i915_gem_execbuffer.c 37.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
/*
 * Copyright © 2008,2010 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *    Chris Wilson <chris@chris-wilson.co.uk>
 *
 */

#include "drmP.h"
#include "drm.h"
#include "i915_drm.h"
#include "i915_drv.h"
#include "i915_trace.h"
#include "intel_drv.h"
35
#include <linux/dma_remapping.h>
36 37 38 39 40

struct change_domains {
	uint32_t invalidate_domains;
	uint32_t flush_domains;
	uint32_t flush_rings;
41
	uint32_t flips;
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
};

/*
 * Set the next domain for the specified object. This
 * may not actually perform the necessary flushing/invaliding though,
 * as that may want to be batched with other set_domain operations
 *
 * This is (we hope) the only really tricky part of gem. The goal
 * is fairly simple -- track which caches hold bits of the object
 * and make sure they remain coherent. A few concrete examples may
 * help to explain how it works. For shorthand, we use the notation
 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
 * a pair of read and write domain masks.
 *
 * Case 1: the batch buffer
 *
 *	1. Allocated
 *	2. Written by CPU
 *	3. Mapped to GTT
 *	4. Read by GPU
 *	5. Unmapped from GTT
 *	6. Freed
 *
 *	Let's take these a step at a time
 *
 *	1. Allocated
 *		Pages allocated from the kernel may still have
 *		cache contents, so we set them to (CPU, CPU) always.
 *	2. Written by CPU (using pwrite)
 *		The pwrite function calls set_domain (CPU, CPU) and
 *		this function does nothing (as nothing changes)
 *	3. Mapped by GTT
 *		This function asserts that the object is not
 *		currently in any GPU-based read or write domains
 *	4. Read by GPU
 *		i915_gem_execbuffer calls set_domain (COMMAND, 0).
 *		As write_domain is zero, this function adds in the
 *		current read domains (CPU+COMMAND, 0).
 *		flush_domains is set to CPU.
 *		invalidate_domains is set to COMMAND
 *		clflush is run to get data out of the CPU caches
 *		then i915_dev_set_domain calls i915_gem_flush to
 *		emit an MI_FLUSH and drm_agp_chipset_flush
 *	5. Unmapped from GTT
 *		i915_gem_object_unbind calls set_domain (CPU, CPU)
 *		flush_domains and invalidate_domains end up both zero
 *		so no flushing/invalidating happens
 *	6. Freed
 *		yay, done
 *
 * Case 2: The shared render buffer
 *
 *	1. Allocated
 *	2. Mapped to GTT
 *	3. Read/written by GPU
 *	4. set_domain to (CPU,CPU)
 *	5. Read/written by CPU
 *	6. Read/written by GPU
 *
 *	1. Allocated
 *		Same as last example, (CPU, CPU)
 *	2. Mapped to GTT
 *		Nothing changes (assertions find that it is not in the GPU)
 *	3. Read/written by GPU
 *		execbuffer calls set_domain (RENDER, RENDER)
 *		flush_domains gets CPU
 *		invalidate_domains gets GPU
 *		clflush (obj)
 *		MI_FLUSH and drm_agp_chipset_flush
 *	4. set_domain (CPU, CPU)
 *		flush_domains gets GPU
 *		invalidate_domains gets CPU
 *		wait_rendering (obj) to make sure all drawing is complete.
 *		This will include an MI_FLUSH to get the data from GPU
 *		to memory
 *		clflush (obj) to invalidate the CPU cache
 *		Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
 *	5. Read/written by CPU
 *		cache lines are loaded and dirtied
 *	6. Read written by GPU
 *		Same as last GPU access
 *
 * Case 3: The constant buffer
 *
 *	1. Allocated
 *	2. Written by CPU
 *	3. Read by GPU
 *	4. Updated (written) by CPU again
 *	5. Read by GPU
 *
 *	1. Allocated
 *		(CPU, CPU)
 *	2. Written by CPU
 *		(CPU, CPU)
 *	3. Read by GPU
 *		(CPU+RENDER, 0)
 *		flush_domains = CPU
 *		invalidate_domains = RENDER
 *		clflush (obj)
 *		MI_FLUSH
 *		drm_agp_chipset_flush
 *	4. Updated (written) by CPU again
 *		(CPU, CPU)
 *		flush_domains = 0 (no previous write domain)
 *		invalidate_domains = 0 (no new read domains)
 *	5. Read by GPU
 *		(CPU+RENDER, 0)
 *		flush_domains = CPU
 *		invalidate_domains = RENDER
 *		clflush (obj)
 *		MI_FLUSH
 *		drm_agp_chipset_flush
 */
static void
i915_gem_object_set_to_gpu_domain(struct drm_i915_gem_object *obj,
				  struct intel_ring_buffer *ring,
				  struct change_domains *cd)
{
	uint32_t invalidate_domains = 0, flush_domains = 0;

