgrp = dentry->d_fsdata;
B
Balbir Singh 已提交
2056 2057
	rcu_read_lock();

2058 2059
	cgroup_iter_start(cgrp, &it);
	while ((tsk = cgroup_iter_next(cgrp, &it))) {
B
Balbir Singh 已提交
2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078
		switch (tsk->state) {
		case TASK_RUNNING:
			stats->nr_running++;
			break;
		case TASK_INTERRUPTIBLE:
			stats->nr_sleeping++;
			break;
		case TASK_UNINTERRUPTIBLE:
			stats->nr_uninterruptible++;
			break;
		case TASK_STOPPED:
			stats->nr_stopped++;
			break;
		default:
			if (delayacct_is_task_waiting_on_io(tsk))
				stats->nr_io_wait++;
			break;
		}
	}
2079
	cgroup_iter_end(cgrp, &it);
B
Balbir Singh 已提交
2080 2081 2082 2083 2084 2085

	rcu_read_unlock();
err:
	return ret;
}

2086 2087 2088 2089 2090
static int cmppid(const void *a, const void *b)
{
	return *(pid_t *)a - *(pid_t *)b;
}

2091

2092
/*
2093 2094 2095
 * seq_file methods for the "tasks" file. The seq_file position is the
 * next pid to display; the seq_file iterator is a pointer to the pid
 * in the cgroup->tasks_pids array.
2096
 */
2097 2098

static void *cgroup_tasks_start(struct seq_file *s, loff_t *pos)
2099
{
2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112
	/*
	 * Initially we receive a position value that corresponds to
	 * one more than the last pid shown (or 0 on the first call or
	 * after a seek to the start). Use a binary-search to find the
	 * next pid to display, if any
	 */
	struct cgroup *cgrp = s->private;
	int index = 0, pid = *pos;
	int *iter;

	down_read(&cgrp->pids_mutex);
	if (pid) {
		int end = cgrp->pids_length;
S
Stephen Rothwell 已提交
2113

2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162
		while (index < end) {
			int mid = (index + end) / 2;
			if (cgrp->tasks_pids[mid] == pid) {
				index = mid;
				break;
			} else if (cgrp->tasks_pids[mid] <= pid)
				index = mid + 1;
			else
				end = mid;
		}
	}
	/* If we're off the end of the array, we're done */
	if (index >= cgrp->pids_length)
		return NULL;
	/* Update the abstract position to be the actual pid that we found */
	iter = cgrp->tasks_pids + index;
	*pos = *iter;
	return iter;
}

static void cgroup_tasks_stop(struct seq_file *s, void *v)
{
	struct cgroup *cgrp = s->private;
	up_read(&cgrp->pids_mutex);
}

static void *cgroup_tasks_next(struct seq_file *s, void *v, loff_t *pos)
{
	struct cgroup *cgrp = s->private;
	int *p = v;
	int *end = cgrp->tasks_pids + cgrp->pids_length;

	/*
	 * Advance to the next pid in the array. If this goes off the
	 * end, we're done
	 */
	p++;
	if (p >= end) {
		return NULL;
	} else {
		*pos = *p;
		return p;
	}
}

static int cgroup_tasks_show(struct seq_file *s, void *v)
{
	return seq_printf(s, "%d\n", *(int *)v);
}
2163

2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180
static struct seq_operations cgroup_tasks_seq_operations = {
	.start = cgroup_tasks_start,
	.stop = cgroup_tasks_stop,
	.next = cgroup_tasks_next,
	.show = cgroup_tasks_show,
};

static void release_cgroup_pid_array(struct cgroup *cgrp)
{
	down_write(&cgrp->pids_mutex);
	BUG_ON(!cgrp->pids_use_count);
	if (!--cgrp->pids_use_count) {
		kfree(cgrp->tasks_pids);
		cgrp->tasks_pids = NULL;
		cgrp->pids_length = 0;
	}
	up_write(&cgrp->pids_mutex);
2181 2182
}

2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
static int cgroup_tasks_release(struct inode *inode, struct file *file)
{
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);

	if (!(file->f_mode & FMODE_READ))
		return 0;

	release_cgroup_pid_array(cgrp);
	return seq_release(inode, file);
}

static struct file_operations cgroup_tasks_operations = {
	.read = seq_read,
	.llseek = seq_lseek,
	.write = cgroup_file_write,
	.release = cgroup_tasks_release,
};

2201
/*
2202
 * Handle an open on 'tasks' file.  Prepare an array containing the
2203 2204
 * process id's of tasks currently attached to the cgroup being opened.
 */
2205

2206 2207
static int cgroup_tasks_open(struct inode *unused, struct file *file)
{
2208
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2209 2210
	pid_t *pidarray;
	int npids;
2211
	int retval;
2212

2213
	/* Nothing to do for write-only files */
2214 2215 2216 2217 2218 2219 2220 2221 2222
	if (!(file->f_mode & FMODE_READ))
		return 0;

