snapshot.c 59.3 KB
Newer Older
1
/*
2
 * linux/kernel/power/snapshot.c
3
 *
4
 * This file provides system snapshot/restore functionality for swsusp.
5
 *
P
Pavel Machek 已提交
6
 * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
7
 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
8
 *
9
 * This file is released under the GPLv2.
10 11 12
 *
 */

13
#include <linux/version.h>
14 15 16 17 18 19 20 21 22
#include <linux/module.h>
#include <linux/mm.h>
#include <linux/suspend.h>
#include <linux/delay.h>
#include <linux/bitops.h>
#include <linux/spinlock.h>
#include <linux/kernel.h>
#include <linux/pm.h>
#include <linux/device.h>
23
#include <linux/init.h>
24 25 26 27
#include <linux/bootmem.h>
#include <linux/syscalls.h>
#include <linux/console.h>
#include <linux/highmem.h>
28
#include <linux/list.h>
29
#include <linux/slab.h>
30 31 32 33 34 35 36 37 38

#include <asm/uaccess.h>
#include <asm/mmu_context.h>
#include <asm/pgtable.h>
#include <asm/tlbflush.h>
#include <asm/io.h>

#include "power.h"

39 40 41 42
static int swsusp_page_is_free(struct page *);
static void swsusp_set_page_forbidden(struct page *);
static void swsusp_unset_page_forbidden(struct page *);

43 44
/*
 * Preferred image size in bytes (tunable via /sys/power/image_size).
45 46 47
 * When it is set to N, the image creating code will do its best to
 * ensure the image size will not exceed N bytes, but if that is
 * impossible, it will try to create the smallest image possible.
48
 */
49 50 51 52
unsigned long image_size;

void __init hibernate_image_size_init(void)
{
53
	image_size = (totalram_pages / 3) * PAGE_SIZE;
54
}
55

56 57 58 59 60
/* List of PBEs needed for restoring the pages that were allocated before
 * the suspend and included in the suspend image, but have also been
 * allocated by the "resume" kernel, so their contents cannot be written
 * directly to their "original" page frames.
 */
61 62
struct pbe *restore_pblist;

63
/* Pointer to an auxiliary buffer (1 page) */
64
static void *buffer;
65

66 67 68
/**
 *	@safe_needed - on resume, for storing the PBE list and the image,
 *	we can only use memory pages that do not conflict with the pages
69 70
 *	used before suspend.  The unsafe pages have PageNosaveFree set
 *	and we count them using unsafe_pages.
71
 *
72 73
 *	Each allocated image page is marked as PageNosave and PageNosaveFree
 *	so that swsusp_free() can release it.
74 75
 */

76 77 78 79 80
#define PG_ANY		0
#define PG_SAFE		1
#define PG_UNSAFE_CLEAR	1
#define PG_UNSAFE_KEEP	0

81
static unsigned int allocated_unsafe_pages;
82

83
static void *get_image_page(gfp_t gfp_mask, int safe_needed)
84 85 86 87 88
{
	void *res;

	res = (void *)get_zeroed_page(gfp_mask);
	if (safe_needed)
89
		while (res && swsusp_page_is_free(virt_to_page(res))) {
90
			/* The page is unsafe, mark it for swsusp_free() */
91
			swsusp_set_page_forbidden(virt_to_page(res));
92
			allocated_unsafe_pages++;
93 94 95
			res = (void *)get_zeroed_page(gfp_mask);
		}
	if (res) {
96 97
		swsusp_set_page_forbidden(virt_to_page(res));
		swsusp_set_page_free(virt_to_page(res));
98 99 100 101 102 103
	}
	return res;
}

unsigned long get_safe_page(gfp_t gfp_mask)
{
104 105 106
	return (unsigned long)get_image_page(gfp_mask, PG_SAFE);
}

107 108
static struct page *alloc_image_page(gfp_t gfp_mask)
{
109 110 111 112
	struct page *page;

	page = alloc_page(gfp_mask);
	if (page) {
113 114
		swsusp_set_page_forbidden(page);
		swsusp_set_page_free(page);
115 116
	}
	return page;
117 118 119 120
}

/**
 *	free_image_page - free page represented by @addr, allocated with
121
 *	get_image_page (page flags set by it must be cleared)
122 123 124 125
 */

static inline void free_image_page(void *addr, int clear_nosave_free)
{
126 127 128 129 130 131
	struct page *page;

	BUG_ON(!virt_addr_valid(addr));

	page = virt_to_page(addr);

132
	swsusp_unset_page_forbidden(page);
133
	if (clear_nosave_free)
134
		swsusp_unset_page_free(page);
135 136

	__free_page(page);
137 138
}

139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
/* struct linked_page is used to build chains of pages */

#define LINKED_PAGE_DATA_SIZE	(PAGE_SIZE - sizeof(void *))

struct linked_page {
	struct linked_page *next;
	char data[LINKED_PAGE_DATA_SIZE];
} __attribute__((packed));

static inline void
free_list_of_pages(struct linked_page *list, int clear_page_nosave)
{
	while (list) {
		struct linked_page *lp = list->next;

		free_image_page(list, clear_page_nosave);
		list = lp;
	}
}

/**
  *	struct chain_allocator is used for allocating small objects out of
  *	a linked list of pages called 'the chain'.
  *
  *	The chain grows each time when there is no room for a new object in
  *	the current page.  The allocated objects cannot be freed individually.
  *	It is only possible to free them all at once, by freeing the entire
  *	chain.
  *
  *	NOTE: The chain allocator may be inefficient if the allocated objects
  *	are not much smaller than PAGE_SIZE.
  */

struct chain_allocator {
	struct linked_page *chain;	/* the chain */
	unsigned int used_space;	/* total size of objects allocated out
					 * of the current page
					 */
	gfp_t gfp_mask;		/* mask for allocating pages */
	int safe_needed;	/* if set, only "safe" pages are allocated */
};

static void
chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed)
{
	ca->chain = NULL;
	ca->used_space = LINKED_PAGE_DATA_SIZE;
	ca->gfp_mask = gfp_mask;
	ca->safe_needed = safe_needed;
}

static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
{
	void *ret;

	if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
		struct linked_page *lp;

197
		lp = get_image_page(ca->gfp_mask, ca->safe_needed);
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
		if (!lp)
			return NULL;

		lp->next = ca->chain;
		ca->chain = lp;
		ca->used_space = 0;
	}
	ret = ca->chain->data + ca->used_space;
	ca->used_space += size;
	return ret;
}

/**
 *	Data types related to memory bitmaps.
 *
 *	Memory bitmap is a structure consiting of many linked lists of
 *	objects.  The main list's elements are of type struct zone_bitmap
 *	and each of them corresonds to one zone.  For each zone bitmap
 *	object there is a list of objects of type struct bm_block that
217
 *	represent each blocks of bitmap in which information is stored.
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
 *
 *	struct memory_bitmap contains a pointer to the main list of zone
 *	bitmap objects, a struct bm_position used for browsing the bitmap,
 *	and a pointer to the list of pages used for allocating all of the
 *	zone bitmap objects and bitmap block objects.
 *
 *	NOTE: It has to be possible to lay out the bitmap in memory
 *	using only allocations of order 0.  Additionally, the bitmap is
 *	designed to work with arbitrary number of zones (this is over the
 *	top for now, but let's avoid making unnecessary assumptions ;-).
 *
 *	struct zone_bitmap contains a pointer to a list of bitmap block
 *	objects and a pointer to the bitmap block object that has been
 *	most recently used for setting bits.  Additionally, it contains the
 *	pfns that correspond to the start and end of the represented zone.
 *
 *	struct bm_block contains a pointer to the memory page in which
235 236 237
 *	information is stored (in the form of a block of bitmap)
 *	It also contains the pfns that correspond to the start and end of
 *	the represented memory area.
238 239 240 241
 */

#define BM_END_OF_MAP	(~0UL)

W
Wu Fengguang 已提交
242
#define BM_BITS_PER_BLOCK	(PAGE_SIZE * BITS_PER_BYTE)
243 244

struct bm_block {
245
	struct list_head hook;	/* hook into a list of bitmap blocks */
246 247
	unsigned long start_pfn;	/* pfn represented by the first bit */
	unsigned long end_pfn;	/* pfn represented by the last bit plus 1 */
248
	unsigned long *data;	/* bitmap representing pages */
249 250
};

251 252 253 254 255
static inline unsigned long bm_block_bits(struct bm_block *bb)
{
	return bb->end_pfn - bb->start_pfn;
}

256 257 258 259 260 261 262 263
/* strcut bm_position is used for browsing memory bitmaps */

struct bm_position {
	struct bm_block *block;
	int bit;
};

struct memory_bitmap {
264
	struct list_head blocks;	/* list of bitmap blocks */
265 266 267 268 269 270 271 272 273 274 275
	struct linked_page *p_list;	/* list of pages used to store zone
					 * bitmap objects and bitmap block
					 * objects
					 */
	struct bm_position cur;	/* most recently used bit position */
};

/* Functions that operate on memory bitmaps */

static void memory_bm_position_reset(struct memory_bitmap *bm)
{
276
	bm->cur.block = list_entry(bm->blocks.next, struct bm_block, hook);
277
	bm->cur.bit = 0;
278 279 280 281 282 283
}

static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);

