intel_guc_log.c 16.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/*
 * Copyright © 2014-2017 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */
24

25 26
#include <linux/debugfs.h>

27
#include "intel_guc_log.h"
28 29
#include "i915_drv.h"

30
static void guc_log_capture_logs(struct intel_guc_log *log);
31 32 33 34

/**
 * DOC: GuC firmware log
 *
35
 * Firmware log is enabled by setting i915.guc_log_level to the positive level.
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
 * Log data is printed out via reading debugfs i915_guc_log_dump. Reading from
 * i915_guc_load_status will print out firmware loading status and scratch
 * registers value.
 */

static int guc_log_flush_complete(struct intel_guc *guc)
{
	u32 action[] = {
		INTEL_GUC_ACTION_LOG_BUFFER_FILE_FLUSH_COMPLETE
	};

	return intel_guc_send(guc, action, ARRAY_SIZE(action));
}

static int guc_log_flush(struct intel_guc *guc)
{
	u32 action[] = {
		INTEL_GUC_ACTION_FORCE_LOG_BUFFER_FLUSH,
		0
	};

	return intel_guc_send(guc, action, ARRAY_SIZE(action));
}

60
static int guc_log_control(struct intel_guc *guc, bool enable, u32 verbosity)
61
{
62
	union guc_log_control control_val = {
63 64 65 66
		{
			.logging_enabled = enable,
			.verbosity = verbosity,
		},
67
	};
68 69
	u32 action[] = {
		INTEL_GUC_ACTION_UK_LOG_ENABLE_LOGGING,
70
		control_val.value
71 72 73 74 75
	};

	return intel_guc_send(guc, action, ARRAY_SIZE(action));
}

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
static void guc_flush_log_msg_enable(struct intel_guc *guc)
{
	spin_lock_irq(&guc->irq_lock);
	guc->msg_enabled_mask |= INTEL_GUC_RECV_MSG_FLUSH_LOG_BUFFER |
				 INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED;
	spin_unlock_irq(&guc->irq_lock);
}

static void guc_flush_log_msg_disable(struct intel_guc *guc)
{
	spin_lock_irq(&guc->irq_lock);
	guc->msg_enabled_mask &= ~(INTEL_GUC_RECV_MSG_FLUSH_LOG_BUFFER |
				   INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED);
	spin_unlock_irq(&guc->irq_lock);
}

92 93 94 95 96
static inline struct intel_guc *log_to_guc(struct intel_guc_log *log)
{
	return container_of(log, struct intel_guc, log);
}

97 98 99 100 101 102 103 104 105
/*
 * Sub buffer switch callback. Called whenever relay has to switch to a new
 * sub buffer, relay stays on the same sub buffer if 0 is returned.
 */
static int subbuf_start_callback(struct rchan_buf *buf,
				 void *subbuf,
				 void *prev_subbuf,
				 size_t prev_padding)
{
106 107
	/*
	 * Use no-overwrite mode by default, where relay will stop accepting
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
	 * new data if there are no empty sub buffers left.
	 * There is no strict synchronization enforced by relay between Consumer
	 * and Producer. In overwrite mode, there is a possibility of getting
	 * inconsistent/garbled data, the producer could be writing on to the
	 * same sub buffer from which Consumer is reading. This can't be avoided
	 * unless Consumer is fast enough and can always run in tandem with
	 * Producer.
	 */
	if (relay_buf_full(buf))
		return 0;

	return 1;
}

/*
 * file_create() callback. Creates relay file in debugfs.
 */
static struct dentry *create_buf_file_callback(const char *filename,
					       struct dentry *parent,
					       umode_t mode,
					       struct rchan_buf *buf,
					       int *is_global)
{
	struct dentry *buf_file;

133 134
	/*
	 * This to enable the use of a single buffer for the relay channel and
135 136 137 138 139 140 141 142 143
	 * correspondingly have a single file exposed to User, through which
	 * it can collect the logs in order without any post-processing.
	 * Need to set 'is_global' even if parent is NULL for early logging.
	 */
	*is_global = 1;

	if (!parent)
		return NULL;

144
	buf_file = debugfs_create_file(filename, mode,
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
				       parent, buf, &relay_file_operations);
	return buf_file;
}

/*
 * file_remove() default callback. Removes relay file in debugfs.
 */
static int remove_buf_file_callback(struct dentry *dentry)
{
	debugfs_remove(dentry);
	return 0;
}

