snapshot.c 60.5 KB
Newer Older
1
/*
2
 * linux/kernel/power/snapshot.c
3
 *
4
 * This file provides system snapshot/restore functionality for swsusp.
5
 *
P
Pavel Machek 已提交
6
 * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
7
 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
8
 *
9
 * This file is released under the GPLv2.
10 11 12
 *
 */

13
#include <linux/version.h>
14 15 16 17 18 19 20 21 22
#include <linux/module.h>
#include <linux/mm.h>
#include <linux/suspend.h>
#include <linux/delay.h>
#include <linux/bitops.h>
#include <linux/spinlock.h>
#include <linux/kernel.h>
#include <linux/pm.h>
#include <linux/device.h>
23
#include <linux/init.h>
24 25 26 27
#include <linux/bootmem.h>
#include <linux/syscalls.h>
#include <linux/console.h>
#include <linux/highmem.h>
28
#include <linux/list.h>
29
#include <linux/slab.h>
30
#include <linux/compiler.h>
31 32 33 34 35 36 37 38 39

#include <asm/uaccess.h>
#include <asm/mmu_context.h>
#include <asm/pgtable.h>
#include <asm/tlbflush.h>
#include <asm/io.h>

#include "power.h"

40 41 42 43
static int swsusp_page_is_free(struct page *);
static void swsusp_set_page_forbidden(struct page *);
static void swsusp_unset_page_forbidden(struct page *);

44 45 46 47 48 49 50 51 52 53 54 55
/*
 * Number of bytes to reserve for memory allocations made by device drivers
 * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
 * cause image creation to fail (tunable via /sys/power/reserved_size).
 */
unsigned long reserved_size;

void __init hibernate_reserved_size_init(void)
{
	reserved_size = SPARE_PAGES * PAGE_SIZE;
}

56 57
/*
 * Preferred image size in bytes (tunable via /sys/power/image_size).
58 59 60
 * When it is set to N, swsusp will do its best to ensure the image
 * size will not exceed N bytes, but if that is impossible, it will
 * try to create the smallest image possible.
61
 */
62 63 64 65
unsigned long image_size;

void __init hibernate_image_size_init(void)
{
66
	image_size = ((totalram_pages * 2) / 5) * PAGE_SIZE;
67
}
68

69 70 71 72 73
/* List of PBEs needed for restoring the pages that were allocated before
 * the suspend and included in the suspend image, but have also been
 * allocated by the "resume" kernel, so their contents cannot be written
 * directly to their "original" page frames.
 */
74 75
struct pbe *restore_pblist;

76
/* Pointer to an auxiliary buffer (1 page) */
77
static void *buffer;
78

79 80 81
/**
 *	@safe_needed - on resume, for storing the PBE list and the image,
 *	we can only use memory pages that do not conflict with the pages
82 83
 *	used before suspend.  The unsafe pages have PageNosaveFree set
 *	and we count them using unsafe_pages.
84
 *
85 86
 *	Each allocated image page is marked as PageNosave and PageNosaveFree
 *	so that swsusp_free() can release it.
87 88
 */

89 90 91 92 93
#define PG_ANY		0
#define PG_SAFE		1
#define PG_UNSAFE_CLEAR	1
#define PG_UNSAFE_KEEP	0

94
static unsigned int allocated_unsafe_pages;
95

96
static void *get_image_page(gfp_t gfp_mask, int safe_needed)
97 98 99 100 101
{
	void *res;

	res = (void *)get_zeroed_page(gfp_mask);
	if (safe_needed)
102
		while (res && swsusp_page_is_free(virt_to_page(res))) {
103
			/* The page is unsafe, mark it for swsusp_free() */
104
			swsusp_set_page_forbidden(virt_to_page(res));
105
			allocated_unsafe_pages++;
106 107 108
			res = (void *)get_zeroed_page(gfp_mask);
		}
	if (res) {
109 110
		swsusp_set_page_forbidden(virt_to_page(res));
		swsusp_set_page_free(virt_to_page(res));
111 112 113 114 115 116
	}
	return res;
}

unsigned long get_safe_page(gfp_t gfp_mask)
{
117 118 119
	return (unsigned long)get_image_page(gfp_mask, PG_SAFE);
}

120 121
static struct page *alloc_image_page(gfp_t gfp_mask)
{
122 123 124 125
	struct page *page;

	page = alloc_page(gfp_mask);
	if (page) {
126 127
		swsusp_set_page_forbidden(page);
		swsusp_set_page_free(page);
128 129
	}
	return page;
130 131 132 133
}

/**
 *	free_image_page - free page represented by @addr, allocated with
134
 *	get_image_page (page flags set by it must be cleared)
135 136 137 138
 */

static inline void free_image_page(void *addr, int clear_nosave_free)
{
139 140 141 142 143 144
	struct page *page;

	BUG_ON(!virt_addr_valid(addr));

	page = virt_to_page(addr);

145
	swsusp_unset_page_forbidden(page);
146
	if (clear_nosave_free)
147
		swsusp_unset_page_free(page);
148 149

	__free_page(page);
150 151
}

152 153 154 155 156 157 158
/* struct linked_page is used to build chains of pages */

#define LINKED_PAGE_DATA_SIZE	(PAGE_SIZE - sizeof(void *))

struct linked_page {
	struct linked_page *next;
	char data[LINKED_PAGE_DATA_SIZE];
159
} __packed;
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209

static inline void
free_list_of_pages(struct linked_page *list, int clear_page_nosave)
{
	while (list) {
		struct linked_page *lp = list->next;

		free_image_page(list, clear_page_nosave);
		list = lp;
	}
}

/**
  *	struct chain_allocator is used for allocating small objects out of
  *	a linked list of pages called 'the chain'.
  *
  *	The chain grows each time when there is no room for a new object in
  *	the current page.  The allocated objects cannot be freed individually.
  *	It is only possible to free them all at once, by freeing the entire
  *	chain.
  *
  *	NOTE: The chain allocator may be inefficient if the allocated objects
  *	are not much smaller than PAGE_SIZE.
  */

struct chain_allocator {
	struct linked_page *chain;	/* the chain */
	unsigned int used_space;	/* total size of objects allocated out
					 * of the current page
					 */
	gfp_t gfp_mask;		/* mask for allocating pages */
	int safe_needed;	/* if set, only "safe" pages are allocated */
};

static void
chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed)
{
	ca->chain = NULL;
	ca->used_space = LINKED_PAGE_DATA_SIZE;
	ca->gfp_mask = gfp_mask;
	ca->safe_needed = safe_needed;
}

static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
{
	void *ret;

	if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
		struct linked_page *lp;

210
		lp = get_image_page(ca->gfp_mask, ca->safe_needed);
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
		if (!lp)
			return NULL;

		lp->next = ca->chain;
		ca->chain = lp;
		ca->used_space = 0;
	}
	ret = ca->chain->data + ca->used_space;
	ca->used_space += size;
	return ret;
}

/**
 *	Data types related to memory bitmaps.
 *
 *	Memory bitmap is a structure consiting of many linked lists of
 *	objects.  The main list's elements are of type struct zone_bitmap
 *	and each of them corresonds to one zone.  For each zone bitmap
 *	object there is a list of objects of type struct bm_block that
230
 *	represent each blocks of bitmap in which information is stored.
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
 *
 *	struct memory_bitmap contains a pointer to the main list of zone
 *	bitmap objects, a struct bm_position used for browsing the bitmap,
 *	and a pointer to the list of pages used for allocating all of the
 *	zone bitmap objects and bitmap block objects.
 *
 *	NOTE: It has to be possible to lay out the bitmap in memory
 *	using only allocations of order 0.  Additionally, the bitmap is
 *	designed to work with arbitrary number of zones (this is over the
 *	top for now, but let's avoid making unnecessary assumptions ;-).
 *
 *	struct zone_bitmap contains a pointer to a list of bitmap block
 *	objects and a pointer to the bitmap block object that has been
 *	most recently used for setting bits.  Additionally, it contains the
 *	pfns that correspond to the start and end of the represented zone.
 *
 *	struct bm_block contains a pointer to the memory page in which
248 249 250
 *	information is stored (in the form of a block of bitmap)
 *	It also contains the pfns that correspond to the start and end of
 *	the represented memory area.
251 252 253 254
 */

#define BM_END_OF_MAP	(~0UL)

W
Wu Fengguang 已提交
255
#define BM_BITS_PER_BLOCK	(PAGE_SIZE * BITS_PER_BYTE)
256 257

struct bm_block {
258
	struct list_head hook;	/* hook into a list of bitmap blocks */
259 260
	unsigned long start_pfn;	/* pfn represented by the first bit */
	unsigned long end_pfn;	/* pfn represented by the last bit plus 1 */
261
	unsigned long *data;	/* bitmap representing pages */
262 263
};

264 265 266 267 268
static inline unsigned long bm_block_bits(struct bm_block *bb)
{
	return bb->end_pfn - bb->start_pfn;
}

269 270 271 272 273 274 275 276
/* strcut bm_position is used for browsing memory bitmaps */

struct bm_position {
	struct bm_block *block;
	int bit;
};

struct memory_bitmap {
277
	struct list_head blocks;	/* list of bitmap blocks */
278 279 280 281 282 283 284 285 286 287 288
	struct linked_page *p_list;	/* list of pages used to store zone
					 * bitmap objects and bitmap block
					 * objects
					 */
	struct bm_position cur;	/* most recently used bit position */
};