	/*
	 * If the object isn't moving to a new write domain,
	 * let the object stay in multiple read domains
	 */
	if (obj->base.pending_write_domain == 0)
		obj->base.pending_read_domains |= obj->base.read_domains;

	/*
	 * Flush the current write domain if
	 * the new read domains don't match. Invalidate
	 * any read domains which differ from the old
	 * write domain
	 */
	if (obj->base.write_domain &&
	    (((obj->base.write_domain != obj->base.pending_read_domains ||
	       obj->ring != ring)) ||
	     (obj->fenced_gpu_access && !obj->pending_fenced_gpu_access))) {
		flush_domains |= obj->base.write_domain;
		invalidate_domains |=
			obj->base.pending_read_domains & ~obj->base.write_domain;
	}
	/*
	 * Invalidate any read caches which may have
	 * stale data. That is, any new read domains.
	 */
	invalidate_domains |= obj->base.pending_read_domains & ~obj->base.read_domains;
	if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
		i915_gem_clflush_object(obj);

191 192 193
	if (obj->base.pending_write_domain)
		cd->flips |= atomic_read(&obj->pending_flip);

194 195 196 197 198 199 200 201 202 203 204 205
	/* The actual obj->write_domain will be updated with
	 * pending_write_domain after we emit the accumulated flush for all
	 * of our domain changes in execbuffers (which clears objects'
	 * write_domains).  So if we have a current write domain that we
	 * aren't changing, set pending_write_domain to that.
	 */
	if (flush_domains == 0 && obj->base.pending_write_domain == 0)
		obj->base.pending_write_domain = obj->base.write_domain;

	cd->invalidate_domains |= invalidate_domains;
	cd->flush_domains |= flush_domains;
	if (flush_domains & I915_GEM_GPU_DOMAINS)
206
		cd->flush_rings |= intel_ring_flag(obj->ring);
207
	if (invalidate_domains & I915_GEM_GPU_DOMAINS)
208
		cd->flush_rings |= intel_ring_flag(ring);
209 210
}

211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
struct eb_objects {
	int and;
	struct hlist_head buckets[0];
};

static struct eb_objects *
eb_create(int size)
{
	struct eb_objects *eb;
	int count = PAGE_SIZE / sizeof(struct hlist_head) / 2;
	while (count > size)
		count >>= 1;
	eb = kzalloc(count*sizeof(struct hlist_head) +
		     sizeof(struct eb_objects),
		     GFP_KERNEL);
	if (eb == NULL)
		return eb;

	eb->and = count - 1;
	return eb;
}

static void
eb_reset(struct eb_objects *eb)
{
	memset(eb->buckets, 0, (eb->and+1)*sizeof(struct hlist_head));
}

static void
eb_add_object(struct eb_objects *eb, struct drm_i915_gem_object *obj)
{
	hlist_add_head(&obj->exec_node,
		       &eb->buckets[obj->exec_handle & eb->and]);
}