/* relay channel callbacks */
static struct rchan_callbacks relay_callbacks = {
	.subbuf_start = subbuf_start_callback,
	.create_buf_file = create_buf_file_callback,
	.remove_buf_file = remove_buf_file_callback,
};

165
static void guc_move_to_next_buf(struct intel_guc_log *log)
166
{
167 168
	/*
	 * Make sure the updates made in the sub buffer are visible when
169 170 171 172 173
	 * Consumer sees the following update to offset inside the sub buffer.
	 */
	smp_wmb();

	/* All data has been written, so now move the offset of sub buffer. */
174
	relay_reserve(log->runtime.relay_chan, log->vma->obj->base.size);
175 176

	/* Switch to the next sub buffer */
177
	relay_flush(log->runtime.relay_chan);
178 179
}

180
static void *guc_get_write_buffer(struct intel_guc_log *log)
181
{
182 183
	/*
	 * Just get the base address of a new sub buffer and copy data into it
184 185 186 187 188 189 190
	 * ourselves. NULL will be returned in no-overwrite mode, if all sub
	 * buffers are full. Could have used the relay_write() to indirectly
	 * copy the data, but that would have been bit convoluted, as we need to
	 * write to only certain locations inside a sub buffer which cannot be
	 * done without using relay_reserve() along with relay_write(). So its
	 * better to use relay_reserve() alone.
	 */
191
	return relay_reserve(log->runtime.relay_chan, 0);
192 193
}

194
static bool guc_check_log_buf_overflow(struct intel_guc_log *log,
195 196 197
				       enum guc_log_buffer_type type,
				       unsigned int full_cnt)
{
198
	unsigned int prev_full_cnt = log->prev_overflow_count[type];
199 200 201 202 203
	bool overflow = false;

	if (full_cnt != prev_full_cnt) {
		overflow = true;

204 205
		log->prev_overflow_count[type] = full_cnt;
		log->total_overflow_count[type] += full_cnt - prev_full_cnt;
206 207 208

		if (full_cnt < prev_full_cnt) {
			/* buffer_full_cnt is a 4 bit counter */
209
			log->total_overflow_count[type] += 16;
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
		}
		DRM_ERROR_RATELIMITED("GuC log buffer overflow\n");
	}

	return overflow;
}

static unsigned int guc_get_log_buffer_size(enum guc_log_buffer_type type)
{
	switch (type) {
	case GUC_ISR_LOG_BUFFER:
		return (GUC_LOG_ISR_PAGES + 1) * PAGE_SIZE;
	case GUC_DPC_LOG_BUFFER:
		return (GUC_LOG_DPC_PAGES + 1) * PAGE_SIZE;
	case GUC_CRASH_DUMP_LOG_BUFFER:
		return (GUC_LOG_CRASH_PAGES + 1) * PAGE_SIZE;
	default:
		MISSING_CASE(type);
	}

	return 0;
}

233
static void guc_read_update_log_buffer(struct intel_guc_log *log)
234 235 236 237 238 239 240 241
{
	unsigned int buffer_size, read_offset, write_offset, bytes_to_copy, full_cnt;
	struct guc_log_buffer_state *log_buf_state, *log_buf_snapshot_state;
	struct guc_log_buffer_state log_buf_state_local;
	enum guc_log_buffer_type type;
	void *src_data, *dst_data;
	bool new_overflow;

242 243
	mutex_lock(&log->runtime.lock);

244
	if (WARN_ON(!log->runtime.buf_addr))
245
		goto out_unlock;
246 247

	/* Get the pointer to shared GuC log buffer */
248
	log_buf_state = src_data = log->runtime.buf_addr;
249 250

	/* Get the pointer to local buffer to store the logs */
251
	log_buf_snapshot_state = dst_data = guc_get_write_buffer(log);
252

253
	if (unlikely(!log_buf_snapshot_state)) {
254 255
		/*
		 * Used rate limited to avoid deluge of messages, logs might be
256 257 258
		 * getting consumed by User at a slow rate.
		 */
		DRM_ERROR_RATELIMITED("no sub-buffer to capture logs\n");
259
		log->capture_miss_count++;
260

261
		goto out_unlock;
262 263
	}

264 265 266 267 268
	/* Actual logs are present from the 2nd page */
	src_data += PAGE_SIZE;
	dst_data += PAGE_SIZE;

	for (type = GUC_ISR_LOG_BUFFER; type < GUC_MAX_LOG_BUFFER; type++) {
269 270
		/*
		 * Make a copy of the state structure, inside GuC log buffer
271 272 273 274 275 276 277 278 279 280 281
		 * (which is uncached mapped), on the stack to avoid reading
		 * from it multiple times.
		 */
		memcpy(&log_buf_state_local, log_buf_state,
		       sizeof(struct guc_log_buffer_state));
		buffer_size = guc_get_log_buffer_size(type);
		read_offset = log_buf_state_local.read_ptr;
		write_offset = log_buf_state_local.sampled_write_ptr;
		full_cnt = log_buf_state_local.buffer_full_cnt;