/* Functions that operate on memory bitmaps */

static void memory_bm_position_reset(struct memory_bitmap *bm)
{
289
	bm->cur.block = list_entry(bm->blocks.next, struct bm_block, hook);
290
	bm->cur.bit = 0;
291 292 293 294 295 296
}

static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);

/**
 *	create_bm_block_list - create a list of block bitmap objects
W
Wu Fengguang 已提交
297
 *	@pages - number of pages to track
298 299
 *	@list - list to put the allocated blocks into
 *	@ca - chain allocator to be used for allocating memory
300
 */
301 302 303
static int create_bm_block_list(unsigned long pages,
				struct list_head *list,
				struct chain_allocator *ca)
304
{
305
	unsigned int nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
306 307 308 309 310 311

	while (nr_blocks-- > 0) {
		struct bm_block *bb;

		bb = chain_alloc(ca, sizeof(struct bm_block));
		if (!bb)
312 313
			return -ENOMEM;
		list_add(&bb->hook, list);
314
	}
315 316

	return 0;
317 318
}

319 320 321 322 323 324
struct mem_extent {
	struct list_head hook;
	unsigned long start;
	unsigned long end;
};

325
/**
326 327
 *	free_mem_extents - free a list of memory extents
 *	@list - list of extents to empty
328
 */
329 330 331
static void free_mem_extents(struct list_head *list)
{
	struct mem_extent *ext, *aux;
332

333 334 335 336 337 338 339 340 341 342 343 344 345
	list_for_each_entry_safe(ext, aux, list, hook) {
		list_del(&ext->hook);
		kfree(ext);
	}
}

/**
 *	create_mem_extents - create a list of memory extents representing
 *	                     contiguous ranges of PFNs
 *	@list - list to put the extents into
 *	@gfp_mask - mask to use for memory allocations
 */
static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
346
{
347
	struct zone *zone;
348

349
	INIT_LIST_HEAD(list);
350

351
	for_each_populated_zone(zone) {
352 353 354 355
		unsigned long zone_start, zone_end;
		struct mem_extent *ext, *cur, *aux;

		zone_start = zone->zone_start_pfn;
356
		zone_end = zone_end_pfn(zone);
357 358 359 360

		list_for_each_entry(ext, list, hook)
			if (zone_start <= ext->end)
				break;
361

362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
		if (&ext->hook == list || zone_end < ext->start) {
			/* New extent is necessary */
			struct mem_extent *new_ext;

			new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
			if (!new_ext) {
				free_mem_extents(list);
				return -ENOMEM;
			}
			new_ext->start = zone_start;
			new_ext->end = zone_end;
			list_add_tail(&new_ext->hook, &ext->hook);
			continue;
		}

		/* Merge this zone's range of PFNs with the existing one */
		if (zone_start < ext->start)
			ext->start = zone_start;
		if (zone_end > ext->end)
			ext->end = zone_end;

		/* More merging may be possible */
		cur = ext;
		list_for_each_entry_safe_continue(cur, aux, list, hook) {
			if (zone_end < cur->start)
				break;
			if (zone_end < cur->end)
				ext->end = cur->end;
			list_del(&cur->hook);
			kfree(cur);
		}
393
	}
394 395

	return 0;
396 397 398 399 400 401 402 403 404
}

/**
  *	memory_bm_create - allocate memory for a memory bitmap
  */
static int
memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed)
{
	struct chain_allocator ca;
405 406 407
	struct list_head mem_extents;
	struct mem_extent *ext;
	int error;
408 409

	chain_init(&ca, gfp_mask, safe_needed);
410
	INIT_LIST_HEAD(&bm->blocks);
411

412 413 414
	error = create_mem_extents(&mem_extents, gfp_mask);
	if (error)
		return error;
415

416 417 418 419
	list_for_each_entry(ext, &mem_extents, hook) {
		struct bm_block *bb;
		unsigned long pfn = ext->start;
		unsigned long pages = ext->end - ext->start;
420

421
		bb = list_entry(bm->blocks.prev, struct bm_block, hook);
422

423 424 425
		error = create_bm_block_list(pages, bm->blocks.prev, &ca);
		if (error)
			goto Error;
426

427 428 429 430 431 432
		list_for_each_entry_continue(bb, &bm->blocks, hook) {
			bb->data = get_image_page(gfp_mask, safe_needed);
			if (!bb->data) {
				error = -ENOMEM;
				goto Error;
			}
433 434

			bb->start_pfn = pfn;
435
			if (pages >= BM_BITS_PER_BLOCK) {
436
				pfn += BM_BITS_PER_BLOCK;
437
				pages -= BM_BITS_PER_BLOCK;
438 439
			} else {
				/* This is executed only once in the loop */
440
				pfn += pages;
441 442 443 444
			}
			bb->end_pfn = pfn;
		}
	}
445

446 447
	bm->p_list = ca.chain;
	memory_bm_position_reset(bm);
448 449 450
 Exit:
	free_mem_extents(&mem_extents);
	return error;
451

452
 Error:
453 454
	bm->p_list = ca.chain;
	memory_bm_free(bm, PG_UNSAFE_CLEAR);
455
	goto Exit;
456 457 458 459 460 461 462
}

/**
  *	memory_bm_free - free memory occupied by the memory bitmap @bm
  */
static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
{
463
	struct bm_block *bb;
464

465 466 467
	list_for_each_entry(bb, &bm->blocks, hook)
		if (bb->data)
			free_image_page(bb->data, clear_nosave_free);
468 469

	free_list_of_pages(bm->p_list, clear_nosave_free);
470 471

	INIT_LIST_HEAD(&bm->blocks);
472 473 474
}

/**
475
 *	memory_bm_find_bit - find the bit in the bitmap @bm that corresponds
476 477 478
 *	to given pfn.  The cur_zone_bm member of @bm and the cur_block member
 *	of @bm->cur_zone_bm are updated.
 */
479
static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
480
				void **addr, unsigned int *bit_nr)
481 482 483
{
	struct bm_block *bb;

484 485 486 487 488
	/*
	 * Check if the pfn corresponds to the current bitmap block and find
	 * the block where it fits if this is not the case.
	 */
	bb = bm->cur.block;
489
	if (pfn < bb->start_pfn)
490 491 492
		list_for_each_entry_continue_reverse(bb, &bm->blocks, hook)
			if (pfn >= bb->start_pfn)
				break;
493

494 495 496 497
	if (pfn >= bb->end_pfn)
		list_for_each_entry_continue(bb, &bm->blocks, hook)
			if (pfn >= bb->start_pfn && pfn < bb->end_pfn)
				break;
498

499 500 501 502 503
	if (&bb->hook == &bm->blocks)
		return -EFAULT;

	/* The block has been found */
	bm->cur.block = bb;
504
	pfn -= bb->start_pfn;
505
	bm->cur.bit = pfn + 1;
506 507
	*bit_nr = pfn;
	*addr = bb->data;
508
	return 0;
509 510 511 512 513 514
}

static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
{
	void *addr;
	unsigned int bit;
515
	int error;
516

517 518
	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
	BUG_ON(error);
519 520 521
	set_bit(bit, addr);
}

522 523 524 525 526 527 528 529 530 531 532 533
static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
{
	void *addr;
	unsigned int bit;
	int error;

	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
	if (!error)
		set_bit(bit, addr);
	return error;
}

534 535 536 537
static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
{
	void *addr;
	unsigned int bit;
538
	int error;
539

540 541
	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
	BUG_ON(error);
542 543 544 545 546 547 548
	clear_bit(bit, addr);
}

static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
{
	void *addr;
	unsigned int bit;
549
	int error;
550

551 552
	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
	BUG_ON(error);
553
	return test_bit(bit, addr);
554 555
}

556 557 558 559 560 561 562 563
static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
{
	void *addr;
	unsigned int bit;

	return !memory_bm_find_bit(bm, pfn, &addr, &bit);
}

564 565 566 567 568 569 570 571 572 573 574 575 576 577
/**
 *	memory_bm_next_pfn - find the pfn that corresponds to the next set bit
 *	in the bitmap @bm.  If the pfn cannot be found, BM_END_OF_MAP is
 *	returned.
 *
 *	It is required to run memory_bm_position_reset() before the first call to
 *	this function.
 */

static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
{
	struct bm_block *bb;
	int bit;

578
	bb = bm->cur.block;
579
	do {
580 581 582 583 584 585 586 587 588 589
		bit = bm->cur.bit;
		bit = find_next_bit(bb->data, bm_block_bits(bb), bit);
		if (bit < bm_block_bits(bb))
			goto Return_pfn;

		bb = list_entry(bb->hook.next, struct bm_block, hook);
		bm->cur.block = bb;
		bm->cur.bit = 0;
	} while (&bb->hook != &bm->blocks);

590 591 592
	memory_bm_position_reset(bm);
	return BM_END_OF_MAP;

R
Rafael J. Wysocki 已提交
593
 Return_pfn:
594 595
	bm->cur.bit = bit + 1;
	return bb->start_pfn + bit;
596 597
}

598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
/**
 *	This structure represents a range of page frames the contents of which
 *	should not be saved during the suspend.
 */

struct nosave_region {
	struct list_head list;
	unsigned long start_pfn;
	unsigned long end_pfn;
};

static LIST_HEAD(nosave_regions);