static struct drm_i915_gem_object *
eb_get_object(struct eb_objects *eb, unsigned long handle)
{
	struct hlist_head *head;
	struct hlist_node *node;
	struct drm_i915_gem_object *obj;

	head = &eb->buckets[handle & eb->and];
	hlist_for_each(node, head) {
		obj = hlist_entry(node, struct drm_i915_gem_object, exec_node);
		if (obj->exec_handle == handle)
			return obj;
	}

	return NULL;
}

static void
eb_destroy(struct eb_objects *eb)
{
	kfree(eb);
}

269 270 271 272 273 274
static inline int use_cpu_reloc(struct drm_i915_gem_object *obj)
{
	return (obj->base.write_domain == I915_GEM_DOMAIN_CPU ||
		obj->cache_level != I915_CACHE_NONE);
}

275 276
static int
i915_gem_execbuffer_relocate_entry(struct drm_i915_gem_object *obj,
277
				   struct eb_objects *eb,
278 279 280 281
				   struct drm_i915_gem_relocation_entry *reloc)
{
	struct drm_device *dev = obj->base.dev;
	struct drm_gem_object *target_obj;
282
	struct drm_i915_gem_object *target_i915_obj;
283 284 285
	uint32_t target_offset;
	int ret = -EINVAL;

286 287 288
	/* we've already hold a reference to all valid objects */
	target_obj = &eb_get_object(eb, reloc->target_handle)->base;
	if (unlikely(target_obj == NULL))
289 290
		return -ENOENT;

291 292
	target_i915_obj = to_intel_bo(target_obj);
	target_offset = target_i915_obj->gtt_offset;
293 294 295 296

	/* The target buffer should have appeared before us in the
	 * exec_object list, so it should have a GTT space bound by now.
	 */
297
	if (unlikely(target_offset == 0)) {
298
		DRM_DEBUG("No GTT space found for object %d\n",
299
			  reloc->target_handle);
300
		return ret;
301 302 303
	}

	/* Validate that the target is in a valid r/w GPU domain */
304
	if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
305
		DRM_DEBUG("reloc with multiple write domains: "
306 307 308 309 310 311
			  "obj %p target %d offset %d "
			  "read %08x write %08x",
			  obj, reloc->target_handle,
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
312
		return ret;
313
	}
314 315
	if (unlikely((reloc->write_domain | reloc->read_domains)
		     & ~I915_GEM_GPU_DOMAINS)) {
316
		DRM_DEBUG("reloc with read/write non-GPU domains: "
317 318 319 320 321 322
			  "obj %p target %d offset %d "
			  "read %08x write %08x",
			  obj, reloc->target_handle,
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
323
		return ret;
324
	}
325 326
	if (unlikely(reloc->write_domain && target_obj->pending_write_domain &&
		     reloc->write_domain != target_obj->pending_write_domain)) {
327
		DRM_DEBUG("Write domain conflict: "
328 329 330 331 332 333
			  "obj %p target %d offset %d "
			  "new %08x old %08x\n",
			  obj, reloc->target_handle,
			  (int) reloc->offset,
			  reloc->write_domain,
			  target_obj->pending_write_domain);
334
		return ret;
335 336 337 338 339 340 341 342 343
	}

	target_obj->pending_read_domains |= reloc->read_domains;
	target_obj->pending_write_domain |= reloc->write_domain;

	/* If the relocation already has the right value in it, no
	 * more work needs to be done.
	 */
	if (target_offset == reloc->presumed_offset)
344
		return 0;
345 346

