tick-sched.c 32.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/*
 *  linux/kernel/time/tick-sched.c
 *
 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
 *
 *  No idle tick implementation for low and high resolution timers
 *
 *  Started by: Thomas Gleixner and Ingo Molnar
 *
P
Pavel Machek 已提交
12
 *  Distribute under GPLv2.
13 14 15 16 17 18 19 20 21
 */
#include <linux/cpu.h>
#include <linux/err.h>
#include <linux/hrtimer.h>
#include <linux/interrupt.h>
#include <linux/kernel_stat.h>
#include <linux/percpu.h>
#include <linux/profile.h>
#include <linux/sched.h>
22
#include <linux/module.h>
23
#include <linux/irq_work.h>
24
#include <linux/posix-timers.h>
25
#include <linux/context_tracking.h>
26

27 28
#include <asm/irq_regs.h>

29 30
#include "tick-internal.h"

F
Frederic Weisbecker 已提交
31 32
#include <trace/events/timer.h>

33 34 35
/*
 * Per cpu nohz control structure
 */
36
static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
37

38 39 40 41 42
struct tick_sched *tick_get_tick_sched(int cpu)
{
	return &per_cpu(tick_cpu_sched, cpu);
}

43 44 45 46 47 48
#if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
/*
 * The time, when the last jiffy update happened. Protected by jiffies_lock.
 */
static ktime_t last_jiffies_update;

49 50 51 52 53 54 55 56
/*
 * Must be called with interrupts disabled !
 */
static void tick_do_update_jiffies64(ktime_t now)
{
	unsigned long ticks = 0;
	ktime_t delta;

57
	/*
58
	 * Do a quick check without holding jiffies_lock:
59 60 61 62 63
	 */
	delta = ktime_sub(now, last_jiffies_update);
	if (delta.tv64 < tick_period.tv64)
		return;

64 65
	/* Reevalute with jiffies_lock held */
	write_seqlock(&jiffies_lock);
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83

	delta = ktime_sub(now, last_jiffies_update);
	if (delta.tv64 >= tick_period.tv64) {

		delta = ktime_sub(delta, tick_period);
		last_jiffies_update = ktime_add(last_jiffies_update,
						tick_period);

		/* Slow path for long timeouts */
		if (unlikely(delta.tv64 >= tick_period.tv64)) {
			s64 incr = ktime_to_ns(tick_period);

			ticks = ktime_divns(delta, incr);

			last_jiffies_update = ktime_add_ns(last_jiffies_update,
							   incr * ticks);
		}
		do_timer(++ticks);
84 85 86

		/* Keep the tick_next_period variable up to date */
		tick_next_period = ktime_add(last_jiffies_update, tick_period);
87 88 89
	} else {
		write_sequnlock(&jiffies_lock);
		return;
90
	}
91
	write_sequnlock(&jiffies_lock);
92
	update_wall_time();
93 94 95 96 97 98 99 100 101
}

/*
 * Initialize and return retrieve the jiffies update.
 */
static ktime_t tick_init_jiffy_update(void)
{
	ktime_t period;

102
	write_seqlock(&jiffies_lock);
103 104 105 106
	/* Did we start the jiffies update yet ? */
	if (last_jiffies_update.tv64 == 0)
		last_jiffies_update = tick_next_period;
	period = last_jiffies_update;
107
	write_sequnlock(&jiffies_lock);
108 109 110
	return period;
}

111 112 113 114 115

static void tick_sched_do_timer(ktime_t now)
{
	int cpu = smp_processor_id();

116
#ifdef CONFIG_NO_HZ_COMMON
117 118 119 120 121
	/*
	 * Check if the do_timer duty was dropped. We don't care about
	 * concurrency: This happens only when the cpu in charge went
	 * into a long sleep. If two cpus happen to assign themself to
	 * this duty, then the jiffies update is still serialized by
122
	 * jiffies_lock.
123
	 */
124
	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)
125
	    && !tick_nohz_full_cpu(cpu))
126 127 128 129 130 131 132 133
		tick_do_timer_cpu = cpu;
#endif

	/* Check, if the jiffies need an update */
	if (tick_do_timer_cpu == cpu)
		tick_do_update_jiffies64(now);
}

134 135
static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
{
136
#ifdef CONFIG_NO_HZ_COMMON
137 138 139 140 141 142 143 144 145
	/*
	 * When we are idle and the tick is stopped, we have to touch
	 * the watchdog as we might not schedule for a really long
	 * time. This happens on complete idle SMP systems while
	 * waiting on the login prompt. We also increment the "start of
	 * idle" jiffy stamp so the idle accounting adjustment we do
	 * when we go busy again does not account too much ticks.
	 */
	if (ts->tick_stopped) {
146
		touch_softlockup_watchdog_sched();
147 148 149
		if (is_idle_task(current))
			ts->idle_jiffies++;
	}
150
#endif
151 152 153
	update_process_times(user_mode(regs));
	profile_tick(CPU_PROFILING);
}
154
#endif
155

156
#ifdef CONFIG_NO_HZ_FULL
157
cpumask_var_t tick_nohz_full_mask;
158
cpumask_var_t housekeeping_mask;
159
bool tick_nohz_full_running;
160
static unsigned long tick_dep_mask;
161