/**
 *	create_bm_block_list - create a list of block bitmap objects
W
Wu Fengguang 已提交
284
 *	@pages - number of pages to track
285 286
 *	@list - list to put the allocated blocks into
 *	@ca - chain allocator to be used for allocating memory
287
 */
288 289 290
static int create_bm_block_list(unsigned long pages,
				struct list_head *list,
				struct chain_allocator *ca)
291
{
292
	unsigned int nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
293 294 295 296 297 298

	while (nr_blocks-- > 0) {
		struct bm_block *bb;

		bb = chain_alloc(ca, sizeof(struct bm_block));
		if (!bb)
299 300
			return -ENOMEM;
		list_add(&bb->hook, list);
301
	}
302 303

	return 0;
304 305
}

306 307 308 309 310 311
struct mem_extent {
	struct list_head hook;
	unsigned long start;
	unsigned long end;
};

312
/**
313 314
 *	free_mem_extents - free a list of memory extents
 *	@list - list of extents to empty
315
 */
316 317 318
static void free_mem_extents(struct list_head *list)
{
	struct mem_extent *ext, *aux;
319

320 321 322 323 324 325 326 327 328 329 330 331 332
	list_for_each_entry_safe(ext, aux, list, hook) {
		list_del(&ext->hook);
		kfree(ext);
	}
}

/**
 *	create_mem_extents - create a list of memory extents representing
 *	                     contiguous ranges of PFNs
 *	@list - list to put the extents into
 *	@gfp_mask - mask to use for memory allocations
 */
static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
333
{
334
	struct zone *zone;
335

336
	INIT_LIST_HEAD(list);
337

338
	for_each_populated_zone(zone) {
339 340 341 342 343 344 345 346 347
		unsigned long zone_start, zone_end;
		struct mem_extent *ext, *cur, *aux;

		zone_start = zone->zone_start_pfn;
		zone_end = zone->zone_start_pfn + zone->spanned_pages;

		list_for_each_entry(ext, list, hook)
			if (zone_start <= ext->end)
				break;
348

349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
		if (&ext->hook == list || zone_end < ext->start) {
			/* New extent is necessary */
			struct mem_extent *new_ext;

			new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
			if (!new_ext) {
				free_mem_extents(list);
				return -ENOMEM;
			}
			new_ext->start = zone_start;
			new_ext->end = zone_end;
			list_add_tail(&new_ext->hook, &ext->hook);
			continue;
		}

		/* Merge this zone's range of PFNs with the existing one */
		if (zone_start < ext->start)
			ext->start = zone_start;
		if (zone_end > ext->end)
			ext->end = zone_end;

		/* More merging may be possible */
		cur = ext;
		list_for_each_entry_safe_continue(cur, aux, list, hook) {
			if (zone_end < cur->start)
				break;
			if (zone_end < cur->end)
				ext->end = cur->end;
			list_del(&cur->hook);
			kfree(cur);
		}
380
	}
381 382

	return 0;
383 384 385 386 387 388 389 390 391
}

/**
  *	memory_bm_create - allocate memory for a memory bitmap
  */
static int
memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed)
{
	struct chain_allocator ca;
392 393 394
	struct list_head mem_extents;
	struct mem_extent *ext;
	int error;
395 396

	chain_init(&ca, gfp_mask, safe_needed);
397
	INIT_LIST_HEAD(&bm->blocks);
398

399 400 401
	error = create_mem_extents(&mem_extents, gfp_mask);
	if (error)
		return error;
402

403 404 405 406
	list_for_each_entry(ext, &mem_extents, hook) {
		struct bm_block *bb;
		unsigned long pfn = ext->start;
		unsigned long pages = ext->end - ext->start;
407

408
		bb = list_entry(bm->blocks.prev, struct bm_block, hook);
409

410 411 412
		error = create_bm_block_list(pages, bm->blocks.prev, &ca);
		if (error)
			goto Error;
413

414 415 416 417 418 419
		list_for_each_entry_continue(bb, &bm->blocks, hook) {
			bb->data = get_image_page(gfp_mask, safe_needed);
			if (!bb->data) {
				error = -ENOMEM;
				goto Error;
			}
420 421

			bb->start_pfn = pfn;
422
			if (pages >= BM_BITS_PER_BLOCK) {
423
				pfn += BM_BITS_PER_BLOCK;
424
				pages -= BM_BITS_PER_BLOCK;
425 426
			} else {
				/* This is executed only once in the loop */
427
				pfn += pages;
428 429 430 431
			}
			bb->end_pfn = pfn;
		}
	}
432

433 434
	bm->p_list = ca.chain;
	memory_bm_position_reset(bm);
435 436 437
 Exit:
	free_mem_extents(&mem_extents);
	return error;
438

439
 Error:
440 441
	bm->p_list = ca.chain;
	memory_bm_free(bm, PG_UNSAFE_CLEAR);
442
	goto Exit;
443 444 445 446 447 448 449
}

/**
  *	memory_bm_free - free memory occupied by the memory bitmap @bm
  */
static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
{
450
	struct bm_block *bb;
451

452 453 454
	list_for_each_entry(bb, &bm->blocks, hook)
		if (bb->data)
			free_image_page(bb->data, clear_nosave_free);
455 456

	free_list_of_pages(bm->p_list, clear_nosave_free);
457 458

	INIT_LIST_HEAD(&bm->blocks);
459 460 461
}

/**
462
 *	memory_bm_find_bit - find the bit in the bitmap @bm that corresponds
463 464 465
 *	to given pfn.  The cur_zone_bm member of @bm and the cur_block member
 *	of @bm->cur_zone_bm are updated.
 */
466
static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
467
				void **addr, unsigned int *bit_nr)
468 469 470
{
	struct bm_block *bb;

471 472 473 474 475
	/*
	 * Check if the pfn corresponds to the current bitmap block and find
	 * the block where it fits if this is not the case.
	 */
	bb = bm->cur.block;
476
	if (pfn < bb->start_pfn)
477 478 479
		list_for_each_entry_continue_reverse(bb, &bm->blocks, hook)
			if (pfn >= bb->start_pfn)
				break;
480

481 482 483 484
	if (pfn >= bb->end_pfn)
		list_for_each_entry_continue(bb, &bm->blocks, hook)
			if (pfn >= bb->start_pfn && pfn < bb->end_pfn)
				break;
485

486 487 488 489 490
	if (&bb->hook == &bm->blocks)
		return -EFAULT;

	/* The block has been found */
	bm->cur.block = bb;
491
	pfn -= bb->start_pfn;
492
	bm->cur.bit = pfn + 1;
493 494
	*bit_nr = pfn;
	*addr = bb->data;
495
	return 0;
496 497 498 499 500 501
}

static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
{
	void *addr;
	unsigned int bit;
502
	int error;
503

504 505
	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
	BUG_ON(error);
506 507 508
	set_bit(bit, addr);
}

509 510 511 512 513 514 515 516 517 518 519 520
static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
{
	void *addr;
	unsigned int bit;
	int error;

	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
	if (!error)
		set_bit(bit, addr);
	return error;
}

521 522 523 524
static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
{
	void *addr;
	unsigned int bit;
525
	int error;
526

527 528
	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
	BUG_ON(error);
529 530 531 532 533 534 535
	clear_bit(bit, addr);
}

static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
{
	void *addr;
	unsigned int bit;
536
	int error;
537

538 539
	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
	BUG_ON(error);
540
	return test_bit(bit, addr);
541 542
}

543 544 545 546 547 548 549 550
static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
{
	void *addr;
	unsigned int bit;

	return !memory_bm_find_bit(bm, pfn, &addr, &bit);
}

551 552 553 554 555 556 557 558 559 560 561 562 563 564
/**
 *	memory_bm_next_pfn - find the pfn that corresponds to the next set bit
 *	in the bitmap @bm.  If the pfn cannot be found, BM_END_OF_MAP is
 *	returned.
 *
 *	It is required to run memory_bm_position_reset() before the first call to
 *	this function.
 */

static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
{
	struct bm_block *bb;
	int bit;

565
	bb = bm->cur.block;
566
	do {
567 568 569 570 571 572 573 574 575 576
		bit = bm->cur.bit;
		bit = find_next_bit(bb->data, bm_block_bits(bb), bit);
		if (bit < bm_block_bits(bb))
			goto Return_pfn;

		bb = list_entry(bb->hook.next, struct bm_block, hook);
		bm->cur.block = bb;
		bm->cur.bit = 0;
	} while (&bb->hook != &bm->blocks);

577 578 579
	memory_bm_position_reset(bm);
	return BM_END_OF_MAP;

R
Rafael J. Wysocki 已提交
580
 Return_pfn:
581 582
	bm->cur.bit = bit + 1;
	return bb->start_pfn + bit;
583 584
}

585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
/**
 *	This structure represents a range of page frames the contents of which
 *	should not be saved during the suspend.
 */

struct nosave_region {
	struct list_head list;
	unsigned long start_pfn;
	unsigned long end_pfn;
};

static LIST_HEAD(nosave_regions);