	/* Check that the relocation address is valid... */
347
	if (unlikely(reloc->offset > obj->base.size - 4)) {
348
		DRM_DEBUG("Relocation beyond object bounds: "
349 350 351 352
			  "obj %p target %d offset %d size %d.\n",
			  obj, reloc->target_handle,
			  (int) reloc->offset,
			  (int) obj->base.size);
353
		return ret;
354
	}
355
	if (unlikely(reloc->offset & 3)) {
356
		DRM_DEBUG("Relocation not 4-byte aligned: "
357 358 359
			  "obj %p target %d offset %d.\n",
			  obj, reloc->target_handle,
			  (int) reloc->offset);
360
		return ret;
361 362
	}

363 364 365 366
	/* We can't wait for rendering with pagefaults disabled */
	if (obj->active && in_atomic())
		return -EFAULT;

367
	reloc->delta += target_offset;
368
	if (use_cpu_reloc(obj)) {
369 370 371
		uint32_t page_offset = reloc->offset & ~PAGE_MASK;
		char *vaddr;

372 373 374 375
		ret = i915_gem_object_set_to_cpu_domain(obj, 1);
		if (ret)
			return ret;

376 377 378 379 380 381 382 383
		vaddr = kmap_atomic(obj->pages[reloc->offset >> PAGE_SHIFT]);
		*(uint32_t *)(vaddr + page_offset) = reloc->delta;
		kunmap_atomic(vaddr);
	} else {
		struct drm_i915_private *dev_priv = dev->dev_private;
		uint32_t __iomem *reloc_entry;
		void __iomem *reloc_page;

384 385 386 387 388
		ret = i915_gem_object_set_to_gtt_domain(obj, true);
		if (ret)
			return ret;

		ret = i915_gem_object_put_fence(obj);
389
		if (ret)
390
			return ret;
391 392 393 394 395 396 397 398 399 400 401

		/* Map the page containing the relocation we're going to perform.  */
		reloc->offset += obj->gtt_offset;
		reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
						      reloc->offset & PAGE_MASK);
		reloc_entry = (uint32_t __iomem *)
			(reloc_page + (reloc->offset & ~PAGE_MASK));
		iowrite32(reloc->delta, reloc_entry);
		io_mapping_unmap_atomic(reloc_page);
	}

402 403 404 405 406 407 408 409 410 411
	/* Sandybridge PPGTT errata: We need a global gtt mapping for MI and
	 * pipe_control writes because the gpu doesn't properly redirect them
	 * through the ppgtt for non_secure batchbuffers. */
	if (unlikely(IS_GEN6(dev) &&
	    reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
	    !target_i915_obj->has_global_gtt_mapping)) {
		i915_gem_gtt_bind_object(target_i915_obj,
					 target_i915_obj->cache_level);
	}

412 413 414
	/* and update the user's relocation entry */
	reloc->presumed_offset = target_offset;

415
	return 0;
416 417 418 419
}

static int
i915_gem_execbuffer_relocate_object(struct drm_i915_gem_object *obj,
420
				    struct eb_objects *eb)
421
{
422 423
#define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
	struct drm_i915_gem_relocation_entry stack_reloc[N_RELOC(512)];
424
	struct drm_i915_gem_relocation_entry __user *user_relocs;
425
	struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
426
	int remain, ret;
427 428 429

	user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;

430 431 432 433 434 435 436 437 438
	remain = entry->relocation_count;
	while (remain) {
		struct drm_i915_gem_relocation_entry *r = stack_reloc;
		int count = remain;
		if (count > ARRAY_SIZE(stack_reloc))
			count = ARRAY_SIZE(stack_reloc);
		remain -= count;

		if (__copy_from_user_inatomic(r, user_relocs, count*sizeof(r[0])))
439 440
			return -EFAULT;