/**
 *	register_nosave_region - register a range of page frames the contents
 *	of which should not be saved during the suspend (to be used in the early
 *	initialization code)
 */

void __init
618 619
__register_nosave_region(unsigned long start_pfn, unsigned long end_pfn,
			 int use_kmalloc)
620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
{
	struct nosave_region *region;

	if (start_pfn >= end_pfn)
		return;

	if (!list_empty(&nosave_regions)) {
		/* Try to extend the previous region (they should be sorted) */
		region = list_entry(nosave_regions.prev,
					struct nosave_region, list);
		if (region->end_pfn == start_pfn) {
			region->end_pfn = end_pfn;
			goto Report;
		}
	}
635 636 637 638 639 640
	if (use_kmalloc) {
		/* during init, this shouldn't fail */
		region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
		BUG_ON(!region);
	} else
		/* This allocation cannot fail */
641
		region = memblock_virt_alloc(sizeof(struct nosave_region), 0);
642 643 644 645
	region->start_pfn = start_pfn;
	region->end_pfn = end_pfn;
	list_add_tail(&region->list, &nosave_regions);
 Report:
646 647 648
	printk(KERN_INFO "PM: Registered nosave memory: [mem %#010llx-%#010llx]\n",
		(unsigned long long) start_pfn << PAGE_SHIFT,
		((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
}

/*
 * Set bits in this map correspond to the page frames the contents of which
 * should not be saved during the suspend.
 */
static struct memory_bitmap *forbidden_pages_map;

/* Set bits in this map correspond to free page frames. */
static struct memory_bitmap *free_pages_map;

/*
 * Each page frame allocated for creating the image is marked by setting the
 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
 */

void swsusp_set_page_free(struct page *page)
{
	if (free_pages_map)
		memory_bm_set_bit(free_pages_map, page_to_pfn(page));
}

static int swsusp_page_is_free(struct page *page)
{
	return free_pages_map ?
		memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
}

void swsusp_unset_page_free(struct page *page)
{
	if (free_pages_map)
		memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
}

static void swsusp_set_page_forbidden(struct page *page)
{
	if (forbidden_pages_map)
		memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
}

int swsusp_page_is_forbidden(struct page *page)
{
	return forbidden_pages_map ?
		memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
}

static void swsusp_unset_page_forbidden(struct page *page)
{
	if (forbidden_pages_map)
		memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
}

/**
 *	mark_nosave_pages - set bits corresponding to the page frames the
 *	contents of which should not be saved in a given bitmap.
 */

static void mark_nosave_pages(struct memory_bitmap *bm)
{
	struct nosave_region *region;

	if (list_empty(&nosave_regions))
		return;

	list_for_each_entry(region, &nosave_regions, list) {
		unsigned long pfn;

716 717 718 719
		pr_debug("PM: Marking nosave pages: [mem %#010llx-%#010llx]\n",
			 (unsigned long long) region->start_pfn << PAGE_SHIFT,
			 ((unsigned long long) region->end_pfn << PAGE_SHIFT)
				- 1);
720 721

		for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
722 723 724 725 726 727 728 729 730
			if (pfn_valid(pfn)) {
				/*
				 * It is safe to ignore the result of
				 * mem_bm_set_bit_check() here, since we won't
				 * touch the PFNs for which the error is
				 * returned anyway.
				 */
				mem_bm_set_bit_check(bm, pfn);
			}
731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
	}
}

/**
 *	create_basic_memory_bitmaps - create bitmaps needed for marking page
 *	frames that should not be saved and free page frames.  The pointers
 *	forbidden_pages_map and free_pages_map are only modified if everything
 *	goes well, because we don't want the bits to be used before both bitmaps
 *	are set up.
 */

int create_basic_memory_bitmaps(void)
{
	struct memory_bitmap *bm1, *bm2;
	int error = 0;

747 748 749 750
	if (forbidden_pages_map && free_pages_map)
		return 0;
	else
		BUG_ON(forbidden_pages_map || free_pages_map);
751

752
	bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
753 754 755
	if (!bm1)
		return -ENOMEM;

756
	error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
757 758 759
	if (error)
		goto Free_first_object;

760
	bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
761 762 763
	if (!bm2)
		goto Free_first_bitmap;

764
	error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
765 766 767 768 769 770 771
	if (error)
		goto Free_second_object;

	forbidden_pages_map = bm1;
	free_pages_map = bm2;
	mark_nosave_pages(forbidden_pages_map);

R
Rafael J. Wysocki 已提交
772
	pr_debug("PM: Basic memory bitmaps created\n");
773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795

	return 0;

 Free_second_object:
	kfree(bm2);
 Free_first_bitmap:
 	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
 Free_first_object:
	kfree(bm1);
	return -ENOMEM;
}

/**
 *	free_basic_memory_bitmaps - free memory bitmaps allocated by
 *	create_basic_memory_bitmaps().  The auxiliary pointers are necessary
 *	so that the bitmaps themselves are not referred to while they are being
 *	freed.
 */

void free_basic_memory_bitmaps(void)
{
	struct memory_bitmap *bm1, *bm2;

796 797
	if (WARN_ON(!(forbidden_pages_map && free_pages_map)))
		return;
798 799 800 801 802 803 804 805 806 807

	bm1 = forbidden_pages_map;
	bm2 = free_pages_map;
	forbidden_pages_map = NULL;
	free_pages_map = NULL;
	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
	kfree(bm1);
	memory_bm_free(bm2, PG_UNSAFE_CLEAR);
	kfree(bm2);

R
Rafael J. Wysocki 已提交
808
	pr_debug("PM: Basic memory bitmaps freed\n");
809 810
}

811 812 813 814 815 816 817 818 819 820 821
/**
 *	snapshot_additional_pages - estimate the number of additional pages
 *	be needed for setting up the suspend image data structures for given
 *	zone (usually the returned value is greater than the exact number)
 */

unsigned int snapshot_additional_pages(struct zone *zone)
{
	unsigned int res;

	res = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
822 823
	res += DIV_ROUND_UP(res * sizeof(struct bm_block),
			    LINKED_PAGE_DATA_SIZE);
824
	return 2 * res;
825 826
}

827 828 829 830 831 832 833 834 835 836 837
#ifdef CONFIG_HIGHMEM
/**
 *	count_free_highmem_pages - compute the total number of free highmem
 *	pages, system-wide.
 */

static unsigned int count_free_highmem_pages(void)
{
	struct zone *zone;
	unsigned int cnt = 0;

838 839
	for_each_populated_zone(zone)
		if (is_highmem(zone))
840
			cnt += zone_page_state(zone, NR_FREE_PAGES);
841 842 843 844 845 846 847 848 849 850 851

	return cnt;
}

/**
 *	saveable_highmem_page - Determine whether a highmem page should be
 *	included in the suspend image.
 *
 *	We should save the page if it isn't Nosave or NosaveFree, or Reserved,
 *	and it isn't a part of a free chunk of pages.
 */
852
static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
853 854 855 856 857 858 859
{
	struct page *page;

	if (!pfn_valid(pfn))
		return NULL;

	page = pfn_to_page(pfn);
860 861
	if (page_zone(page) != zone)
		return NULL;
862 863 864

	BUG_ON(!PageHighMem(page));

865 866
	if (swsusp_page_is_forbidden(page) ||  swsusp_page_is_free(page) ||
	    PageReserved(page))
867 868
		return NULL;

869 870 871
	if (page_is_guard(page))
		return NULL;

872 873 874 875 876 877 878 879
	return page;
}

/**
 *	count_highmem_pages - compute the total number of saveable highmem
 *	pages.
 */

880
static unsigned int count_highmem_pages(void)
881 882 883 884
{
	struct zone *zone;
	unsigned int n = 0;

885
	for_each_populated_zone(zone) {
886 887 888 889 890 891
		unsigned long pfn, max_zone_pfn;

		if (!is_highmem(zone))
			continue;

		mark_free_pages(zone);
892
		max_zone_pfn = zone_end_pfn(zone);
893
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
894
			if (saveable_highmem_page(zone, pfn))
895 896 897 898 899
				n++;
	}
	return n;
}
#else
900 901 902 903
static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
{
	return NULL;
}
904 905
#endif /* CONFIG_HIGHMEM */

906
/**
907 908
 *	saveable_page - Determine whether a non-highmem page should be included
 *	in the suspend image.
909
 *
910 911 912
 *	We should save the page if it isn't Nosave, and is not in the range
 *	of pages statically defined as 'unsaveable', and it isn't a part of
 *	a free chunk of pages.
913
 */
914
static struct page *saveable_page(struct zone *zone, unsigned long pfn)
915
{
P
Pavel Machek 已提交
916
	struct page *page;
917 918

	if (!pfn_valid(pfn))
919
		return NULL;
920 921

	page = pfn_to_page(pfn);
922 923
	if (page_zone(page) != zone)
		return NULL;
924

925 926
	BUG_ON(PageHighMem(page));

927
	if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
928
		return NULL;
929

930 931
	if (PageReserved(page)
	    && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
932
		return NULL;
933

934 935 936
	if (page_is_guard(page))
		return NULL;

937
	return page;
938 939
}

940 941 942 943 944
/**
 *	count_data_pages - compute the total number of saveable non-highmem
 *	pages.
 */

945
static unsigned int count_data_pages(void)
946 947
{
	struct zone *zone;
948
	unsigned long pfn, max_zone_pfn;
P
Pavel Machek 已提交
949
	unsigned int n = 0;
950

951
	for_each_populated_zone(zone) {
952 953
		if (is_highmem(zone))
			continue;
954

