intel_guc_log.c 16.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/*
 * Copyright © 2014-2017 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */
24

25 26
#include <linux/debugfs.h>

27
#include "intel_guc_log.h"
28 29
#include "i915_drv.h"

30
static void guc_log_capture_logs(struct intel_guc_log *log);
31 32 33 34

/**
 * DOC: GuC firmware log
 *
35
 * Firmware log is enabled by setting i915.guc_log_level to the positive level.
36 37 38 39 40
 * Log data is printed out via reading debugfs i915_guc_log_dump. Reading from
 * i915_guc_load_status will print out firmware loading status and scratch
 * registers value.
 */

41
static int guc_action_flush_log_complete(struct intel_guc *guc)
42 43 44 45 46 47 48 49
{
	u32 action[] = {
		INTEL_GUC_ACTION_LOG_BUFFER_FILE_FLUSH_COMPLETE
	};

	return intel_guc_send(guc, action, ARRAY_SIZE(action));
}

50
static int guc_action_flush_log(struct intel_guc *guc)
51 52 53 54 55 56 57 58 59
{
	u32 action[] = {
		INTEL_GUC_ACTION_FORCE_LOG_BUFFER_FLUSH,
		0
	};

	return intel_guc_send(guc, action, ARRAY_SIZE(action));
}

60 61
static int guc_action_control_log(struct intel_guc *guc, bool enable,
				  bool default_logging, u32 verbosity)
62 63 64
{
	u32 action[] = {
		INTEL_GUC_ACTION_UK_LOG_ENABLE_LOGGING,
65 66 67
		(enable ? GUC_LOG_CONTROL_LOGGING_ENABLED : 0) |
		(verbosity << GUC_LOG_CONTROL_VERBOSITY_SHIFT) |
		(default_logging ? GUC_LOG_CONTROL_DEFAULT_LOGGING : 0)
68 69
	};

70 71
	GEM_BUG_ON(verbosity > GUC_LOG_VERBOSITY_MAX);

72 73 74
	return intel_guc_send(guc, action, ARRAY_SIZE(action));
}

75
static inline struct intel_guc *log_to_guc(struct intel_guc_log *log)
76
{
77
	return container_of(log, struct intel_guc, log);
78 79
}

80
static void guc_log_enable_flush_events(struct intel_guc_log *log)
81
{
82 83 84
	intel_guc_enable_msg(log_to_guc(log),
			     INTEL_GUC_RECV_MSG_FLUSH_LOG_BUFFER |
			     INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED);
85 86
}

87
static void guc_log_disable_flush_events(struct intel_guc_log *log)
88
{
89 90 91
	intel_guc_disable_msg(log_to_guc(log),
			      INTEL_GUC_RECV_MSG_FLUSH_LOG_BUFFER |
			      INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED);
92 93
}

94 95 96 97 98 99 100 101 102
/*
 * Sub buffer switch callback. Called whenever relay has to switch to a new
 * sub buffer, relay stays on the same sub buffer if 0 is returned.
 */
static int subbuf_start_callback(struct rchan_buf *buf,
				 void *subbuf,
				 void *prev_subbuf,
				 size_t prev_padding)
{
103 104
	/*
	 * Use no-overwrite mode by default, where relay will stop accepting
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
	 * new data if there are no empty sub buffers left.
	 * There is no strict synchronization enforced by relay between Consumer
	 * and Producer. In overwrite mode, there is a possibility of getting
	 * inconsistent/garbled data, the producer could be writing on to the
	 * same sub buffer from which Consumer is reading. This can't be avoided
	 * unless Consumer is fast enough and can always run in tandem with
	 * Producer.
	 */
	if (relay_buf_full(buf))
		return 0;

	return 1;
}

/*
 * file_create() callback. Creates relay file in debugfs.
 */
static struct dentry *create_buf_file_callback(const char *filename,
					       struct dentry *parent,
					       umode_t mode,
					       struct rchan_buf *buf,
					       int *is_global)
{
	struct dentry *buf_file;

130 131
	/*
	 * This to enable the use of a single buffer for the relay channel and
132 133 134 135 136 137 138 139 140
	 * correspondingly have a single file exposed to User, through which
	 * it can collect the logs in order without any post-processing.
	 * Need to set 'is_global' even if parent is NULL for early logging.
	 */
	*is_global = 1;

	if (!parent)
		return NULL;

141
	buf_file = debugfs_create_file(filename, mode,
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
				       parent, buf, &relay_file_operations);
	return buf_file;
}