441 442
		do {
			u64 offset = r->presumed_offset;
443

444 445 446 447 448 449 450 451 452 453 454 455 456 457
			ret = i915_gem_execbuffer_relocate_entry(obj, eb, r);
			if (ret)
				return ret;

			if (r->presumed_offset != offset &&
			    __copy_to_user_inatomic(&user_relocs->presumed_offset,
						    &r->presumed_offset,
						    sizeof(r->presumed_offset))) {
				return -EFAULT;
			}

			user_relocs++;
			r++;
		} while (--count);
458 459 460
	}

	return 0;
461
#undef N_RELOC
462 463 464 465
}

static int
i915_gem_execbuffer_relocate_object_slow(struct drm_i915_gem_object *obj,
466
					 struct eb_objects *eb,
467 468
					 struct drm_i915_gem_relocation_entry *relocs)
{
469
	const struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
470 471 472
	int i, ret;

	for (i = 0; i < entry->relocation_count; i++) {
473
		ret = i915_gem_execbuffer_relocate_entry(obj, eb, &relocs[i]);
474 475 476 477 478 479 480 481 482
		if (ret)
			return ret;
	}

	return 0;
}

static int
i915_gem_execbuffer_relocate(struct drm_device *dev,
483
			     struct eb_objects *eb,
484
			     struct list_head *objects)
485
{
486
	struct drm_i915_gem_object *obj;
487 488 489 490 491 492 493 494 495 496
	int ret = 0;

	/* This is the fast path and we cannot handle a pagefault whilst
	 * holding the struct mutex lest the user pass in the relocations
	 * contained within a mmaped bo. For in such a case we, the page
	 * fault handler would call i915_gem_fault() and we would try to
	 * acquire the struct mutex again. Obviously this is bad and so
	 * lockdep complains vehemently.
	 */
	pagefault_disable();
497
	list_for_each_entry(obj, objects, exec_list) {
498
		ret = i915_gem_execbuffer_relocate_object(obj, eb);
499
		if (ret)
500
			break;
501
	}
502
	pagefault_enable();
503

504
	return ret;
505 506
}

507 508
#define  __EXEC_OBJECT_HAS_FENCE (1<<31)

509 510 511 512 513 514 515
static int
need_reloc_mappable(struct drm_i915_gem_object *obj)
{
	struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
	return entry->relocation_count && !use_cpu_reloc(obj);
}

516 517 518 519 520 521 522 523 524 525 526 527 528
static int
pin_and_fence_object(struct drm_i915_gem_object *obj,
		     struct intel_ring_buffer *ring)
{
	struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
	bool has_fenced_gpu_access = INTEL_INFO(ring->dev)->gen < 4;
	bool need_fence, need_mappable;
	int ret;

	need_fence =
		has_fenced_gpu_access &&
		entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
		obj->tiling_mode != I915_TILING_NONE;
529
	need_mappable = need_fence || need_reloc_mappable(obj);
530 531 532 533 534 535 536

	ret = i915_gem_object_pin(obj, entry->alignment, need_mappable);
	if (ret)
		return ret;

	if (has_fenced_gpu_access) {
		if (entry->flags & EXEC_OBJECT_NEEDS_FENCE) {
537
			ret = i915_gem_object_get_fence(obj);
538 539
			if (ret)
				goto err_unpin;
540

541
			if (i915_gem_object_pin_fence(obj))
542
				entry->flags |= __EXEC_OBJECT_HAS_FENCE;
543

544
			obj->pending_fenced_gpu_access = true;
545 546 547 548 549 550 551 552 553 554 555
		}
	}

	entry->offset = obj->gtt_offset;
	return 0;

err_unpin:
	i915_gem_object_unpin(obj);
	return ret;
}

556
static int
557
i915_gem_execbuffer_reserve(struct intel_ring_buffer *ring,
558
			    struct drm_file *file,
559
			    struct list_head *objects)
560
{
561
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
562 563
	struct drm_i915_gem_object *obj;
	int ret, retry;
564
	bool has_fenced_gpu_access = INTEL_INFO(ring->dev)->gen < 4;
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
	struct list_head ordered_objects;