955
		mark_free_pages(zone);
956
		max_zone_pfn = zone_end_pfn(zone);
957
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
958
			if (saveable_page(zone, pfn))
959
				n++;
960
	}
961
	return n;
962 963
}

964 965 966 967
/* This is needed, because copy_page and memcpy are not usable for copying
 * task structs.
 */
static inline void do_copy_page(long *dst, long *src)
968 969 970 971 972 973 974
{
	int n;

	for (n = PAGE_SIZE / sizeof(long); n; n--)
		*dst++ = *src++;
}

975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993

/**
 *	safe_copy_page - check if the page we are going to copy is marked as
 *		present in the kernel page tables (this always is the case if
 *		CONFIG_DEBUG_PAGEALLOC is not set and in that case
 *		kernel_page_present() always returns 'true').
 */
static void safe_copy_page(void *dst, struct page *s_page)
{
	if (kernel_page_present(s_page)) {
		do_copy_page(dst, page_address(s_page));
	} else {
		kernel_map_pages(s_page, 1, 1);
		do_copy_page(dst, page_address(s_page));
		kernel_map_pages(s_page, 1, 0);
	}
}


994 995 996 997 998
#ifdef CONFIG_HIGHMEM
static inline struct page *
page_is_saveable(struct zone *zone, unsigned long pfn)
{
	return is_highmem(zone) ?
999
		saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
1000 1001
}

1002
static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1003 1004 1005 1006 1007 1008 1009
{
	struct page *s_page, *d_page;
	void *src, *dst;

	s_page = pfn_to_page(src_pfn);
	d_page = pfn_to_page(dst_pfn);
	if (PageHighMem(s_page)) {
1010 1011
		src = kmap_atomic(s_page);
		dst = kmap_atomic(d_page);
1012
		do_copy_page(dst, src);
1013 1014
		kunmap_atomic(dst);
		kunmap_atomic(src);
1015 1016 1017 1018 1019
	} else {
		if (PageHighMem(d_page)) {
			/* Page pointed to by src may contain some kernel
			 * data modified by kmap_atomic()
			 */
1020
			safe_copy_page(buffer, s_page);
1021
			dst = kmap_atomic(d_page);
1022
			copy_page(dst, buffer);
1023
			kunmap_atomic(dst);
1024
		} else {
1025
			safe_copy_page(page_address(d_page), s_page);
1026 1027 1028 1029
		}
	}
}
#else
1030
#define page_is_saveable(zone, pfn)	saveable_page(zone, pfn)
1031

1032
static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1033
{
1034 1035
	safe_copy_page(page_address(pfn_to_page(dst_pfn)),
				pfn_to_page(src_pfn));
1036 1037 1038
}
#endif /* CONFIG_HIGHMEM */

1039 1040
static void
copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm)
1041 1042
{
	struct zone *zone;
1043
	unsigned long pfn;
1044

1045
	for_each_populated_zone(zone) {
1046 1047
		unsigned long max_zone_pfn;

1048
		mark_free_pages(zone);
1049
		max_zone_pfn = zone_end_pfn(zone);
1050
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1051
			if (page_is_saveable(zone, pfn))
1052
				memory_bm_set_bit(orig_bm, pfn);
1053
	}
1054 1055
	memory_bm_position_reset(orig_bm);
	memory_bm_position_reset(copy_bm);
F
Fengguang Wu 已提交
1056
	for(;;) {
1057
		pfn = memory_bm_next_pfn(orig_bm);
F
Fengguang Wu 已提交
1058 1059 1060 1061
		if (unlikely(pfn == BM_END_OF_MAP))
			break;
		copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
	}
1062 1063
}

1064 1065 1066 1067
/* Total number of image pages */
static unsigned int nr_copy_pages;
/* Number of pages needed for saving the original pfns of the image pages */
static unsigned int nr_meta_pages;
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
/*
 * Numbers of normal and highmem page frames allocated for hibernation image
 * before suspending devices.
 */
unsigned int alloc_normal, alloc_highmem;
/*
 * Memory bitmap used for marking saveable pages (during hibernation) or
 * hibernation image pages (during restore)
 */
static struct memory_bitmap orig_bm;
/*
 * Memory bitmap used during hibernation for marking allocated page frames that
 * will contain copies of saveable pages.  During restore it is initially used
 * for marking hibernation image pages, but then the set bits from it are
 * duplicated in @orig_bm and it is released.  On highmem systems it is next
 * used for marking "safe" highmem pages, but it has to be reinitialized for
 * this purpose.
 */
static struct memory_bitmap copy_bm;
1087

1088
/**
1089
 *	swsusp_free - free pages allocated for the suspend.
1090
 *
1091 1092
 *	Suspend pages are alocated before the atomic copy is made, so we
 *	need to release them after the resume.
1093 1094 1095 1096 1097
 */

void swsusp_free(void)
{
	struct zone *zone;
1098
	unsigned long pfn, max_zone_pfn;
1099

1100
	for_each_populated_zone(zone) {
1101
		max_zone_pfn = zone_end_pfn(zone);
1102 1103 1104 1105
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
			if (pfn_valid(pfn)) {
				struct page *page = pfn_to_page(pfn);

1106 1107 1108 1109
				if (swsusp_page_is_forbidden(page) &&
				    swsusp_page_is_free(page)) {
					swsusp_unset_page_forbidden(page);
					swsusp_unset_page_free(page);
1110
					__free_page(page);
1111 1112 1113
				}
			}
	}
1114 1115
	nr_copy_pages = 0;
	nr_meta_pages = 0;
1116
	restore_pblist = NULL;
1117
	buffer = NULL;
1118 1119
	alloc_normal = 0;
	alloc_highmem = 0;
1120 1121
}

1122 1123 1124 1125
/* Helper functions used for the shrinking of memory. */

#define GFP_IMAGE	(GFP_KERNEL | __GFP_NOWARN)

1126
/**
1127 1128 1129
 * preallocate_image_pages - Allocate a number of pages for hibernation image
 * @nr_pages: Number of page frames to allocate.
 * @mask: GFP flags to use for the allocation.
1130
 *
1131 1132 1133 1134 1135 1136 1137
 * Return value: Number of page frames actually allocated
 */
static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
{
	unsigned long nr_alloc = 0;

	while (nr_pages > 0) {
1138 1139 1140 1141
		struct page *page;

		page = alloc_image_page(mask);
		if (!page)
1142
			break;
1143 1144 1145 1146 1147
		memory_bm_set_bit(&copy_bm, page_to_pfn(page));
		if (PageHighMem(page))
			alloc_highmem++;
		else
			alloc_normal++;
1148 1149 1150 1151 1152 1153 1154
		nr_pages--;
		nr_alloc++;
	}

	return nr_alloc;
}

1155 1156
static unsigned long preallocate_image_memory(unsigned long nr_pages,
					      unsigned long avail_normal)
1157
{
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
	unsigned long alloc;

	if (avail_normal <= alloc_normal)
		return 0;

	alloc = avail_normal - alloc_normal;
	if (nr_pages < alloc)
		alloc = nr_pages;

	return preallocate_image_pages(alloc, GFP_IMAGE);
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
}

#ifdef CONFIG_HIGHMEM
static unsigned long preallocate_image_highmem(unsigned long nr_pages)
{
	return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
}

/**
 *  __fraction - Compute (an approximation of) x * (multiplier / base)
1178
 */
1179 1180 1181 1182 1183 1184
static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
{
	x *= multiplier;
	do_div(x, base);
	return (unsigned long)x;
}
1185

1186 1187 1188
static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
						unsigned long highmem,
						unsigned long total)
1189
{
1190 1191 1192
	unsigned long alloc = __fraction(nr_pages, highmem, total);

	return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
1193
}
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
#else /* CONFIG_HIGHMEM */
static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
{
	return 0;
}

static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
						unsigned long highmem,
						unsigned long total)
{
	return 0;
}
#endif /* CONFIG_HIGHMEM */
1207

1208
/**
1209 1210 1211 1212
 * free_unnecessary_pages - Release preallocated pages not needed for the image
 */
static void free_unnecessary_pages(void)
{
1213
	unsigned long save, to_free_normal, to_free_highmem;
1214

1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
	save = count_data_pages();
	if (alloc_normal >= save) {
		to_free_normal = alloc_normal - save;
		save = 0;
	} else {
		to_free_normal = 0;
		save -= alloc_normal;
	}
	save += count_highmem_pages();
	if (alloc_highmem >= save) {
		to_free_highmem = alloc_highmem - save;
1226 1227
	} else {
		to_free_highmem = 0;
1228 1229 1230 1231 1232
		save -= alloc_highmem;
		if (to_free_normal > save)
			to_free_normal -= save;
		else
			to_free_normal = 0;
1233 1234 1235 1236
	}

	memory_bm_position_reset(&copy_bm);

1237
	while (to_free_normal > 0 || to_free_highmem > 0) {
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
		unsigned long pfn = memory_bm_next_pfn(&copy_bm);
		struct page *page = pfn_to_page(pfn);

		if (PageHighMem(page)) {
			if (!to_free_highmem)
				continue;
			to_free_highmem--;
			alloc_highmem--;
		} else {
			if (!to_free_normal)
				continue;
			to_free_normal--;
			alloc_normal--;
		}
		memory_bm_clear_bit(&copy_bm, pfn);
		swsusp_unset_page_forbidden(page);
		swsusp_unset_page_free(page);
		__free_page(page);
	}
}