		/* Bookkeeping stuff */
282 283
		log->flush_count[type] += log_buf_state_local.flush_to_file;
		new_overflow = guc_check_log_buf_overflow(log, type, full_cnt);
284 285 286 287 288 289 290 291 292 293

		/* Update the state of shared log buffer */
		log_buf_state->read_ptr = write_offset;
		log_buf_state->flush_to_file = 0;
		log_buf_state++;

		/* First copy the state structure in snapshot buffer */
		memcpy(log_buf_snapshot_state, &log_buf_state_local,
		       sizeof(struct guc_log_buffer_state));

294 295
		/*
		 * The write pointer could have been updated by GuC firmware,
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
		 * after sending the flush interrupt to Host, for consistency
		 * set write pointer value to same value of sampled_write_ptr
		 * in the snapshot buffer.
		 */
		log_buf_snapshot_state->write_ptr = write_offset;
		log_buf_snapshot_state++;

		/* Now copy the actual logs. */
		if (unlikely(new_overflow)) {
			/* copy the whole buffer in case of overflow */
			read_offset = 0;
			write_offset = buffer_size;
		} else if (unlikely((read_offset > buffer_size) ||
				    (write_offset > buffer_size))) {
			DRM_ERROR("invalid log buffer state\n");
			/* copy whole buffer as offsets are unreliable */
			read_offset = 0;
			write_offset = buffer_size;
		}

		/* Just copy the newly written data */
		if (read_offset > write_offset) {
			i915_memcpy_from_wc(dst_data, src_data, write_offset);
			bytes_to_copy = buffer_size - read_offset;
		} else {
			bytes_to_copy = write_offset - read_offset;
		}
		i915_memcpy_from_wc(dst_data + read_offset,
				    src_data + read_offset, bytes_to_copy);

		src_data += buffer_size;
		dst_data += buffer_size;
	}

330
	guc_move_to_next_buf(log);
331

332 333
out_unlock:
	mutex_unlock(&log->runtime.lock);
334 335 336 337
}

static void capture_logs_work(struct work_struct *work)
{
338 339
	struct intel_guc_log *log =
		container_of(work, struct intel_guc_log, runtime.flush_work);
340

341
	guc_log_capture_logs(log);
342 343
}

344
static bool guc_log_has_runtime(struct intel_guc_log *log)
345
{
346
	return log->runtime.buf_addr;
347 348
}

349
static int guc_log_map(struct intel_guc_log *log)
350
{
351
	struct intel_guc *guc = log_to_guc(log);
352 353
	struct drm_i915_private *dev_priv = guc_to_i915(guc);
	void *vaddr;
354
	int ret;
355

356
	lockdep_assert_held(&log->runtime.lock);
357

358
	if (!log->vma)
359 360
		return -ENODEV;

361
	mutex_lock(&dev_priv->drm.struct_mutex);
362
	ret = i915_gem_object_set_to_wc_domain(log->vma->obj, true);
363
	mutex_unlock(&dev_priv->drm.struct_mutex);
364 365 366
	if (ret)
		return ret;

367 368
	/*
	 * Create a WC (Uncached for read) vmalloc mapping of log
369 370 371
	 * buffer pages, so that we can directly get the data
	 * (up-to-date) from memory.
	 */
372
	vaddr = i915_gem_object_pin_map(log->vma->obj, I915_MAP_WC);
373 374 375
	if (IS_ERR(vaddr)) {
		DRM_ERROR("Couldn't map log buffer pages %d\n", ret);
		return PTR_ERR(vaddr);
376 377
	}

378
	log->runtime.buf_addr = vaddr;
379

380 381 382
	return 0;
}

383
static void guc_log_unmap(struct intel_guc_log *log)
384
{
385
	lockdep_assert_held(&log->runtime.lock);
386

387 388
	i915_gem_object_unpin_map(log->vma->obj);
	log->runtime.buf_addr = NULL;
389 390
}

391
void intel_guc_log_init_early(struct intel_guc_log *log)
392
{
393
	mutex_init(&log->runtime.lock);
394
	INIT_WORK(&log->runtime.flush_work, capture_logs_work);
395 396
}