162 163 164
static void trace_tick_dependency(unsigned long dep)
{
	if (dep & TICK_DEP_MASK_POSIX_TIMER) {
165
		trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
166 167 168 169
		return;
	}

	if (dep & TICK_DEP_MASK_PERF_EVENTS) {
170
		trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
171 172 173 174
		return;
	}

	if (dep & TICK_DEP_MASK_SCHED) {
175
		trace_tick_stop(0, TICK_DEP_MASK_SCHED);
176 177 178 179
		return;
	}

	if (dep & TICK_DEP_MASK_CLOCK_UNSTABLE)
180
		trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
181 182 183
}

static bool can_stop_full_tick(struct tick_sched *ts)
184 185 186
{
	WARN_ON_ONCE(!irqs_disabled());

187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
	if (tick_dep_mask) {
		trace_tick_dependency(tick_dep_mask);
		return false;
	}

	if (ts->tick_dep_mask) {
		trace_tick_dependency(ts->tick_dep_mask);
		return false;
	}

	if (current->tick_dep_mask) {
		trace_tick_dependency(current->tick_dep_mask);
		return false;
	}

	if (current->signal->tick_dep_mask) {
		trace_tick_dependency(current->signal->tick_dep_mask);
		return false;
	}

F
Frederic Weisbecker 已提交
207
	if (!sched_can_stop_tick()) {
208
		trace_tick_stop(0, TICK_DEP_MASK_SCHED);
209
		return false;
F
Frederic Weisbecker 已提交
210
	}
211

F
Frederic Weisbecker 已提交
212
	if (!posix_cpu_timers_can_stop_tick(current)) {
213
		trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
214
		return false;
F
Frederic Weisbecker 已提交
215
	}
216 217 218

#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
	/*
219 220
	 * sched_clock_tick() needs us?
	 *
221 222 223
	 * TODO: kick full dynticks CPUs when
	 * sched_clock_stable is set.
	 */
224
	if (!sched_clock_stable()) {
225
		trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
226 227 228 229
		/*
		 * Don't allow the user to think they can get
		 * full NO_HZ with this machine.
		 */
230
		WARN_ONCE(tick_nohz_full_running,
231
			  "NO_HZ FULL will not work with unstable sched clock");
232
		return false;
F
Frederic Weisbecker 已提交
233
	}
234 235 236 237 238
#endif

	return true;
}

239
static void nohz_full_kick_func(struct irq_work *work)
240
{
241
	/* Empty, the tick restart happens on tick_nohz_irq_exit() */
242 243 244
}

static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
245
	.func = nohz_full_kick_func,
246 247
};

248 249 250 251 252 253
/*
 * Kick this CPU if it's full dynticks in order to force it to
 * re-evaluate its dependency on the tick and restart it if necessary.
 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
 * is NMI safe.
 */
254
static void tick_nohz_full_kick(void)
255 256 257 258
{
	if (!tick_nohz_full_cpu(smp_processor_id()))
		return;

259
	irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
260 261
}

262
/*
263
 * Kick the CPU if it's full dynticks in order to force it to
264 265
 * re-evaluate its dependency on the tick and restart it if necessary.
 */
266
void tick_nohz_full_kick_cpu(int cpu)
267
{
268 269 270 271
	if (!tick_nohz_full_cpu(cpu))
		return;

	irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
272 273 274 275 276 277 278 279
}

/*
 * Kick all full dynticks CPUs in order to force these to re-evaluate
 * their dependency on the tick and restart it if necessary.
 */
void tick_nohz_full_kick_all(void)
{
280 281
	int cpu;

282
	if (!tick_nohz_full_running)
283 284 285
		return;

	preempt_disable();
286 287
	for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
		tick_nohz_full_kick_cpu(cpu);
288 289 290
	preempt_enable();
}

291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
static void tick_nohz_dep_set_all(unsigned long *dep,
				  enum tick_dep_bits bit)
{
	unsigned long prev;

	prev = fetch_or(dep, BIT_MASK(bit));
	if (!prev)
		tick_nohz_full_kick_all();
}

/*
 * Set a global tick dependency. Used by perf events that rely on freq and
 * by unstable clock.
 */
void tick_nohz_dep_set(enum tick_dep_bits bit)
{
	tick_nohz_dep_set_all(&tick_dep_mask, bit);
}

void tick_nohz_dep_clear(enum tick_dep_bits bit)
{
	clear_bit(bit, &tick_dep_mask);
}

/*
 * Set per-CPU tick dependency. Used by scheduler and perf events in order to
 * manage events throttling.
 */
void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
{
	unsigned long prev;
	struct tick_sched *ts;

	ts = per_cpu_ptr(&tick_cpu_sched, cpu);

	prev = fetch_or(&ts->tick_dep_mask, BIT_MASK(bit));
	if (!prev) {
		preempt_disable();
		/* Perf needs local kick that is NMI safe */
		if (cpu == smp_processor_id()) {
			tick_nohz_full_kick();
		} else {
			/* Remote irq work not NMI-safe */
			if (!WARN_ON_ONCE(in_nmi()))
				tick_nohz_full_kick_cpu(cpu);
		}
		preempt_enable();
	}
}

void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
{
	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);

	clear_bit(bit, &ts->tick_dep_mask);
}

/*
 * Set a per-task tick dependency. Posix CPU timers need this in order to elapse
 * per task timers.
 */
void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
{
	/*
	 * We could optimize this with just kicking the target running the task
	 * if that noise matters for nohz full users.
	 */
	tick_nohz_dep_set_all(&tsk->tick_dep_mask, bit);
}

void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
{
	clear_bit(bit, &tsk->tick_dep_mask);
}