	INIT_LIST_HEAD(&ordered_objects);
	while (!list_empty(objects)) {
		struct drm_i915_gem_exec_object2 *entry;
		bool need_fence, need_mappable;

		obj = list_first_entry(objects,
				       struct drm_i915_gem_object,
				       exec_list);
		entry = obj->exec_entry;

		need_fence =
			has_fenced_gpu_access &&
			entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
			obj->tiling_mode != I915_TILING_NONE;
581
		need_mappable = need_fence || need_reloc_mappable(obj);
582 583 584 585 586

		if (need_mappable)
			list_move(&obj->exec_list, &ordered_objects);
		else
			list_move_tail(&obj->exec_list, &ordered_objects);
587 588 589

		obj->base.pending_read_domains = 0;
		obj->base.pending_write_domain = 0;
590 591
	}
	list_splice(&ordered_objects, objects);
592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609

	/* Attempt to pin all of the buffers into the GTT.
	 * This is done in 3 phases:
	 *
	 * 1a. Unbind all objects that do not match the GTT constraints for
	 *     the execbuffer (fenceable, mappable, alignment etc).
	 * 1b. Increment pin count for already bound objects.
	 * 2.  Bind new objects.
	 * 3.  Decrement pin count.
	 *
	 * This avoid unnecessary unbinding of later objects in order to makr
	 * room for the earlier objects *unless* we need to defragment.
	 */
	retry = 0;
	do {
		ret = 0;

		/* Unbind any ill-fitting objects or pin. */
610
		list_for_each_entry(obj, objects, exec_list) {
611
			struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
612
			bool need_fence, need_mappable;
613

614
			if (!obj->gtt_space)
615 616 617
				continue;

			need_fence =
618
				has_fenced_gpu_access &&
619 620
				entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
				obj->tiling_mode != I915_TILING_NONE;
621
			need_mappable = need_fence || need_reloc_mappable(obj);
622 623 624 625 626

			if ((entry->alignment && obj->gtt_offset & (entry->alignment - 1)) ||
			    (need_mappable && !obj->map_and_fenceable))
				ret = i915_gem_object_unbind(obj);
			else
627
				ret = pin_and_fence_object(obj, ring);
628
			if (ret)
629 630 631 632
				goto err;
		}

		/* Bind fresh objects */
633
		list_for_each_entry(obj, objects, exec_list) {
634 635
			if (obj->gtt_space)
				continue;
636

637 638 639 640 641 642 643 644 645 646 647 648 649 650
			ret = pin_and_fence_object(obj, ring);
			if (ret) {
				int ret_ignore;

				/* This can potentially raise a harmless
				 * -EINVAL if we failed to bind in the above
				 * call. It cannot raise -EINTR since we know
				 * that the bo is freshly bound and so will
				 * not need to be flushed or waited upon.
				 */
				ret_ignore = i915_gem_object_unbind(obj);
				(void)ret_ignore;
				WARN_ON(obj->gtt_space);
				break;
651 652 653
			}
		}

654 655
		/* Decrement pin count for bound objects */
		list_for_each_entry(obj, objects, exec_list) {
656 657 658 659 660 661 662 663 664 665 666 667
			struct drm_i915_gem_exec_object2 *entry;

			if (!obj->gtt_space)
				continue;

			entry = obj->exec_entry;
			if (entry->flags & __EXEC_OBJECT_HAS_FENCE) {
				i915_gem_object_unpin_fence(obj);
				entry->flags &= ~__EXEC_OBJECT_HAS_FENCE;
			}

			i915_gem_object_unpin(obj);
668 669 670 671 672 673 674 675

			/* ... and ensure ppgtt mapping exist if needed. */
			if (dev_priv->mm.aliasing_ppgtt && !obj->has_aliasing_ppgtt_mapping) {
				i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
						       obj, obj->cache_level);

				obj->has_aliasing_ppgtt_mapping = 1;
			}
676 677 678 679 680 681 682 683
		}

		if (ret != -ENOSPC || retry > 1)
			return ret;