	/*
	 * If cgroup gets more users after we read count, we won't have
	 * enough space - tough.  This race is indistinguishable to the
	 * caller from the case that the additional cgroup users didn't
	 * show up until sometime later on.
	 */
2223
	npids = cgroup_task_count(cgrp);
2224 2225 2226 2227 2228
	pidarray = kmalloc(npids * sizeof(pid_t), GFP_KERNEL);
	if (!pidarray)
		return -ENOMEM;
	npids = pid_array_load(pidarray, npids, cgrp);
	sort(pidarray, npids, sizeof(pid_t), cmppid, NULL);
2229

2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246
	/*
	 * Store the array in the cgroup, freeing the old
	 * array if necessary
	 */
	down_write(&cgrp->pids_mutex);
	kfree(cgrp->tasks_pids);
	cgrp->tasks_pids = pidarray;
	cgrp->pids_length = npids;
	cgrp->pids_use_count++;
	up_write(&cgrp->pids_mutex);

	file->f_op = &cgroup_tasks_operations;

	retval = seq_open(file, &cgroup_tasks_seq_operations);
	if (retval) {
		release_cgroup_pid_array(cgrp);
		return retval;
2247
	}
2248
	((struct seq_file *)file->private_data)->private = cgrp;
2249 2250 2251
	return 0;
}

2252
static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
2253 2254
					    struct cftype *cft)
{
2255
	return notify_on_release(cgrp);
2256 2257
}

2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269
static int cgroup_write_notify_on_release(struct cgroup *cgrp,
					  struct cftype *cft,
					  u64 val)
{
	clear_bit(CGRP_RELEASABLE, &cgrp->flags);
	if (val)
		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
	else
		clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
	return 0;
}

2270 2271 2272
/*
 * for the common functions, 'private' gives the type of file
 */
2273 2274 2275 2276
static struct cftype files[] = {
	{
		.name = "tasks",
		.open = cgroup_tasks_open,
2277
		.write_u64 = cgroup_tasks_write,
2278 2279 2280 2281 2282 2283
		.release = cgroup_tasks_release,
		.private = FILE_TASKLIST,
	},

	{
		.name = "notify_on_release",
2284
		.read_u64 = cgroup_read_notify_on_release,
2285
		.write_u64 = cgroup_write_notify_on_release,
2286 2287 2288 2289 2290 2291
		.private = FILE_NOTIFY_ON_RELEASE,
	},
};

static struct cftype cft_release_agent = {
	.name = "release_agent",
2292 2293 2294
	.read_seq_string = cgroup_release_agent_show,
	.write_string = cgroup_release_agent_write,
	.max_write_len = PATH_MAX,
2295
	.private = FILE_RELEASE_AGENT,
2296 2297
};

2298
static int cgroup_populate_dir(struct cgroup *cgrp)
2299 2300 2301 2302 2303
{
	int err;
	struct cgroup_subsys *ss;

	/* First clear out any existing files */
2304
	cgroup_clear_directory(cgrp->dentry);
2305

2306
	err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
2307 2308 2309
	if (err < 0)
		return err;

2310 2311
	if (cgrp == cgrp->top_cgroup) {
		if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
2312 2313 2314
			return err;
	}

2315 2316
	for_each_subsys(cgrp->root, ss) {
		if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
2317 2318 2319 2320 2321 2322 2323 2324
			return err;
	}

	return 0;
}

static void init_cgroup_css(struct cgroup_subsys_state *css,
			       struct cgroup_subsys *ss,
2325
			       struct cgroup *cgrp)
2326
{
2327
	css->cgroup = cgrp;
2328 2329
	atomic_set(&css->refcnt, 0);
	css->flags = 0;
2330
	if (cgrp == dummytop)
2331
		set_bit(CSS_ROOT, &css->flags);
2332 2333
	BUG_ON(cgrp->subsys[ss->subsys_id]);
	cgrp->subsys[ss->subsys_id] = css;
2334 2335 2336
}

/*
L
Li Zefan 已提交
2337 2338 2339 2340
 * cgroup_create - create a cgroup
 * @parent: cgroup that will be parent of the new cgroup
 * @dentry: dentry of the new cgroup
 * @mode: mode to set on new inode
2341
 *
L
Li Zefan 已提交
2342
 * Must be called with the mutex on the parent inode held
2343 2344 2345 2346
 */
static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
			     int mode)
{
2347
	struct cgroup *cgrp;
2348 2349 2350 2351 2352
	struct cgroupfs_root *root = parent->root;
	int err = 0;
	struct cgroup_subsys *ss;
	struct super_block *sb = root->sb;

2353 2354
	cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
	if (!cgrp)
2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365
		return -ENOMEM;