/*
 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
 * per process timers.
 */
void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit)
{
	tick_nohz_dep_set_all(&sig->tick_dep_mask, bit);
}

void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
{
	clear_bit(bit, &sig->tick_dep_mask);
}

380 381 382 383 384
/*
 * Re-evaluate the need for the tick as we switch the current task.
 * It might need the tick due to per task/process properties:
 * perf events, posix cpu timers, ...
 */
385
void __tick_nohz_task_switch(void)
386 387
{
	unsigned long flags;
388
	struct tick_sched *ts;
389 390 391

	local_irq_save(flags);

392 393 394
	if (!tick_nohz_full_cpu(smp_processor_id()))
		goto out;

395
	ts = this_cpu_ptr(&tick_cpu_sched);
396

397 398 399 400
	if (ts->tick_stopped) {
		if (current->tick_dep_mask || current->signal->tick_dep_mask)
			tick_nohz_full_kick();
	}
401
out:
402 403 404
	local_irq_restore(flags);
}

405
/* Parse the boot-time nohz CPU list from the kernel parameters. */
406
static int __init tick_nohz_full_setup(char *str)
407
{
408 409
	alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
	if (cpulist_parse(str, tick_nohz_full_mask) < 0) {
410
		pr_warning("NOHZ: Incorrect nohz_full cpumask\n");
411
		free_bootmem_cpumask_var(tick_nohz_full_mask);
412 413
		return 1;
	}
414
	tick_nohz_full_running = true;
415

416 417
	return 1;
}
418
__setup("nohz_full=", tick_nohz_full_setup);
419

420
static int tick_nohz_cpu_down_callback(struct notifier_block *nfb,
421 422
				       unsigned long action,
				       void *hcpu)
423 424 425 426 427 428
{
	unsigned int cpu = (unsigned long)hcpu;

	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		/*
429 430 431
		 * The boot CPU handles housekeeping duty (unbound timers,
		 * workqueues, timekeeping, ...) on behalf of full dynticks
		 * CPUs. It must remain online when nohz full is enabled.
432
		 */
433
		if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
434
			return NOTIFY_BAD;
435 436 437 438 439
		break;
	}
	return NOTIFY_OK;
}

440 441 442 443 444
static int tick_nohz_init_all(void)
{
	int err = -1;

#ifdef CONFIG_NO_HZ_FULL_ALL
445
	if (!alloc_cpumask_var(&tick_nohz_full_mask, GFP_KERNEL)) {
446
		WARN(1, "NO_HZ: Can't allocate full dynticks cpumask\n");
447 448
		return err;
	}
449
	err = 0;
450 451
	cpumask_setall(tick_nohz_full_mask);
	tick_nohz_full_running = true;
452 453 454 455
#endif
	return err;
}

456
void __init tick_nohz_init(void)
457
{
458 459
	int cpu;

460
	if (!tick_nohz_full_running) {
461 462 463
		if (tick_nohz_init_all() < 0)
			return;
	}
464

465 466 467 468 469 470 471
	if (!alloc_cpumask_var(&housekeeping_mask, GFP_KERNEL)) {
		WARN(1, "NO_HZ: Can't allocate not-full dynticks cpumask\n");
		cpumask_clear(tick_nohz_full_mask);
		tick_nohz_full_running = false;
		return;
	}

472 473 474 475 476 477 478 479 480 481 482 483 484 485
	/*
	 * Full dynticks uses irq work to drive the tick rescheduling on safe
	 * locking contexts. But then we need irq work to raise its own
	 * interrupts to avoid circular dependency on the tick
	 */
	if (!arch_irq_work_has_interrupt()) {
		pr_warning("NO_HZ: Can't run full dynticks because arch doesn't "
			   "support irq work self-IPIs\n");
		cpumask_clear(tick_nohz_full_mask);
		cpumask_copy(housekeeping_mask, cpu_possible_mask);
		tick_nohz_full_running = false;
		return;
	}

486 487 488 489 490 491 492 493 494 495
	cpu = smp_processor_id();

	if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
		pr_warning("NO_HZ: Clearing %d from nohz_full range for timekeeping\n", cpu);
		cpumask_clear_cpu(cpu, tick_nohz_full_mask);
	}

	cpumask_andnot(housekeeping_mask,
		       cpu_possible_mask, tick_nohz_full_mask);

496
	for_each_cpu(cpu, tick_nohz_full_mask)
497 498
		context_tracking_cpu_set(cpu);

499
	cpu_notifier(tick_nohz_cpu_down_callback, 0);
500 501
	pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
		cpumask_pr_args(tick_nohz_full_mask));
502 503 504 505 506 507

	/*
	 * We need at least one CPU to handle housekeeping work such
	 * as timekeeping, unbound timers, workqueues, ...
	 */
	WARN_ON_ONCE(cpumask_empty(housekeeping_mask));
508 509 510
}
#endif