/**
 *	register_nosave_region - register a range of page frames the contents
 *	of which should not be saved during the suspend (to be used in the early
 *	initialization code)
 */

void __init
605 606
__register_nosave_region(unsigned long start_pfn, unsigned long end_pfn,
			 int use_kmalloc)
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
{
	struct nosave_region *region;

	if (start_pfn >= end_pfn)
		return;

	if (!list_empty(&nosave_regions)) {
		/* Try to extend the previous region (they should be sorted) */
		region = list_entry(nosave_regions.prev,
					struct nosave_region, list);
		if (region->end_pfn == start_pfn) {
			region->end_pfn = end_pfn;
			goto Report;
		}
	}
622 623 624 625 626 627
	if (use_kmalloc) {
		/* during init, this shouldn't fail */
		region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
		BUG_ON(!region);
	} else
		/* This allocation cannot fail */
628
		region = alloc_bootmem(sizeof(struct nosave_region));
629 630 631 632
	region->start_pfn = start_pfn;
	region->end_pfn = end_pfn;
	list_add_tail(&region->list, &nosave_regions);
 Report:
R
Rafael J. Wysocki 已提交
633
	printk(KERN_INFO "PM: Registered nosave memory: %016lx - %016lx\n",
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
		start_pfn << PAGE_SHIFT, end_pfn << PAGE_SHIFT);
}

/*
 * Set bits in this map correspond to the page frames the contents of which
 * should not be saved during the suspend.
 */
static struct memory_bitmap *forbidden_pages_map;

/* Set bits in this map correspond to free page frames. */
static struct memory_bitmap *free_pages_map;

/*
 * Each page frame allocated for creating the image is marked by setting the
 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
 */

void swsusp_set_page_free(struct page *page)
{
	if (free_pages_map)
		memory_bm_set_bit(free_pages_map, page_to_pfn(page));
}

static int swsusp_page_is_free(struct page *page)
{
	return free_pages_map ?
		memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
}

void swsusp_unset_page_free(struct page *page)
{
	if (free_pages_map)
		memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
}

static void swsusp_set_page_forbidden(struct page *page)
{
	if (forbidden_pages_map)
		memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
}

int swsusp_page_is_forbidden(struct page *page)
{
	return forbidden_pages_map ?
		memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
}

static void swsusp_unset_page_forbidden(struct page *page)
{
	if (forbidden_pages_map)
		memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
}

/**
 *	mark_nosave_pages - set bits corresponding to the page frames the
 *	contents of which should not be saved in a given bitmap.
 */

static void mark_nosave_pages(struct memory_bitmap *bm)
{
	struct nosave_region *region;

	if (list_empty(&nosave_regions))
		return;

	list_for_each_entry(region, &nosave_regions, list) {
		unsigned long pfn;

R
Rafael J. Wysocki 已提交
702
		pr_debug("PM: Marking nosave pages: %016lx - %016lx\n",
703 704 705 706
				region->start_pfn << PAGE_SHIFT,
				region->end_pfn << PAGE_SHIFT);

		for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
707 708 709 710 711 712 713 714 715
			if (pfn_valid(pfn)) {
				/*
				 * It is safe to ignore the result of
				 * mem_bm_set_bit_check() here, since we won't
				 * touch the PFNs for which the error is
				 * returned anyway.
				 */
				mem_bm_set_bit_check(bm, pfn);
			}
716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
	}
}

/**
 *	create_basic_memory_bitmaps - create bitmaps needed for marking page
 *	frames that should not be saved and free page frames.  The pointers
 *	forbidden_pages_map and free_pages_map are only modified if everything
 *	goes well, because we don't want the bits to be used before both bitmaps
 *	are set up.
 */

int create_basic_memory_bitmaps(void)
{
	struct memory_bitmap *bm1, *bm2;
	int error = 0;

	BUG_ON(forbidden_pages_map || free_pages_map);

734
	bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
735 736 737
	if (!bm1)
		return -ENOMEM;

738
	error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
739 740 741
	if (error)
		goto Free_first_object;

742
	bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
743 744 745
	if (!bm2)
		goto Free_first_bitmap;

746
	error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
747 748 749 750 751 752 753
	if (error)
		goto Free_second_object;

	forbidden_pages_map = bm1;
	free_pages_map = bm2;
	mark_nosave_pages(forbidden_pages_map);

R
Rafael J. Wysocki 已提交
754
	pr_debug("PM: Basic memory bitmaps created\n");
755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788

	return 0;

 Free_second_object:
	kfree(bm2);
 Free_first_bitmap:
 	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
 Free_first_object:
	kfree(bm1);
	return -ENOMEM;
}

/**
 *	free_basic_memory_bitmaps - free memory bitmaps allocated by
 *	create_basic_memory_bitmaps().  The auxiliary pointers are necessary
 *	so that the bitmaps themselves are not referred to while they are being
 *	freed.
 */

void free_basic_memory_bitmaps(void)
{
	struct memory_bitmap *bm1, *bm2;

	BUG_ON(!(forbidden_pages_map && free_pages_map));

	bm1 = forbidden_pages_map;
	bm2 = free_pages_map;
	forbidden_pages_map = NULL;
	free_pages_map = NULL;
	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
	kfree(bm1);
	memory_bm_free(bm2, PG_UNSAFE_CLEAR);
	kfree(bm2);

R
Rafael J. Wysocki 已提交
789
	pr_debug("PM: Basic memory bitmaps freed\n");
790 791
}

792 793 794 795 796 797 798 799 800 801 802 803
/**
 *	snapshot_additional_pages - estimate the number of additional pages
 *	be needed for setting up the suspend image data structures for given
 *	zone (usually the returned value is greater than the exact number)
 */

unsigned int snapshot_additional_pages(struct zone *zone)
{
	unsigned int res;

	res = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
	res += DIV_ROUND_UP(res * sizeof(struct bm_block), PAGE_SIZE);
804
	return 2 * res;
805 806
}

807 808 809 810 811 812 813 814 815 816 817
#ifdef CONFIG_HIGHMEM
/**
 *	count_free_highmem_pages - compute the total number of free highmem
 *	pages, system-wide.
 */

static unsigned int count_free_highmem_pages(void)
{
	struct zone *zone;
	unsigned int cnt = 0;

818 819
	for_each_populated_zone(zone)
		if (is_highmem(zone))
820
			cnt += zone_page_state(zone, NR_FREE_PAGES);
821 822 823 824 825 826 827 828 829 830 831

	return cnt;
}

/**
 *	saveable_highmem_page - Determine whether a highmem page should be
 *	included in the suspend image.
 *
 *	We should save the page if it isn't Nosave or NosaveFree, or Reserved,
 *	and it isn't a part of a free chunk of pages.
 */
832
static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
833 834 835 836 837 838 839
{
	struct page *page;

	if (!pfn_valid(pfn))
		return NULL;

	page = pfn_to_page(pfn);
840 841
	if (page_zone(page) != zone)
		return NULL;
842 843 844

	BUG_ON(!PageHighMem(page));

845 846
	if (swsusp_page_is_forbidden(page) ||  swsusp_page_is_free(page) ||
	    PageReserved(page))
847 848 849 850 851 852 853 854 855 856
		return NULL;

	return page;
}

/**
 *	count_highmem_pages - compute the total number of saveable highmem
 *	pages.
 */

857
static unsigned int count_highmem_pages(void)
858 859 860 861
{
	struct zone *zone;
	unsigned int n = 0;

862
	for_each_populated_zone(zone) {
863 864 865 866 867 868 869 870
		unsigned long pfn, max_zone_pfn;

		if (!is_highmem(zone))
			continue;

		mark_free_pages(zone);
		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
871
			if (saveable_highmem_page(zone, pfn))
872 873 874 875 876
				n++;
	}
	return n;
}
#else
877 878 879 880
static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
{
	return NULL;
}
881 882
#endif /* CONFIG_HIGHMEM */

883
/**
884 885
 *	saveable_page - Determine whether a non-highmem page should be included
 *	in the suspend image.
886
 *
887 888 889
 *	We should save the page if it isn't Nosave, and is not in the range
 *	of pages statically defined as 'unsaveable', and it isn't a part of
 *	a free chunk of pages.
890
 */
891
static struct page *saveable_page(struct zone *zone, unsigned long pfn)
892
{
P
Pavel Machek 已提交
893
	struct page *page;
894 895

	if (!pfn_valid(pfn))
896
		return NULL;
897 898

	page = pfn_to_page(pfn);
899 900
	if (page_zone(page) != zone)
		return NULL;
901

902 903
	BUG_ON(PageHighMem(page));

904
	if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
905
		return NULL;
906

907 908
	if (PageReserved(page)
	    && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
909
		return NULL;
910

911
	return page;
912 913
}

914 915 916 917 918
/**
 *	count_data_pages - compute the total number of saveable non-highmem
 *	pages.
 */

919
static unsigned int count_data_pages(void)
920 921
{
	struct zone *zone;
922
	unsigned long pfn, max_zone_pfn;
P
Pavel Machek 已提交
923
	unsigned int n = 0;
924

925
	for_each_populated_zone(zone) {
926 927
		if (is_highmem(zone))
			continue;
928