	/* Grab a reference on the superblock so the hierarchy doesn't
	 * get deleted on unmount if there are child cgroups.  This
	 * can be done outside cgroup_mutex, since the sb can't
	 * disappear while someone has an open control file on the
	 * fs */
	atomic_inc(&sb->s_active);

	mutex_lock(&cgroup_mutex);

2366
	init_cgroup_housekeeping(cgrp);
2367

2368 2369 2370
	cgrp->parent = parent;
	cgrp->root = parent->root;
	cgrp->top_cgroup = parent->top_cgroup;
2371

2372 2373 2374
	if (notify_on_release(parent))
		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);

2375
	for_each_subsys(root, ss) {
2376
		struct cgroup_subsys_state *css = ss->create(ss, cgrp);
2377 2378 2379 2380
		if (IS_ERR(css)) {
			err = PTR_ERR(css);
			goto err_destroy;
		}
2381
		init_cgroup_css(css, ss, cgrp);
2382 2383
	}

2384
	list_add(&cgrp->sibling, &cgrp->parent->children);
2385 2386
	root->number_of_cgroups++;

2387
	err = cgroup_create_dir(cgrp, dentry, mode);
2388 2389 2390 2391
	if (err < 0)
		goto err_remove;

	/* The cgroup directory was pre-locked for us */
2392
	BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
2393

2394
	err = cgroup_populate_dir(cgrp);
2395 2396 2397
	/* If err < 0, we have a half-filled directory - oh well ;) */

	mutex_unlock(&cgroup_mutex);
2398
	mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
2399 2400 2401 2402 2403

	return 0;

 err_remove:

2404
	list_del(&cgrp->sibling);
2405 2406 2407 2408 2409
	root->number_of_cgroups--;

 err_destroy:

	for_each_subsys(root, ss) {
2410 2411
		if (cgrp->subsys[ss->subsys_id])
			ss->destroy(ss, cgrp);
2412 2413 2414 2415 2416 2417 2418
	}

	mutex_unlock(&cgroup_mutex);

	/* Release the reference count that we took on the superblock */
	deactivate_super(sb);

2419
	kfree(cgrp);
2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430
	return err;
}

static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode)
{
	struct cgroup *c_parent = dentry->d_parent->d_fsdata;

	/* the vfs holds inode->i_mutex already */
	return cgroup_create(c_parent, dentry, mode | S_IFDIR);
}

2431
static int cgroup_has_css_refs(struct cgroup *cgrp)
2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446
{
	/* Check the reference count on each subsystem. Since we
	 * already established that there are no tasks in the
	 * cgroup, if the css refcount is also 0, then there should
	 * be no outstanding references, so the subsystem is safe to
	 * destroy. We scan across all subsystems rather than using
	 * the per-hierarchy linked list of mounted subsystems since
	 * we can be called via check_for_release() with no
	 * synchronization other than RCU, and the subsystem linked
	 * list isn't RCU-safe */
	int i;
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		struct cgroup_subsys_state *css;
		/* Skip subsystems not in this hierarchy */
2447
		if (ss->root != cgrp->root)
2448
			continue;
2449
		css = cgrp->subsys[ss->subsys_id];
2450 2451 2452 2453 2454 2455
		/* When called from check_for_release() it's possible
		 * that by this point the cgroup has been removed
		 * and the css deleted. But a false-positive doesn't
		 * matter, since it can only happen if the cgroup
		 * has been deleted and hence no longer needs the
		 * release agent to be called anyway. */
P
Paul Jackson 已提交
2456
		if (css && atomic_read(&css->refcnt))
2457 2458 2459 2460 2461
			return 1;
	}
	return 0;
}

2462 2463
static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
{
2464
	struct cgroup *cgrp = dentry->d_fsdata;
2465 2466 2467 2468 2469 2470 2471 2472
	struct dentry *d;
	struct cgroup *parent;
	struct super_block *sb;
	struct cgroupfs_root *root;

	/* the vfs holds both inode->i_mutex already */

	mutex_lock(&cgroup_mutex);
2473
	if (atomic_read(&cgrp->count) != 0) {
2474 2475 2476
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}
2477
	if (!list_empty(&cgrp->children)) {
2478 2479 2480
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}
2481
	mutex_unlock(&cgroup_mutex);
L
Li Zefan 已提交
2482

2483
	/*
L
Li Zefan 已提交
2484 2485
	 * Call pre_destroy handlers of subsys. Notify subsystems
	 * that rmdir() request comes.
2486 2487
	 */
	cgroup_call_pre_destroy(cgrp);
2488

2489 2490 2491 2492 2493 2494 2495 2496
	mutex_lock(&cgroup_mutex);
	parent = cgrp->parent;
	root = cgrp->root;
	sb = root->sb;

	if (atomic_read(&cgrp->count)
	    || !list_empty(&cgrp->children)
	    || cgroup_has_css_refs(cgrp)) {
2497 2498 2499 2500
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}