/*
 * file_remove() default callback. Removes relay file in debugfs.
 */
static int remove_buf_file_callback(struct dentry *dentry)
{
	debugfs_remove(dentry);
	return 0;
}

/* relay channel callbacks */
static struct rchan_callbacks relay_callbacks = {
	.subbuf_start = subbuf_start_callback,
	.create_buf_file = create_buf_file_callback,
	.remove_buf_file = remove_buf_file_callback,
};

162
static void guc_move_to_next_buf(struct intel_guc_log *log)
163
{
164 165
	/*
	 * Make sure the updates made in the sub buffer are visible when
166 167 168 169 170
	 * Consumer sees the following update to offset inside the sub buffer.
	 */
	smp_wmb();

	/* All data has been written, so now move the offset of sub buffer. */
171
	relay_reserve(log->relay.channel, log->vma->obj->base.size);
172 173

	/* Switch to the next sub buffer */
174
	relay_flush(log->relay.channel);
175 176
}

177
static void *guc_get_write_buffer(struct intel_guc_log *log)
178
{
179 180
	/*
	 * Just get the base address of a new sub buffer and copy data into it
181 182 183 184 185 186 187
	 * ourselves. NULL will be returned in no-overwrite mode, if all sub
	 * buffers are full. Could have used the relay_write() to indirectly
	 * copy the data, but that would have been bit convoluted, as we need to
	 * write to only certain locations inside a sub buffer which cannot be
	 * done without using relay_reserve() along with relay_write(). So its
	 * better to use relay_reserve() alone.
	 */
188
	return relay_reserve(log->relay.channel, 0);
189 190
}

191
static bool guc_check_log_buf_overflow(struct intel_guc_log *log,
192 193 194
				       enum guc_log_buffer_type type,
				       unsigned int full_cnt)
{
195
	unsigned int prev_full_cnt = log->stats[type].sampled_overflow;
196 197 198 199 200
	bool overflow = false;

	if (full_cnt != prev_full_cnt) {
		overflow = true;

201 202
		log->stats[type].overflow = full_cnt;
		log->stats[type].sampled_overflow += full_cnt - prev_full_cnt;
203 204 205

		if (full_cnt < prev_full_cnt) {
			/* buffer_full_cnt is a 4 bit counter */
206
			log->stats[type].sampled_overflow += 16;
207 208 209 210 211 212 213 214 215 216 217
		}
		DRM_ERROR_RATELIMITED("GuC log buffer overflow\n");
	}

	return overflow;
}

static unsigned int guc_get_log_buffer_size(enum guc_log_buffer_type type)
{
	switch (type) {
	case GUC_ISR_LOG_BUFFER:
218
		return ISR_BUFFER_SIZE;
219
	case GUC_DPC_LOG_BUFFER:
220
		return DPC_BUFFER_SIZE;
221
	case GUC_CRASH_DUMP_LOG_BUFFER:
222
		return CRASH_BUFFER_SIZE;
223 224 225 226 227 228 229
	default:
		MISSING_CASE(type);
	}

	return 0;
}

230
static void guc_read_update_log_buffer(struct intel_guc_log *log)
231 232 233 234 235 236 237 238
{
	unsigned int buffer_size, read_offset, write_offset, bytes_to_copy, full_cnt;
	struct guc_log_buffer_state *log_buf_state, *log_buf_snapshot_state;
	struct guc_log_buffer_state log_buf_state_local;
	enum guc_log_buffer_type type;
	void *src_data, *dst_data;
	bool new_overflow;

239
	mutex_lock(&log->relay.lock);
240

241
	if (WARN_ON(!intel_guc_log_relay_enabled(log)))
242
		goto out_unlock;
243 244

	/* Get the pointer to shared GuC log buffer */
245
	log_buf_state = src_data = log->relay.buf_addr;
246 247

	/* Get the pointer to local buffer to store the logs */
248
	log_buf_snapshot_state = dst_data = guc_get_write_buffer(log);
249

250
	if (unlikely(!log_buf_snapshot_state)) {
251 252
		/*
		 * Used rate limited to avoid deluge of messages, logs might be
253 254 255
		 * getting consumed by User at a slow rate.
		 */
		DRM_ERROR_RATELIMITED("no sub-buffer to capture logs\n");
256
		log->relay.full_count++;
257