929
		mark_free_pages(zone);
930 931
		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
932
			if (saveable_page(zone, pfn))
933
				n++;
934
	}
935
	return n;
936 937
}

938 939 940 941
/* This is needed, because copy_page and memcpy are not usable for copying
 * task structs.
 */
static inline void do_copy_page(long *dst, long *src)
942 943 944 945 946 947 948
{
	int n;

	for (n = PAGE_SIZE / sizeof(long); n; n--)
		*dst++ = *src++;
}

949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967

/**
 *	safe_copy_page - check if the page we are going to copy is marked as
 *		present in the kernel page tables (this always is the case if
 *		CONFIG_DEBUG_PAGEALLOC is not set and in that case
 *		kernel_page_present() always returns 'true').
 */
static void safe_copy_page(void *dst, struct page *s_page)
{
	if (kernel_page_present(s_page)) {
		do_copy_page(dst, page_address(s_page));
	} else {
		kernel_map_pages(s_page, 1, 1);
		do_copy_page(dst, page_address(s_page));
		kernel_map_pages(s_page, 1, 0);
	}
}


968 969 970 971 972
#ifdef CONFIG_HIGHMEM
static inline struct page *
page_is_saveable(struct zone *zone, unsigned long pfn)
{
	return is_highmem(zone) ?
973
		saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
974 975
}

976
static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
977 978 979 980 981 982 983 984 985 986 987
{
	struct page *s_page, *d_page;
	void *src, *dst;

	s_page = pfn_to_page(src_pfn);
	d_page = pfn_to_page(dst_pfn);
	if (PageHighMem(s_page)) {
		src = kmap_atomic(s_page, KM_USER0);
		dst = kmap_atomic(d_page, KM_USER1);
		do_copy_page(dst, src);
		kunmap_atomic(dst, KM_USER1);
P
Peter Zijlstra 已提交
988
		kunmap_atomic(src, KM_USER0);
989 990 991 992 993
	} else {
		if (PageHighMem(d_page)) {
			/* Page pointed to by src may contain some kernel
			 * data modified by kmap_atomic()
			 */
994
			safe_copy_page(buffer, s_page);
995
			dst = kmap_atomic(d_page, KM_USER0);
996
			copy_page(dst, buffer);
997 998
			kunmap_atomic(dst, KM_USER0);
		} else {
999
			safe_copy_page(page_address(d_page), s_page);
1000 1001 1002 1003
		}
	}
}
#else
1004
#define page_is_saveable(zone, pfn)	saveable_page(zone, pfn)
1005

1006
static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1007
{
1008 1009
	safe_copy_page(page_address(pfn_to_page(dst_pfn)),
				pfn_to_page(src_pfn));
1010 1011 1012
}
#endif /* CONFIG_HIGHMEM */

1013 1014
static void
copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm)
1015 1016
{
	struct zone *zone;
1017
	unsigned long pfn;
1018

1019
	for_each_populated_zone(zone) {
1020 1021
		unsigned long max_zone_pfn;

1022
		mark_free_pages(zone);
1023
		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1024
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1025
			if (page_is_saveable(zone, pfn))
1026
				memory_bm_set_bit(orig_bm, pfn);
1027
	}
1028 1029
	memory_bm_position_reset(orig_bm);
	memory_bm_position_reset(copy_bm);
F
Fengguang Wu 已提交
1030
	for(;;) {
1031
		pfn = memory_bm_next_pfn(orig_bm);
F
Fengguang Wu 已提交
1032 1033 1034 1035
		if (unlikely(pfn == BM_END_OF_MAP))
			break;
		copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
	}
1036 1037
}

1038 1039 1040 1041
/* Total number of image pages */
static unsigned int nr_copy_pages;
/* Number of pages needed for saving the original pfns of the image pages */
static unsigned int nr_meta_pages;
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
/*
 * Numbers of normal and highmem page frames allocated for hibernation image
 * before suspending devices.
 */
unsigned int alloc_normal, alloc_highmem;
/*
 * Memory bitmap used for marking saveable pages (during hibernation) or
 * hibernation image pages (during restore)
 */
static struct memory_bitmap orig_bm;
/*
 * Memory bitmap used during hibernation for marking allocated page frames that
 * will contain copies of saveable pages.  During restore it is initially used
 * for marking hibernation image pages, but then the set bits from it are
 * duplicated in @orig_bm and it is released.  On highmem systems it is next
 * used for marking "safe" highmem pages, but it has to be reinitialized for
 * this purpose.
 */
static struct memory_bitmap copy_bm;
1061

1062
/**
1063
 *	swsusp_free - free pages allocated for the suspend.
1064
 *
1065 1066
 *	Suspend pages are alocated before the atomic copy is made, so we
 *	need to release them after the resume.
1067 1068 1069 1070 1071
 */

void swsusp_free(void)
{
	struct zone *zone;
1072
	unsigned long pfn, max_zone_pfn;
1073

1074
	for_each_populated_zone(zone) {
1075 1076 1077 1078 1079
		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
			if (pfn_valid(pfn)) {
				struct page *page = pfn_to_page(pfn);

1080 1081 1082 1083
				if (swsusp_page_is_forbidden(page) &&
				    swsusp_page_is_free(page)) {
					swsusp_unset_page_forbidden(page);
					swsusp_unset_page_free(page);
1084
					__free_page(page);
1085 1086 1087
				}
			}
	}
1088 1089
	nr_copy_pages = 0;
	nr_meta_pages = 0;
1090
	restore_pblist = NULL;
1091
	buffer = NULL;
1092 1093
	alloc_normal = 0;
	alloc_highmem = 0;
1094 1095
}

1096 1097 1098 1099
/* Helper functions used for the shrinking of memory. */

#define GFP_IMAGE	(GFP_KERNEL | __GFP_NOWARN)

1100
/**
1101 1102 1103
 * preallocate_image_pages - Allocate a number of pages for hibernation image
 * @nr_pages: Number of page frames to allocate.
 * @mask: GFP flags to use for the allocation.
1104
 *
1105 1106 1107 1108 1109 1110 1111
 * Return value: Number of page frames actually allocated
 */
static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
{
	unsigned long nr_alloc = 0;

	while (nr_pages > 0) {
1112 1113 1114 1115
		struct page *page;

		page = alloc_image_page(mask);
		if (!page)
1116
			break;
1117 1118 1119 1120 1121
		memory_bm_set_bit(&copy_bm, page_to_pfn(page));
		if (PageHighMem(page))
			alloc_highmem++;
		else
			alloc_normal++;
1122 1123 1124 1125 1126 1127 1128
		nr_pages--;
		nr_alloc++;
	}

	return nr_alloc;
}

1129 1130
static unsigned long preallocate_image_memory(unsigned long nr_pages,
					      unsigned long avail_normal)
1131
{
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
	unsigned long alloc;

	if (avail_normal <= alloc_normal)
		return 0;

	alloc = avail_normal - alloc_normal;
	if (nr_pages < alloc)
		alloc = nr_pages;

	return preallocate_image_pages(alloc, GFP_IMAGE);
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
}

#ifdef CONFIG_HIGHMEM
static unsigned long preallocate_image_highmem(unsigned long nr_pages)
{
	return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
}

/**
 *  __fraction - Compute (an approximation of) x * (multiplier / base)
1152
 */
1153 1154 1155 1156 1157 1158
static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
{
	x *= multiplier;
	do_div(x, base);
	return (unsigned long)x;
}
1159

1160 1161 1162
static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
						unsigned long highmem,
						unsigned long total)
1163
{
1164 1165 1166
	unsigned long alloc = __fraction(nr_pages, highmem, total);

	return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
1167
}
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
#else /* CONFIG_HIGHMEM */
static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
{
	return 0;
}

static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
						unsigned long highmem,
						unsigned long total)
{
	return 0;
}
#endif /* CONFIG_HIGHMEM */
1181

1182
/**
1183 1184 1185 1186
 * free_unnecessary_pages - Release preallocated pages not needed for the image
 */
static void free_unnecessary_pages(void)
{
1187
	unsigned long save, to_free_normal, to_free_highmem;
1188

1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
	save = count_data_pages();
	if (alloc_normal >= save) {
		to_free_normal = alloc_normal - save;
		save = 0;
	} else {
		to_free_normal = 0;
		save -= alloc_normal;
	}
	save += count_highmem_pages();
	if (alloc_highmem >= save) {
		to_free_highmem = alloc_highmem - save;
1200 1201
	} else {
		to_free_highmem = 0;
1202
		to_free_normal -= save - alloc_highmem;
1203 1204 1205 1206
	}

	memory_bm_position_reset(&copy_bm);

1207
	while (to_free_normal > 0 || to_free_highmem > 0) {
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
		unsigned long pfn = memory_bm_next_pfn(&copy_bm);
		struct page *page = pfn_to_page(pfn);

		if (PageHighMem(page)) {
			if (!to_free_highmem)
				continue;
			to_free_highmem--;
			alloc_highmem--;
		} else {
			if (!to_free_normal)
				continue;
			to_free_normal--;
			alloc_normal--;
		}
		memory_bm_clear_bit(&copy_bm, pfn);
		swsusp_unset_page_forbidden(page);
		swsusp_unset_page_free(page);
		__free_page(page);
	}
}