2501
	spin_lock(&release_list_lock);
2502 2503 2504
	set_bit(CGRP_REMOVED, &cgrp->flags);
	if (!list_empty(&cgrp->release_list))
		list_del(&cgrp->release_list);
2505
	spin_unlock(&release_list_lock);
2506
	/* delete my sibling from parent->children */
2507 2508 2509
	list_del(&cgrp->sibling);
	spin_lock(&cgrp->dentry->d_lock);
	d = dget(cgrp->dentry);
2510 2511 2512 2513 2514
	spin_unlock(&d->d_lock);

	cgroup_d_remove_dir(d);
	dput(d);

2515
	set_bit(CGRP_RELEASABLE, &parent->flags);
2516 2517
	check_for_release(parent);

2518 2519 2520 2521
	mutex_unlock(&cgroup_mutex);
	return 0;
}

2522
static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
2523 2524
{
	struct cgroup_subsys_state *css;
D
Diego Calleja 已提交
2525 2526

	printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
2527 2528 2529 2530 2531 2532 2533 2534

	/* Create the top cgroup state for this subsystem */
	ss->root = &rootnode;
	css = ss->create(ss, dummytop);
	/* We don't handle early failures gracefully */
	BUG_ON(IS_ERR(css));
	init_cgroup_css(css, ss, dummytop);

L
Li Zefan 已提交
2535
	/* Update the init_css_set to contain a subsys
2536
	 * pointer to this state - since the subsystem is
L
Li Zefan 已提交
2537 2538 2539
	 * newly registered, all tasks and hence the
	 * init_css_set is in the subsystem's top cgroup. */
	init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
2540 2541

	need_forkexit_callback |= ss->fork || ss->exit;
2542
	need_mm_owner_callback |= !!ss->mm_owner_changed;
2543

L
Li Zefan 已提交
2544 2545 2546 2547 2548
	/* At system boot, before all subsystems have been
	 * registered, no tasks have been forked, so we don't
	 * need to invoke fork callbacks here. */
	BUG_ON(!list_empty(&init_task.tasks));

2549 2550 2551 2552
	ss->active = 1;
}

/**
L
Li Zefan 已提交
2553 2554 2555 2556
 * cgroup_init_early - cgroup initialization at system boot
 *
 * Initialize cgroups at system boot, and initialize any
 * subsystems that request early init.
2557 2558 2559 2560
 */
int __init cgroup_init_early(void)
{
	int i;
2561
	atomic_set(&init_css_set.refcount, 1);
2562 2563
	INIT_LIST_HEAD(&init_css_set.cg_links);
	INIT_LIST_HEAD(&init_css_set.tasks);
2564
	INIT_HLIST_NODE(&init_css_set.hlist);
2565
	css_set_count = 1;
2566 2567
	init_cgroup_root(&rootnode);
	list_add(&rootnode.root_list, &roots);
2568 2569 2570 2571
	root_count = 1;
	init_task.cgroups = &init_css_set;

	init_css_set_link.cg = &init_css_set;
2572
	list_add(&init_css_set_link.cgrp_link_list,
2573 2574 2575
		 &rootnode.top_cgroup.css_sets);
	list_add(&init_css_set_link.cg_link_list,
		 &init_css_set.cg_links);
2576

2577 2578 2579
	for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
		INIT_HLIST_HEAD(&css_set_table[i]);

2580 2581 2582 2583 2584 2585 2586 2587
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];

		BUG_ON(!ss->name);
		BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
		BUG_ON(!ss->create);
		BUG_ON(!ss->destroy);
		if (ss->subsys_id != i) {
D
Diego Calleja 已提交
2588
			printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599
			       ss->name, ss->subsys_id);
			BUG();
		}

		if (ss->early_init)
			cgroup_init_subsys(ss);
	}
	return 0;
}

/**
L
Li Zefan 已提交
2600 2601 2602 2603
 * cgroup_init - cgroup initialization
 *
 * Register cgroup filesystem and /proc file, and initialize
 * any subsystems that didn't request early init.
2604 2605 2606 2607 2608
 */
int __init cgroup_init(void)
{
	int err;
	int i;
2609
	struct hlist_head *hhead;
2610 2611 2612 2613

	err = bdi_init(&cgroup_backing_dev_info);
	if (err)
		return err;
2614 2615 2616 2617 2618 2619 2620

	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		if (!ss->early_init)
			cgroup_init_subsys(ss);
	}

2621 2622 2623 2624
	/* Add init_css_set to the hash table */
	hhead = css_set_hash(init_css_set.subsys);
	hlist_add_head(&init_css_set.hlist, hhead);

2625 2626 2627 2628
	err = register_filesystem(&cgroup_fs_type);
	if (err < 0)
		goto out;

L
Li Zefan 已提交
2629
	proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
2630

2631
out:
2632 2633 2634
	if (err)
		bdi_destroy(&cgroup_backing_dev_info);

