qla_sup.c 56.6 KB
Newer Older
A
Andrew Vasquez 已提交
1 2 3
/*
 * QLogic Fibre Channel HBA Driver
 * Copyright (c)  2003-2005 QLogic Corporation
L
Linus Torvalds 已提交
4
 *
A
Andrew Vasquez 已提交
5 6
 * See LICENSE.qla2xxx for copyright and licensing details.
 */
L
Linus Torvalds 已提交
7 8 9
#include "qla_def.h"

#include <linux/delay.h>
10
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
11 12 13 14 15 16 17 18 19 20 21
#include <asm/uaccess.h>

static uint16_t qla2x00_nvram_request(scsi_qla_host_t *, uint32_t);
static void qla2x00_nv_deselect(scsi_qla_host_t *);
static void qla2x00_nv_write(scsi_qla_host_t *, uint16_t);

/*
 * NVRAM support routines
 */

/**
A
Andrew Vasquez 已提交
22
 * qla2x00_lock_nvram_access() -
L
Linus Torvalds 已提交
23 24 25 26 27 28
 * @ha: HA context
 */
void
qla2x00_lock_nvram_access(scsi_qla_host_t *ha)
{
	uint16_t data;
29
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
L
Linus Torvalds 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

	if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) {
		data = RD_REG_WORD(&reg->nvram);
		while (data & NVR_BUSY) {
			udelay(100);
			data = RD_REG_WORD(&reg->nvram);
		}

		/* Lock resource */
		WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0x1);
		RD_REG_WORD(&reg->u.isp2300.host_semaphore);
		udelay(5);
		data = RD_REG_WORD(&reg->u.isp2300.host_semaphore);
		while ((data & BIT_0) == 0) {
			/* Lock failed */
			udelay(100);
			WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0x1);
			RD_REG_WORD(&reg->u.isp2300.host_semaphore);
			udelay(5);
			data = RD_REG_WORD(&reg->u.isp2300.host_semaphore);
		}
	}
}

/**
A
Andrew Vasquez 已提交
55
 * qla2x00_unlock_nvram_access() -
L
Linus Torvalds 已提交
56 57 58 59 60
 * @ha: HA context
 */
void
qla2x00_unlock_nvram_access(scsi_qla_host_t *ha)
{
61
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
L
Linus Torvalds 已提交
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

	if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) {
		WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0);
		RD_REG_WORD(&reg->u.isp2300.host_semaphore);
	}
}

/**
 * qla2x00_get_nvram_word() - Calculates word position in NVRAM and calls the
 *	request routine to get the word from NVRAM.
 * @ha: HA context
 * @addr: Address in NVRAM to read
 *
 * Returns the word read from nvram @addr.
 */
uint16_t
qla2x00_get_nvram_word(scsi_qla_host_t *ha, uint32_t addr)
{
	uint16_t	data;
	uint32_t	nv_cmd;

	nv_cmd = addr << 16;
	nv_cmd |= NV_READ_OP;
	data = qla2x00_nvram_request(ha, nv_cmd);

	return (data);
}

/**
 * qla2x00_write_nvram_word() - Write NVRAM data.
 * @ha: HA context
 * @addr: Address in NVRAM to write
 * @data: word to program
 */
void
qla2x00_write_nvram_word(scsi_qla_host_t *ha, uint32_t addr, uint16_t data)
{
	int count;
	uint16_t word;
101
	uint32_t nv_cmd, wait_cnt;
102
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
L
Linus Torvalds 已提交
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129

	qla2x00_nv_write(ha, NVR_DATA_OUT);
	qla2x00_nv_write(ha, 0);
	qla2x00_nv_write(ha, 0);

	for (word = 0; word < 8; word++)
		qla2x00_nv_write(ha, NVR_DATA_OUT);

	qla2x00_nv_deselect(ha);

	/* Write data */
	nv_cmd = (addr << 16) | NV_WRITE_OP;
	nv_cmd |= data;
	nv_cmd <<= 5;
	for (count = 0; count < 27; count++) {
		if (nv_cmd & BIT_31)
			qla2x00_nv_write(ha, NVR_DATA_OUT);
		else
			qla2x00_nv_write(ha, 0);

		nv_cmd <<= 1;
	}

	qla2x00_nv_deselect(ha);

	/* Wait for NVRAM to become ready */
	WRT_REG_WORD(&reg->nvram, NVR_SELECT);
130
	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
131
	wait_cnt = NVR_WAIT_CNT;
L
Linus Torvalds 已提交
132
	do {
133 134 135 136 137
		if (!--wait_cnt) {
			DEBUG9_10(printk("%s(%ld): NVRAM didn't go ready...\n",
			    __func__, ha->host_no));
			break;
		}
L
Linus Torvalds 已提交
138 139 140 141 142 143 144 145 146 147 148 149 150 151
		NVRAM_DELAY();
		word = RD_REG_WORD(&reg->nvram);
	} while ((word & NVR_DATA_IN) == 0);

	qla2x00_nv_deselect(ha);

	/* Disable writes */
	qla2x00_nv_write(ha, NVR_DATA_OUT);
	for (count = 0; count < 10; count++)
		qla2x00_nv_write(ha, 0);

	qla2x00_nv_deselect(ha);
}

152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
static int
qla2x00_write_nvram_word_tmo(scsi_qla_host_t *ha, uint32_t addr, uint16_t data,
    uint32_t tmo)
{
	int ret, count;
	uint16_t word;
	uint32_t nv_cmd;
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	ret = QLA_SUCCESS;

	qla2x00_nv_write(ha, NVR_DATA_OUT);
	qla2x00_nv_write(ha, 0);
	qla2x00_nv_write(ha, 0);

	for (word = 0; word < 8; word++)
		qla2x00_nv_write(ha, NVR_DATA_OUT);

	qla2x00_nv_deselect(ha);

	/* Write data */
	nv_cmd = (addr << 16) | NV_WRITE_OP;
	nv_cmd |= data;
	nv_cmd <<= 5;
	for (count = 0; count < 27; count++) {
		if (nv_cmd & BIT_31)
			qla2x00_nv_write(ha, NVR_DATA_OUT);
		else
			qla2x00_nv_write(ha, 0);

		nv_cmd <<= 1;
	}

	qla2x00_nv_deselect(ha);

	/* Wait for NVRAM to become ready */
	WRT_REG_WORD(&reg->nvram, NVR_SELECT);
189
	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
	do {
		NVRAM_DELAY();
		word = RD_REG_WORD(&reg->nvram);
		if (!--tmo) {
			ret = QLA_FUNCTION_FAILED;
			break;
		}
	} while ((word & NVR_DATA_IN) == 0);

	qla2x00_nv_deselect(ha);

	/* Disable writes */
	qla2x00_nv_write(ha, NVR_DATA_OUT);
	for (count = 0; count < 10; count++)
		qla2x00_nv_write(ha, 0);

	qla2x00_nv_deselect(ha);

	return ret;
}

L
Linus Torvalds 已提交
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
/**
 * qla2x00_nvram_request() - Sends read command to NVRAM and gets data from
 *	NVRAM.
 * @ha: HA context
 * @nv_cmd: NVRAM command
 *
 * Bit definitions for NVRAM command:
 *
 *	Bit 26     = start bit
 *	Bit 25, 24 = opcode
 *	Bit 23-16  = address
 *	Bit 15-0   = write data
 *
 * Returns the word read from nvram @addr.
 */
static uint16_t
qla2x00_nvram_request(scsi_qla_host_t *ha, uint32_t nv_cmd)
{
	uint8_t		cnt;
230
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
L
Linus Torvalds 已提交
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
	uint16_t	data = 0;
	uint16_t	reg_data;

	/* Send command to NVRAM. */
	nv_cmd <<= 5;
	for (cnt = 0; cnt < 11; cnt++) {
		if (nv_cmd & BIT_31)
			qla2x00_nv_write(ha, NVR_DATA_OUT);
		else
			qla2x00_nv_write(ha, 0);
		nv_cmd <<= 1;
	}

	/* Read data from NVRAM. */
	for (cnt = 0; cnt < 16; cnt++) {
		WRT_REG_WORD(&reg->nvram, NVR_SELECT | NVR_CLOCK);
247
		RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
L
Linus Torvalds 已提交
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
		NVRAM_DELAY();
		data <<= 1;
		reg_data = RD_REG_WORD(&reg->nvram);
		if (reg_data & NVR_DATA_IN)
			data |= BIT_0;
		WRT_REG_WORD(&reg->nvram, NVR_SELECT);
		RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
		NVRAM_DELAY();
	}

	/* Deselect chip. */
	WRT_REG_WORD(&reg->nvram, NVR_DESELECT);
	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
	NVRAM_DELAY();

	return (data);
}

/**
 * qla2x00_nv_write() - Clean NVRAM operations.
 * @ha: HA context
 */
static void
qla2x00_nv_deselect(scsi_qla_host_t *ha)
{
273
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
L
Linus Torvalds 已提交
274 275 276 277 278 279 280 281 282 283 284 285 286 287

	WRT_REG_WORD(&reg->nvram, NVR_DESELECT);
	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
	NVRAM_DELAY();
}

/**
 * qla2x00_nv_write() - Prepare for NVRAM read/write operation.
 * @ha: HA context
 * @data: Serial interface selector
 */
static void
qla2x00_nv_write(scsi_qla_host_t *ha, uint16_t data)
{
288
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
L
Linus Torvalds 已提交
289 290 291 292 293 294 295 296 297 298 299 300 301

	WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_WRT_ENABLE);
	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
	NVRAM_DELAY();
	WRT_REG_WORD(&reg->nvram, data | NVR_SELECT| NVR_CLOCK |
	    NVR_WRT_ENABLE);
	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
	NVRAM_DELAY();
	WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_WRT_ENABLE);
	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
	NVRAM_DELAY();
}

302 303 304 305 306 307 308 309 310
/**
 * qla2x00_clear_nvram_protection() -
 * @ha: HA context
 */
static int
qla2x00_clear_nvram_protection(scsi_qla_host_t *ha)
{
	int ret, stat;
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
311
	uint32_t word, wait_cnt;
312 313 314 315
	uint16_t wprot, wprot_old;

	/* Clear NVRAM write protection. */
	ret = QLA_FUNCTION_FAILED;
316 317 318

	wprot_old = cpu_to_le16(qla2x00_get_nvram_word(ha, ha->nvram_base));
	stat = qla2x00_write_nvram_word_tmo(ha, ha->nvram_base,
319
	    __constant_cpu_to_le16(0x1234), 100000);
320 321
	wprot = cpu_to_le16(qla2x00_get_nvram_word(ha, ha->nvram_base));
	if (stat != QLA_SUCCESS || wprot != 0x1234) {
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
		/* Write enable. */
		qla2x00_nv_write(ha, NVR_DATA_OUT);
		qla2x00_nv_write(ha, 0);
		qla2x00_nv_write(ha, 0);
		for (word = 0; word < 8; word++)
			qla2x00_nv_write(ha, NVR_DATA_OUT);

		qla2x00_nv_deselect(ha);

		/* Enable protection register. */
		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
		qla2x00_nv_write(ha, NVR_PR_ENABLE);
		qla2x00_nv_write(ha, NVR_PR_ENABLE);
		for (word = 0; word < 8; word++)
			qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);

		qla2x00_nv_deselect(ha);

		/* Clear protection register (ffff is cleared). */
		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
		for (word = 0; word < 8; word++)
			qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);

		qla2x00_nv_deselect(ha);

		/* Wait for NVRAM to become ready. */
		WRT_REG_WORD(&reg->nvram, NVR_SELECT);
351
		RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
352
		wait_cnt = NVR_WAIT_CNT;
353
		do {
354 355 356 357 358 359
			if (!--wait_cnt) {
				DEBUG9_10(printk("%s(%ld): NVRAM didn't go "
				    "ready...\n", __func__,
				    ha->host_no));
				break;
			}
360 361 362 363
			NVRAM_DELAY();
			word = RD_REG_WORD(&reg->nvram);
		} while ((word & NVR_DATA_IN) == 0);

364 365
		if (wait_cnt)
			ret = QLA_SUCCESS;
366
	} else
367
		qla2x00_write_nvram_word(ha, ha->nvram_base, wprot_old);
368 369 370 371 372 373 374 375

	return ret;
}

static void
qla2x00_set_nvram_protection(scsi_qla_host_t *ha, int stat)
{
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
376
	uint32_t word, wait_cnt;
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410

	if (stat != QLA_SUCCESS)
		return;

	/* Set NVRAM write protection. */
	/* Write enable. */
	qla2x00_nv_write(ha, NVR_DATA_OUT);
	qla2x00_nv_write(ha, 0);
	qla2x00_nv_write(ha, 0);
	for (word = 0; word < 8; word++)
		qla2x00_nv_write(ha, NVR_DATA_OUT);

	qla2x00_nv_deselect(ha);

	/* Enable protection register. */
	qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
	qla2x00_nv_write(ha, NVR_PR_ENABLE);
	qla2x00_nv_write(ha, NVR_PR_ENABLE);
	for (word = 0; word < 8; word++)
		qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);

	qla2x00_nv_deselect(ha);

	/* Enable protection register. */
	qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
	qla2x00_nv_write(ha, NVR_PR_ENABLE);
	qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
	for (word = 0; word < 8; word++)
		qla2x00_nv_write(ha, NVR_PR_ENABLE);

	qla2x00_nv_deselect(ha);

	/* Wait for NVRAM to become ready. */
	WRT_REG_WORD(&reg->nvram, NVR_SELECT);
411
	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
412
	wait_cnt = NVR_WAIT_CNT;
413
	do {
414 415 416 417 418
		if (!--wait_cnt) {
			DEBUG9_10(printk("%s(%ld): NVRAM didn't go ready...\n",
			    __func__, ha->host_no));
			break;
		}
419 420 421 422 423 424 425 426 427 428
		NVRAM_DELAY();
		word = RD_REG_WORD(&reg->nvram);
	} while ((word & NVR_DATA_IN) == 0);
}


/*****************************************************************************/
/* Flash Manipulation Routines                                               */
/*****************************************************************************/

429 430 431
#define OPTROM_BURST_SIZE	0x1000
#define OPTROM_BURST_DWORDS	(OPTROM_BURST_SIZE / 4)

432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
static inline uint32_t
flash_conf_to_access_addr(uint32_t faddr)
{
	return FARX_ACCESS_FLASH_CONF | faddr;
}

static inline uint32_t
flash_data_to_access_addr(uint32_t faddr)
{
	return FARX_ACCESS_FLASH_DATA | faddr;
}

static inline uint32_t
nvram_conf_to_access_addr(uint32_t naddr)
{
	return FARX_ACCESS_NVRAM_CONF | naddr;
}

static inline uint32_t
nvram_data_to_access_addr(uint32_t naddr)
{
	return FARX_ACCESS_NVRAM_DATA | naddr;
}

456
static uint32_t
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
qla24xx_read_flash_dword(scsi_qla_host_t *ha, uint32_t addr)
{
	int rval;
	uint32_t cnt, data;
	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;

	WRT_REG_DWORD(&reg->flash_addr, addr & ~FARX_DATA_FLAG);
	/* Wait for READ cycle to complete. */
	rval = QLA_SUCCESS;
	for (cnt = 3000;
	    (RD_REG_DWORD(&reg->flash_addr) & FARX_DATA_FLAG) == 0 &&
	    rval == QLA_SUCCESS; cnt--) {
		if (cnt)
			udelay(10);
		else
			rval = QLA_FUNCTION_TIMEOUT;
473
		cond_resched();
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
	}

	/* TODO: What happens if we time out? */
	data = 0xDEADDEAD;
	if (rval == QLA_SUCCESS)
		data = RD_REG_DWORD(&reg->flash_data);

	return data;
}

uint32_t *
qla24xx_read_flash_data(scsi_qla_host_t *ha, uint32_t *dwptr, uint32_t faddr,
    uint32_t dwords)
{
	uint32_t i;

	/* Dword reads to flash. */
	for (i = 0; i < dwords; i++, faddr++)
		dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
		    flash_data_to_access_addr(faddr)));

	return dwptr;
}

498
static int
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
qla24xx_write_flash_dword(scsi_qla_host_t *ha, uint32_t addr, uint32_t data)
{
	int rval;
	uint32_t cnt;
	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;

	WRT_REG_DWORD(&reg->flash_data, data);
	RD_REG_DWORD(&reg->flash_data);		/* PCI Posting. */
	WRT_REG_DWORD(&reg->flash_addr, addr | FARX_DATA_FLAG);
	/* Wait for Write cycle to complete. */
	rval = QLA_SUCCESS;
	for (cnt = 500000; (RD_REG_DWORD(&reg->flash_addr) & FARX_DATA_FLAG) &&
	    rval == QLA_SUCCESS; cnt--) {
		if (cnt)
			udelay(10);
		else
			rval = QLA_FUNCTION_TIMEOUT;
516
		cond_resched();
517 518 519 520
	}
	return rval;
}

521
static void
522 523 524 525 526 527 528 529
qla24xx_get_flash_manufacturer(scsi_qla_host_t *ha, uint8_t *man_id,
    uint8_t *flash_id)
{
	uint32_t ids;

	ids = qla24xx_read_flash_dword(ha, flash_data_to_access_addr(0xd03ab));
	*man_id = LSB(ids);
	*flash_id = MSB(ids);
530 531 532 533 534 535 536 537 538 539 540 541 542 543

	/* Check if man_id and flash_id are valid. */
	if (ids != 0xDEADDEAD && (*man_id == 0 || *flash_id == 0)) {
		/* Read information using 0x9f opcode
		 * Device ID, Mfg ID would be read in the format:
		 *   <Ext Dev Info><Device ID Part2><Device ID Part 1><Mfg ID>
		 * Example: ATMEL 0x00 01 45 1F
		 * Extract MFG and Dev ID from last two bytes.
		 */
		ids = qla24xx_read_flash_dword(ha,
		    flash_data_to_access_addr(0xd009f));
		*man_id = LSB(ids);
		*flash_id = MSB(ids);
	}
544 545
}

546
static int
547 548 549 550
qla24xx_write_flash_data(scsi_qla_host_t *ha, uint32_t *dwptr, uint32_t faddr,
    uint32_t dwords)
{
	int ret;
551 552
	uint32_t liter, miter;
	uint32_t sec_mask, rest_addr, conf_addr;
553
	uint32_t fdata, findex, cnt;
554 555
	uint8_t	man_id, flash_id;
	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
556 557 558
	dma_addr_t optrom_dma;
	void *optrom = NULL;
	uint32_t *s, *d;
559 560 561

	ret = QLA_SUCCESS;

562
	/* Prepare burst-capable write on supported ISPs. */
563
	if (IS_QLA25XX(ha) && !(faddr & 0xfff) &&
564 565 566 567 568 569 570 571 572 573
	    dwords > OPTROM_BURST_DWORDS) {
		optrom = dma_alloc_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
		    &optrom_dma, GFP_KERNEL);
		if (!optrom) {
			qla_printk(KERN_DEBUG, ha,
			    "Unable to allocate memory for optrom burst write "
			    "(%x KB).\n", OPTROM_BURST_SIZE / 1024);
		}
	}