1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
/**
 * minimum_image_size - Estimate the minimum acceptable size of an image
 * @saveable: Number of saveable pages in the system.
 *
 * We want to avoid attempting to free too much memory too hard, so estimate the
 * minimum acceptable size of a hibernation image to use as the lower limit for
 * preallocating memory.
 *
 * We assume that the minimum image size should be proportional to
 *
 * [number of saveable pages] - [number of pages that can be freed in theory]
 *
 * where the second term is the sum of (1) reclaimable slab pages, (2) active
 * and (3) inactive anonymouns pages, (4) active and (5) inactive file pages,
 * minus mapped file pages.
 */
static unsigned long minimum_image_size(unsigned long saveable)
{
	unsigned long size;

	size = global_page_state(NR_SLAB_RECLAIMABLE)
		+ global_page_state(NR_ACTIVE_ANON)
		+ global_page_state(NR_INACTIVE_ANON)
		+ global_page_state(NR_ACTIVE_FILE)
		+ global_page_state(NR_INACTIVE_FILE)
		- global_page_state(NR_FILE_MAPPED);

	return saveable <= size ? 0 : saveable - size;
}

1259 1260
/**
 * hibernate_preallocate_memory - Preallocate memory for hibernation image
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
 *
 * To create a hibernation image it is necessary to make a copy of every page
 * frame in use.  We also need a number of page frames to be free during
 * hibernation for allocations made while saving the image and for device
 * drivers, in case they need to allocate memory from their hibernation
 * callbacks (these two numbers are given by PAGES_FOR_IO and SPARE_PAGES,
 * respectively, both of which are rough estimates).  To make this happen, we
 * compute the total number of available page frames and allocate at least
 *
 * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2 + 2 * SPARE_PAGES
 *
 * of them, which corresponds to the maximum size of a hibernation image.
 *
 * If image_size is set below the number following from the above formula,
 * the preallocation of memory is continued until the total number of saveable
1276 1277
 * pages in the system is below the requested image size or the minimum
 * acceptable image size returned by minimum_image_size(), whichever is greater.
1278
 */
1279
int hibernate_preallocate_memory(void)
1280 1281
{
	struct zone *zone;
1282
	unsigned long saveable, size, max_size, count, highmem, pages = 0;
1283
	unsigned long alloc, save_highmem, pages_highmem, avail_normal;
1284
	struct timeval start, stop;
1285
	int error;
1286

1287
	printk(KERN_INFO "PM: Preallocating image memory... ");
1288 1289
	do_gettimeofday(&start);

1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
	error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
	if (error)
		goto err_out;

	error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
	if (error)
		goto err_out;

	alloc_normal = 0;
	alloc_highmem = 0;

1301
	/* Count the number of saveable data pages. */
1302
	save_highmem = count_highmem_pages();
1303
	saveable = count_data_pages();
1304

1305 1306 1307 1308 1309
	/*
	 * Compute the total number of page frames we can use (count) and the
	 * number of pages needed for image metadata (size).
	 */
	count = saveable;
1310 1311
	saveable += save_highmem;
	highmem = save_highmem;
1312 1313 1314 1315 1316 1317 1318 1319
	size = 0;
	for_each_populated_zone(zone) {
		size += snapshot_additional_pages(zone);
		if (is_highmem(zone))
			highmem += zone_page_state(zone, NR_FREE_PAGES);
		else
			count += zone_page_state(zone, NR_FREE_PAGES);
	}
1320
	avail_normal = count;
1321 1322 1323 1324 1325
	count += highmem;
	count -= totalreserve_pages;

	/* Compute the maximum number of saveable pages to leave in memory. */
	max_size = (count - (size + PAGES_FOR_IO)) / 2 - 2 * SPARE_PAGES;
1326
	/* Compute the desired number of image pages specified by image_size. */
1327 1328 1329 1330
	size = DIV_ROUND_UP(image_size, PAGE_SIZE);
	if (size > max_size)
		size = max_size;
	/*
1331 1332 1333
	 * If the desired number of image pages is at least as large as the
	 * current number of saveable pages in memory, allocate page frames for
	 * the image and we're done.
1334
	 */
1335 1336
	if (size >= saveable) {
		pages = preallocate_image_highmem(save_highmem);
1337
		pages += preallocate_image_memory(saveable - pages, avail_normal);
1338
		goto out;
1339
	}
1340

1341 1342
	/* Estimate the minimum size of the image. */
	pages = minimum_image_size(saveable);
1343 1344 1345 1346 1347 1348 1349 1350 1351
	/*
	 * To avoid excessive pressure on the normal zone, leave room in it to
	 * accommodate an image of the minimum size (unless it's already too
	 * small, in which case don't preallocate pages from it at all).
	 */
	if (avail_normal > pages)
		avail_normal -= pages;
	else
		avail_normal = 0;
1352 1353 1354
	if (size < pages)
		size = min_t(unsigned long, pages, max_size);

1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
	/*
	 * Let the memory management subsystem know that we're going to need a
	 * large number of page frames to allocate and make it free some memory.
	 * NOTE: If this is not done, performance will be hurt badly in some
	 * test cases.
	 */
	shrink_all_memory(saveable - size);

	/*
	 * The number of saveable pages in memory was too high, so apply some
	 * pressure to decrease it.  First, make room for the largest possible
	 * image and fail if that doesn't work.  Next, try to decrease the size
1367 1368
	 * of the image as much as indicated by 'size' using allocations from
	 * highmem and non-highmem zones separately.
1369 1370 1371
	 */
	pages_highmem = preallocate_image_highmem(highmem / 2);
	alloc = (count - max_size) - pages_highmem;
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
	pages = preallocate_image_memory(alloc, avail_normal);
	if (pages < alloc) {
		/* We have exhausted non-highmem pages, try highmem. */
		alloc -= pages;
		pages += pages_highmem;
		pages_highmem = preallocate_image_highmem(alloc);
		if (pages_highmem < alloc)
			goto err_out;
		pages += pages_highmem;
		/*
		 * size is the desired number of saveable pages to leave in
		 * memory, so try to preallocate (all memory - size) pages.
		 */
		alloc = (count - pages) - size;
		pages += preallocate_image_highmem(alloc);
	} else {
		/*
		 * There are approximately max_size saveable pages at this point
		 * and we want to reduce this number down to size.
		 */
		alloc = max_size - size;
		size = preallocate_highmem_fraction(alloc, highmem, count);
		pages_highmem += size;
		alloc -= size;
		size = preallocate_image_memory(alloc, avail_normal);
		pages_highmem += preallocate_image_highmem(alloc - size);
		pages += pages_highmem + size;
	}
1400

1401 1402 1403 1404 1405 1406
	/*
	 * We only need as many page frames for the image as there are saveable
	 * pages in memory, but we have allocated more.  Release the excessive
	 * ones now.
	 */
	free_unnecessary_pages();
1407 1408

 out:
1409
	do_gettimeofday(&stop);
1410 1411
	printk(KERN_CONT "done (allocated %lu pages)\n", pages);
	swsusp_show_speed(&start, &stop, pages, "Allocated");
1412 1413

	return 0;
1414 1415 1416 1417 1418

 err_out:
	printk(KERN_CONT "\n");
	swsusp_free();
	return -ENOMEM;
1419 1420
}

1421 1422 1423 1424 1425 1426 1427 1428
#ifdef CONFIG_HIGHMEM
/**
  *	count_pages_for_highmem - compute the number of non-highmem pages
  *	that will be necessary for creating copies of highmem pages.
  */

static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
{
1429
	unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441

	if (free_highmem >= nr_highmem)
		nr_highmem = 0;
	else
		nr_highmem -= free_highmem;

	return nr_highmem;
}
#else
static unsigned int
count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
#endif /* CONFIG_HIGHMEM */
1442 1443

/**
1444 1445
 *	enough_free_mem - Make sure we have enough free memory for the
 *	snapshot image.
1446 1447
 */

1448
static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1449
{
1450
	struct zone *zone;
1451
	unsigned int free = alloc_normal;
1452

1453
	for_each_populated_zone(zone)
1454
		if (!is_highmem(zone))
1455
			free += zone_page_state(zone, NR_FREE_PAGES);
1456

1457
	nr_pages += count_pages_for_highmem(nr_highmem);
1458 1459
	pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n",
		nr_pages, PAGES_FOR_IO, free);
1460

1461
	return free > nr_pages + PAGES_FOR_IO;
1462 1463
}

1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
#ifdef CONFIG_HIGHMEM
/**
 *	get_highmem_buffer - if there are some highmem pages in the suspend
 *	image, we may need the buffer to copy them and/or load their data.
 */

static inline int get_highmem_buffer(int safe_needed)
{
	buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
	return buffer ? 0 : -ENOMEM;
}