2635 2636
	return err;
}
2637

2638 2639 2640 2641 2642 2643
/*
 * proc_cgroup_show()
 *  - Print task's cgroup paths into seq_file, one line for each hierarchy
 *  - Used for /proc/<pid>/cgroup.
 *  - No need to task_lock(tsk) on this tsk->cgroup reference, as it
 *    doesn't really matter if tsk->cgroup changes after we read it,
2644
 *    and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675
 *    anyway.  No need to check that tsk->cgroup != NULL, thanks to
 *    the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
 *    cgroup to top_cgroup.
 */

/* TODO: Use a proper seq_file iterator */
static int proc_cgroup_show(struct seq_file *m, void *v)
{
	struct pid *pid;
	struct task_struct *tsk;
	char *buf;
	int retval;
	struct cgroupfs_root *root;

	retval = -ENOMEM;
	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	if (!buf)
		goto out;

	retval = -ESRCH;
	pid = m->private;
	tsk = get_pid_task(pid, PIDTYPE_PID);
	if (!tsk)
		goto out_free;

	retval = 0;

	mutex_lock(&cgroup_mutex);

	for_each_root(root) {
		struct cgroup_subsys *ss;
2676
		struct cgroup *cgrp;
2677 2678 2679 2680 2681 2682
		int subsys_id;
		int count = 0;

		/* Skip this hierarchy if it has no active subsystems */
		if (!root->actual_subsys_bits)
			continue;
2683
		seq_printf(m, "%lu:", root->subsys_bits);
2684 2685 2686 2687
		for_each_subsys(root, ss)
			seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
		seq_putc(m, ':');
		get_first_subsys(&root->top_cgroup, NULL, &subsys_id);
2688 2689
		cgrp = task_cgroup(tsk, subsys_id);
		retval = cgroup_path(cgrp, buf, PAGE_SIZE);
2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722
		if (retval < 0)
			goto out_unlock;
		seq_puts(m, buf);
		seq_putc(m, '\n');
	}

out_unlock:
	mutex_unlock(&cgroup_mutex);
	put_task_struct(tsk);
out_free:
	kfree(buf);
out:
	return retval;
}

static int cgroup_open(struct inode *inode, struct file *file)
{
	struct pid *pid = PROC_I(inode)->pid;
	return single_open(file, proc_cgroup_show, pid);
}

struct file_operations proc_cgroup_operations = {
	.open		= cgroup_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

/* Display information about each subsystem and each hierarchy */
static int proc_cgroupstats_show(struct seq_file *m, void *v)
{
	int i;

2723
	seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
2724 2725 2726
	mutex_lock(&cgroup_mutex);
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
2727
		seq_printf(m, "%s\t%lu\t%d\t%d\n",
2728
			   ss->name, ss->root->subsys_bits,
2729
			   ss->root->number_of_cgroups, !ss->disabled);
2730 2731 2732 2733 2734 2735 2736
	}
	mutex_unlock(&cgroup_mutex);
	return 0;
}

static int cgroupstats_open(struct inode *inode, struct file *file)
{
A
Al Viro 已提交
2737
	return single_open(file, proc_cgroupstats_show, NULL);
2738 2739 2740 2741 2742 2743 2744 2745 2746
}

static struct file_operations proc_cgroupstats_operations = {
	.open = cgroupstats_open,
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
};

2747 2748
/**
 * cgroup_fork - attach newly forked task to its parents cgroup.
L
Li Zefan 已提交
2749
 * @child: pointer to task_struct of forking parent process.
2750 2751 2752 2753 2754 2755
 *
 * Description: A task inherits its parent's cgroup at fork().
 *
 * A pointer to the shared css_set was automatically copied in
 * fork.c by dup_task_struct().  However, we ignore that copy, since
 * it was not made under the protection of RCU or cgroup_mutex, so
2756
 * might no longer be a valid cgroup pointer.  cgroup_attach_task() might
2757 2758
 * have already changed current->cgroups, allowing the previously
 * referenced cgroup group to be removed and freed.
2759 2760 2761 2762 2763 2764
 *
 * At the point that cgroup_fork() is called, 'current' is the parent
 * task, and the passed argument 'child' points to the child task.
 */
void cgroup_fork(struct task_struct *child)
{
2765 2766 2767 2768 2769
	task_lock(current);
	child->cgroups = current->cgroups;
	get_css_set(child->cgroups);
	task_unlock(current);
	INIT_LIST_HEAD(&child->cg_list);
2770 2771 2772
}

/**
L
Li Zefan 已提交
2773 2774 2775 2776 2777 2778
 * cgroup_fork_callbacks - run fork callbacks
 * @child: the new task
 *
 * Called on a new task very soon before adding it to the
 * tasklist. No need to take any locks since no-one can
 * be operating on this task.
2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791
 */
void cgroup_fork_callbacks(struct task_struct *child)
{
	if (need_forkexit_callback) {
		int i;
		for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
			struct cgroup_subsys *ss = subsys[i];
			if (ss->fork)
				ss->fork(ss, child);
		}
	}
}