397
static int guc_log_relay_create(struct intel_guc_log *log)
398
{
399
	struct intel_guc *guc = log_to_guc(log);
400 401 402 403 404
	struct drm_i915_private *dev_priv = guc_to_i915(guc);
	struct rchan *guc_log_relay_chan;
	size_t n_subbufs, subbuf_size;
	int ret;

405
	lockdep_assert_held(&log->runtime.lock);
406

407
	 /* Keep the size of sub buffers same as shared log buffer */
408
	subbuf_size = GUC_LOG_SIZE;
409

410 411
	/*
	 * Store up to 8 snapshots, which is large enough to buffer sufficient
412 413 414 415 416
	 * boot time logs and provides enough leeway to User, in terms of
	 * latency, for consuming the logs from relay. Also doesn't take
	 * up too much memory.
	 */
	n_subbufs = 8;
417

418 419 420 421
	guc_log_relay_chan = relay_open("guc_log",
					dev_priv->drm.primary->debugfs_root,
					subbuf_size, n_subbufs,
					&relay_callbacks, dev_priv);
422 423
	if (!guc_log_relay_chan) {
		DRM_ERROR("Couldn't create relay chan for GuC logging\n");
424

425
		ret = -ENOMEM;
426
		return ret;
427
	}
428

429
	GEM_BUG_ON(guc_log_relay_chan->subbuf_size < subbuf_size);
430
	log->runtime.relay_chan = guc_log_relay_chan;
431

432 433
	return 0;
}
434

435
static void guc_log_relay_destroy(struct intel_guc_log *log)
436
{
437
	lockdep_assert_held(&log->runtime.lock);
438

439 440
	relay_close(log->runtime.relay_chan);
	log->runtime.relay_chan = NULL;
441 442
}

443
static void guc_log_capture_logs(struct intel_guc_log *log)
444
{
445
	struct intel_guc *guc = log_to_guc(log);
446 447
	struct drm_i915_private *dev_priv = guc_to_i915(guc);

448
	guc_read_update_log_buffer(log);
449

450 451
	/*
	 * Generally device is expected to be active only at this
452 453 454 455 456 457 458
	 * time, so get/put should be really quick.
	 */
	intel_runtime_pm_get(dev_priv);
	guc_log_flush_complete(guc);
	intel_runtime_pm_put(dev_priv);
}

459
int intel_guc_log_create(struct intel_guc_log *log)
460
{
461
	struct intel_guc *guc = log_to_guc(log);
462 463
	struct i915_vma *vma;
	unsigned long offset;
464
	u32 flags;
465 466
	int ret;

467
	GEM_BUG_ON(log->vma);
468

469
	vma = intel_guc_allocate_vma(guc, GUC_LOG_SIZE);
470 471 472 473 474
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto err;
	}

475
	log->vma = vma;
476 477 478 479 480 481 482

	/* each allocated unit is a page */
	flags = GUC_LOG_VALID | GUC_LOG_NOTIFY_ON_HALF_FULL |
		(GUC_LOG_DPC_PAGES << GUC_LOG_DPC_SHIFT) |
		(GUC_LOG_ISR_PAGES << GUC_LOG_ISR_SHIFT) |
		(GUC_LOG_CRASH_PAGES << GUC_LOG_CRASH_SHIFT);

483
	offset = intel_guc_ggtt_offset(guc, vma) >> PAGE_SHIFT;
484
	log->flags = (offset << GUC_LOG_BUF_ADDR_SHIFT) | flags;
485 486 487 488 489

	return 0;

err:
	/* logging will be off */
490
	i915_modparams.guc_log_level = 0;
491 492 493
	return ret;
}

494
void intel_guc_log_destroy(struct intel_guc_log *log)
495
{
496
	i915_vma_unpin_and_release(&log->vma);
497 498
}

499
int intel_guc_log_level_get(struct intel_guc_log *log)
500
{
501
	GEM_BUG_ON(!log->vma);
502 503 504 505 506 507 508 509 510 511 512 513
	GEM_BUG_ON(i915_modparams.guc_log_level < 0);

	return i915_modparams.guc_log_level;
}

#define GUC_LOG_LEVEL_DISABLED		0
#define LOG_LEVEL_TO_ENABLED(x)		((x) > 0)
#define LOG_LEVEL_TO_VERBOSITY(x) ({		\
	typeof(x) _x = (x);			\
	LOG_LEVEL_TO_ENABLED(_x) ? _x - 1 : 0;	\
})
#define VERBOSITY_TO_LOG_LEVEL(x)  ((x) + 1)
514
int intel_guc_log_level_set(struct intel_guc_log *log, u64 val)
515
{
516
	struct intel_guc *guc = log_to_guc(log);
517
	struct drm_i915_private *dev_priv = guc_to_i915(guc);
518 519
	int ret;