1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
/**
 * minimum_image_size - Estimate the minimum acceptable size of an image
 * @saveable: Number of saveable pages in the system.
 *
 * We want to avoid attempting to free too much memory too hard, so estimate the
 * minimum acceptable size of a hibernation image to use as the lower limit for
 * preallocating memory.
 *
 * We assume that the minimum image size should be proportional to
 *
 * [number of saveable pages] - [number of pages that can be freed in theory]
 *
 * where the second term is the sum of (1) reclaimable slab pages, (2) active
1272
 * and (3) inactive anonymous pages, (4) active and (5) inactive file pages,
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
 * minus mapped file pages.
 */
static unsigned long minimum_image_size(unsigned long saveable)
{
	unsigned long size;

	size = global_page_state(NR_SLAB_RECLAIMABLE)
		+ global_page_state(NR_ACTIVE_ANON)
		+ global_page_state(NR_INACTIVE_ANON)
		+ global_page_state(NR_ACTIVE_FILE)
		+ global_page_state(NR_INACTIVE_FILE)
		- global_page_state(NR_FILE_MAPPED);

	return saveable <= size ? 0 : saveable - size;
}

1289 1290
/**
 * hibernate_preallocate_memory - Preallocate memory for hibernation image
1291 1292 1293 1294 1295
 *
 * To create a hibernation image it is necessary to make a copy of every page
 * frame in use.  We also need a number of page frames to be free during
 * hibernation for allocations made while saving the image and for device
 * drivers, in case they need to allocate memory from their hibernation
1296 1297 1298 1299
 * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
 * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through
 * /sys/power/reserved_size, respectively).  To make this happen, we compute the
 * total number of available page frames and allocate at least
1300
 *
1301 1302
 * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2
 *  + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
1303 1304 1305 1306 1307
 *
 * of them, which corresponds to the maximum size of a hibernation image.
 *
 * If image_size is set below the number following from the above formula,
 * the preallocation of memory is continued until the total number of saveable
1308 1309
 * pages in the system is below the requested image size or the minimum
 * acceptable image size returned by minimum_image_size(), whichever is greater.
1310
 */
1311
int hibernate_preallocate_memory(void)
1312 1313
{
	struct zone *zone;
1314
	unsigned long saveable, size, max_size, count, highmem, pages = 0;
1315
	unsigned long alloc, save_highmem, pages_highmem, avail_normal;
1316
	struct timeval start, stop;
1317
	int error;
1318

1319
	printk(KERN_INFO "PM: Preallocating image memory... ");
1320 1321
	do_gettimeofday(&start);

1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
	error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
	if (error)
		goto err_out;

	error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
	if (error)
		goto err_out;

	alloc_normal = 0;
	alloc_highmem = 0;

1333
	/* Count the number of saveable data pages. */
1334
	save_highmem = count_highmem_pages();
1335
	saveable = count_data_pages();
1336

1337 1338 1339 1340 1341
	/*
	 * Compute the total number of page frames we can use (count) and the
	 * number of pages needed for image metadata (size).
	 */
	count = saveable;
1342 1343
	saveable += save_highmem;
	highmem = save_highmem;
1344 1345 1346 1347 1348 1349 1350 1351
	size = 0;
	for_each_populated_zone(zone) {
		size += snapshot_additional_pages(zone);
		if (is_highmem(zone))
			highmem += zone_page_state(zone, NR_FREE_PAGES);
		else
			count += zone_page_state(zone, NR_FREE_PAGES);
	}
1352
	avail_normal = count;
1353 1354 1355
	count += highmem;
	count -= totalreserve_pages;

1356 1357 1358
	/* Add number of pages required for page keys (s390 only). */
	size += page_key_additional_pages(saveable);

1359
	/* Compute the maximum number of saveable pages to leave in memory. */
1360 1361
	max_size = (count - (size + PAGES_FOR_IO)) / 2
			- 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
1362
	/* Compute the desired number of image pages specified by image_size. */
1363 1364 1365 1366
	size = DIV_ROUND_UP(image_size, PAGE_SIZE);
	if (size > max_size)
		size = max_size;
	/*
1367 1368 1369
	 * If the desired number of image pages is at least as large as the
	 * current number of saveable pages in memory, allocate page frames for
	 * the image and we're done.
1370
	 */
1371 1372
	if (size >= saveable) {
		pages = preallocate_image_highmem(save_highmem);
1373
		pages += preallocate_image_memory(saveable - pages, avail_normal);
1374
		goto out;
1375
	}
1376

1377 1378
	/* Estimate the minimum size of the image. */
	pages = minimum_image_size(saveable);
1379 1380 1381 1382 1383 1384 1385 1386 1387
	/*
	 * To avoid excessive pressure on the normal zone, leave room in it to
	 * accommodate an image of the minimum size (unless it's already too
	 * small, in which case don't preallocate pages from it at all).
	 */
	if (avail_normal > pages)
		avail_normal -= pages;
	else
		avail_normal = 0;
1388 1389 1390
	if (size < pages)
		size = min_t(unsigned long, pages, max_size);

1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
	/*
	 * Let the memory management subsystem know that we're going to need a
	 * large number of page frames to allocate and make it free some memory.
	 * NOTE: If this is not done, performance will be hurt badly in some
	 * test cases.
	 */
	shrink_all_memory(saveable - size);

	/*
	 * The number of saveable pages in memory was too high, so apply some
	 * pressure to decrease it.  First, make room for the largest possible
	 * image and fail if that doesn't work.  Next, try to decrease the size
1403 1404
	 * of the image as much as indicated by 'size' using allocations from
	 * highmem and non-highmem zones separately.
1405 1406
	 */
	pages_highmem = preallocate_image_highmem(highmem / 2);
1407 1408 1409 1410 1411
	alloc = count - max_size;
	if (alloc > pages_highmem)
		alloc -= pages_highmem;
	else
		alloc = 0;
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
	pages = preallocate_image_memory(alloc, avail_normal);
	if (pages < alloc) {
		/* We have exhausted non-highmem pages, try highmem. */
		alloc -= pages;
		pages += pages_highmem;
		pages_highmem = preallocate_image_highmem(alloc);
		if (pages_highmem < alloc)
			goto err_out;
		pages += pages_highmem;
		/*
		 * size is the desired number of saveable pages to leave in
		 * memory, so try to preallocate (all memory - size) pages.
		 */
		alloc = (count - pages) - size;
		pages += preallocate_image_highmem(alloc);
	} else {
		/*
		 * There are approximately max_size saveable pages at this point
		 * and we want to reduce this number down to size.
		 */
		alloc = max_size - size;
		size = preallocate_highmem_fraction(alloc, highmem, count);
		pages_highmem += size;
		alloc -= size;
		size = preallocate_image_memory(alloc, avail_normal);
		pages_highmem += preallocate_image_highmem(alloc - size);
		pages += pages_highmem + size;
	}
1440

1441 1442 1443 1444 1445 1446
	/*
	 * We only need as many page frames for the image as there are saveable
	 * pages in memory, but we have allocated more.  Release the excessive
	 * ones now.
	 */
	free_unnecessary_pages();
1447 1448

 out:
1449
	do_gettimeofday(&stop);
1450 1451
	printk(KERN_CONT "done (allocated %lu pages)\n", pages);
	swsusp_show_speed(&start, &stop, pages, "Allocated");
1452 1453

	return 0;
1454 1455 1456 1457 1458

 err_out:
	printk(KERN_CONT "\n");
	swsusp_free();
	return -ENOMEM;
1459 1460
}

1461 1462 1463 1464 1465 1466 1467 1468
#ifdef CONFIG_HIGHMEM
/**
  *	count_pages_for_highmem - compute the number of non-highmem pages
  *	that will be necessary for creating copies of highmem pages.
  */

static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
{
1469
	unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481

	if (free_highmem >= nr_highmem)
		nr_highmem = 0;
	else
		nr_highmem -= free_highmem;

	return nr_highmem;
}
#else
static unsigned int
count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
#endif /* CONFIG_HIGHMEM */
1482 1483

/**
1484 1485
 *	enough_free_mem - Make sure we have enough free memory for the
 *	snapshot image.
1486 1487
 */

1488
static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1489
{
1490
	struct zone *zone;
1491
	unsigned int free = alloc_normal;
1492

1493
	for_each_populated_zone(zone)
1494
		if (!is_highmem(zone))
1495
			free += zone_page_state(zone, NR_FREE_PAGES);
1496

1497
	nr_pages += count_pages_for_highmem(nr_highmem);
1498 1499
	pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n",
		nr_pages, PAGES_FOR_IO, free);
1500

1501
	return free > nr_pages + PAGES_FOR_IO;
1502 1503
}

1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
#ifdef CONFIG_HIGHMEM
/**
 *	get_highmem_buffer - if there are some highmem pages in the suspend
 *	image, we may need the buffer to copy them and/or load their data.
 */

static inline int get_highmem_buffer(int safe_needed)
{
	buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
	return buffer ? 0 : -ENOMEM;
}