2792 2793 2794 2795 2796 2797 2798 2799
#ifdef CONFIG_MM_OWNER
/**
 * cgroup_mm_owner_callbacks - run callbacks when the mm->owner changes
 * @p: the new owner
 *
 * Called on every change to mm->owner. mm_init_owner() does not
 * invoke this routine, since it assigns the mm->owner the first time
 * and does not change it.
2800 2801
 *
 * The callbacks are invoked with mmap_sem held in read mode.
2802 2803 2804
 */
void cgroup_mm_owner_callbacks(struct task_struct *old, struct task_struct *new)
{
2805
	struct cgroup *oldcgrp, *newcgrp = NULL;
2806 2807 2808 2809 2810 2811

	if (need_mm_owner_callback) {
		int i;
		for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
			struct cgroup_subsys *ss = subsys[i];
			oldcgrp = task_cgroup(old, ss->subsys_id);
2812 2813
			if (new)
				newcgrp = task_cgroup(new, ss->subsys_id);
2814 2815 2816
			if (oldcgrp == newcgrp)
				continue;
			if (ss->mm_owner_changed)
2817
				ss->mm_owner_changed(ss, oldcgrp, newcgrp, new);
2818 2819 2820 2821 2822
		}
	}
}
#endif /* CONFIG_MM_OWNER */

2823
/**
L
Li Zefan 已提交
2824 2825 2826 2827 2828 2829 2830 2831
 * cgroup_post_fork - called on a new task after adding it to the task list
 * @child: the task in question
 *
 * Adds the task to the list running through its css_set if necessary.
 * Has to be after the task is visible on the task list in case we race
 * with the first call to cgroup_iter_start() - to guarantee that the
 * new task ends up on its list.
 */
2832 2833 2834 2835 2836 2837 2838 2839 2840
void cgroup_post_fork(struct task_struct *child)
{
	if (use_task_css_set_links) {
		write_lock(&css_set_lock);
		if (list_empty(&child->cg_list))
			list_add(&child->cg_list, &child->cgroups->tasks);
		write_unlock(&css_set_lock);
	}
}
2841 2842 2843
/**
 * cgroup_exit - detach cgroup from exiting task
 * @tsk: pointer to task_struct of exiting process
L
Li Zefan 已提交
2844
 * @run_callback: run exit callbacks?
2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872
 *
 * Description: Detach cgroup from @tsk and release it.
 *
 * Note that cgroups marked notify_on_release force every task in
 * them to take the global cgroup_mutex mutex when exiting.
 * This could impact scaling on very large systems.  Be reluctant to
 * use notify_on_release cgroups where very high task exit scaling
 * is required on large systems.
 *
 * the_top_cgroup_hack:
 *
 *    Set the exiting tasks cgroup to the root cgroup (top_cgroup).
 *
 *    We call cgroup_exit() while the task is still competent to
 *    handle notify_on_release(), then leave the task attached to the
 *    root cgroup in each hierarchy for the remainder of its exit.
 *
 *    To do this properly, we would increment the reference count on
 *    top_cgroup, and near the very end of the kernel/exit.c do_exit()
 *    code we would add a second cgroup function call, to drop that
 *    reference.  This would just create an unnecessary hot spot on
 *    the top_cgroup reference count, to no avail.
 *
 *    Normally, holding a reference to a cgroup without bumping its
 *    count is unsafe.   The cgroup could go away, or someone could
 *    attach us to a different cgroup, decrementing the count on
 *    the first cgroup that we never incremented.  But in this case,
 *    top_cgroup isn't going away, and either task has PF_EXITING set,
2873 2874
 *    which wards off any cgroup_attach_task() attempts, or task is a failed
 *    fork, never visible to cgroup_attach_task.
2875 2876 2877 2878
 */
void cgroup_exit(struct task_struct *tsk, int run_callbacks)
{
	int i;
2879
	struct css_set *cg;
2880 2881 2882 2883 2884 2885 2886 2887

	if (run_callbacks && need_forkexit_callback) {
		for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
			struct cgroup_subsys *ss = subsys[i];
			if (ss->exit)
				ss->exit(ss, tsk);
		}
	}
2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900

	/*
	 * Unlink from the css_set task list if necessary.
	 * Optimistically check cg_list before taking
	 * css_set_lock
	 */
	if (!list_empty(&tsk->cg_list)) {
		write_lock(&css_set_lock);
		if (!list_empty(&tsk->cg_list))
			list_del(&tsk->cg_list);
		write_unlock(&css_set_lock);
	}

2901 2902
	/* Reassign the task to the init_css_set. */
	task_lock(tsk);
2903 2904
	cg = tsk->cgroups;
	tsk->cgroups = &init_css_set;
2905
	task_unlock(tsk);
2906
	if (cg)
2907
		put_css_set_taskexit(cg);
2908
}
2909 2910