511 512 513
/*
 * NOHZ - aka dynamic tick functionality
 */
514
#ifdef CONFIG_NO_HZ_COMMON
515 516 517
/*
 * NO HZ enabled ?
 */
518
int tick_nohz_enabled __read_mostly = 1;
519
unsigned long tick_nohz_active  __read_mostly;
520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
/*
 * Enable / Disable tickless mode
 */
static int __init setup_tick_nohz(char *str)
{
	if (!strcmp(str, "off"))
		tick_nohz_enabled = 0;
	else if (!strcmp(str, "on"))
		tick_nohz_enabled = 1;
	else
		return 0;
	return 1;
}

__setup("nohz=", setup_tick_nohz);

536 537 538 539 540
int tick_nohz_tick_stopped(void)
{
	return __this_cpu_read(tick_cpu_sched.tick_stopped);
}

541 542 543 544 545 546 547 548 549 550
/**
 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
 *
 * Called from interrupt entry when the CPU was idle
 *
 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
 * must be updated. Otherwise an interrupt handler could use a stale jiffy
 * value. We do this unconditionally on any cpu, as we don't know whether the
 * cpu, which has the update task assigned is in a long sleep.
 */
551
static void tick_nohz_update_jiffies(ktime_t now)
552 553 554
{
	unsigned long flags;

555
	__this_cpu_write(tick_cpu_sched.idle_waketime, now);
556 557 558 559

	local_irq_save(flags);
	tick_do_update_jiffies64(now);
	local_irq_restore(flags);
560

561
	touch_softlockup_watchdog_sched();
562 563
}

564 565 566
/*
 * Updates the per cpu time idle statistics counters
 */
567
static void
568
update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
569
{
570
	ktime_t delta;
571

572 573
	if (ts->idle_active) {
		delta = ktime_sub(now, ts->idle_entrytime);
574
		if (nr_iowait_cpu(cpu) > 0)
575
			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
576 577
		else
			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
578
		ts->idle_entrytime = now;
579
	}
580

581
	if (last_update_time)
582 583
		*last_update_time = ktime_to_us(now);

584 585
}

586
static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
587
{
588
	update_ts_time_stats(smp_processor_id(), ts, now, NULL);
589
	ts->idle_active = 0;
590

591
	sched_clock_idle_wakeup_event(0);
592 593
}

594
static ktime_t tick_nohz_start_idle(struct tick_sched *ts)
595
{
596
	ktime_t now = ktime_get();
597

598 599
	ts->idle_entrytime = now;
	ts->idle_active = 1;
600
	sched_clock_idle_sleep_event();
601 602 603
	return now;
}

604 605 606
/**
 * get_cpu_idle_time_us - get the total idle time of a cpu
 * @cpu: CPU number to query
607 608
 * @last_update_time: variable to store update time in. Do not update
 * counters if NULL.
609 610
 *
 * Return the cummulative idle time (since boot) for a given
611
 * CPU, in microseconds.
612 613 614 615 616 617
 *
 * This time is measured via accounting rather than sampling,
 * and is as accurate as ktime_get() is.
 *
 * This function returns -1 if NOHZ is not enabled.
 */
618 619 620
u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
{
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
621
	ktime_t now, idle;
622

623
	if (!tick_nohz_active)
624 625
		return -1;

626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
	now = ktime_get();
	if (last_update_time) {
		update_ts_time_stats(cpu, ts, now, last_update_time);
		idle = ts->idle_sleeptime;
	} else {
		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
			ktime_t delta = ktime_sub(now, ts->idle_entrytime);

			idle = ktime_add(ts->idle_sleeptime, delta);
		} else {
			idle = ts->idle_sleeptime;
		}
	}

	return ktime_to_us(idle);
641

642
}
643
EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
644

645
/**
646 647
 * get_cpu_iowait_time_us - get the total iowait time of a cpu
 * @cpu: CPU number to query
648 649
 * @last_update_time: variable to store update time in. Do not update
 * counters if NULL.
650 651 652 653 654 655 656 657 658 659 660 661
 *
 * Return the cummulative iowait time (since boot) for a given
 * CPU, in microseconds.
 *
 * This time is measured via accounting rather than sampling,
 * and is as accurate as ktime_get() is.
 *
 * This function returns -1 if NOHZ is not enabled.
 */
u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
{
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
662
	ktime_t now, iowait;
663

664
	if (!tick_nohz_active)
665 666
		return -1;

667 668 669 670 671 672 673
	now = ktime_get();
	if (last_update_time) {
		update_ts_time_stats(cpu, ts, now, last_update_time);
		iowait = ts->iowait_sleeptime;
	} else {
		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
674

675 676 677 678 679
			iowait = ktime_add(ts->iowait_sleeptime, delta);
		} else {
			iowait = ts->iowait_sleeptime;
		}
	}
680

681
	return ktime_to_us(iowait);
682 683 684
}
EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);

685 686 687 688 689 690 691 692 693 694 695 696 697 698
static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
{
	hrtimer_cancel(&ts->sched_timer);
	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);

	/* Forward the time to expire in the future */
	hrtimer_forward(&ts->sched_timer, now, tick_period);

	if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
		hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
	else
		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
}

699 700
static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
					 ktime_t now, int cpu)
701
{
702
	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
703 704 705
	u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
	unsigned long seq, basejiff;
	ktime_t	tick;
706