/**
 *	alloc_highmem_image_pages - allocate some highmem pages for the image.
 *	Try to allocate as many pages as needed, but if the number of free
 *	highmem pages is lesser than that, allocate them all.
 */

static inline unsigned int
1483
alloc_highmem_pages(struct memory_bitmap *bm, unsigned int nr_highmem)
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
{
	unsigned int to_alloc = count_free_highmem_pages();

	if (to_alloc > nr_highmem)
		to_alloc = nr_highmem;

	nr_highmem -= to_alloc;
	while (to_alloc-- > 0) {
		struct page *page;

		page = alloc_image_page(__GFP_HIGHMEM);
		memory_bm_set_bit(bm, page_to_pfn(page));
	}
	return nr_highmem;
}
#else
static inline int get_highmem_buffer(int safe_needed) { return 0; }

static inline unsigned int
1503
alloc_highmem_pages(struct memory_bitmap *bm, unsigned int n) { return 0; }
1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
#endif /* CONFIG_HIGHMEM */

/**
 *	swsusp_alloc - allocate memory for the suspend image
 *
 *	We first try to allocate as many highmem pages as there are
 *	saveable highmem pages in the system.  If that fails, we allocate
 *	non-highmem pages for the copies of the remaining highmem ones.
 *
 *	In this approach it is likely that the copies of highmem pages will
 *	also be located in the high memory, because of the way in which
 *	copy_data_pages() works.
 */

1518 1519
static int
swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm,
1520
		unsigned int nr_pages, unsigned int nr_highmem)
1521
{
1522
	if (nr_highmem > 0) {
1523
		if (get_highmem_buffer(PG_ANY))
1524 1525 1526 1527 1528
			goto err_out;
		if (nr_highmem > alloc_highmem) {
			nr_highmem -= alloc_highmem;
			nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
		}
1529
	}
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
	if (nr_pages > alloc_normal) {
		nr_pages -= alloc_normal;
		while (nr_pages-- > 0) {
			struct page *page;

			page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
			if (!page)
				goto err_out;
			memory_bm_set_bit(copy_bm, page_to_pfn(page));
		}
1540
	}
1541

1542
	return 0;
1543

1544
 err_out:
1545
	swsusp_free();
1546
	return -ENOMEM;
1547 1548
}

1549
asmlinkage int swsusp_save(void)
1550
{
1551
	unsigned int nr_pages, nr_highmem;
1552

1553
	printk(KERN_INFO "PM: Creating hibernation image:\n");
1554

1555
	drain_local_pages(NULL);
1556
	nr_pages = count_data_pages();
1557
	nr_highmem = count_highmem_pages();
R
Rafael J. Wysocki 已提交
1558
	printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem);
1559

1560
	if (!enough_free_mem(nr_pages, nr_highmem)) {
R
Rafael J. Wysocki 已提交
1561
		printk(KERN_ERR "PM: Not enough free memory\n");
1562 1563 1564
		return -ENOMEM;
	}

1565
	if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages, nr_highmem)) {
R
Rafael J. Wysocki 已提交
1566
		printk(KERN_ERR "PM: Memory allocation failed\n");
1567
		return -ENOMEM;
1568
	}
1569 1570 1571 1572

	/* During allocating of suspend pagedir, new cold pages may appear.
	 * Kill them.
	 */
1573
	drain_local_pages(NULL);
1574
	copy_data_pages(&copy_bm, &orig_bm);
1575 1576 1577 1578 1579 1580 1581

	/*
	 * End of critical section. From now on, we can write to memory,
	 * but we should not touch disk. This specially means we must _not_
	 * touch swap space! Except we must write out our image of course.
	 */

1582
	nr_pages += nr_highmem;
1583
	nr_copy_pages = nr_pages;
1584
	nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
1585

R
Rafael J. Wysocki 已提交
1586 1587
	printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n",
		nr_pages);
1588

1589 1590
	return 0;
}
1591

1592 1593
#ifndef CONFIG_ARCH_HIBERNATION_HEADER
static int init_header_complete(struct swsusp_info *info)
1594
{
1595
	memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
1596
	info->version_code = LINUX_VERSION_CODE;
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
	return 0;
}

static char *check_image_kernel(struct swsusp_info *info)
{
	if (info->version_code != LINUX_VERSION_CODE)
		return "kernel version";
	if (strcmp(info->uts.sysname,init_utsname()->sysname))
		return "system type";
	if (strcmp(info->uts.release,init_utsname()->release))
		return "kernel release";
	if (strcmp(info->uts.version,init_utsname()->version))
		return "version";
	if (strcmp(info->uts.machine,init_utsname()->machine))
		return "machine";
	return NULL;
}
#endif /* CONFIG_ARCH_HIBERNATION_HEADER */

1616 1617 1618 1619 1620
unsigned long snapshot_get_image_size(void)
{
	return nr_copy_pages + nr_meta_pages + 1;
}

1621 1622 1623
static int init_header(struct swsusp_info *info)
{
	memset(info, 0, sizeof(struct swsusp_info));
1624 1625
	info->num_physpages = num_physpages;
	info->image_pages = nr_copy_pages;
1626
	info->pages = snapshot_get_image_size();
1627 1628
	info->size = info->pages;
	info->size <<= PAGE_SHIFT;
1629
	return init_header_complete(info);
1630 1631 1632
}

/**
1633 1634
 *	pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
 *	are stored in the array @buf[] (1 page at a time)
1635 1636
 */

1637
static inline void
1638
pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
1639 1640 1641
{
	int j;

1642
	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1643 1644
		buf[j] = memory_bm_next_pfn(bm);
		if (unlikely(buf[j] == BM_END_OF_MAP))
1645
			break;
1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
	}
}

/**
 *	snapshot_read_next - used for reading the system memory snapshot.
 *
 *	On the first call to it @handle should point to a zeroed
 *	snapshot_handle structure.  The structure gets updated and a pointer
 *	to it should be passed to this function every next time.
 *
 *	On success the function returns a positive number.  Then, the caller
 *	is allowed to read up to the returned number of bytes from the memory
J
Jiri Slaby 已提交
1658
 *	location computed by the data_of() macro.
1659 1660 1661 1662 1663 1664 1665
 *
 *	The function returns 0 to indicate the end of data stream condition,
 *	and a negative number is returned on error.  In such cases the
 *	structure pointed to by @handle is not updated and should not be used
 *	any more.
 */

J
Jiri Slaby 已提交
1666
int snapshot_read_next(struct snapshot_handle *handle)
1667
{
1668
	if (handle->cur > nr_meta_pages + nr_copy_pages)
1669
		return 0;
1670

1671 1672
	if (!buffer) {
		/* This makes the buffer be freed by swsusp_free() */
1673
		buffer = get_image_page(GFP_ATOMIC, PG_ANY);
1674 1675 1676
		if (!buffer)
			return -ENOMEM;
	}
J
Jiri Slaby 已提交
1677
	if (!handle->cur) {
1678 1679 1680 1681 1682
		int error;

		error = init_header((struct swsusp_info *)buffer);
		if (error)
			return error;
1683
		handle->buffer = buffer;
1684 1685
		memory_bm_position_reset(&orig_bm);
		memory_bm_position_reset(&copy_bm);
J
Jiri Slaby 已提交
1686
	} else if (handle->cur <= nr_meta_pages) {
1687
		clear_page(buffer);
J
Jiri Slaby 已提交
1688 1689 1690
		pack_pfns(buffer, &orig_bm);
	} else {
		struct page *page;
1691

J
Jiri Slaby 已提交
1692 1693 1694 1695 1696 1697 1698
		page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
		if (PageHighMem(page)) {
			/* Highmem pages are copied to the buffer,
			 * because we can't return with a kmapped
			 * highmem page (we may not be called again).
			 */
			void *kaddr;
1699

J
Jiri Slaby 已提交
1700
			kaddr = kmap_atomic(page, KM_USER0);
1701
			copy_page(buffer, kaddr);
J
Jiri Slaby 已提交
1702 1703 1704 1705
			kunmap_atomic(kaddr, KM_USER0);
			handle->buffer = buffer;
		} else {
			handle->buffer = page_address(page);
1706 1707
		}
	}
J
Jiri Slaby 已提交
1708 1709
	handle->cur++;
	return PAGE_SIZE;
1710 1711 1712 1713 1714 1715 1716 1717
}

/**
 *	mark_unsafe_pages - mark the pages that cannot be used for storing
 *	the image during resume, because they conflict with the pages that
 *	had been used before suspend
 */

1718
static int mark_unsafe_pages(struct memory_bitmap *bm)
1719 1720
{
	struct zone *zone;
1721
	unsigned long pfn, max_zone_pfn;
1722 1723

	/* Clear page flags */
1724
	for_each_populated_zone(zone) {
1725 1726 1727
		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
			if (pfn_valid(pfn))
1728
				swsusp_unset_page_free(pfn_to_page(pfn));
1729 1730
	}

1731 1732 1733 1734 1735 1736
	/* Mark pages that correspond to the "original" pfns as "unsafe" */
	memory_bm_position_reset(bm);
	do {
		pfn = memory_bm_next_pfn(bm);
		if (likely(pfn != BM_END_OF_MAP)) {
			if (likely(pfn_valid(pfn)))
1737
				swsusp_set_page_free(pfn_to_page(pfn));
1738 1739 1740 1741
			else
				return -EFAULT;
		}
	} while (pfn != BM_END_OF_MAP);
1742