520
	BUILD_BUG_ON(GUC_LOG_VERBOSITY_MIN != 0);
521
	GEM_BUG_ON(!log->vma);
522
	GEM_BUG_ON(i915_modparams.guc_log_level < 0);
523

524 525 526 527 528 529
	/*
	 * GuC is recognizing log levels starting from 0 to max, we're using 0
	 * as indication that logging should be disabled.
	 */
	if (val < GUC_LOG_LEVEL_DISABLED ||
	    val > VERBOSITY_TO_LOG_LEVEL(GUC_LOG_VERBOSITY_MAX))
530 531
		return -EINVAL;

532
	mutex_lock(&dev_priv->drm.struct_mutex);
533

534 535 536 537
	if (i915_modparams.guc_log_level == val) {
		ret = 0;
		goto out_unlock;
	}
538 539

	intel_runtime_pm_get(dev_priv);
540 541
	ret = guc_log_control(guc, LOG_LEVEL_TO_ENABLED(val),
			      LOG_LEVEL_TO_VERBOSITY(val));
542
	intel_runtime_pm_put(dev_priv);
543 544 545
	if (ret) {
		DRM_DEBUG_DRIVER("guc_log_control action failed %d\n", ret);
		goto out_unlock;
546 547
	}

548
	i915_modparams.guc_log_level = val;
549

550 551
out_unlock:
	mutex_unlock(&dev_priv->drm.struct_mutex);
552

553 554 555
	return ret;
}

556
int intel_guc_log_relay_open(struct intel_guc_log *log)
557
{
558 559
	int ret;

560 561
	mutex_lock(&log->runtime.lock);

562 563 564 565
	if (guc_log_has_runtime(log)) {
		ret = -EEXIST;
		goto out_unlock;
	}
566

567 568 569 570 571 572 573 574 575 576
	/*
	 * We require SSE 4.1 for fast reads from the GuC log buffer and
	 * it should be present on the chipsets supporting GuC based
	 * submisssions.
	 */
	if (!i915_has_memcpy_from_wc()) {
		ret = -ENXIO;
		goto out_unlock;
	}

577
	ret = guc_log_relay_create(log);
578
	if (ret)
579
		goto out_unlock;
580

581
	ret = guc_log_map(log);
582
	if (ret)
583 584 585
		goto out_relay;

	mutex_unlock(&log->runtime.lock);
586

587 588
	guc_flush_log_msg_enable(log_to_guc(log));

589 590 591 592 593 594
	/*
	 * When GuC is logging without us relaying to userspace, we're ignoring
	 * the flush notification. This means that we need to unconditionally
	 * flush on relay enabling, since GuC only notifies us once.
	 */
	queue_work(log->runtime.flush_wq, &log->runtime.flush_work);
595 596

	return 0;
597

598
out_relay:
599
	guc_log_relay_destroy(log);
600
out_unlock:
601 602
	mutex_unlock(&log->runtime.lock);

603
	return ret;
604 605
}

606
void intel_guc_log_relay_flush(struct intel_guc_log *log)
607
{
608 609 610 611 612 613 614 615
	struct intel_guc *guc = log_to_guc(log);
	struct drm_i915_private *i915 = guc_to_i915(guc);

	/*
	 * Before initiating the forceful flush, wait for any pending/ongoing
	 * flush to complete otherwise forceful flush may not actually happen.
	 */
	flush_work(&log->runtime.flush_work);
616

617 618 619 620 621 622
	intel_runtime_pm_get(i915);
	guc_log_flush(guc);
	intel_runtime_pm_put(i915);

	/* GuC would have updated log buffer by now, so capture it */
	guc_log_capture_logs(log);
623
}
624

625 626 627 628
void intel_guc_log_relay_close(struct intel_guc_log *log)
{
	guc_flush_log_msg_disable(log_to_guc(log));
	flush_work(&log->runtime.flush_work);
629

630
	mutex_lock(&log->runtime.lock);
631 632
	GEM_BUG_ON(!guc_log_has_runtime(log));
	guc_log_unmap(log);
633
	guc_log_relay_destroy(log);
634
	mutex_unlock(&log->runtime.lock);
635
}