707 708
	/* Read jiffies and the time when jiffies were updated last */
	do {
709
		seq = read_seqbegin(&jiffies_lock);
710 711
		basemono = last_jiffies_update.tv64;
		basejiff = jiffies;
712
	} while (read_seqretry(&jiffies_lock, seq));
713
	ts->last_jiffies = basejiff;
714

715
	if (rcu_needs_cpu(basemono, &next_rcu) ||
716
	    arch_needs_cpu() || irq_work_needs_cpu()) {
717
		next_tick = basemono + TICK_NSEC;
718
	} else {
719 720 721 722 723 724 725 726 727 728 729
		/*
		 * Get the next pending timer. If high resolution
		 * timers are enabled this only takes the timer wheel
		 * timers into account. If high resolution timers are
		 * disabled this also looks at the next expiring
		 * hrtimer.
		 */
		next_tmr = get_next_timer_interrupt(basejiff, basemono);
		ts->next_timer = next_tmr;
		/* Take the next rcu event into account */
		next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
730
	}
731

732 733
	/*
	 * If the tick is due in the next period, keep it ticking or
734
	 * force prod the timer.
735 736 737 738
	 */
	delta = next_tick - basemono;
	if (delta <= (u64)TICK_NSEC) {
		tick.tv64 = 0;
739 740 741 742
		/*
		 * We've not stopped the tick yet, and there's a timer in the
		 * next period, so no point in stopping it either, bail.
		 */
T
Thomas Gleixner 已提交
743 744
		if (!ts->tick_stopped)
			goto out;
745 746 747 748 749 750 751 752 753 754 755 756 757

		/*
		 * If, OTOH, we did stop it, but there's a pending (expired)
		 * timer reprogram the timer hardware to fire now.
		 *
		 * We will not restart the tick proper, just prod the timer
		 * hardware into firing an interrupt to process the pending
		 * timers. Just like tick_irq_exit() will not restart the tick
		 * for 'normal' interrupts.
		 *
		 * Only once we exit the idle loop will we re-enable the tick,
		 * see tick_nohz_idle_exit().
		 */
758
		if (delta == 0) {
T
Thomas Gleixner 已提交
759 760 761 762 763
			tick_nohz_restart(ts, now);
			goto out;
		}
	}

764
	/*
T
Thomas Gleixner 已提交
765 766 767 768 769 770 771
	 * If this cpu is the one which updates jiffies, then give up
	 * the assignment and let it be taken by the cpu which runs
	 * the tick timer next, which might be this cpu as well. If we
	 * don't drop this here the jiffies might be stale and
	 * do_timer() never invoked. Keep track of the fact that it
	 * was the one which had the do_timer() duty last. If this cpu
	 * is the one which had the do_timer() duty last, we limit the
772 773
	 * sleep time to the timekeeping max_deferement value.
	 * Otherwise we can sleep as long as we want.
774
	 */
775
	delta = timekeeping_max_deferment();
T
Thomas Gleixner 已提交
776 777 778 779
	if (cpu == tick_do_timer_cpu) {
		tick_do_timer_cpu = TICK_DO_TIMER_NONE;
		ts->do_timer_last = 1;
	} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
780
		delta = KTIME_MAX;
T
Thomas Gleixner 已提交
781 782
		ts->do_timer_last = 0;
	} else if (!ts->do_timer_last) {
783
		delta = KTIME_MAX;
T
Thomas Gleixner 已提交
784
	}
T
Thomas Gleixner 已提交
785

786
#ifdef CONFIG_NO_HZ_FULL
787
	/* Limit the tick delta to the maximum scheduler deferment */
T
Thomas Gleixner 已提交
788
	if (!ts->inidle)
789
		delta = min(delta, scheduler_tick_max_deferment());
790 791
#endif

792 793 794
	/* Calculate the next expiry time */
	if (delta < (KTIME_MAX - basemono))
		expires = basemono + delta;
T
Thomas Gleixner 已提交
795
	else
796 797 798 799
		expires = KTIME_MAX;

	expires = min_t(u64, expires, next_tick);
	tick.tv64 = expires;
800

T
Thomas Gleixner 已提交
801
	/* Skip reprogram of event if its not changed */
802
	if (ts->tick_stopped && (expires == dev->next_event.tv64))
T
Thomas Gleixner 已提交
803
		goto out;
804

T
Thomas Gleixner 已提交
805 806 807 808 809 810 811 812 813 814
	/*
	 * nohz_stop_sched_tick can be called several times before
	 * the nohz_restart_sched_tick is called. This happens when
	 * interrupts arrive which do not cause a reschedule. In the
	 * first call we save the current tick time, so we can restart
	 * the scheduler tick in nohz_restart_sched_tick.
	 */
	if (!ts->tick_stopped) {
		nohz_balance_enter_idle(cpu);
		calc_load_enter_idle();
815

T
Thomas Gleixner 已提交
816 817
		ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
		ts->tick_stopped = 1;
818
		trace_tick_stop(1, TICK_DEP_MASK_NONE);
T
Thomas Gleixner 已提交
819
	}
820