/**
L
Li Zefan 已提交
2911 2912 2913
 * cgroup_clone - clone the cgroup the given subsystem is attached to
 * @tsk: the task to be moved
 * @subsys: the given subsystem
2914
 * @nodename: the name for the new cgroup
L
Li Zefan 已提交
2915 2916 2917 2918
 *
 * Duplicate the current cgroup in the hierarchy that the given
 * subsystem is attached to, and move this task into the new
 * child.
2919
 */
2920 2921
int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *subsys,
							char *nodename)
2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942
{
	struct dentry *dentry;
	int ret = 0;
	struct cgroup *parent, *child;
	struct inode *inode;
	struct css_set *cg;
	struct cgroupfs_root *root;
	struct cgroup_subsys *ss;

	/* We shouldn't be called by an unregistered subsystem */
	BUG_ON(!subsys->active);

	/* First figure out what hierarchy and cgroup we're dealing
	 * with, and pin them so we can drop cgroup_mutex */
	mutex_lock(&cgroup_mutex);
 again:
	root = subsys->root;
	if (root == &rootnode) {
		mutex_unlock(&cgroup_mutex);
		return 0;
	}
2943
	cg = tsk->cgroups;
2944 2945 2946 2947 2948
	parent = task_cgroup(tsk, subsys->subsys_id);

	/* Pin the hierarchy */
	atomic_inc(&parent->root->sb->s_active);

2949 2950
	/* Keep the cgroup alive */
	get_css_set(cg);
2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961
	mutex_unlock(&cgroup_mutex);

	/* Now do the VFS work to create a cgroup */
	inode = parent->dentry->d_inode;

	/* Hold the parent directory mutex across this operation to
	 * stop anyone else deleting the new cgroup */
	mutex_lock(&inode->i_mutex);
	dentry = lookup_one_len(nodename, parent->dentry, strlen(nodename));
	if (IS_ERR(dentry)) {
		printk(KERN_INFO
D
Diego Calleja 已提交
2962
		       "cgroup: Couldn't allocate dentry for %s: %ld\n", nodename,
2963 2964 2965 2966 2967 2968 2969
		       PTR_ERR(dentry));
		ret = PTR_ERR(dentry);
		goto out_release;
	}

	/* Create the cgroup directory, which also creates the cgroup */
	ret = vfs_mkdir(inode, dentry, S_IFDIR | 0755);
2970
	child = __d_cgrp(dentry);
2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993
	dput(dentry);
	if (ret) {
		printk(KERN_INFO
		       "Failed to create cgroup %s: %d\n", nodename,
		       ret);
		goto out_release;
	}

	if (!child) {
		printk(KERN_INFO
		       "Couldn't find new cgroup %s\n", nodename);
		ret = -ENOMEM;
		goto out_release;
	}

	/* The cgroup now exists. Retake cgroup_mutex and check
	 * that we're still in the same state that we thought we
	 * were. */
	mutex_lock(&cgroup_mutex);
	if ((root != subsys->root) ||
	    (parent != task_cgroup(tsk, subsys->subsys_id))) {
		/* Aargh, we raced ... */
		mutex_unlock(&inode->i_mutex);
2994
		put_css_set(cg);
2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012

		deactivate_super(parent->root->sb);
		/* The cgroup is still accessible in the VFS, but
		 * we're not going to try to rmdir() it at this
		 * point. */
		printk(KERN_INFO
		       "Race in cgroup_clone() - leaking cgroup %s\n",
		       nodename);
		goto again;
	}

	/* do any required auto-setup */
	for_each_subsys(root, ss) {
		if (ss->post_clone)
			ss->post_clone(ss, child);
	}

	/* All seems fine. Finish by moving the task into the new cgroup */
3013
	ret = cgroup_attach_task(child, tsk);
3014 3015 3016 3017
	mutex_unlock(&cgroup_mutex);

 out_release:
	mutex_unlock(&inode->i_mutex);
3018 3019

	mutex_lock(&cgroup_mutex);
3020
	put_css_set(cg);
3021
	mutex_unlock(&cgroup_mutex);
3022 3023 3024 3025
	deactivate_super(parent->root->sb);
	return ret;
}

L
Li Zefan 已提交
3026 3027 3028 3029 3030 3031
/**
 * cgroup_is_descendant - see if @cgrp is a descendant of current task's cgrp
 * @cgrp: the cgroup in question
 *
 * See if @cgrp is a descendant of the current task's cgroup in
 * the appropriate hierarchy.
3032 3033 3034 3035 3036 3037
 *
 * If we are sending in dummytop, then presumably we are creating
 * the top cgroup in the subsystem.
 *
 * Called only by the ns (nsproxy) cgroup.
 */
3038
int cgroup_is_descendant(const struct cgroup *cgrp)
3039 3040 3041 3042 3043
{
	int ret;
	struct cgroup *target;
	int subsys_id;