258
		goto out_unlock;
259 260
	}

261 262 263 264 265
	/* Actual logs are present from the 2nd page */
	src_data += PAGE_SIZE;
	dst_data += PAGE_SIZE;

	for (type = GUC_ISR_LOG_BUFFER; type < GUC_MAX_LOG_BUFFER; type++) {
266 267
		/*
		 * Make a copy of the state structure, inside GuC log buffer
268 269 270 271 272 273 274 275 276 277 278
		 * (which is uncached mapped), on the stack to avoid reading
		 * from it multiple times.
		 */
		memcpy(&log_buf_state_local, log_buf_state,
		       sizeof(struct guc_log_buffer_state));
		buffer_size = guc_get_log_buffer_size(type);
		read_offset = log_buf_state_local.read_ptr;
		write_offset = log_buf_state_local.sampled_write_ptr;
		full_cnt = log_buf_state_local.buffer_full_cnt;

		/* Bookkeeping stuff */
279
		log->stats[type].flush += log_buf_state_local.flush_to_file;
280
		new_overflow = guc_check_log_buf_overflow(log, type, full_cnt);
281 282 283 284 285 286 287 288 289 290

		/* Update the state of shared log buffer */
		log_buf_state->read_ptr = write_offset;
		log_buf_state->flush_to_file = 0;
		log_buf_state++;

		/* First copy the state structure in snapshot buffer */
		memcpy(log_buf_snapshot_state, &log_buf_state_local,
		       sizeof(struct guc_log_buffer_state));

291 292
		/*
		 * The write pointer could have been updated by GuC firmware,
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
		 * after sending the flush interrupt to Host, for consistency
		 * set write pointer value to same value of sampled_write_ptr
		 * in the snapshot buffer.
		 */
		log_buf_snapshot_state->write_ptr = write_offset;
		log_buf_snapshot_state++;

		/* Now copy the actual logs. */
		if (unlikely(new_overflow)) {
			/* copy the whole buffer in case of overflow */
			read_offset = 0;
			write_offset = buffer_size;
		} else if (unlikely((read_offset > buffer_size) ||
				    (write_offset > buffer_size))) {
			DRM_ERROR("invalid log buffer state\n");
			/* copy whole buffer as offsets are unreliable */
			read_offset = 0;
			write_offset = buffer_size;
		}

		/* Just copy the newly written data */
		if (read_offset > write_offset) {
			i915_memcpy_from_wc(dst_data, src_data, write_offset);
			bytes_to_copy = buffer_size - read_offset;
		} else {
			bytes_to_copy = write_offset - read_offset;
		}
		i915_memcpy_from_wc(dst_data + read_offset,
				    src_data + read_offset, bytes_to_copy);

		src_data += buffer_size;
		dst_data += buffer_size;
	}

327
	guc_move_to_next_buf(log);
328

329
out_unlock:
330
	mutex_unlock(&log->relay.lock);
331 332 333 334
}

static void capture_logs_work(struct work_struct *work)
{
335
	struct intel_guc_log *log =
336
		container_of(work, struct intel_guc_log, relay.flush_work);
337

338
	guc_log_capture_logs(log);
339 340
}

341
static int guc_log_map(struct intel_guc_log *log)
342
{
343
	struct intel_guc *guc = log_to_guc(log);
344 345
	struct drm_i915_private *dev_priv = guc_to_i915(guc);
	void *vaddr;
346
	int ret;
347

348
	lockdep_assert_held(&log->relay.lock);
349

350
	if (!log->vma)
351 352
		return -ENODEV;

353
	mutex_lock(&dev_priv->drm.struct_mutex);
354
	ret = i915_gem_object_set_to_wc_domain(log->vma->obj, true);
355
	mutex_unlock(&dev_priv->drm.struct_mutex);
356 357 358
	if (ret)
		return ret;

359 360
	/*
	 * Create a WC (Uncached for read) vmalloc mapping of log
361 362 363
	 * buffer pages, so that we can directly get the data
	 * (up-to-date) from memory.
	 */
364
	vaddr = i915_gem_object_pin_map(log->vma->obj, I915_MAP_WC);
365 366 367
	if (IS_ERR(vaddr)) {
		DRM_ERROR("Couldn't map log buffer pages %d\n", ret);
		return PTR_ERR(vaddr);
368 369
	}

370
	log->relay.buf_addr = vaddr;
371

372 373 374
	return 0;
}

375
static void guc_log_unmap(struct intel_guc_log *log)
376
{
377
	lockdep_assert_held(&log->relay.lock);
378