T
Thomas Gleixner 已提交
821
	/*
822 823
	 * If the expiration time == KTIME_MAX, then we simply stop
	 * the tick timer.
T
Thomas Gleixner 已提交
824
	 */
825
	if (unlikely(expires == KTIME_MAX)) {
T
Thomas Gleixner 已提交
826 827 828
		if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
			hrtimer_cancel(&ts->sched_timer);
		goto out;
829
	}
830

T
Thomas Gleixner 已提交
831
	if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
832
		hrtimer_start(&ts->sched_timer, tick, HRTIMER_MODE_ABS_PINNED);
T
Thomas Gleixner 已提交
833
	else
834
		tick_program_event(tick, 1);
835
out:
836
	/* Update the estimated sleep length */
837
	ts->sleep_length = ktime_sub(dev->next_event, now);
838
	return tick;
839 840
}

841
static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now, int active)
842 843 844
{
	/* Update jiffies first */
	tick_do_update_jiffies64(now);
845
	update_cpu_load_nohz(active);
846 847

	calc_load_exit_idle();
848
	touch_softlockup_watchdog_sched();
849 850 851 852 853 854 855 856
	/*
	 * Cancel the scheduled timer and restore the tick
	 */
	ts->tick_stopped  = 0;
	ts->idle_exittime = now;

	tick_nohz_restart(ts, now);
}
857 858

static void tick_nohz_full_update_tick(struct tick_sched *ts)
859 860
{
#ifdef CONFIG_NO_HZ_FULL
861
	int cpu = smp_processor_id();
862

863
	if (!tick_nohz_full_cpu(cpu))
864
		return;
865

866 867
	if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
		return;
868

869
	if (can_stop_full_tick(ts))
870 871
		tick_nohz_stop_sched_tick(ts, ktime_get(), cpu);
	else if (ts->tick_stopped)
872
		tick_nohz_restart_sched_tick(ts, ktime_get(), 1);
873 874 875
#endif
}

876 877 878 879 880 881 882 883 884 885 886 887
static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
{
	/*
	 * If this cpu is offline and it is the one which updates
	 * jiffies, then give up the assignment and let it be taken by
	 * the cpu which runs the tick timer next. If we don't drop
	 * this here the jiffies might be stale and do_timer() never
	 * invoked.
	 */
	if (unlikely(!cpu_online(cpu))) {
		if (cpu == tick_do_timer_cpu)
			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
888
		return false;
889 890
	}

891 892
	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) {
		ts->sleep_length = (ktime_t) { .tv64 = NSEC_PER_SEC/HZ };
893
		return false;
894
	}
895 896 897 898 899 900 901

	if (need_resched())
		return false;

	if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
		static int ratelimit;

902 903
		if (ratelimit < 10 &&
		    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
904 905
			pr_warn("NOHZ: local_softirq_pending %02x\n",
				(unsigned int) local_softirq_pending());
906 907 908 909 910
			ratelimit++;
		}
		return false;
	}

911
	if (tick_nohz_full_enabled()) {
912 913 914 915 916 917 918 919 920 921 922 923 924 925
		/*
		 * Keep the tick alive to guarantee timekeeping progression
		 * if there are full dynticks CPUs around
		 */
		if (tick_do_timer_cpu == cpu)
			return false;
		/*
		 * Boot safety: make sure the timekeeping duty has been
		 * assigned before entering dyntick-idle mode,
		 */
		if (tick_do_timer_cpu == TICK_DO_TIMER_NONE)
			return false;
	}

926 927 928
	return true;
}

929 930
static void __tick_nohz_idle_enter(struct tick_sched *ts)
{
931
	ktime_t now, expires;
932
	int cpu = smp_processor_id();
933

934
	now = tick_nohz_start_idle(ts);
935

936 937 938 939
	if (can_stop_idle_tick(cpu, ts)) {
		int was_stopped = ts->tick_stopped;

		ts->idle_calls++;
940 941 942 943 944 945

		expires = tick_nohz_stop_sched_tick(ts, now, cpu);
		if (expires.tv64 > 0LL) {
			ts->idle_sleeps++;
			ts->idle_expires = expires;
		}
946 947 948 949

		if (!was_stopped && ts->tick_stopped)
			ts->idle_jiffies = ts->last_jiffies;
	}
950 951 952 953 954 955 956
}

/**
 * tick_nohz_idle_enter - stop the idle tick from the idle task
 *
 * When the next event is more than a tick into the future, stop the idle tick
 * Called when we start the idle loop.
957
 *
958
 * The arch is responsible of calling:
959 960 961 962
 *
 * - rcu_idle_enter() after its last use of RCU before the CPU is put
 *  to sleep.
 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
963
 */
964
void tick_nohz_idle_enter(void)
965 966 967
{
	struct tick_sched *ts;

968 969
	WARN_ON_ONCE(irqs_disabled());

970 971 972 973 974 975 976 977
	/*
 	 * Update the idle state in the scheduler domain hierarchy
 	 * when tick_nohz_stop_sched_tick() is called from the idle loop.
 	 * State will be updated to busy during the first busy tick after
 	 * exiting idle.
 	 */
	set_cpu_sd_state_idle();

978 979
	local_irq_disable();