3044
	if (cgrp == dummytop)
3045 3046
		return 1;

3047
	get_first_subsys(cgrp, NULL, &subsys_id);
3048
	target = task_cgroup(current, subsys_id);
3049 3050 3051
	while (cgrp != target && cgrp!= cgrp->top_cgroup)
		cgrp = cgrp->parent;
	ret = (cgrp == target);
3052 3053
	return ret;
}
3054

3055
static void check_for_release(struct cgroup *cgrp)
3056 3057 3058
{
	/* All of these checks rely on RCU to keep the cgroup
	 * structure alive */
3059 3060
	if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
	    && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
3061 3062 3063 3064 3065
		/* Control Group is currently removeable. If it's not
		 * already queued for a userspace notification, queue
		 * it now */
		int need_schedule_work = 0;
		spin_lock(&release_list_lock);
3066 3067 3068
		if (!cgroup_is_removed(cgrp) &&
		    list_empty(&cgrp->release_list)) {
			list_add(&cgrp->release_list, &release_list);
3069 3070 3071 3072 3073 3074 3075 3076 3077 3078
			need_schedule_work = 1;
		}
		spin_unlock(&release_list_lock);
		if (need_schedule_work)
			schedule_work(&release_agent_work);
	}
}

void __css_put(struct cgroup_subsys_state *css)
{
3079
	struct cgroup *cgrp = css->cgroup;
3080
	rcu_read_lock();
3081 3082 3083
	if (atomic_dec_and_test(&css->refcnt) && notify_on_release(cgrp)) {
		set_bit(CGRP_RELEASABLE, &cgrp->flags);
		check_for_release(cgrp);
3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118
	}
	rcu_read_unlock();
}

/*
 * Notify userspace when a cgroup is released, by running the
 * configured release agent with the name of the cgroup (path
 * relative to the root of cgroup file system) as the argument.
 *
 * Most likely, this user command will try to rmdir this cgroup.
 *
 * This races with the possibility that some other task will be
 * attached to this cgroup before it is removed, or that some other
 * user task will 'mkdir' a child cgroup of this cgroup.  That's ok.
 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
 * unused, and this cgroup will be reprieved from its death sentence,
 * to continue to serve a useful existence.  Next time it's released,
 * we will get notified again, if it still has 'notify_on_release' set.
 *
 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
 * means only wait until the task is successfully execve()'d.  The
 * separate release agent task is forked by call_usermodehelper(),
 * then control in this thread returns here, without waiting for the
 * release agent task.  We don't bother to wait because the caller of
 * this routine has no use for the exit status of the release agent
 * task, so no sense holding our caller up for that.
 */
static void cgroup_release_agent(struct work_struct *work)
{
	BUG_ON(work != &release_agent_work);
	mutex_lock(&cgroup_mutex);
	spin_lock(&release_list_lock);
	while (!list_empty(&release_list)) {
		char *argv[3], *envp[3];
		int i;
3119
		char *pathbuf = NULL, *agentbuf = NULL;
3120
		struct cgroup *cgrp = list_entry(release_list.next,
3121 3122
						    struct cgroup,
						    release_list);
3123
		list_del_init(&cgrp->release_list);
3124 3125
		spin_unlock(&release_list_lock);
		pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3126 3127 3128 3129 3130 3131 3132
		if (!pathbuf)
			goto continue_free;
		if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
			goto continue_free;
		agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
		if (!agentbuf)
			goto continue_free;
3133 3134

		i = 0;
3135 3136
		argv[i++] = agentbuf;
		argv[i++] = pathbuf;
3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150
		argv[i] = NULL;

		i = 0;
		/* minimal command environment */
		envp[i++] = "HOME=/";
		envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
		envp[i] = NULL;

		/* Drop the lock while we invoke the usermode helper,
		 * since the exec could involve hitting disk and hence
		 * be a slow process */
		mutex_unlock(&cgroup_mutex);
		call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
		mutex_lock(&cgroup_mutex);
3151 3152 3153
 continue_free:
		kfree(pathbuf);
		kfree(agentbuf);
3154 3155 3156 3157 3158
		spin_lock(&release_list_lock);
	}
	spin_unlock(&release_list_lock);
	mutex_unlock(&cgroup_mutex);
}
3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182

static int __init cgroup_disable(char *str)
{
	int i;
	char *token;

	while ((token = strsep(&str, ",")) != NULL) {
		if (!*token)
			continue;

		for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
			struct cgroup_subsys *ss = subsys[i];

			if (!strcmp(token, ss->name)) {
				ss->disabled = 1;
				printk(KERN_INFO "Disabling %s control group"
					" subsystem\n", ss->name);
				break;
			}
		}
	}
	return 1;
}
__setup("cgroup_disable=", cgroup_disable);