/**
 *	alloc_highmem_image_pages - allocate some highmem pages for the image.
 *	Try to allocate as many pages as needed, but if the number of free
 *	highmem pages is lesser than that, allocate them all.
 */

static inline unsigned int
1523
alloc_highmem_pages(struct memory_bitmap *bm, unsigned int nr_highmem)
1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
{
	unsigned int to_alloc = count_free_highmem_pages();

	if (to_alloc > nr_highmem)
		to_alloc = nr_highmem;

	nr_highmem -= to_alloc;
	while (to_alloc-- > 0) {
		struct page *page;

		page = alloc_image_page(__GFP_HIGHMEM);
		memory_bm_set_bit(bm, page_to_pfn(page));
	}
	return nr_highmem;
}
#else
static inline int get_highmem_buffer(int safe_needed) { return 0; }

static inline unsigned int
1543
alloc_highmem_pages(struct memory_bitmap *bm, unsigned int n) { return 0; }
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
#endif /* CONFIG_HIGHMEM */

/**
 *	swsusp_alloc - allocate memory for the suspend image
 *
 *	We first try to allocate as many highmem pages as there are
 *	saveable highmem pages in the system.  If that fails, we allocate
 *	non-highmem pages for the copies of the remaining highmem ones.
 *
 *	In this approach it is likely that the copies of highmem pages will
 *	also be located in the high memory, because of the way in which
 *	copy_data_pages() works.
 */

1558 1559
static int
swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm,
1560
		unsigned int nr_pages, unsigned int nr_highmem)
1561
{
1562
	if (nr_highmem > 0) {
1563
		if (get_highmem_buffer(PG_ANY))
1564 1565 1566 1567 1568
			goto err_out;
		if (nr_highmem > alloc_highmem) {
			nr_highmem -= alloc_highmem;
			nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
		}
1569
	}
1570 1571 1572 1573 1574 1575 1576 1577 1578 1579
	if (nr_pages > alloc_normal) {
		nr_pages -= alloc_normal;
		while (nr_pages-- > 0) {
			struct page *page;

			page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
			if (!page)
				goto err_out;
			memory_bm_set_bit(copy_bm, page_to_pfn(page));
		}
1580
	}
1581

1582
	return 0;
1583

1584
 err_out:
1585
	swsusp_free();
1586
	return -ENOMEM;
1587 1588
}

1589
asmlinkage int swsusp_save(void)
1590
{
1591
	unsigned int nr_pages, nr_highmem;
1592

1593
	printk(KERN_INFO "PM: Creating hibernation image:\n");
1594

1595
	drain_local_pages(NULL);
1596
	nr_pages = count_data_pages();
1597
	nr_highmem = count_highmem_pages();
R
Rafael J. Wysocki 已提交
1598
	printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem);
1599

1600
	if (!enough_free_mem(nr_pages, nr_highmem)) {
R
Rafael J. Wysocki 已提交
1601
		printk(KERN_ERR "PM: Not enough free memory\n");
1602 1603 1604
		return -ENOMEM;
	}

1605
	if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages, nr_highmem)) {
R
Rafael J. Wysocki 已提交
1606
		printk(KERN_ERR "PM: Memory allocation failed\n");
1607
		return -ENOMEM;
1608
	}
1609 1610 1611 1612

	/* During allocating of suspend pagedir, new cold pages may appear.
	 * Kill them.
	 */
1613
	drain_local_pages(NULL);
1614
	copy_data_pages(&copy_bm, &orig_bm);
1615 1616 1617 1618 1619 1620 1621

	/*
	 * End of critical section. From now on, we can write to memory,
	 * but we should not touch disk. This specially means we must _not_
	 * touch swap space! Except we must write out our image of course.
	 */

1622
	nr_pages += nr_highmem;
1623
	nr_copy_pages = nr_pages;
1624
	nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
1625

R
Rafael J. Wysocki 已提交
1626 1627
	printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n",
		nr_pages);
1628

1629 1630
	return 0;
}
1631

1632 1633
#ifndef CONFIG_ARCH_HIBERNATION_HEADER
static int init_header_complete(struct swsusp_info *info)
1634
{
1635
	memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
1636
	info->version_code = LINUX_VERSION_CODE;
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
	return 0;
}

static char *check_image_kernel(struct swsusp_info *info)
{
	if (info->version_code != LINUX_VERSION_CODE)
		return "kernel version";
	if (strcmp(info->uts.sysname,init_utsname()->sysname))
		return "system type";
	if (strcmp(info->uts.release,init_utsname()->release))
		return "kernel release";
	if (strcmp(info->uts.version,init_utsname()->version))
		return "version";
	if (strcmp(info->uts.machine,init_utsname()->machine))
		return "machine";
	return NULL;
}
#endif /* CONFIG_ARCH_HIBERNATION_HEADER */

1656 1657 1658 1659 1660
unsigned long snapshot_get_image_size(void)
{
	return nr_copy_pages + nr_meta_pages + 1;
}

1661 1662 1663
static int init_header(struct swsusp_info *info)
{
	memset(info, 0, sizeof(struct swsusp_info));
1664
	info->num_physpages = get_num_physpages();
1665
	info->image_pages = nr_copy_pages;
1666
	info->pages = snapshot_get_image_size();
1667 1668
	info->size = info->pages;
	info->size <<= PAGE_SHIFT;
1669
	return init_header_complete(info);
1670 1671 1672
}

/**
1673 1674
 *	pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
 *	are stored in the array @buf[] (1 page at a time)
1675 1676
 */

1677
static inline void
1678
pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
1679 1680 1681
{
	int j;

1682
	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1683 1684
		buf[j] = memory_bm_next_pfn(bm);
		if (unlikely(buf[j] == BM_END_OF_MAP))
1685
			break;
1686 1687
		/* Save page key for data page (s390 only). */
		page_key_read(buf + j);
1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
	}
}

/**
 *	snapshot_read_next - used for reading the system memory snapshot.
 *
 *	On the first call to it @handle should point to a zeroed
 *	snapshot_handle structure.  The structure gets updated and a pointer
 *	to it should be passed to this function every next time.
 *
 *	On success the function returns a positive number.  Then, the caller
 *	is allowed to read up to the returned number of bytes from the memory
J
Jiri Slaby 已提交
1700
 *	location computed by the data_of() macro.
1701 1702 1703 1704 1705 1706 1707
 *
 *	The function returns 0 to indicate the end of data stream condition,
 *	and a negative number is returned on error.  In such cases the
 *	structure pointed to by @handle is not updated and should not be used
 *	any more.
 */

J
Jiri Slaby 已提交
1708
int snapshot_read_next(struct snapshot_handle *handle)
1709
{
1710
	if (handle->cur > nr_meta_pages + nr_copy_pages)
1711
		return 0;
1712

1713 1714
	if (!buffer) {
		/* This makes the buffer be freed by swsusp_free() */
1715
		buffer = get_image_page(GFP_ATOMIC, PG_ANY);
1716 1717 1718
		if (!buffer)
			return -ENOMEM;
	}
J
Jiri Slaby 已提交
1719
	if (!handle->cur) {
1720 1721 1722 1723 1724
		int error;

		error = init_header((struct swsusp_info *)buffer);
		if (error)
			return error;
1725
		handle->buffer = buffer;
1726 1727
		memory_bm_position_reset(&orig_bm);
		memory_bm_position_reset(&copy_bm);
J
Jiri Slaby 已提交
1728
	} else if (handle->cur <= nr_meta_pages) {
1729
		clear_page(buffer);
J
Jiri Slaby 已提交
1730 1731 1732
		pack_pfns(buffer, &orig_bm);
	} else {
		struct page *page;
1733

J
Jiri Slaby 已提交
1734 1735 1736 1737 1738 1739 1740
		page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
		if (PageHighMem(page)) {
			/* Highmem pages are copied to the buffer,
			 * because we can't return with a kmapped
			 * highmem page (we may not be called again).
			 */
			void *kaddr;
1741

1742
			kaddr = kmap_atomic(page);
1743
			copy_page(buffer, kaddr);
1744
			kunmap_atomic(kaddr);
J
Jiri Slaby 已提交
1745 1746 1747
			handle->buffer = buffer;
		} else {
			handle->buffer = page_address(page);
1748 1749
		}
	}
J
Jiri Slaby 已提交
1750 1751
	handle->cur++;
	return PAGE_SIZE;
1752 1753 1754 1755 1756 1757 1758 1759
}

/**
 *	mark_unsafe_pages - mark the pages that cannot be used for storing
 *	the image during resume, because they conflict with the pages that
 *	had been used before suspend
 */

1760
static int mark_unsafe_pages(struct memory_bitmap *bm)
1761 1762
{
	struct zone *zone;
1763
	unsigned long pfn, max_zone_pfn;
1764 1765

	/* Clear page flags */
1766
	for_each_populated_zone(zone) {
1767
		max_zone_pfn = zone_end_pfn(zone);
1768 1769
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
			if (pfn_valid(pfn))
1770
				swsusp_unset_page_free(pfn_to_page(pfn));
1771 1772
	}

1773 1774 1775 1776 1777 1778
	/* Mark pages that correspond to the "original" pfns as "unsafe" */
	memory_bm_position_reset(bm);
	do {
		pfn = memory_bm_next_pfn(bm);
		if (likely(pfn != BM_END_OF_MAP)) {
			if (likely(pfn_valid(pfn)))
1779
				swsusp_set_page_free(pfn_to_page(pfn));
1780 1781 1782 1783
			else
				return -EFAULT;
		}
	} while (pfn != BM_END_OF_MAP);
1784