980
	ts = this_cpu_ptr(&tick_cpu_sched);
981
	ts->inidle = 1;
982
	__tick_nohz_idle_enter(ts);
983 984

	local_irq_enable();
985 986 987 988 989 990 991 992 993 994 995 996
}

/**
 * tick_nohz_irq_exit - update next tick event from interrupt exit
 *
 * When an interrupt fires while we are idle and it doesn't cause
 * a reschedule, it may still add, modify or delete a timer, enqueue
 * an RCU callback, etc...
 * So we need to re-calculate and reprogram the next tick event.
 */
void tick_nohz_irq_exit(void)
{
997
	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
998

999
	if (ts->inidle)
1000
		__tick_nohz_idle_enter(ts);
1001
	else
1002
		tick_nohz_full_update_tick(ts);
1003 1004
}

1005 1006 1007 1008 1009 1010 1011
/**
 * tick_nohz_get_sleep_length - return the length of the current sleep
 *
 * Called from power state control code with interrupts disabled
 */
ktime_t tick_nohz_get_sleep_length(void)
{
1012
	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1013 1014 1015 1016

	return ts->sleep_length;
}

1017 1018
static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
{
1019
#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1020
	unsigned long ticks;
1021

1022
	if (vtime_accounting_cpu_enabled())
1023
		return;
1024 1025 1026 1027 1028 1029 1030 1031 1032
	/*
	 * We stopped the tick in idle. Update process times would miss the
	 * time we slept as update_process_times does only a 1 tick
	 * accounting. Enforce that this is accounted to idle !
	 */
	ticks = jiffies - ts->idle_jiffies;
	/*
	 * We might be one off. Do not randomly account a huge number of ticks!
	 */
1033 1034 1035
	if (ticks && ticks < LONG_MAX)
		account_idle_ticks(ticks);
#endif
1036 1037
}

1038
/**
1039
 * tick_nohz_idle_exit - restart the idle tick from the idle task
1040 1041
 *
 * Restart the idle tick when the CPU is woken up from idle
1042 1043
 * This also exit the RCU extended quiescent state. The CPU
 * can use RCU again after this function is called.
1044
 */
1045
void tick_nohz_idle_exit(void)
1046
{
1047
	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1048
	ktime_t now;
1049

1050
	local_irq_disable();
1051

1052 1053 1054 1055 1056
	WARN_ON_ONCE(!ts->inidle);

	ts->inidle = 0;

	if (ts->idle_active || ts->tick_stopped)
1057 1058 1059
		now = ktime_get();

	if (ts->idle_active)
1060
		tick_nohz_stop_idle(ts, now);
1061

1062
	if (ts->tick_stopped) {
1063
		tick_nohz_restart_sched_tick(ts, now, 0);
1064
		tick_nohz_account_idle_ticks(ts);
1065
	}
1066 1067 1068 1069 1070 1071 1072 1073 1074

	local_irq_enable();
}

/*
 * The nohz low res interrupt handler
 */
static void tick_nohz_handler(struct clock_event_device *dev)
{
1075
	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1076 1077 1078 1079 1080
	struct pt_regs *regs = get_irq_regs();
	ktime_t now = ktime_get();

	dev->next_event.tv64 = KTIME_MAX;

1081
	tick_sched_do_timer(now);
1082
	tick_sched_handle(ts, regs);
1083

1084 1085 1086 1087
	/* No need to reprogram if we are running tickless  */
	if (unlikely(ts->tick_stopped))
		return;

1088 1089
	hrtimer_forward(&ts->sched_timer, now, tick_period);
	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1090 1091
}

1092 1093 1094 1095 1096 1097 1098
static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
{
	if (!tick_nohz_enabled)
		return;
	ts->nohz_mode = mode;
	/* One update is enough */
	if (!test_and_set_bit(0, &tick_nohz_active))
1099
		timers_update_migration(true);
1100 1101
}

1102 1103 1104 1105 1106
/**
 * tick_nohz_switch_to_nohz - switch to nohz mode
 */
static void tick_nohz_switch_to_nohz(void)
{
1107
	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1108 1109
	ktime_t next;

1110
	if (!tick_nohz_enabled)
1111 1112
		return;

1113
	if (tick_switch_to_oneshot(tick_nohz_handler))
1114
		return;
1115

1116 1117 1118 1119 1120 1121 1122 1123
	/*
	 * Recycle the hrtimer in ts, so we can share the
	 * hrtimer_forward with the highres code.
	 */
	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
	/* Get the next period */
	next = tick_init_jiffy_update();

1124
	hrtimer_set_expires(&ts->sched_timer, next);
1125 1126
	hrtimer_forward_now(&ts->sched_timer, tick_period);
	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1127
	tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
1128 1129
}

1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
/*
 * When NOHZ is enabled and the tick is stopped, we need to kick the
 * tick timer from irq_enter() so that the jiffies update is kept
 * alive during long running softirqs. That's ugly as hell, but
 * correctness is key even if we need to fix the offending softirq in
 * the first place.
 *
 * Note, this is different to tick_nohz_restart. We just kick the
 * timer and do not touch the other magic bits which need to be done
 * when idle is left.
 */
1141
static void tick_nohz_kick_tick(struct tick_sched *ts, ktime_t now)
1142
{
1143 1144
#if 0
	/* Switch back to 2.6.27 behaviour */
1145
	ktime_t delta;
1146