1743
	allocated_unsafe_pages = 0;
1744

1745 1746 1747
	return 0;
}

1748 1749
static void
duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src)
1750
{
1751 1752 1753 1754 1755 1756 1757
	unsigned long pfn;

	memory_bm_position_reset(src);
	pfn = memory_bm_next_pfn(src);
	while (pfn != BM_END_OF_MAP) {
		memory_bm_set_bit(dst, pfn);
		pfn = memory_bm_next_pfn(src);
1758 1759 1760
	}
}

1761
static int check_header(struct swsusp_info *info)
1762
{
1763
	char *reason;
1764

1765 1766
	reason = check_image_kernel(info);
	if (!reason && info->num_physpages != num_physpages)
1767 1768
		reason = "memory size";
	if (reason) {
R
Rafael J. Wysocki 已提交
1769
		printk(KERN_ERR "PM: Image mismatch: %s\n", reason);
1770 1771 1772 1773 1774 1775 1776 1777 1778
		return -EPERM;
	}
	return 0;
}

/**
 *	load header - check the image header and copy data from it
 */

1779 1780
static int
load_header(struct swsusp_info *info)
1781 1782 1783
{
	int error;

1784
	restore_pblist = NULL;
1785 1786 1787 1788 1789 1790 1791 1792 1793
	error = check_header(info);
	if (!error) {
		nr_copy_pages = info->image_pages;
		nr_meta_pages = info->pages - info->image_pages - 1;
	}
	return error;
}

/**
1794 1795
 *	unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
 *	the corresponding bit in the memory bitmap @bm
1796
 */
1797
static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
1798 1799 1800
{
	int j;

1801 1802 1803 1804
	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
		if (unlikely(buf[j] == BM_END_OF_MAP))
			break;

1805 1806 1807 1808
		if (memory_bm_pfn_present(bm, buf[j]))
			memory_bm_set_bit(bm, buf[j]);
		else
			return -EFAULT;
1809
	}
1810 1811

	return 0;
1812 1813
}

1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896
/* List of "safe" pages that may be used to store data loaded from the suspend
 * image
 */
static struct linked_page *safe_pages_list;

#ifdef CONFIG_HIGHMEM
/* struct highmem_pbe is used for creating the list of highmem pages that
 * should be restored atomically during the resume from disk, because the page
 * frames they have occupied before the suspend are in use.
 */
struct highmem_pbe {
	struct page *copy_page;	/* data is here now */
	struct page *orig_page;	/* data was here before the suspend */
	struct highmem_pbe *next;
};

/* List of highmem PBEs needed for restoring the highmem pages that were
 * allocated before the suspend and included in the suspend image, but have
 * also been allocated by the "resume" kernel, so their contents cannot be
 * written directly to their "original" page frames.
 */
static struct highmem_pbe *highmem_pblist;

/**
 *	count_highmem_image_pages - compute the number of highmem pages in the
 *	suspend image.  The bits in the memory bitmap @bm that correspond to the
 *	image pages are assumed to be set.
 */

static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
{
	unsigned long pfn;
	unsigned int cnt = 0;

	memory_bm_position_reset(bm);
	pfn = memory_bm_next_pfn(bm);
	while (pfn != BM_END_OF_MAP) {
		if (PageHighMem(pfn_to_page(pfn)))
			cnt++;

		pfn = memory_bm_next_pfn(bm);
	}
	return cnt;
}

/**
 *	prepare_highmem_image - try to allocate as many highmem pages as
 *	there are highmem image pages (@nr_highmem_p points to the variable
 *	containing the number of highmem image pages).  The pages that are
 *	"safe" (ie. will not be overwritten when the suspend image is
 *	restored) have the corresponding bits set in @bm (it must be
 *	unitialized).
 *
 *	NOTE: This function should not be called if there are no highmem
 *	image pages.
 */

static unsigned int safe_highmem_pages;

static struct memory_bitmap *safe_highmem_bm;

static int
prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
{
	unsigned int to_alloc;

	if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
		return -ENOMEM;

	if (get_highmem_buffer(PG_SAFE))
		return -ENOMEM;

	to_alloc = count_free_highmem_pages();
	if (to_alloc > *nr_highmem_p)
		to_alloc = *nr_highmem_p;
	else
		*nr_highmem_p = to_alloc;

	safe_highmem_pages = 0;
	while (to_alloc-- > 0) {
		struct page *page;

		page = alloc_page(__GFP_HIGHMEM);
1897
		if (!swsusp_page_is_free(page)) {
1898 1899 1900 1901 1902
			/* The page is "safe", set its bit the bitmap */
			memory_bm_set_bit(bm, page_to_pfn(page));
			safe_highmem_pages++;
		}
		/* Mark the page as allocated */
1903 1904
		swsusp_set_page_forbidden(page);
		swsusp_set_page_free(page);
1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
	}
	memory_bm_position_reset(bm);
	safe_highmem_bm = bm;
	return 0;
}

/**
 *	get_highmem_page_buffer - for given highmem image page find the buffer
 *	that suspend_write_next() should set for its caller to write to.
 *
 *	If the page is to be saved to its "original" page frame or a copy of
 *	the page is to be made in the highmem, @buffer is returned.  Otherwise,
 *	the copy of the page is to be made in normal memory, so the address of
 *	the copy is returned.
 *
 *	If @buffer is returned, the caller of suspend_write_next() will write
 *	the page's contents to @buffer, so they will have to be copied to the
 *	right location on the next call to suspend_write_next() and it is done
 *	with the help of copy_last_highmem_page().  For this purpose, if
 *	@buffer is returned, @last_highmem page is set to the page to which
 *	the data will have to be copied from @buffer.
 */

static struct page *last_highmem_page;

static void *
get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
{
	struct highmem_pbe *pbe;
	void *kaddr;

1936
	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948
		/* We have allocated the "original" page frame and we can
		 * use it directly to store the loaded page.
		 */
		last_highmem_page = page;
		return buffer;
	}
	/* The "original" page frame has not been allocated and we have to
	 * use a "safe" page frame to store the loaded page.
	 */
	pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
	if (!pbe) {
		swsusp_free();
1949
		return ERR_PTR(-ENOMEM);
1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
	}
	pbe->orig_page = page;
	if (safe_highmem_pages > 0) {
		struct page *tmp;

		/* Copy of the page will be stored in high memory */
		kaddr = buffer;
		tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
		safe_highmem_pages--;
		last_highmem_page = tmp;
		pbe->copy_page = tmp;
	} else {
		/* Copy of the page will be stored in normal memory */
		kaddr = safe_pages_list;
		safe_pages_list = safe_pages_list->next;
		pbe->copy_page = virt_to_page(kaddr);
	}
	pbe->next = highmem_pblist;
	highmem_pblist = pbe;
	return kaddr;
}

/**
 *	copy_last_highmem_page - copy the contents of a highmem image from
 *	@buffer, where the caller of snapshot_write_next() has place them,
 *	to the right location represented by @last_highmem_page .
 */

static void copy_last_highmem_page(void)
{
	if (last_highmem_page) {
		void *dst;

		dst = kmap_atomic(last_highmem_page, KM_USER0);
1984
		copy_page(dst, buffer);
1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
		kunmap_atomic(dst, KM_USER0);
		last_highmem_page = NULL;
	}
}

static inline int last_highmem_page_copied(void)
{
	return !last_highmem_page;
}

static inline void free_highmem_data(void)
{
	if (safe_highmem_bm)
		memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);

	if (buffer)
		free_image_page(buffer, PG_UNSAFE_CLEAR);
}
#else
static inline int get_safe_write_buffer(void) { return 0; }

static unsigned int
count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }

static inline int
prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
{
	return 0;
}

static inline void *
get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
{
2018
	return ERR_PTR(-EINVAL);
2019 2020 2021 2022 2023 2024 2025
}

static inline void copy_last_highmem_page(void) {}
static inline int last_highmem_page_copied(void) { return 1; }
static inline void free_highmem_data(void) {}
#endif /* CONFIG_HIGHMEM */

2026
/**
2027 2028 2029 2030
 *	prepare_image - use the memory bitmap @bm to mark the pages that will
 *	be overwritten in the process of restoring the system memory state
 *	from the suspend image ("unsafe" pages) and allocate memory for the
 *	image.
2031
 *
2032 2033 2034
 *	The idea is to allocate a new memory bitmap first and then allocate
 *	as many pages as needed for the image data, but not to assign these
 *	pages to specific tasks initially.  Instead, we just mark them as
2035 2036 2037
 *	allocated and create a lists of "safe" pages that will be used
 *	later.  On systems with high memory a list of "safe" highmem pages is
 *	also created.
2038 2039
 */

2040 2041 2042 2043
#define PBES_PER_LINKED_PAGE	(LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))

static int
prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
2044
{
2045
	unsigned int nr_pages, nr_highmem;
2046 2047
	struct linked_page *sp_list, *lp;
	int error;
2048