1785
	allocated_unsafe_pages = 0;
1786

1787 1788 1789
	return 0;
}

1790 1791
static void
duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src)
1792
{
1793 1794 1795 1796 1797 1798 1799
	unsigned long pfn;

	memory_bm_position_reset(src);
	pfn = memory_bm_next_pfn(src);
	while (pfn != BM_END_OF_MAP) {
		memory_bm_set_bit(dst, pfn);
		pfn = memory_bm_next_pfn(src);
1800 1801 1802
	}
}

1803
static int check_header(struct swsusp_info *info)
1804
{
1805
	char *reason;
1806

1807
	reason = check_image_kernel(info);
1808
	if (!reason && info->num_physpages != get_num_physpages())
1809 1810
		reason = "memory size";
	if (reason) {
R
Rafael J. Wysocki 已提交
1811
		printk(KERN_ERR "PM: Image mismatch: %s\n", reason);
1812 1813 1814 1815 1816 1817 1818 1819 1820
		return -EPERM;
	}
	return 0;
}

/**
 *	load header - check the image header and copy data from it
 */

1821 1822
static int
load_header(struct swsusp_info *info)
1823 1824 1825
{
	int error;

1826
	restore_pblist = NULL;
1827 1828 1829 1830 1831 1832 1833 1834 1835
	error = check_header(info);
	if (!error) {
		nr_copy_pages = info->image_pages;
		nr_meta_pages = info->pages - info->image_pages - 1;
	}
	return error;
}

/**
1836 1837
 *	unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
 *	the corresponding bit in the memory bitmap @bm
1838
 */
1839
static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
1840 1841 1842
{
	int j;

1843 1844 1845 1846
	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
		if (unlikely(buf[j] == BM_END_OF_MAP))
			break;

1847 1848 1849
		/* Extract and buffer page key for data page (s390 only). */
		page_key_memorize(buf + j);

1850 1851 1852 1853
		if (memory_bm_pfn_present(bm, buf[j]))
			memory_bm_set_bit(bm, buf[j]);
		else
			return -EFAULT;
1854
	}
1855 1856

	return 0;
1857 1858
}

1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941
/* List of "safe" pages that may be used to store data loaded from the suspend
 * image
 */
static struct linked_page *safe_pages_list;

#ifdef CONFIG_HIGHMEM
/* struct highmem_pbe is used for creating the list of highmem pages that
 * should be restored atomically during the resume from disk, because the page
 * frames they have occupied before the suspend are in use.
 */
struct highmem_pbe {
	struct page *copy_page;	/* data is here now */
	struct page *orig_page;	/* data was here before the suspend */
	struct highmem_pbe *next;
};

/* List of highmem PBEs needed for restoring the highmem pages that were
 * allocated before the suspend and included in the suspend image, but have
 * also been allocated by the "resume" kernel, so their contents cannot be
 * written directly to their "original" page frames.
 */
static struct highmem_pbe *highmem_pblist;

/**
 *	count_highmem_image_pages - compute the number of highmem pages in the
 *	suspend image.  The bits in the memory bitmap @bm that correspond to the
 *	image pages are assumed to be set.
 */

static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
{
	unsigned long pfn;
	unsigned int cnt = 0;

	memory_bm_position_reset(bm);
	pfn = memory_bm_next_pfn(bm);
	while (pfn != BM_END_OF_MAP) {
		if (PageHighMem(pfn_to_page(pfn)))
			cnt++;

		pfn = memory_bm_next_pfn(bm);
	}
	return cnt;
}

/**
 *	prepare_highmem_image - try to allocate as many highmem pages as
 *	there are highmem image pages (@nr_highmem_p points to the variable
 *	containing the number of highmem image pages).  The pages that are
 *	"safe" (ie. will not be overwritten when the suspend image is
 *	restored) have the corresponding bits set in @bm (it must be
 *	unitialized).
 *
 *	NOTE: This function should not be called if there are no highmem
 *	image pages.
 */

static unsigned int safe_highmem_pages;

static struct memory_bitmap *safe_highmem_bm;

static int
prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
{
	unsigned int to_alloc;

	if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
		return -ENOMEM;

	if (get_highmem_buffer(PG_SAFE))
		return -ENOMEM;

	to_alloc = count_free_highmem_pages();
	if (to_alloc > *nr_highmem_p)
		to_alloc = *nr_highmem_p;
	else
		*nr_highmem_p = to_alloc;

	safe_highmem_pages = 0;
	while (to_alloc-- > 0) {
		struct page *page;

		page = alloc_page(__GFP_HIGHMEM);
1942
		if (!swsusp_page_is_free(page)) {
1943 1944 1945 1946 1947
			/* The page is "safe", set its bit the bitmap */
			memory_bm_set_bit(bm, page_to_pfn(page));
			safe_highmem_pages++;
		}
		/* Mark the page as allocated */
1948 1949
		swsusp_set_page_forbidden(page);
		swsusp_set_page_free(page);
1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980
	}
	memory_bm_position_reset(bm);
	safe_highmem_bm = bm;
	return 0;
}

/**
 *	get_highmem_page_buffer - for given highmem image page find the buffer
 *	that suspend_write_next() should set for its caller to write to.
 *
 *	If the page is to be saved to its "original" page frame or a copy of
 *	the page is to be made in the highmem, @buffer is returned.  Otherwise,
 *	the copy of the page is to be made in normal memory, so the address of
 *	the copy is returned.
 *
 *	If @buffer is returned, the caller of suspend_write_next() will write
 *	the page's contents to @buffer, so they will have to be copied to the
 *	right location on the next call to suspend_write_next() and it is done
 *	with the help of copy_last_highmem_page().  For this purpose, if
 *	@buffer is returned, @last_highmem page is set to the page to which
 *	the data will have to be copied from @buffer.
 */

static struct page *last_highmem_page;

static void *
get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
{
	struct highmem_pbe *pbe;
	void *kaddr;

1981
	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993
		/* We have allocated the "original" page frame and we can
		 * use it directly to store the loaded page.
		 */
		last_highmem_page = page;
		return buffer;
	}
	/* The "original" page frame has not been allocated and we have to
	 * use a "safe" page frame to store the loaded page.
	 */
	pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
	if (!pbe) {
		swsusp_free();
1994
		return ERR_PTR(-ENOMEM);
1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027
	}
	pbe->orig_page = page;
	if (safe_highmem_pages > 0) {
		struct page *tmp;

		/* Copy of the page will be stored in high memory */
		kaddr = buffer;
		tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
		safe_highmem_pages--;
		last_highmem_page = tmp;
		pbe->copy_page = tmp;
	} else {
		/* Copy of the page will be stored in normal memory */
		kaddr = safe_pages_list;
		safe_pages_list = safe_pages_list->next;
		pbe->copy_page = virt_to_page(kaddr);
	}
	pbe->next = highmem_pblist;
	highmem_pblist = pbe;
	return kaddr;
}

/**
 *	copy_last_highmem_page - copy the contents of a highmem image from
 *	@buffer, where the caller of snapshot_write_next() has place them,
 *	to the right location represented by @last_highmem_page .
 */

static void copy_last_highmem_page(void)
{
	if (last_highmem_page) {
		void *dst;

2028
		dst = kmap_atomic(last_highmem_page);
2029
		copy_page(dst, buffer);
2030
		kunmap_atomic(dst);
2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062
		last_highmem_page = NULL;
	}
}

static inline int last_highmem_page_copied(void)
{
	return !last_highmem_page;
}

static inline void free_highmem_data(void)
{
	if (safe_highmem_bm)
		memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);

	if (buffer)
		free_image_page(buffer, PG_UNSAFE_CLEAR);
}
#else
static inline int get_safe_write_buffer(void) { return 0; }

static unsigned int
count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }

static inline int
prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
{
	return 0;
}

static inline void *
get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
{
2063
	return ERR_PTR(-EINVAL);
2064 2065 2066 2067 2068 2069 2070
}

static inline void copy_last_highmem_page(void) {}
static inline int last_highmem_page_copied(void) { return 1; }
static inline void free_highmem_data(void) {}
#endif /* CONFIG_HIGHMEM */

2071
/**
2072 2073 2074 2075
 *	prepare_image - use the memory bitmap @bm to mark the pages that will
 *	be overwritten in the process of restoring the system memory state
 *	from the suspend image ("unsafe" pages) and allocate memory for the
 *	image.
2076
 *
2077 2078 2079
 *	The idea is to allocate a new memory bitmap first and then allocate
 *	as many pages as needed for the image data, but not to assign these
 *	pages to specific tasks initially.  Instead, we just mark them as
2080 2081 2082
 *	allocated and create a lists of "safe" pages that will be used
 *	later.  On systems with high memory a list of "safe" highmem pages is
 *	also created.
2083 2084
 */

2085 2086 2087 2088
#define PBES_PER_LINKED_PAGE	(LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))

static int
prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
2089
{
2090
	unsigned int nr_pages, nr_highmem;
2091 2092
	struct linked_page *sp_list, *lp;
	int error;
2093