1147 1148 1149 1150
	/*
	 * Do not touch the tick device, when the next expiry is either
	 * already reached or less/equal than the tick period.
	 */
1151
	delta =	ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
1152 1153 1154 1155
	if (delta.tv64 <= tick_period.tv64)
		return;

	tick_nohz_restart(ts, now);
1156
#endif
1157 1158
}

1159
static inline void tick_nohz_irq_enter(void)
1160
{
1161
	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1162 1163 1164 1165 1166 1167
	ktime_t now;

	if (!ts->idle_active && !ts->tick_stopped)
		return;
	now = ktime_get();
	if (ts->idle_active)
1168
		tick_nohz_stop_idle(ts, now);
1169 1170
	if (ts->tick_stopped) {
		tick_nohz_update_jiffies(now);
1171
		tick_nohz_kick_tick(ts, now);
1172 1173 1174
	}
}

1175 1176 1177
#else

static inline void tick_nohz_switch_to_nohz(void) { }
1178
static inline void tick_nohz_irq_enter(void) { }
1179
static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1180

1181
#endif /* CONFIG_NO_HZ_COMMON */
1182

1183 1184 1185
/*
 * Called from irq_enter to notify about the possible interruption of idle()
 */
1186
void tick_irq_enter(void)
1187
{
1188
	tick_check_oneshot_broadcast_this_cpu();
1189
	tick_nohz_irq_enter();
1190 1191
}

1192 1193 1194 1195 1196
/*
 * High resolution timer specific code
 */
#ifdef CONFIG_HIGH_RES_TIMERS
/*
P
Pavel Machek 已提交
1197
 * We rearm the timer until we get disabled by the idle code.
1198
 * Called with interrupts disabled.
1199 1200 1201 1202 1203 1204 1205
 */
static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
{
	struct tick_sched *ts =
		container_of(timer, struct tick_sched, sched_timer);
	struct pt_regs *regs = get_irq_regs();
	ktime_t now = ktime_get();
1206

1207
	tick_sched_do_timer(now);
1208 1209 1210 1211 1212

	/*
	 * Do not call, when we are not in irq context and have
	 * no valid regs pointer
	 */
1213 1214
	if (regs)
		tick_sched_handle(ts, regs);
1215

1216 1217 1218 1219
	/* No need to reprogram if we are in idle or full dynticks mode */
	if (unlikely(ts->tick_stopped))
		return HRTIMER_NORESTART;

1220 1221 1222 1223 1224
	hrtimer_forward(timer, now, tick_period);

	return HRTIMER_RESTART;
}

M
Mike Galbraith 已提交
1225 1226
static int sched_skew_tick;

1227 1228 1229 1230 1231 1232 1233 1234
static int __init skew_tick(char *str)
{
	get_option(&str, &sched_skew_tick);

	return 0;
}
early_param("skew_tick", skew_tick);

1235 1236 1237 1238 1239
/**
 * tick_setup_sched_timer - setup the tick emulation timer
 */
void tick_setup_sched_timer(void)
{
1240
	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1241 1242 1243 1244 1245 1246 1247 1248
	ktime_t now = ktime_get();

	/*
	 * Emulate tick processing via per-CPU hrtimers:
	 */
	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
	ts->sched_timer.function = tick_sched_timer;

1249
	/* Get the next period (per cpu) */
1250
	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1251

1252
	/* Offset the tick to avert jiffies_lock contention. */
M
Mike Galbraith 已提交
1253 1254 1255 1256 1257 1258 1259
	if (sched_skew_tick) {
		u64 offset = ktime_to_ns(tick_period) >> 1;
		do_div(offset, num_possible_cpus());
		offset *= smp_processor_id();
		hrtimer_add_expires_ns(&ts->sched_timer, offset);
	}

1260 1261
	hrtimer_forward(&ts->sched_timer, now, tick_period);
	hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
1262
	tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
1263
}
1264
#endif /* HIGH_RES_TIMERS */
1265

1266
#if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1267 1268 1269 1270
void tick_cancel_sched_timer(int cpu)
{
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);

1271
# ifdef CONFIG_HIGH_RES_TIMERS
1272 1273
	if (ts->sched_timer.base)
		hrtimer_cancel(&ts->sched_timer);
1274
# endif
1275

1276
	memset(ts, 0, sizeof(*ts));
1277
}
1278
#endif
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295

/**
 * Async notification about clocksource changes
 */
void tick_clock_notify(void)
{
	int cpu;

	for_each_possible_cpu(cpu)
		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
}

/*
 * Async notification about clock event changes
 */
void tick_oneshot_notify(void)
{
1296
	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306

	set_bit(0, &ts->check_clocks);
}

/**
 * Check, if a change happened, which makes oneshot possible.
 *
 * Called cyclic from the hrtimer softirq (driven by the timer
 * softirq) allow_nohz signals, that we can switch into low-res nohz
 * mode, because high resolution timers are disabled (either compile
1307
 * or runtime). Called with interrupts disabled.
1308 1309 1310
 */
int tick_check_oneshot_change(int allow_nohz)
{
1311
	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1312 1313 1314 1315 1316 1317 1318

	if (!test_and_clear_bit(0, &ts->check_clocks))
		return 0;

	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
		return 0;

1319
	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1320 1321 1322 1323 1324 1325 1326 1327
		return 0;

	if (!allow_nohz)
		return 1;

	tick_nohz_switch_to_nohz();
	return 0;
}