379
	i915_gem_object_unpin_map(log->vma->obj);
380
	log->relay.buf_addr = NULL;
381 382
}

383
void intel_guc_log_init_early(struct intel_guc_log *log)
384
{
385 386
	mutex_init(&log->relay.lock);
	INIT_WORK(&log->relay.flush_work, capture_logs_work);
387 388
}

389
static int guc_log_relay_create(struct intel_guc_log *log)
390
{
391
	struct intel_guc *guc = log_to_guc(log);
392 393 394 395 396
	struct drm_i915_private *dev_priv = guc_to_i915(guc);
	struct rchan *guc_log_relay_chan;
	size_t n_subbufs, subbuf_size;
	int ret;

397
	lockdep_assert_held(&log->relay.lock);
398

399
	 /* Keep the size of sub buffers same as shared log buffer */
400
	subbuf_size = log->vma->size;
401

402 403
	/*
	 * Store up to 8 snapshots, which is large enough to buffer sufficient
404 405 406 407 408
	 * boot time logs and provides enough leeway to User, in terms of
	 * latency, for consuming the logs from relay. Also doesn't take
	 * up too much memory.
	 */
	n_subbufs = 8;
409

410 411 412 413
	guc_log_relay_chan = relay_open("guc_log",
					dev_priv->drm.primary->debugfs_root,
					subbuf_size, n_subbufs,
					&relay_callbacks, dev_priv);
414 415
	if (!guc_log_relay_chan) {
		DRM_ERROR("Couldn't create relay chan for GuC logging\n");
416

417
		ret = -ENOMEM;
418
		return ret;
419
	}
420

421
	GEM_BUG_ON(guc_log_relay_chan->subbuf_size < subbuf_size);
422
	log->relay.channel = guc_log_relay_chan;
423

424 425
	return 0;
}
426

427
static void guc_log_relay_destroy(struct intel_guc_log *log)
428
{
429
	lockdep_assert_held(&log->relay.lock);
430

431 432
	relay_close(log->relay.channel);
	log->relay.channel = NULL;
433 434
}

435
static void guc_log_capture_logs(struct intel_guc_log *log)
436
{
437
	struct intel_guc *guc = log_to_guc(log);
438 439
	struct drm_i915_private *dev_priv = guc_to_i915(guc);

440
	guc_read_update_log_buffer(log);
441

442 443
	/*
	 * Generally device is expected to be active only at this
444 445 446
	 * time, so get/put should be really quick.
	 */
	intel_runtime_pm_get(dev_priv);
447
	guc_action_flush_log_complete(guc);
448 449 450
	intel_runtime_pm_put(dev_priv);
}

451
int intel_guc_log_create(struct intel_guc_log *log)
452
{
453
	struct intel_guc *guc = log_to_guc(log);
454
	struct i915_vma *vma;
455
	u32 guc_log_size;
456 457
	int ret;

458
	GEM_BUG_ON(log->vma);
459

460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
	/*
	 *  GuC Log buffer Layout
	 *
	 *  +===============================+ 00B
	 *  |    Crash dump state header    |
	 *  +-------------------------------+ 32B
	 *  |       DPC state header        |
	 *  +-------------------------------+ 64B
	 *  |       ISR state header        |
	 *  +-------------------------------+ 96B
	 *  |                               |
	 *  +===============================+ PAGE_SIZE (4KB)
	 *  |        Crash Dump logs        |
	 *  +===============================+ + CRASH_SIZE
	 *  |           DPC logs            |
	 *  +===============================+ + DPC_SIZE
	 *  |           ISR logs            |
	 *  +===============================+ + ISR_SIZE
	 */
	guc_log_size = PAGE_SIZE + CRASH_BUFFER_SIZE + DPC_BUFFER_SIZE +
			ISR_BUFFER_SIZE;

	vma = intel_guc_allocate_vma(guc, guc_log_size);
483 484 485 486 487
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto err;
	}

488
	log->vma = vma;
489

490 491
	log->level = i915_modparams.guc_log_level;

492 493 494
	return 0;

err:
495
	DRM_ERROR("Failed to allocate GuC log buffer. %d\n", ret);
496 497 498
	return ret;
}

499
void intel_guc_log_destroy(struct intel_guc_log *log)
500
{
501
	i915_vma_unpin_and_release(&log->vma);
502 503
}

504
int intel_guc_log_set_level(struct intel_guc_log *log, u32 level)
505
{
506
	struct intel_guc *guc = log_to_guc(log);
507
	struct drm_i915_private *dev_priv = guc_to_i915(guc);
508 509
	int ret;