2094 2095 2096 2097 2098
	/* If there is no highmem, the buffer will not be necessary */
	free_image_page(buffer, PG_UNSAFE_CLEAR);
	buffer = NULL;

	nr_highmem = count_highmem_image_pages(bm);
2099 2100 2101 2102 2103 2104 2105 2106 2107 2108
	error = mark_unsafe_pages(bm);
	if (error)
		goto Free;

	error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
	if (error)
		goto Free;

	duplicate_memory_bitmap(new_bm, bm);
	memory_bm_free(bm, PG_UNSAFE_KEEP);
2109 2110 2111 2112 2113
	if (nr_highmem > 0) {
		error = prepare_highmem_image(bm, &nr_highmem);
		if (error)
			goto Free;
	}
2114 2115 2116 2117 2118 2119 2120 2121
	/* Reserve some safe pages for potential later use.
	 *
	 * NOTE: This way we make sure there will be enough safe pages for the
	 * chain_alloc() in get_buffer().  It is a bit wasteful, but
	 * nr_copy_pages cannot be greater than 50% of the memory anyway.
	 */
	sp_list = NULL;
	/* nr_copy_pages cannot be lesser than allocated_unsafe_pages */
2122
	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2123 2124
	nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
	while (nr_pages > 0) {
2125
		lp = get_image_page(GFP_ATOMIC, PG_SAFE);
2126
		if (!lp) {
2127
			error = -ENOMEM;
2128 2129 2130 2131 2132
			goto Free;
		}
		lp->next = sp_list;
		sp_list = lp;
		nr_pages--;
2133
	}
2134 2135
	/* Preallocate memory for the image */
	safe_pages_list = NULL;
2136
	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2137 2138 2139 2140 2141 2142
	while (nr_pages > 0) {
		lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
		if (!lp) {
			error = -ENOMEM;
			goto Free;
		}
2143
		if (!swsusp_page_is_free(virt_to_page(lp))) {
2144 2145 2146
			/* The page is "safe", add it to the list */
			lp->next = safe_pages_list;
			safe_pages_list = lp;
2147
		}
2148
		/* Mark the page as allocated */
2149 2150
		swsusp_set_page_forbidden(virt_to_page(lp));
		swsusp_set_page_free(virt_to_page(lp));
2151
		nr_pages--;
2152
	}
2153 2154 2155 2156 2157
	/* Free the reserved safe pages so that chain_alloc() can use them */
	while (sp_list) {
		lp = sp_list->next;
		free_image_page(sp_list, PG_UNSAFE_CLEAR);
		sp_list = lp;
2158
	}
2159 2160
	return 0;

R
Rafael J. Wysocki 已提交
2161
 Free:
2162
	swsusp_free();
2163 2164 2165
	return error;
}

2166 2167 2168 2169 2170 2171
/**
 *	get_buffer - compute the address that snapshot_write_next() should
 *	set for its caller to write to.
 */

static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
2172
{
2173
	struct pbe *pbe;
2174 2175
	struct page *page;
	unsigned long pfn = memory_bm_next_pfn(bm);
2176

2177 2178 2179 2180
	if (pfn == BM_END_OF_MAP)
		return ERR_PTR(-EFAULT);

	page = pfn_to_page(pfn);
2181 2182 2183
	if (PageHighMem(page))
		return get_highmem_page_buffer(page, ca);

2184
	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
2185 2186
		/* We have allocated the "original" page frame and we can
		 * use it directly to store the loaded page.
2187
		 */
2188 2189 2190 2191
		return page_address(page);

	/* The "original" page frame has not been allocated and we have to
	 * use a "safe" page frame to store the loaded page.
2192
	 */
2193 2194 2195
	pbe = chain_alloc(ca, sizeof(struct pbe));
	if (!pbe) {
		swsusp_free();
2196
		return ERR_PTR(-ENOMEM);
2197
	}
2198 2199
	pbe->orig_address = page_address(page);
	pbe->address = safe_pages_list;
2200 2201 2202
	safe_pages_list = safe_pages_list->next;
	pbe->next = restore_pblist;
	restore_pblist = pbe;
2203
	return pbe->address;
2204 2205
}

2206 2207 2208 2209 2210 2211 2212 2213 2214
/**
 *	snapshot_write_next - used for writing the system memory snapshot.
 *
 *	On the first call to it @handle should point to a zeroed
 *	snapshot_handle structure.  The structure gets updated and a pointer
 *	to it should be passed to this function every next time.
 *
 *	On success the function returns a positive number.  Then, the caller
 *	is allowed to write up to the returned number of bytes to the memory
J
Jiri Slaby 已提交
2215
 *	location computed by the data_of() macro.
2216 2217 2218 2219 2220 2221 2222
 *
 *	The function returns 0 to indicate the "end of file" condition,
 *	and a negative number is returned on error.  In such cases the
 *	structure pointed to by @handle is not updated and should not be used
 *	any more.
 */

J
Jiri Slaby 已提交
2223
int snapshot_write_next(struct snapshot_handle *handle)
2224
{
2225
	static struct chain_allocator ca;
2226 2227
	int error = 0;

2228
	/* Check if we have already loaded the entire image */
J
Jiri Slaby 已提交
2229
	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
2230
		return 0;
2231

J
Jiri Slaby 已提交
2232 2233 2234
	handle->sync_read = 1;

	if (!handle->cur) {
2235 2236 2237 2238
		if (!buffer)
			/* This makes the buffer be freed by swsusp_free() */
			buffer = get_image_page(GFP_ATOMIC, PG_ANY);

2239 2240
		if (!buffer)
			return -ENOMEM;
2241

2242
		handle->buffer = buffer;
J
Jiri Slaby 已提交
2243 2244 2245 2246
	} else if (handle->cur == 1) {
		error = load_header(buffer);
		if (error)
			return error;
2247

J
Jiri Slaby 已提交
2248 2249 2250 2251
		error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
		if (error)
			return error;

2252 2253 2254 2255 2256
		/* Allocate buffer for page keys. */
		error = page_key_alloc(nr_copy_pages);
		if (error)
			return error;

J
Jiri Slaby 已提交
2257 2258 2259 2260
	} else if (handle->cur <= nr_meta_pages + 1) {
		error = unpack_orig_pfns(buffer, &copy_bm);
		if (error)
			return error;
2261

J
Jiri Slaby 已提交
2262 2263
		if (handle->cur == nr_meta_pages + 1) {
			error = prepare_image(&orig_bm, &copy_bm);
2264 2265 2266
			if (error)
				return error;

J
Jiri Slaby 已提交
2267 2268 2269
			chain_init(&ca, GFP_ATOMIC, PG_SAFE);
			memory_bm_position_reset(&orig_bm);
			restore_pblist = NULL;
2270
			handle->buffer = get_buffer(&orig_bm, &ca);
J
Jiri Slaby 已提交
2271
			handle->sync_read = 0;
2272 2273
			if (IS_ERR(handle->buffer))
				return PTR_ERR(handle->buffer);
2274 2275
		}
	} else {
J
Jiri Slaby 已提交
2276
		copy_last_highmem_page();
2277 2278
		/* Restore page key for data page (s390 only). */
		page_key_write(handle->buffer);
J
Jiri Slaby 已提交
2279 2280 2281 2282 2283
		handle->buffer = get_buffer(&orig_bm, &ca);
		if (IS_ERR(handle->buffer))
			return PTR_ERR(handle->buffer);
		if (handle->buffer != buffer)
			handle->sync_read = 0;
2284
	}
J
Jiri Slaby 已提交
2285 2286
	handle->cur++;
	return PAGE_SIZE;
2287 2288
}

2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299
/**
 *	snapshot_write_finalize - must be called after the last call to
 *	snapshot_write_next() in case the last page in the image happens
 *	to be a highmem page and its contents should be stored in the
 *	highmem.  Additionally, it releases the memory that will not be
 *	used any more.
 */

void snapshot_write_finalize(struct snapshot_handle *handle)
{
	copy_last_highmem_page();
2300 2301 2302
	/* Restore page key for data page (s390 only). */
	page_key_write(handle->buffer);
	page_key_free();
2303
	/* Free only if we have loaded the image entirely */
J
Jiri Slaby 已提交
2304
	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
2305 2306 2307 2308 2309
		memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR);
		free_highmem_data();
	}
}

2310 2311
int snapshot_image_loaded(struct snapshot_handle *handle)
{
2312
	return !(!nr_copy_pages || !last_highmem_page_copied() ||
2313 2314 2315
			handle->cur <= nr_meta_pages + nr_copy_pages);
}

2316 2317 2318 2319
#ifdef CONFIG_HIGHMEM
/* Assumes that @buf is ready and points to a "safe" page */
static inline void
swap_two_pages_data(struct page *p1, struct page *p2, void *buf)
2320
{
2321 2322
	void *kaddr1, *kaddr2;

2323 2324
	kaddr1 = kmap_atomic(p1);
	kaddr2 = kmap_atomic(p2);
2325 2326 2327
	copy_page(buf, kaddr1);
	copy_page(kaddr1, kaddr2);
	copy_page(kaddr2, buf);
2328 2329
	kunmap_atomic(kaddr2);
	kunmap_atomic(kaddr1);
2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359
}

/**
 *	restore_highmem - for each highmem page that was allocated before
 *	the suspend and included in the suspend image, and also has been
 *	allocated by the "resume" kernel swap its current (ie. "before
 *	resume") contents with the previous (ie. "before suspend") one.
 *
 *	If the resume eventually fails, we can call this function once
 *	again and restore the "before resume" highmem state.
 */

int restore_highmem(void)
{
	struct highmem_pbe *pbe = highmem_pblist;
	void *buf;

	if (!pbe)
		return 0;

	buf = get_image_page(GFP_ATOMIC, PG_SAFE);
	if (!buf)
		return -ENOMEM;

	while (pbe) {
		swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
		pbe = pbe->next;
	}
	free_image_page(buf, PG_UNSAFE_CLEAR);
	return 0;
2360
}
2361
#endif /* CONFIG_HIGHMEM */