574 575 576 577 578 579
	qla24xx_get_flash_manufacturer(ha, &man_id, &flash_id);
	DEBUG9(printk("%s(%ld): Flash man_id=%d flash_id=%d\n", __func__,
	    ha->host_no, man_id, flash_id));

	conf_addr = flash_conf_to_access_addr(0x03d8);
	switch (man_id) {
A
Andrew Vasquez 已提交
580
	case 0xbf: /* STT flash. */
581 582 583 584 585 586 587
		if (flash_id == 0x8e) {
			rest_addr = 0x3fff;
			sec_mask = 0x7c000;
		} else {
			rest_addr = 0x1fff;
			sec_mask = 0x7e000;
		}
588 589 590
		if (flash_id == 0x80)
			conf_addr = flash_conf_to_access_addr(0x0352);
		break;
A
Andrew Vasquez 已提交
591
	case 0x13: /* ST M25P80. */
592
		rest_addr = 0x3fff;
593
		sec_mask = 0x7c000;
594
		break;
595
	case 0x1f: // Atmel 26DF081A
596 597
		rest_addr = 0x3fff;
		sec_mask = 0x7c000;
598 599
		conf_addr = flash_conf_to_access_addr(0x0320);
		break;
600
	default:
A
Andrew Vasquez 已提交
601
		/* Default to 64 kb sector size. */
602
		rest_addr = 0x3fff;
603
		sec_mask = 0x7c000;
604 605 606 607 608 609 610 611 612 613
		break;
	}

	/* Enable flash write. */
	WRT_REG_DWORD(&reg->ctrl_status,
	    RD_REG_DWORD(&reg->ctrl_status) | CSRX_FLASH_ENABLE);
	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */

	/* Disable flash write-protection. */
	qla24xx_write_flash_dword(ha, flash_conf_to_access_addr(0x101), 0);
614 615
	/* Some flash parts need an additional zero-write to clear bits.*/
	qla24xx_write_flash_dword(ha, flash_conf_to_access_addr(0x101), 0);
616

617 618 619 620 621 622 623 624
	for (liter = 0; liter < dwords; liter++, faddr++, dwptr++) {
		if (man_id == 0x1f) {
			findex = faddr << 2;
			fdata = findex & sec_mask;
		} else {
			findex = faddr;
			fdata = (findex & sec_mask) << 2;
		}
625

626 627 628 629 630 631 632
		/* Are we at the beginning of a sector? */
		if ((findex & rest_addr) == 0) {
			/* Do sector unprotect at 4K boundry for Atmel part. */
			if (man_id == 0x1f)
				qla24xx_write_flash_dword(ha,
				    flash_conf_to_access_addr(0x0339),
				    (fdata & 0xff00) | ((fdata << 16) &
633
				    0xff0000) | ((fdata >> 16) & 0xff));
634 635 636 637 638 639 640 641
			ret = qla24xx_write_flash_dword(ha, conf_addr,
			    (fdata & 0xff00) |((fdata << 16) &
			    0xff0000) | ((fdata >> 16) & 0xff));
			if (ret != QLA_SUCCESS) {
				DEBUG9(printk("%s(%ld) Unable to flash "
				    "sector: address=%x.\n", __func__,
				    ha->host_no, faddr));
				break;
642
			}
643 644 645
		}

		/* Go with burst-write. */
646
		if (optrom && (liter + OPTROM_BURST_DWORDS) <= dwords) {
647 648 649 650 651 652
			/* Copy data to DMA'ble buffer. */
			for (miter = 0, s = optrom, d = dwptr;
			    miter < OPTROM_BURST_DWORDS; miter++, s++, d++)
				*s = cpu_to_le32(*d);

			ret = qla2x00_load_ram(ha, optrom_dma,
653
			    flash_data_to_access_addr(faddr),
654
			    OPTROM_BURST_DWORDS);
655
			if (ret != QLA_SUCCESS) {
656 657 658 659
				qla_printk(KERN_WARNING, ha,
				    "Unable to burst-write optrom segment "
				    "(%x/%x/%llx).\n", ret,
				    flash_data_to_access_addr(faddr),
A
Andrew Morton 已提交
660
				    (unsigned long long)optrom_dma);
661 662 663 664 665 666 667 668 669 670 671
				qla_printk(KERN_WARNING, ha,
				    "Reverting to slow-write.\n");

				dma_free_coherent(&ha->pdev->dev,
				    OPTROM_BURST_SIZE, optrom, optrom_dma);
				optrom = NULL;
			} else {
				liter += OPTROM_BURST_DWORDS - 1;
				faddr += OPTROM_BURST_DWORDS - 1;
				dwptr += OPTROM_BURST_DWORDS - 1;
				continue;
672
			}
673
		}
674

675 676 677 678 679 680 681
		ret = qla24xx_write_flash_dword(ha,
		    flash_data_to_access_addr(faddr), cpu_to_le32(*dwptr));
		if (ret != QLA_SUCCESS) {
			DEBUG9(printk("%s(%ld) Unable to program flash "
			    "address=%x data=%x.\n", __func__,
			    ha->host_no, faddr, *dwptr));
			break;
682
		}
683 684 685 686 687 688 689 690 691

		/* Do sector protect at 4K boundry for Atmel part. */
		if (man_id == 0x1f &&
		    ((faddr & rest_addr) == rest_addr))
			qla24xx_write_flash_dword(ha,
			    flash_conf_to_access_addr(0x0336),
			    (fdata & 0xff00) | ((fdata << 16) &
			    0xff0000) | ((fdata >> 16) & 0xff));
	}
692

693
	/* Enable flash write-protection and wait for completion. */
694
	qla24xx_write_flash_dword(ha, flash_conf_to_access_addr(0x101), 0x9c);
695 696 697 698 699 700
	for (cnt = 300; cnt &&
	    qla24xx_read_flash_dword(ha,
		    flash_conf_to_access_addr(0x005)) & BIT_0;
	    cnt--) {
		udelay(10);
	}
701

702 703 704 705 706
	/* Disable flash write. */
	WRT_REG_DWORD(&reg->ctrl_status,
	    RD_REG_DWORD(&reg->ctrl_status) & ~CSRX_FLASH_ENABLE);
	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */

707 708 709 710
	if (optrom)
		dma_free_coherent(&ha->pdev->dev,
		    OPTROM_BURST_SIZE, optrom, optrom_dma);

711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
	return ret;
}

uint8_t *
qla2x00_read_nvram_data(scsi_qla_host_t *ha, uint8_t *buf, uint32_t naddr,
    uint32_t bytes)
{
	uint32_t i;
	uint16_t *wptr;

	/* Word reads to NVRAM via registers. */
	wptr = (uint16_t *)buf;
	qla2x00_lock_nvram_access(ha);
	for (i = 0; i < bytes >> 1; i++, naddr++)
		wptr[i] = cpu_to_le16(qla2x00_get_nvram_word(ha,
		    naddr));
	qla2x00_unlock_nvram_access(ha);

	return buf;
}

uint8_t *
qla24xx_read_nvram_data(scsi_qla_host_t *ha, uint8_t *buf, uint32_t naddr,
    uint32_t bytes)
{
	uint32_t i;
	uint32_t *dwptr;

	/* Dword reads to flash. */
	dwptr = (uint32_t *)buf;
	for (i = 0; i < bytes >> 2; i++, naddr++)
		dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
		    nvram_data_to_access_addr(naddr)));

	return buf;
}

int
qla2x00_write_nvram_data(scsi_qla_host_t *ha, uint8_t *buf, uint32_t naddr,
    uint32_t bytes)
{
	int ret, stat;
	uint32_t i;
	uint16_t *wptr;
755
	unsigned long flags;
756 757 758

	ret = QLA_SUCCESS;

759
	spin_lock_irqsave(&ha->hardware_lock, flags);
760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
	qla2x00_lock_nvram_access(ha);

	/* Disable NVRAM write-protection. */
	stat = qla2x00_clear_nvram_protection(ha);

	wptr = (uint16_t *)buf;
	for (i = 0; i < bytes >> 1; i++, naddr++) {
		qla2x00_write_nvram_word(ha, naddr,
		    cpu_to_le16(*wptr));
		wptr++;
	}

	/* Enable NVRAM write-protection. */
	qla2x00_set_nvram_protection(ha, stat);

	qla2x00_unlock_nvram_access(ha);
776
	spin_unlock_irqrestore(&ha->hardware_lock, flags);
777 778 779 780 781 782 783 784 785 786 787 788

	return ret;
}

int
qla24xx_write_nvram_data(scsi_qla_host_t *ha, uint8_t *buf, uint32_t naddr,
    uint32_t bytes)
{
	int ret;
	uint32_t i;
	uint32_t *dwptr;
	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
789
	unsigned long flags;
790 791 792

	ret = QLA_SUCCESS;

793
	spin_lock_irqsave(&ha->hardware_lock, flags);
794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
	/* Enable flash write. */
	WRT_REG_DWORD(&reg->ctrl_status,
	    RD_REG_DWORD(&reg->ctrl_status) | CSRX_FLASH_ENABLE);
	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */

	/* Disable NVRAM write-protection. */
	qla24xx_write_flash_dword(ha, nvram_conf_to_access_addr(0x101),
	    0);
	qla24xx_write_flash_dword(ha, nvram_conf_to_access_addr(0x101),
	    0);