510
	BUILD_BUG_ON(GUC_LOG_VERBOSITY_MIN != 0);
511
	GEM_BUG_ON(!log->vma);
512

513 514 515 516
	/*
	 * GuC is recognizing log levels starting from 0 to max, we're using 0
	 * as indication that logging should be disabled.
	 */
517
	if (level < GUC_LOG_LEVEL_DISABLED || level > GUC_LOG_LEVEL_MAX)
518 519
		return -EINVAL;

520
	mutex_lock(&dev_priv->drm.struct_mutex);
521

522
	if (log->level == level) {
523 524 525
		ret = 0;
		goto out_unlock;
	}
526 527

	intel_runtime_pm_get(dev_priv);
528 529 530
	ret = guc_action_control_log(guc, GUC_LOG_LEVEL_IS_VERBOSE(level),
				     GUC_LOG_LEVEL_IS_ENABLED(level),
				     GUC_LOG_LEVEL_TO_VERBOSITY(level));
531
	intel_runtime_pm_put(dev_priv);
532 533 534
	if (ret) {
		DRM_DEBUG_DRIVER("guc_log_control action failed %d\n", ret);
		goto out_unlock;
535 536
	}

537
	log->level = level;
538

539 540
out_unlock:
	mutex_unlock(&dev_priv->drm.struct_mutex);
541

542 543 544
	return ret;
}

545 546 547 548 549
bool intel_guc_log_relay_enabled(const struct intel_guc_log *log)
{
	return log->relay.buf_addr;
}

550
int intel_guc_log_relay_open(struct intel_guc_log *log)
551
{
552 553
	int ret;

554
	mutex_lock(&log->relay.lock);
555

556
	if (intel_guc_log_relay_enabled(log)) {
557 558 559
		ret = -EEXIST;
		goto out_unlock;
	}
560

561 562 563 564 565 566 567 568 569 570
	/*
	 * We require SSE 4.1 for fast reads from the GuC log buffer and
	 * it should be present on the chipsets supporting GuC based
	 * submisssions.
	 */
	if (!i915_has_memcpy_from_wc()) {
		ret = -ENXIO;
		goto out_unlock;
	}

571
	ret = guc_log_relay_create(log);
572
	if (ret)
573
		goto out_unlock;
574

575
	ret = guc_log_map(log);
576
	if (ret)
577 578
		goto out_relay;

579
	mutex_unlock(&log->relay.lock);
580

581
	guc_log_enable_flush_events(log);
582

583 584 585 586 587
	/*
	 * When GuC is logging without us relaying to userspace, we're ignoring
	 * the flush notification. This means that we need to unconditionally
	 * flush on relay enabling, since GuC only notifies us once.
	 */
588
	queue_work(log->relay.flush_wq, &log->relay.flush_work);
589 590

	return 0;
591

592
out_relay:
593
	guc_log_relay_destroy(log);
594
out_unlock:
595
	mutex_unlock(&log->relay.lock);
596

597
	return ret;
598 599
}

600
void intel_guc_log_relay_flush(struct intel_guc_log *log)
601
{
602 603 604 605 606 607 608
	struct intel_guc *guc = log_to_guc(log);
	struct drm_i915_private *i915 = guc_to_i915(guc);

	/*
	 * Before initiating the forceful flush, wait for any pending/ongoing
	 * flush to complete otherwise forceful flush may not actually happen.
	 */
609
	flush_work(&log->relay.flush_work);
610

611
	intel_runtime_pm_get(i915);
612
	guc_action_flush_log(guc);
613 614 615 616
	intel_runtime_pm_put(i915);

	/* GuC would have updated log buffer by now, so capture it */
	guc_log_capture_logs(log);
617
}
618

619 620
void intel_guc_log_relay_close(struct intel_guc_log *log)
{
621
	guc_log_disable_flush_events(log);
622
	flush_work(&log->relay.flush_work);
623

624
	mutex_lock(&log->relay.lock);
625
	GEM_BUG_ON(!intel_guc_log_relay_enabled(log));
626
	guc_log_unmap(log);
627
	guc_log_relay_destroy(log);
628
	mutex_unlock(&log->relay.lock);
629
}
630 631 632 633 634

void intel_guc_log_handle_flush_event(struct intel_guc_log *log)
{
	queue_work(log->relay.flush_wq, &log->relay.flush_work);
}