2049 2050 2051 2052 2053
	/* If there is no highmem, the buffer will not be necessary */
	free_image_page(buffer, PG_UNSAFE_CLEAR);
	buffer = NULL;

	nr_highmem = count_highmem_image_pages(bm);
2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
	error = mark_unsafe_pages(bm);
	if (error)
		goto Free;

	error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
	if (error)
		goto Free;

	duplicate_memory_bitmap(new_bm, bm);
	memory_bm_free(bm, PG_UNSAFE_KEEP);
2064 2065 2066 2067 2068
	if (nr_highmem > 0) {
		error = prepare_highmem_image(bm, &nr_highmem);
		if (error)
			goto Free;
	}
2069 2070 2071 2072 2073 2074 2075 2076
	/* Reserve some safe pages for potential later use.
	 *
	 * NOTE: This way we make sure there will be enough safe pages for the
	 * chain_alloc() in get_buffer().  It is a bit wasteful, but
	 * nr_copy_pages cannot be greater than 50% of the memory anyway.
	 */
	sp_list = NULL;
	/* nr_copy_pages cannot be lesser than allocated_unsafe_pages */
2077
	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2078 2079
	nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
	while (nr_pages > 0) {
2080
		lp = get_image_page(GFP_ATOMIC, PG_SAFE);
2081
		if (!lp) {
2082
			error = -ENOMEM;
2083 2084 2085 2086 2087
			goto Free;
		}
		lp->next = sp_list;
		sp_list = lp;
		nr_pages--;
2088
	}
2089 2090
	/* Preallocate memory for the image */
	safe_pages_list = NULL;
2091
	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2092 2093 2094 2095 2096 2097
	while (nr_pages > 0) {
		lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
		if (!lp) {
			error = -ENOMEM;
			goto Free;
		}
2098
		if (!swsusp_page_is_free(virt_to_page(lp))) {
2099 2100 2101
			/* The page is "safe", add it to the list */
			lp->next = safe_pages_list;
			safe_pages_list = lp;
2102
		}
2103
		/* Mark the page as allocated */
2104 2105
		swsusp_set_page_forbidden(virt_to_page(lp));
		swsusp_set_page_free(virt_to_page(lp));
2106
		nr_pages--;
2107
	}
2108 2109 2110 2111 2112
	/* Free the reserved safe pages so that chain_alloc() can use them */
	while (sp_list) {
		lp = sp_list->next;
		free_image_page(sp_list, PG_UNSAFE_CLEAR);
		sp_list = lp;
2113
	}
2114 2115
	return 0;

R
Rafael J. Wysocki 已提交
2116
 Free:
2117
	swsusp_free();
2118 2119 2120
	return error;
}

2121 2122 2123 2124 2125 2126
/**
 *	get_buffer - compute the address that snapshot_write_next() should
 *	set for its caller to write to.
 */

static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
2127
{
2128
	struct pbe *pbe;
2129 2130
	struct page *page;
	unsigned long pfn = memory_bm_next_pfn(bm);
2131

2132 2133 2134 2135
	if (pfn == BM_END_OF_MAP)
		return ERR_PTR(-EFAULT);

	page = pfn_to_page(pfn);
2136 2137 2138
	if (PageHighMem(page))
		return get_highmem_page_buffer(page, ca);

2139
	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
2140 2141
		/* We have allocated the "original" page frame and we can
		 * use it directly to store the loaded page.
2142
		 */
2143 2144 2145 2146
		return page_address(page);

	/* The "original" page frame has not been allocated and we have to
	 * use a "safe" page frame to store the loaded page.
2147
	 */
2148 2149 2150
	pbe = chain_alloc(ca, sizeof(struct pbe));
	if (!pbe) {
		swsusp_free();
2151
		return ERR_PTR(-ENOMEM);
2152
	}
2153 2154
	pbe->orig_address = page_address(page);
	pbe->address = safe_pages_list;
2155 2156 2157
	safe_pages_list = safe_pages_list->next;
	pbe->next = restore_pblist;
	restore_pblist = pbe;
2158
	return pbe->address;
2159 2160
}

2161 2162 2163 2164 2165 2166 2167 2168 2169
/**
 *	snapshot_write_next - used for writing the system memory snapshot.
 *
 *	On the first call to it @handle should point to a zeroed
 *	snapshot_handle structure.  The structure gets updated and a pointer
 *	to it should be passed to this function every next time.
 *
 *	On success the function returns a positive number.  Then, the caller
 *	is allowed to write up to the returned number of bytes to the memory
J
Jiri Slaby 已提交
2170
 *	location computed by the data_of() macro.
2171 2172 2173 2174 2175 2176 2177
 *
 *	The function returns 0 to indicate the "end of file" condition,
 *	and a negative number is returned on error.  In such cases the
 *	structure pointed to by @handle is not updated and should not be used
 *	any more.
 */

J
Jiri Slaby 已提交
2178
int snapshot_write_next(struct snapshot_handle *handle)
2179
{
2180
	static struct chain_allocator ca;
2181 2182
	int error = 0;

2183
	/* Check if we have already loaded the entire image */
J
Jiri Slaby 已提交
2184
	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
2185
		return 0;
2186

J
Jiri Slaby 已提交
2187 2188 2189
	handle->sync_read = 1;

	if (!handle->cur) {
2190 2191 2192 2193
		if (!buffer)
			/* This makes the buffer be freed by swsusp_free() */
			buffer = get_image_page(GFP_ATOMIC, PG_ANY);

2194 2195
		if (!buffer)
			return -ENOMEM;
2196

2197
		handle->buffer = buffer;
J
Jiri Slaby 已提交
2198 2199 2200 2201
	} else if (handle->cur == 1) {
		error = load_header(buffer);
		if (error)
			return error;
2202

J
Jiri Slaby 已提交
2203 2204 2205 2206 2207 2208 2209 2210
		error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
		if (error)
			return error;

	} else if (handle->cur <= nr_meta_pages + 1) {
		error = unpack_orig_pfns(buffer, &copy_bm);
		if (error)
			return error;
2211

J
Jiri Slaby 已提交
2212 2213
		if (handle->cur == nr_meta_pages + 1) {
			error = prepare_image(&orig_bm, &copy_bm);
2214 2215 2216
			if (error)
				return error;

J
Jiri Slaby 已提交
2217 2218 2219
			chain_init(&ca, GFP_ATOMIC, PG_SAFE);
			memory_bm_position_reset(&orig_bm);
			restore_pblist = NULL;
2220
			handle->buffer = get_buffer(&orig_bm, &ca);
J
Jiri Slaby 已提交
2221
			handle->sync_read = 0;
2222 2223
			if (IS_ERR(handle->buffer))
				return PTR_ERR(handle->buffer);
2224 2225
		}
	} else {
J
Jiri Slaby 已提交
2226 2227 2228 2229 2230 2231
		copy_last_highmem_page();
		handle->buffer = get_buffer(&orig_bm, &ca);
		if (IS_ERR(handle->buffer))
			return PTR_ERR(handle->buffer);
		if (handle->buffer != buffer)
			handle->sync_read = 0;
2232
	}
J
Jiri Slaby 已提交
2233 2234
	handle->cur++;
	return PAGE_SIZE;
2235 2236
}

2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248
/**
 *	snapshot_write_finalize - must be called after the last call to
 *	snapshot_write_next() in case the last page in the image happens
 *	to be a highmem page and its contents should be stored in the
 *	highmem.  Additionally, it releases the memory that will not be
 *	used any more.
 */

void snapshot_write_finalize(struct snapshot_handle *handle)
{
	copy_last_highmem_page();
	/* Free only if we have loaded the image entirely */
J
Jiri Slaby 已提交
2249
	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
2250 2251 2252 2253 2254
		memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR);
		free_highmem_data();
	}
}

2255 2256
int snapshot_image_loaded(struct snapshot_handle *handle)
{
2257
	return !(!nr_copy_pages || !last_highmem_page_copied() ||
2258 2259 2260
			handle->cur <= nr_meta_pages + nr_copy_pages);
}

2261 2262 2263 2264
#ifdef CONFIG_HIGHMEM
/* Assumes that @buf is ready and points to a "safe" page */
static inline void
swap_two_pages_data(struct page *p1, struct page *p2, void *buf)
2265
{
2266 2267 2268 2269
	void *kaddr1, *kaddr2;

	kaddr1 = kmap_atomic(p1, KM_USER0);
	kaddr2 = kmap_atomic(p2, KM_USER1);
2270 2271 2272
	copy_page(buf, kaddr1);
	copy_page(kaddr1, kaddr2);
	copy_page(kaddr2, buf);
2273
	kunmap_atomic(kaddr2, KM_USER1);
P
Peter Zijlstra 已提交
2274
	kunmap_atomic(kaddr1, KM_USER0);
2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304
}

/**
 *	restore_highmem - for each highmem page that was allocated before
 *	the suspend and included in the suspend image, and also has been
 *	allocated by the "resume" kernel swap its current (ie. "before
 *	resume") contents with the previous (ie. "before suspend") one.
 *
 *	If the resume eventually fails, we can call this function once
 *	again and restore the "before resume" highmem state.
 */

int restore_highmem(void)
{
	struct highmem_pbe *pbe = highmem_pblist;
	void *buf;

	if (!pbe)
		return 0;

	buf = get_image_page(GFP_ATOMIC, PG_SAFE);
	if (!buf)
		return -ENOMEM;

	while (pbe) {
		swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
		pbe = pbe->next;
	}
	free_image_page(buf, PG_UNSAFE_CLEAR);
	return 0;
2305
}
2306
#endif /* CONFIG_HIGHMEM */