	/* Dword writes to flash. */
	dwptr = (uint32_t *)buf;
	for (i = 0; i < bytes >> 2; i++, naddr++, dwptr++) {
		ret = qla24xx_write_flash_dword(ha,
		    nvram_data_to_access_addr(naddr),
		    cpu_to_le32(*dwptr));
		if (ret != QLA_SUCCESS) {
			DEBUG9(printk("%s(%ld) Unable to program "
			    "nvram address=%x data=%x.\n", __func__,
			    ha->host_no, naddr, *dwptr));
			break;
		}
	}

	/* Enable NVRAM write-protection. */
	qla24xx_write_flash_dword(ha, nvram_conf_to_access_addr(0x101),
	    0x8c);

	/* Disable flash write. */
	WRT_REG_DWORD(&reg->ctrl_status,
	    RD_REG_DWORD(&reg->ctrl_status) & ~CSRX_FLASH_ENABLE);
	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */
827
	spin_unlock_irqrestore(&ha->hardware_lock, flags);
828 829 830

	return ret;
}
831

832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
uint8_t *
qla25xx_read_nvram_data(scsi_qla_host_t *ha, uint8_t *buf, uint32_t naddr,
    uint32_t bytes)
{
	uint32_t i;
	uint32_t *dwptr;

	/* Dword reads to flash. */
	dwptr = (uint32_t *)buf;
	for (i = 0; i < bytes >> 2; i++, naddr++)
		dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
		    flash_data_to_access_addr(FA_VPD_NVRAM_ADDR | naddr)));

	return buf;
}

int
qla25xx_write_nvram_data(scsi_qla_host_t *ha, uint8_t *buf, uint32_t naddr,
    uint32_t bytes)
{
852 853 854 855 856 857 858 859 860 861 862 863 864 865
#define RMW_BUFFER_SIZE	(64 * 1024)
	uint8_t *dbuf;

	dbuf = vmalloc(RMW_BUFFER_SIZE);
	if (!dbuf)
		return QLA_MEMORY_ALLOC_FAILED;
	ha->isp_ops->read_optrom(ha, dbuf, FA_VPD_NVRAM_ADDR << 2,
	    RMW_BUFFER_SIZE);
	memcpy(dbuf + (naddr << 2), buf, bytes);
	ha->isp_ops->write_optrom(ha, dbuf, FA_VPD_NVRAM_ADDR << 2,
	    RMW_BUFFER_SIZE);
	vfree(dbuf);

	return QLA_SUCCESS;
866
}
867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019

static inline void
qla2x00_flip_colors(scsi_qla_host_t *ha, uint16_t *pflags)
{
	if (IS_QLA2322(ha)) {
		/* Flip all colors. */
		if (ha->beacon_color_state == QLA_LED_ALL_ON) {
			/* Turn off. */
			ha->beacon_color_state = 0;
			*pflags = GPIO_LED_ALL_OFF;
		} else {
			/* Turn on. */
			ha->beacon_color_state = QLA_LED_ALL_ON;
			*pflags = GPIO_LED_RGA_ON;
		}
	} else {
		/* Flip green led only. */
		if (ha->beacon_color_state == QLA_LED_GRN_ON) {
			/* Turn off. */
			ha->beacon_color_state = 0;
			*pflags = GPIO_LED_GREEN_OFF_AMBER_OFF;
		} else {
			/* Turn on. */
			ha->beacon_color_state = QLA_LED_GRN_ON;
			*pflags = GPIO_LED_GREEN_ON_AMBER_OFF;
		}
	}
}

void
qla2x00_beacon_blink(struct scsi_qla_host *ha)
{
	uint16_t gpio_enable;
	uint16_t gpio_data;
	uint16_t led_color = 0;
	unsigned long flags;
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	if (ha->pio_address)
		reg = (struct device_reg_2xxx __iomem *)ha->pio_address;

	spin_lock_irqsave(&ha->hardware_lock, flags);

	/* Save the Original GPIOE. */
	if (ha->pio_address) {
		gpio_enable = RD_REG_WORD_PIO(&reg->gpioe);
		gpio_data = RD_REG_WORD_PIO(&reg->gpiod);
	} else {
		gpio_enable = RD_REG_WORD(&reg->gpioe);
		gpio_data = RD_REG_WORD(&reg->gpiod);
	}

	/* Set the modified gpio_enable values */
	gpio_enable |= GPIO_LED_MASK;

	if (ha->pio_address) {
		WRT_REG_WORD_PIO(&reg->gpioe, gpio_enable);
	} else {
		WRT_REG_WORD(&reg->gpioe, gpio_enable);
		RD_REG_WORD(&reg->gpioe);
	}

	qla2x00_flip_colors(ha, &led_color);

	/* Clear out any previously set LED color. */
	gpio_data &= ~GPIO_LED_MASK;

	/* Set the new input LED color to GPIOD. */
	gpio_data |= led_color;

	/* Set the modified gpio_data values */
	if (ha->pio_address) {
		WRT_REG_WORD_PIO(&reg->gpiod, gpio_data);
	} else {
		WRT_REG_WORD(&reg->gpiod, gpio_data);
		RD_REG_WORD(&reg->gpiod);
	}

	spin_unlock_irqrestore(&ha->hardware_lock, flags);
}

int
qla2x00_beacon_on(struct scsi_qla_host *ha)
{
	uint16_t gpio_enable;
	uint16_t gpio_data;
	unsigned long flags;
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING;
	ha->fw_options[1] |= FO1_DISABLE_GPIO6_7;

	if (qla2x00_set_fw_options(ha, ha->fw_options) != QLA_SUCCESS) {
		qla_printk(KERN_WARNING, ha,
		    "Unable to update fw options (beacon on).\n");
		return QLA_FUNCTION_FAILED;
	}

	if (ha->pio_address)
		reg = (struct device_reg_2xxx __iomem *)ha->pio_address;

	/* Turn off LEDs. */
	spin_lock_irqsave(&ha->hardware_lock, flags);
	if (ha->pio_address) {
		gpio_enable = RD_REG_WORD_PIO(&reg->gpioe);
		gpio_data = RD_REG_WORD_PIO(&reg->gpiod);
	} else {
		gpio_enable = RD_REG_WORD(&reg->gpioe);
		gpio_data = RD_REG_WORD(&reg->gpiod);
	}
	gpio_enable |= GPIO_LED_MASK;

	/* Set the modified gpio_enable values. */
	if (ha->pio_address) {
		WRT_REG_WORD_PIO(&reg->gpioe, gpio_enable);
	} else {
		WRT_REG_WORD(&reg->gpioe, gpio_enable);
		RD_REG_WORD(&reg->gpioe);
	}

	/* Clear out previously set LED colour. */
	gpio_data &= ~GPIO_LED_MASK;
	if (ha->pio_address) {
		WRT_REG_WORD_PIO(&reg->gpiod, gpio_data);
	} else {
		WRT_REG_WORD(&reg->gpiod, gpio_data);
		RD_REG_WORD(&reg->gpiod);
	}
	spin_unlock_irqrestore(&ha->hardware_lock, flags);

	/*
	 * Let the per HBA timer kick off the blinking process based on
	 * the following flags. No need to do anything else now.
	 */
	ha->beacon_blink_led = 1;
	ha->beacon_color_state = 0;

	return QLA_SUCCESS;
}

int
qla2x00_beacon_off(struct scsi_qla_host *ha)
{
	int rval = QLA_SUCCESS;

	ha->beacon_blink_led = 0;

	/* Set the on flag so when it gets flipped it will be off. */
	if (IS_QLA2322(ha))
		ha->beacon_color_state = QLA_LED_ALL_ON;
	else
		ha->beacon_color_state = QLA_LED_GRN_ON;

1020
	ha->isp_ops->beacon_blink(ha);	/* This turns green LED off */
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131

	ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING;
	ha->fw_options[1] &= ~FO1_DISABLE_GPIO6_7;

	rval = qla2x00_set_fw_options(ha, ha->fw_options);
	if (rval != QLA_SUCCESS)
		qla_printk(KERN_WARNING, ha,
		    "Unable to update fw options (beacon off).\n");
	return rval;
}


static inline void
qla24xx_flip_colors(scsi_qla_host_t *ha, uint16_t *pflags)
{
	/* Flip all colors. */
	if (ha->beacon_color_state == QLA_LED_ALL_ON) {
		/* Turn off. */
		ha->beacon_color_state = 0;
		*pflags = 0;
	} else {
		/* Turn on. */
		ha->beacon_color_state = QLA_LED_ALL_ON;
		*pflags = GPDX_LED_YELLOW_ON | GPDX_LED_AMBER_ON;
	}
}

void
qla24xx_beacon_blink(struct scsi_qla_host *ha)
{
	uint16_t led_color = 0;
	uint32_t gpio_data;
	unsigned long flags;
	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;

	/* Save the Original GPIOD. */
	spin_lock_irqsave(&ha->hardware_lock, flags);
	gpio_data = RD_REG_DWORD(&reg->gpiod);

	/* Enable the gpio_data reg for update. */
	gpio_data |= GPDX_LED_UPDATE_MASK;

	WRT_REG_DWORD(&reg->gpiod, gpio_data);
	gpio_data = RD_REG_DWORD(&reg->gpiod);

	/* Set the color bits. */
	qla24xx_flip_colors(ha, &led_color);

	/* Clear out any previously set LED color. */
	gpio_data &= ~GPDX_LED_COLOR_MASK;

	/* Set the new input LED color to GPIOD. */
	gpio_data |= led_color;

	/* Set the modified gpio_data values. */
	WRT_REG_DWORD(&reg->gpiod, gpio_data);
	gpio_data = RD_REG_DWORD(&reg->gpiod);
	spin_unlock_irqrestore(&ha->hardware_lock, flags);
}

int
qla24xx_beacon_on(struct scsi_qla_host *ha)
{
	uint32_t gpio_data;
	unsigned long flags;
	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;

	if (ha->beacon_blink_led == 0) {
		/* Enable firmware for update */
		ha->fw_options[1] |= ADD_FO1_DISABLE_GPIO_LED_CTRL;

		if (qla2x00_set_fw_options(ha, ha->fw_options) != QLA_SUCCESS)
			return QLA_FUNCTION_FAILED;

		if (qla2x00_get_fw_options(ha, ha->fw_options) !=
		    QLA_SUCCESS) {
			qla_printk(KERN_WARNING, ha,
			    "Unable to update fw options (beacon on).\n");
			return QLA_FUNCTION_FAILED;
		}

		spin_lock_irqsave(&ha->hardware_lock, flags);
		gpio_data = RD_REG_DWORD(&reg->gpiod);

		/* Enable the gpio_data reg for update. */
		gpio_data |= GPDX_LED_UPDATE_MASK;
		WRT_REG_DWORD(&reg->gpiod, gpio_data);
		RD_REG_DWORD(&reg->gpiod);

		spin_unlock_irqrestore(&ha->hardware_lock, flags);
	}

	/* So all colors blink together. */
	ha->beacon_color_state = 0;

	/* Let the per HBA timer kick off the blinking process. */
	ha->beacon_blink_led = 1;

	return QLA_SUCCESS;
}

int
qla24xx_beacon_off(struct scsi_qla_host *ha)
{
	uint32_t gpio_data;
	unsigned long flags;
	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;

	ha->beacon_blink_led = 0;
	ha->beacon_color_state = QLA_LED_ALL_ON;

1132
	ha->isp_ops->beacon_blink(ha);	/* Will flip to all off. */
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159

	/* Give control back to firmware. */
	spin_lock_irqsave(&ha->hardware_lock, flags);
	gpio_data = RD_REG_DWORD(&reg->gpiod);

	/* Disable the gpio_data reg for update. */
	gpio_data &= ~GPDX_LED_UPDATE_MASK;
	WRT_REG_DWORD(&reg->gpiod, gpio_data);
	RD_REG_DWORD(&reg->gpiod);
	spin_unlock_irqrestore(&ha->hardware_lock, flags);

	ha->fw_options[1] &= ~ADD_FO1_DISABLE_GPIO_LED_CTRL;

	if (qla2x00_set_fw_options(ha, ha->fw_options) != QLA_SUCCESS) {
		qla_printk(KERN_WARNING, ha,
		    "Unable to update fw options (beacon off).\n");
		return QLA_FUNCTION_FAILED;
	}

	if (qla2x00_get_fw_options(ha, ha->fw_options) != QLA_SUCCESS) {
		qla_printk(KERN_WARNING, ha,
		    "Unable to get fw options (beacon off).\n");
		return QLA_FUNCTION_FAILED;
	}

	return QLA_SUCCESS;
}
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357


/*
 * Flash support routines
 */

/**
 * qla2x00_flash_enable() - Setup flash for reading and writing.
 * @ha: HA context
 */
static void
qla2x00_flash_enable(scsi_qla_host_t *ha)
{
	uint16_t data;
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	data = RD_REG_WORD(&reg->ctrl_status);
	data |= CSR_FLASH_ENABLE;
	WRT_REG_WORD(&reg->ctrl_status, data);
	RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
}

/**
 * qla2x00_flash_disable() - Disable flash and allow RISC to run.
 * @ha: HA context
 */
static void
qla2x00_flash_disable(scsi_qla_host_t *ha)
{
	uint16_t data;
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	data = RD_REG_WORD(&reg->ctrl_status);
	data &= ~(CSR_FLASH_ENABLE);
	WRT_REG_WORD(&reg->ctrl_status, data);
	RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
}

/**
 * qla2x00_read_flash_byte() - Reads a byte from flash
 * @ha: HA context
 * @addr: Address in flash to read
 *
 * A word is read from the chip, but, only the lower byte is valid.
 *
 * Returns the byte read from flash @addr.
 */
static uint8_t
qla2x00_read_flash_byte(scsi_qla_host_t *ha, uint32_t addr)
{
	uint16_t data;
	uint16_t bank_select;
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	bank_select = RD_REG_WORD(&reg->ctrl_status);

	if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
		/* Specify 64K address range: */
		/*  clear out Module Select and Flash Address bits [19:16]. */
		bank_select &= ~0xf8;
		bank_select |= addr >> 12 & 0xf0;
		bank_select |= CSR_FLASH_64K_BANK;
		WRT_REG_WORD(&reg->ctrl_status, bank_select);
		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */

		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
		data = RD_REG_WORD(&reg->flash_data);

		return (uint8_t)data;
	}

	/* Setup bit 16 of flash address. */
	if ((addr & BIT_16) && ((bank_select & CSR_FLASH_64K_BANK) == 0)) {
		bank_select |= CSR_FLASH_64K_BANK;
		WRT_REG_WORD(&reg->ctrl_status, bank_select);
		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
	} else if (((addr & BIT_16) == 0) &&
	    (bank_select & CSR_FLASH_64K_BANK)) {
		bank_select &= ~(CSR_FLASH_64K_BANK);
		WRT_REG_WORD(&reg->ctrl_status, bank_select);
		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
	}

	/* Always perform IO mapped accesses to the FLASH registers. */
	if (ha->pio_address) {
		uint16_t data2;

		reg = (struct device_reg_2xxx __iomem *)ha->pio_address;
		WRT_REG_WORD_PIO(&reg->flash_address, (uint16_t)addr);
		do {
			data = RD_REG_WORD_PIO(&reg->flash_data);
			barrier();
			cpu_relax();
			data2 = RD_REG_WORD_PIO(&reg->flash_data);
		} while (data != data2);
	} else {
		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
		data = qla2x00_debounce_register(&reg->flash_data);
	}

	return (uint8_t)data;
}

/**
 * qla2x00_write_flash_byte() - Write a byte to flash
 * @ha: HA context
 * @addr: Address in flash to write
 * @data: Data to write
 */
static void
qla2x00_write_flash_byte(scsi_qla_host_t *ha, uint32_t addr, uint8_t data)
{
	uint16_t bank_select;
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	bank_select = RD_REG_WORD(&reg->ctrl_status);
	if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
		/* Specify 64K address range: */
		/*  clear out Module Select and Flash Address bits [19:16]. */
		bank_select &= ~0xf8;
		bank_select |= addr >> 12 & 0xf0;
		bank_select |= CSR_FLASH_64K_BANK;
		WRT_REG_WORD(&reg->ctrl_status, bank_select);
		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */

		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
		WRT_REG_WORD(&reg->flash_data, (uint16_t)data);
		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */

		return;
	}

	/* Setup bit 16 of flash address. */
	if ((addr & BIT_16) && ((bank_select & CSR_FLASH_64K_BANK) == 0)) {
		bank_select |= CSR_FLASH_64K_BANK;
		WRT_REG_WORD(&reg->ctrl_status, bank_select);
		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
	} else if (((addr & BIT_16) == 0) &&
	    (bank_select & CSR_FLASH_64K_BANK)) {
		bank_select &= ~(CSR_FLASH_64K_BANK);
		WRT_REG_WORD(&reg->ctrl_status, bank_select);
		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
	}

	/* Always perform IO mapped accesses to the FLASH registers. */
	if (ha->pio_address) {
		reg = (struct device_reg_2xxx __iomem *)ha->pio_address;
		WRT_REG_WORD_PIO(&reg->flash_address, (uint16_t)addr);
		WRT_REG_WORD_PIO(&reg->flash_data, (uint16_t)data);
	} else {
		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
		WRT_REG_WORD(&reg->flash_data, (uint16_t)data);
		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
	}
}

/**
 * qla2x00_poll_flash() - Polls flash for completion.
 * @ha: HA context
 * @addr: Address in flash to poll
 * @poll_data: Data to be polled
 * @man_id: Flash manufacturer ID
 * @flash_id: Flash ID
 *
 * This function polls the device until bit 7 of what is read matches data
 * bit 7 or until data bit 5 becomes a 1.  If that hapens, the flash ROM timed
 * out (a fatal error).  The flash book recommeds reading bit 7 again after
 * reading bit 5 as a 1.
 *
 * Returns 0 on success, else non-zero.
 */
static int
qla2x00_poll_flash(scsi_qla_host_t *ha, uint32_t addr, uint8_t poll_data,
    uint8_t man_id, uint8_t flash_id)
{
	int status;
	uint8_t flash_data;
	uint32_t cnt;

	status = 1;

	/* Wait for 30 seconds for command to finish. */
	poll_data &= BIT_7;
	for (cnt = 3000000; cnt; cnt--) {
		flash_data = qla2x00_read_flash_byte(ha, addr);
		if ((flash_data & BIT_7) == poll_data) {
			status = 0;
			break;
		}

		if (man_id != 0x40 && man_id != 0xda) {
			if ((flash_data & BIT_5) && cnt > 2)
				cnt = 2;
		}
		udelay(10);
		barrier();
1358
		cond_resched();
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
	}
	return status;
}

/**
 * qla2x00_program_flash_address() - Programs a flash address
 * @ha: HA context
 * @addr: Address in flash to program
 * @data: Data to be written in flash
 * @man_id: Flash manufacturer ID
 * @flash_id: Flash ID
 *
 * Returns 0 on success, else non-zero.
 */
static int
qla2x00_program_flash_address(scsi_qla_host_t *ha, uint32_t addr, uint8_t data,
    uint8_t man_id, uint8_t flash_id)
{
	/* Write Program Command Sequence. */
	if (IS_OEM_001(ha)) {
		qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
		qla2x00_write_flash_byte(ha, 0x555, 0x55);
		qla2x00_write_flash_byte(ha, 0xaaa, 0xa0);
		qla2x00_write_flash_byte(ha, addr, data);
	} else {
		if (man_id == 0xda && flash_id == 0xc1) {
			qla2x00_write_flash_byte(ha, addr, data);
			if (addr & 0x7e)
				return 0;
		} else {
			qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
			qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
			qla2x00_write_flash_byte(ha, 0x5555, 0xa0);
			qla2x00_write_flash_byte(ha, addr, data);
		}
	}

	udelay(150);

	/* Wait for write to complete. */
	return qla2x00_poll_flash(ha, addr, data, man_id, flash_id);
}

/**
 * qla2x00_erase_flash() - Erase the flash.
 * @ha: HA context
 * @man_id: Flash manufacturer ID
 * @flash_id: Flash ID
 *
 * Returns 0 on success, else non-zero.
 */
static int
qla2x00_erase_flash(scsi_qla_host_t *ha, uint8_t man_id, uint8_t flash_id)
{
	/* Individual Sector Erase Command Sequence */
	if (IS_OEM_001(ha)) {
		qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
		qla2x00_write_flash_byte(ha, 0x555, 0x55);
		qla2x00_write_flash_byte(ha, 0xaaa, 0x80);
		qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
		qla2x00_write_flash_byte(ha, 0x555, 0x55);
		qla2x00_write_flash_byte(ha, 0xaaa, 0x10);
	} else {
		qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
		qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
		qla2x00_write_flash_byte(ha, 0x5555, 0x80);
		qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
		qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
		qla2x00_write_flash_byte(ha, 0x5555, 0x10);
	}

	udelay(150);

	/* Wait for erase to complete. */
	return qla2x00_poll_flash(ha, 0x00, 0x80, man_id, flash_id);
}

/**
 * qla2x00_erase_flash_sector() - Erase a flash sector.
 * @ha: HA context
 * @addr: Flash sector to erase
 * @sec_mask: Sector address mask
 * @man_id: Flash manufacturer ID
 * @flash_id: Flash ID
 *
 * Returns 0 on success, else non-zero.
 */
static int
qla2x00_erase_flash_sector(scsi_qla_host_t *ha, uint32_t addr,
    uint32_t sec_mask, uint8_t man_id, uint8_t flash_id)
{
	/* Individual Sector Erase Command Sequence */
	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
	qla2x00_write_flash_byte(ha, 0x5555, 0x80);
	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
	if (man_id == 0x1f && flash_id == 0x13)
		qla2x00_write_flash_byte(ha, addr & sec_mask, 0x10);
	else
		qla2x00_write_flash_byte(ha, addr & sec_mask, 0x30);

	udelay(150);

	/* Wait for erase to complete. */
	return qla2x00_poll_flash(ha, addr, 0x80, man_id, flash_id);
}

/**
 * qla2x00_get_flash_manufacturer() - Read manufacturer ID from flash chip.
 * @man_id: Flash manufacturer ID
 * @flash_id: Flash ID
 */
static void
qla2x00_get_flash_manufacturer(scsi_qla_host_t *ha, uint8_t *man_id,
    uint8_t *flash_id)
{
	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
	qla2x00_write_flash_byte(ha, 0x5555, 0x90);
	*man_id = qla2x00_read_flash_byte(ha, 0x0000);
	*flash_id = qla2x00_read_flash_byte(ha, 0x0001);
	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
	qla2x00_write_flash_byte(ha, 0x5555, 0xf0);
}

1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
static void
qla2x00_read_flash_data(scsi_qla_host_t *ha, uint8_t *tmp_buf, uint32_t saddr,
        uint32_t length)
{
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
	uint32_t midpoint, ilength;
	uint8_t data;

	midpoint = length / 2;

	WRT_REG_WORD(&reg->nvram, 0);
	RD_REG_WORD(&reg->nvram);
	for (ilength = 0; ilength < length; saddr++, ilength++, tmp_buf++) {
		if (ilength == midpoint) {
			WRT_REG_WORD(&reg->nvram, NVR_SELECT);
			RD_REG_WORD(&reg->nvram);
		}
		data = qla2x00_read_flash_byte(ha, saddr);
		if (saddr % 100)
			udelay(10);
		*tmp_buf = data;
1507
		cond_resched();
1508 1509
	}
}
1510 1511 1512 1513 1514 1515 1516 1517 1518 1519

static inline void
qla2x00_suspend_hba(struct scsi_qla_host *ha)
{
	int cnt;
	unsigned long flags;
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	/* Suspend HBA. */
	scsi_block_requests(ha->host);
1520
	ha->isp_ops->disable_intrs(ha);
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
	set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);

	/* Pause RISC. */
	spin_lock_irqsave(&ha->hardware_lock, flags);
	WRT_REG_WORD(&reg->hccr, HCCR_PAUSE_RISC);
	RD_REG_WORD(&reg->hccr);
	if (IS_QLA2100(ha) || IS_QLA2200(ha) || IS_QLA2300(ha)) {
		for (cnt = 0; cnt < 30000; cnt++) {
			if ((RD_REG_WORD(&reg->hccr) & HCCR_RISC_PAUSE) != 0)
				break;
			udelay(100);
		}
	} else {
		udelay(10);
	}
	spin_unlock_irqrestore(&ha->hardware_lock, flags);
}

static inline void
qla2x00_resume_hba(struct scsi_qla_host *ha)
{
	/* Resume HBA. */
	clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
	set_bit(ISP_ABORT_NEEDED, &ha->dpc_flags);
1545
	qla2xxx_wake_dpc(ha);
1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788
	qla2x00_wait_for_hba_online(ha);
	scsi_unblock_requests(ha->host);
}

uint8_t *
qla2x00_read_optrom_data(struct scsi_qla_host *ha, uint8_t *buf,
    uint32_t offset, uint32_t length)
{
	uint32_t addr, midpoint;
	uint8_t *data;
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	/* Suspend HBA. */
	qla2x00_suspend_hba(ha);

	/* Go with read. */
	midpoint = ha->optrom_size / 2;

	qla2x00_flash_enable(ha);
	WRT_REG_WORD(&reg->nvram, 0);
	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
	for (addr = offset, data = buf; addr < length; addr++, data++) {
		if (addr == midpoint) {
			WRT_REG_WORD(&reg->nvram, NVR_SELECT);
			RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
		}

		*data = qla2x00_read_flash_byte(ha, addr);
	}
	qla2x00_flash_disable(ha);

	/* Resume HBA. */
	qla2x00_resume_hba(ha);

	return buf;
}

int
qla2x00_write_optrom_data(struct scsi_qla_host *ha, uint8_t *buf,
    uint32_t offset, uint32_t length)
{

	int rval;
	uint8_t man_id, flash_id, sec_number, data;
	uint16_t wd;
	uint32_t addr, liter, sec_mask, rest_addr;
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	/* Suspend HBA. */
	qla2x00_suspend_hba(ha);

	rval = QLA_SUCCESS;
	sec_number = 0;

	/* Reset ISP chip. */
	WRT_REG_WORD(&reg->ctrl_status, CSR_ISP_SOFT_RESET);
	pci_read_config_word(ha->pdev, PCI_COMMAND, &wd);

	/* Go with write. */
	qla2x00_flash_enable(ha);
	do {	/* Loop once to provide quick error exit */
		/* Structure of flash memory based on manufacturer */
		if (IS_OEM_001(ha)) {
			/* OEM variant with special flash part. */
			man_id = flash_id = 0;
			rest_addr = 0xffff;
			sec_mask   = 0x10000;
			goto update_flash;
		}
		qla2x00_get_flash_manufacturer(ha, &man_id, &flash_id);
		switch (man_id) {
		case 0x20: /* ST flash. */
			if (flash_id == 0xd2 || flash_id == 0xe3) {
				/*
				 * ST m29w008at part - 64kb sector size with
				 * 32kb,8kb,8kb,16kb sectors at memory address
				 * 0xf0000.
				 */
				rest_addr = 0xffff;
				sec_mask = 0x10000;
				break;   
			}
			/*
			 * ST m29w010b part - 16kb sector size
			 * Default to 16kb sectors
			 */
			rest_addr = 0x3fff;
			sec_mask = 0x1c000;
			break;
		case 0x40: /* Mostel flash. */
			/* Mostel v29c51001 part - 512 byte sector size. */
			rest_addr = 0x1ff;
			sec_mask = 0x1fe00;
			break;
		case 0xbf: /* SST flash. */
			/* SST39sf10 part - 4kb sector size. */
			rest_addr = 0xfff;
			sec_mask = 0x1f000;
			break;
		case 0xda: /* Winbond flash. */
			/* Winbond W29EE011 part - 256 byte sector size. */
			rest_addr = 0x7f;
			sec_mask = 0x1ff80;
			break;
		case 0xc2: /* Macronix flash. */
			/* 64k sector size. */
			if (flash_id == 0x38 || flash_id == 0x4f) {
				rest_addr = 0xffff;
				sec_mask = 0x10000;
				break;
			}
			/* Fall through... */

		case 0x1f: /* Atmel flash. */
			/* 512k sector size. */
			if (flash_id == 0x13) {
				rest_addr = 0x7fffffff;
				sec_mask =   0x80000000;
				break;
			}
			/* Fall through... */

		case 0x01: /* AMD flash. */
			if (flash_id == 0x38 || flash_id == 0x40 ||
			    flash_id == 0x4f) {
				/* Am29LV081 part - 64kb sector size. */
				/* Am29LV002BT part - 64kb sector size. */
				rest_addr = 0xffff;
				sec_mask = 0x10000;
				break;
			} else if (flash_id == 0x3e) {
				/*
				 * Am29LV008b part - 64kb sector size with
				 * 32kb,8kb,8kb,16kb sector at memory address
				 * h0xf0000.
				 */
				rest_addr = 0xffff;
				sec_mask = 0x10000;
				break;
			} else if (flash_id == 0x20 || flash_id == 0x6e) {
				/*
				 * Am29LV010 part or AM29f010 - 16kb sector
				 * size.
				 */
				rest_addr = 0x3fff;
				sec_mask = 0x1c000;
				break;
			} else if (flash_id == 0x6d) {
				/* Am29LV001 part - 8kb sector size. */
				rest_addr = 0x1fff;
				sec_mask = 0x1e000;
				break;
			}
		default:
			/* Default to 16 kb sector size. */
			rest_addr = 0x3fff;
			sec_mask = 0x1c000;
			break;
		}

update_flash:
		if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
			if (qla2x00_erase_flash(ha, man_id, flash_id)) {
				rval = QLA_FUNCTION_FAILED;
				break;
			}
		}

		for (addr = offset, liter = 0; liter < length; liter++,
		    addr++) {
			data = buf[liter];
			/* Are we at the beginning of a sector? */
			if ((addr & rest_addr) == 0) {
				if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
					if (addr >= 0x10000UL) {
						if (((addr >> 12) & 0xf0) &&
						    ((man_id == 0x01 &&
							flash_id == 0x3e) ||
						     (man_id == 0x20 &&
							 flash_id == 0xd2))) {
							sec_number++;
							if (sec_number == 1) {
								rest_addr =
								    0x7fff;
								sec_mask =
								    0x18000;
							} else if (
							    sec_number == 2 ||
							    sec_number == 3) {
								rest_addr =
								    0x1fff;
								sec_mask =
								    0x1e000;
							} else if (
							    sec_number == 4) {
								rest_addr =
								    0x3fff;
								sec_mask =
								    0x1c000;
							}
						}
					}
				} else if (addr == ha->optrom_size / 2) {
					WRT_REG_WORD(&reg->nvram, NVR_SELECT);
					RD_REG_WORD(&reg->nvram);
				}

				if (flash_id == 0xda && man_id == 0xc1) {
					qla2x00_write_flash_byte(ha, 0x5555,
					    0xaa);
					qla2x00_write_flash_byte(ha, 0x2aaa,
					    0x55);
					qla2x00_write_flash_byte(ha, 0x5555,
					    0xa0);
				} else if (!IS_QLA2322(ha) && !IS_QLA6322(ha)) {
					/* Then erase it */
					if (qla2x00_erase_flash_sector(ha,
					    addr, sec_mask, man_id,
					    flash_id)) {
						rval = QLA_FUNCTION_FAILED;
						break;
					}
					if (man_id == 0x01 && flash_id == 0x6d)
						sec_number++;
				}
			}

			if (man_id == 0x01 && flash_id == 0x6d) {
				if (sec_number == 1 &&
				    addr == (rest_addr - 1)) {
					rest_addr = 0x0fff;
					sec_mask   = 0x1f000;
				} else if (sec_number == 3 && (addr & 0x7ffe)) {
					rest_addr = 0x3fff;
					sec_mask   = 0x1c000;
				}
			}

			if (qla2x00_program_flash_address(ha, addr, data,
			    man_id, flash_id)) {
				rval = QLA_FUNCTION_FAILED;
				break;
			}
1789
			cond_resched();
1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834
		}
	} while (0);
	qla2x00_flash_disable(ha);

	/* Resume HBA. */
	qla2x00_resume_hba(ha);

	return rval;
}

uint8_t *
qla24xx_read_optrom_data(struct scsi_qla_host *ha, uint8_t *buf,
    uint32_t offset, uint32_t length)
{
	/* Suspend HBA. */
	scsi_block_requests(ha->host);
	set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);

	/* Go with read. */
	qla24xx_read_flash_data(ha, (uint32_t *)buf, offset >> 2, length >> 2);

	/* Resume HBA. */
	clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
	scsi_unblock_requests(ha->host);

	return buf;
}

int
qla24xx_write_optrom_data(struct scsi_qla_host *ha, uint8_t *buf,
    uint32_t offset, uint32_t length)
{
	int rval;

	/* Suspend HBA. */
	scsi_block_requests(ha->host);
	set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);

	/* Go with write. */
	rval = qla24xx_write_flash_data(ha, (uint32_t *)buf, offset >> 2,
	    length >> 2);

	/* Resume HBA -- RISC reset needed. */
	clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
	set_bit(ISP_ABORT_NEEDED, &ha->dpc_flags);
1835
	qla2xxx_wake_dpc(ha);
1836 1837 1838 1839 1840
	qla2x00_wait_for_hba_online(ha);
	scsi_unblock_requests(ha->host);

	return rval;
}
1841

1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
uint8_t *
qla25xx_read_optrom_data(struct scsi_qla_host *ha, uint8_t *buf,
    uint32_t offset, uint32_t length)
{
	int rval;
	dma_addr_t optrom_dma;
	void *optrom;
	uint8_t *pbuf;
	uint32_t faddr, left, burst;

1852
	if (offset & 0xfff)
1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880
		goto slow_read;
	if (length < OPTROM_BURST_SIZE)
		goto slow_read;

	optrom = dma_alloc_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
	    &optrom_dma, GFP_KERNEL);
	if (!optrom) {
		qla_printk(KERN_DEBUG, ha,
		    "Unable to allocate memory for optrom burst read "
		    "(%x KB).\n", OPTROM_BURST_SIZE / 1024);

		goto slow_read;
	}

	pbuf = buf;
	faddr = offset >> 2;
	left = length >> 2;
	burst = OPTROM_BURST_DWORDS;
	while (left != 0) {
		if (burst > left)
			burst = left;

		rval = qla2x00_dump_ram(ha, optrom_dma,
		    flash_data_to_access_addr(faddr), burst);
		if (rval) {
			qla_printk(KERN_WARNING, ha,
			    "Unable to burst-read optrom segment "
			    "(%x/%x/%llx).\n", rval,
A
Andrew Morton 已提交
1881 1882
			    flash_data_to_access_addr(faddr),
			    (unsigned long long)optrom_dma);
1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906
			qla_printk(KERN_WARNING, ha,
			    "Reverting to slow-read.\n");

			dma_free_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
			    optrom, optrom_dma);
			goto slow_read;
		}

		memcpy(pbuf, optrom, burst * 4);

		left -= burst;
		faddr += burst;
		pbuf += burst * 4;
	}

	dma_free_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE, optrom,
	    optrom_dma);

	return buf;

slow_read:
    return qla24xx_read_optrom_data(ha, buf, offset, length);
}

1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229
/**
 * qla2x00_get_fcode_version() - Determine an FCODE image's version.
 * @ha: HA context
 * @pcids: Pointer to the FCODE PCI data structure
 *
 * The process of retrieving the FCODE version information is at best
 * described as interesting.
 *
 * Within the first 100h bytes of the image an ASCII string is present
 * which contains several pieces of information including the FCODE
 * version.  Unfortunately it seems the only reliable way to retrieve
 * the version is by scanning for another sentinel within the string,
 * the FCODE build date:
 *
 *	... 2.00.02 10/17/02 ...
 *
 * Returns QLA_SUCCESS on successful retrieval of version.
 */
static void
qla2x00_get_fcode_version(scsi_qla_host_t *ha, uint32_t pcids)
{
	int ret = QLA_FUNCTION_FAILED;
	uint32_t istart, iend, iter, vend;
	uint8_t do_next, rbyte, *vbyte;

	memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));

	/* Skip the PCI data structure. */
	istart = pcids +
	    ((qla2x00_read_flash_byte(ha, pcids + 0x0B) << 8) |
		qla2x00_read_flash_byte(ha, pcids + 0x0A));
	iend = istart + 0x100;
	do {
		/* Scan for the sentinel date string...eeewww. */
		do_next = 0;
		iter = istart;
		while ((iter < iend) && !do_next) {
			iter++;
			if (qla2x00_read_flash_byte(ha, iter) == '/') {
				if (qla2x00_read_flash_byte(ha, iter + 2) ==
				    '/')
					do_next++;
				else if (qla2x00_read_flash_byte(ha,
				    iter + 3) == '/')
					do_next++;
			}
		}
		if (!do_next)
			break;

		/* Backtrack to previous ' ' (space). */
		do_next = 0;
		while ((iter > istart) && !do_next) {
			iter--;
			if (qla2x00_read_flash_byte(ha, iter) == ' ')
				do_next++;
		}
		if (!do_next)
			break;

		/*
		 * Mark end of version tag, and find previous ' ' (space) or
		 * string length (recent FCODE images -- major hack ahead!!!).
		 */
		vend = iter - 1;
		do_next = 0;
		while ((iter > istart) && !do_next) {
			iter--;
			rbyte = qla2x00_read_flash_byte(ha, iter);
			if (rbyte == ' ' || rbyte == 0xd || rbyte == 0x10)
				do_next++;
		}
		if (!do_next)
			break;

		/* Mark beginning of version tag, and copy data. */
		iter++;
		if ((vend - iter) &&
		    ((vend - iter) < sizeof(ha->fcode_revision))) {
			vbyte = ha->fcode_revision;
			while (iter <= vend) {
				*vbyte++ = qla2x00_read_flash_byte(ha, iter);
				iter++;
			}
			ret = QLA_SUCCESS;
		}
	} while (0);

	if (ret != QLA_SUCCESS)
		memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
}

int
qla2x00_get_flash_version(scsi_qla_host_t *ha, void *mbuf)
{
	int ret = QLA_SUCCESS;
	uint8_t code_type, last_image;
	uint32_t pcihdr, pcids;
	uint8_t *dbyte;
	uint16_t *dcode;

	if (!ha->pio_address || !mbuf)
		return QLA_FUNCTION_FAILED;

	memset(ha->bios_revision, 0, sizeof(ha->bios_revision));
	memset(ha->efi_revision, 0, sizeof(ha->efi_revision));
	memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
	memset(ha->fw_revision, 0, sizeof(ha->fw_revision));

	qla2x00_flash_enable(ha);

	/* Begin with first PCI expansion ROM header. */
	pcihdr = 0;
	last_image = 1;
	do {
		/* Verify PCI expansion ROM header. */
		if (qla2x00_read_flash_byte(ha, pcihdr) != 0x55 ||
		    qla2x00_read_flash_byte(ha, pcihdr + 0x01) != 0xaa) {
			/* No signature */
			DEBUG2(printk("scsi(%ld): No matching ROM "
			    "signature.\n", ha->host_no));
			ret = QLA_FUNCTION_FAILED;
			break;
		}

		/* Locate PCI data structure. */
		pcids = pcihdr +
		    ((qla2x00_read_flash_byte(ha, pcihdr + 0x19) << 8) |
			qla2x00_read_flash_byte(ha, pcihdr + 0x18));

		/* Validate signature of PCI data structure. */
		if (qla2x00_read_flash_byte(ha, pcids) != 'P' ||
		    qla2x00_read_flash_byte(ha, pcids + 0x1) != 'C' ||
		    qla2x00_read_flash_byte(ha, pcids + 0x2) != 'I' ||
		    qla2x00_read_flash_byte(ha, pcids + 0x3) != 'R') {
			/* Incorrect header. */
			DEBUG2(printk("%s(): PCI data struct not found "
			    "pcir_adr=%x.\n", __func__, pcids));
			ret = QLA_FUNCTION_FAILED;
			break;
		}

		/* Read version */
		code_type = qla2x00_read_flash_byte(ha, pcids + 0x14);
		switch (code_type) {
		case ROM_CODE_TYPE_BIOS:
			/* Intel x86, PC-AT compatible. */
			ha->bios_revision[0] =
			    qla2x00_read_flash_byte(ha, pcids + 0x12);
			ha->bios_revision[1] =
			    qla2x00_read_flash_byte(ha, pcids + 0x13);
			DEBUG3(printk("%s(): read BIOS %d.%d.\n", __func__,
			    ha->bios_revision[1], ha->bios_revision[0]));
			break;
		case ROM_CODE_TYPE_FCODE:
			/* Open Firmware standard for PCI (FCode). */
			/* Eeeewww... */
			qla2x00_get_fcode_version(ha, pcids);
			break;
		case ROM_CODE_TYPE_EFI:
			/* Extensible Firmware Interface (EFI). */
			ha->efi_revision[0] =
			    qla2x00_read_flash_byte(ha, pcids + 0x12);
			ha->efi_revision[1] =
			    qla2x00_read_flash_byte(ha, pcids + 0x13);
			DEBUG3(printk("%s(): read EFI %d.%d.\n", __func__,
			    ha->efi_revision[1], ha->efi_revision[0]));
			break;
		default:
			DEBUG2(printk("%s(): Unrecognized code type %x at "
			    "pcids %x.\n", __func__, code_type, pcids));
			break;
		}

		last_image = qla2x00_read_flash_byte(ha, pcids + 0x15) & BIT_7;

		/* Locate next PCI expansion ROM. */
		pcihdr += ((qla2x00_read_flash_byte(ha, pcids + 0x11) << 8) |
		    qla2x00_read_flash_byte(ha, pcids + 0x10)) * 512;
	} while (!last_image);

	if (IS_QLA2322(ha)) {
		/* Read firmware image information. */
		memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
		dbyte = mbuf;
		memset(dbyte, 0, 8);
		dcode = (uint16_t *)dbyte;

		qla2x00_read_flash_data(ha, dbyte, FA_RISC_CODE_ADDR * 4 + 10,
		    8);
		DEBUG3(printk("%s(%ld): dumping fw ver from flash:\n",
		    __func__, ha->host_no));
		DEBUG3(qla2x00_dump_buffer((uint8_t *)dbyte, 8));

		if ((dcode[0] == 0xffff && dcode[1] == 0xffff &&
		    dcode[2] == 0xffff && dcode[3] == 0xffff) ||
		    (dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 &&
		    dcode[3] == 0)) {
			DEBUG2(printk("%s(): Unrecognized fw revision at "
			    "%x.\n", __func__, FA_RISC_CODE_ADDR * 4));
		} else {
			/* values are in big endian */
			ha->fw_revision[0] = dbyte[0] << 16 | dbyte[1];
			ha->fw_revision[1] = dbyte[2] << 16 | dbyte[3];
			ha->fw_revision[2] = dbyte[4] << 16 | dbyte[5];
		}
	}

	qla2x00_flash_disable(ha);

	return ret;
}

int
qla24xx_get_flash_version(scsi_qla_host_t *ha, void *mbuf)
{
	int ret = QLA_SUCCESS;
	uint32_t pcihdr, pcids;
	uint32_t *dcode;
	uint8_t *bcode;
	uint8_t code_type, last_image;
	int i;

	if (!mbuf)
		return QLA_FUNCTION_FAILED;

	memset(ha->bios_revision, 0, sizeof(ha->bios_revision));
	memset(ha->efi_revision, 0, sizeof(ha->efi_revision));
	memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
	memset(ha->fw_revision, 0, sizeof(ha->fw_revision));

	dcode = mbuf;

	/* Begin with first PCI expansion ROM header. */
	pcihdr = 0;
	last_image = 1;
	do {
		/* Verify PCI expansion ROM header. */
		qla24xx_read_flash_data(ha, dcode, pcihdr >> 2, 0x20);
		bcode = mbuf + (pcihdr % 4);
		if (bcode[0x0] != 0x55 || bcode[0x1] != 0xaa) {
			/* No signature */
			DEBUG2(printk("scsi(%ld): No matching ROM "
			    "signature.\n", ha->host_no));
			ret = QLA_FUNCTION_FAILED;
			break;
		}

		/* Locate PCI data structure. */
		pcids = pcihdr + ((bcode[0x19] << 8) | bcode[0x18]);

		qla24xx_read_flash_data(ha, dcode, pcids >> 2, 0x20);
		bcode = mbuf + (pcihdr % 4);

		/* Validate signature of PCI data structure. */
		if (bcode[0x0] != 'P' || bcode[0x1] != 'C' ||
		    bcode[0x2] != 'I' || bcode[0x3] != 'R') {
			/* Incorrect header. */
			DEBUG2(printk("%s(): PCI data struct not found "
			    "pcir_adr=%x.\n", __func__, pcids));
			ret = QLA_FUNCTION_FAILED;
			break;
		}

		/* Read version */
		code_type = bcode[0x14];
		switch (code_type) {
		case ROM_CODE_TYPE_BIOS:
			/* Intel x86, PC-AT compatible. */
			ha->bios_revision[0] = bcode[0x12];
			ha->bios_revision[1] = bcode[0x13];
			DEBUG3(printk("%s(): read BIOS %d.%d.\n", __func__,
			    ha->bios_revision[1], ha->bios_revision[0]));
			break;
		case ROM_CODE_TYPE_FCODE:
			/* Open Firmware standard for PCI (FCode). */
			ha->fcode_revision[0] = bcode[0x12];
			ha->fcode_revision[1] = bcode[0x13];
			DEBUG3(printk("%s(): read FCODE %d.%d.\n", __func__,
			    ha->fcode_revision[1], ha->fcode_revision[0]));
			break;
		case ROM_CODE_TYPE_EFI:
			/* Extensible Firmware Interface (EFI). */
			ha->efi_revision[0] = bcode[0x12];
			ha->efi_revision[1] = bcode[0x13];
			DEBUG3(printk("%s(): read EFI %d.%d.\n", __func__,
			    ha->efi_revision[1], ha->efi_revision[0]));
			break;
		default:
			DEBUG2(printk("%s(): Unrecognized code type %x at "
			    "pcids %x.\n", __func__, code_type, pcids));
			break;
		}

		last_image = bcode[0x15] & BIT_7;

		/* Locate next PCI expansion ROM. */
		pcihdr += ((bcode[0x11] << 8) | bcode[0x10]) * 512;
	} while (!last_image);

	/* Read firmware image information. */
	memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
	dcode = mbuf;

	qla24xx_read_flash_data(ha, dcode, FA_RISC_CODE_ADDR + 4, 4);
	for (i = 0; i < 4; i++)
		dcode[i] = be32_to_cpu(dcode[i]);

	if ((dcode[0] == 0xffffffff && dcode[1] == 0xffffffff &&
	    dcode[2] == 0xffffffff && dcode[3] == 0xffffffff) ||
	    (dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 &&
	    dcode[3] == 0)) {
		DEBUG2(printk("%s(): Unrecognized fw version at %x.\n",
		    __func__, FA_RISC_CODE_ADDR));
	} else {
		ha->fw_revision[0] = dcode[0];
		ha->fw_revision[1] = dcode[1];
		ha->fw_revision[2] = dcode[2];
		ha->fw_revision[3] = dcode[3];
	}

	return ret;
}