		/* First attempt, just clear anything that is purgeable.
		 * Second attempt, clear the entire GTT.
		 */
684
		ret = i915_gem_evict_everything(ring->dev, retry == 0);
685 686 687 688 689
		if (ret)
			return ret;

		retry++;
	} while (1);
690 691

err:
692 693 694 695 696 697 698 699 700 701 702
	list_for_each_entry_continue_reverse(obj, objects, exec_list) {
		struct drm_i915_gem_exec_object2 *entry;

		if (!obj->gtt_space)
			continue;

		entry = obj->exec_entry;
		if (entry->flags & __EXEC_OBJECT_HAS_FENCE) {
			i915_gem_object_unpin_fence(obj);
			entry->flags &= ~__EXEC_OBJECT_HAS_FENCE;
		}
703

704
		i915_gem_object_unpin(obj);
705 706 707
	}

	return ret;
708 709 710 711 712
}

static int
i915_gem_execbuffer_relocate_slow(struct drm_device *dev,
				  struct drm_file *file,
713
				  struct intel_ring_buffer *ring,
714
				  struct list_head *objects,
715
				  struct eb_objects *eb,
716
				  struct drm_i915_gem_exec_object2 *exec,
717 718 719
				  int count)
{
	struct drm_i915_gem_relocation_entry *reloc;
720
	struct drm_i915_gem_object *obj;
721
	int *reloc_offset;
722 723
	int i, total, ret;

724
	/* We may process another execbuffer during the unlock... */
725
	while (!list_empty(objects)) {
726 727 728 729 730 731 732
		obj = list_first_entry(objects,
				       struct drm_i915_gem_object,
				       exec_list);
		list_del_init(&obj->exec_list);
		drm_gem_object_unreference(&obj->base);
	}

733 734 735 736
	mutex_unlock(&dev->struct_mutex);

	total = 0;
	for (i = 0; i < count; i++)
737
		total += exec[i].relocation_count;
738

739
	reloc_offset = drm_malloc_ab(count, sizeof(*reloc_offset));
740
	reloc = drm_malloc_ab(total, sizeof(*reloc));
741 742 743
	if (reloc == NULL || reloc_offset == NULL) {
		drm_free_large(reloc);
		drm_free_large(reloc_offset);
744 745 746 747 748 749 750 751
		mutex_lock(&dev->struct_mutex);
		return -ENOMEM;
	}

	total = 0;
	for (i = 0; i < count; i++) {
		struct drm_i915_gem_relocation_entry __user *user_relocs;

752
		user_relocs = (void __user *)(uintptr_t)exec[i].relocs_ptr;
753 754

		if (copy_from_user(reloc+total, user_relocs,
755
				   exec[i].relocation_count * sizeof(*reloc))) {
756 757 758 759 760
			ret = -EFAULT;
			mutex_lock(&dev->struct_mutex);
			goto err;
		}

761
		reloc_offset[i] = total;
762
		total += exec[i].relocation_count;
763 764 765 766 767 768 769 770
	}

	ret = i915_mutex_lock_interruptible(dev);
	if (ret) {
		mutex_lock(&dev->struct_mutex);
		goto err;
	}

771 772 773 774 775
	/* reacquire the objects */
	eb_reset(eb);
	for (i = 0; i < count; i++) {
		obj = to_intel_bo(drm_gem_object_lookup(dev, file,
							exec[i].handle));
776
		if (&obj->base == NULL) {
777
			DRM_DEBUG("Invalid object handle %d at index %d\n",
778 779 780 781 782 783 784
				   exec[i].handle, i);
			ret = -ENOENT;
			goto err;
		}

		list_add_tail(&obj->exec_list, objects);
		obj->exec_handle = exec[i].handle;
785
		obj->exec_entry = &exec[i];
786 787 788
		eb_add_object(eb, obj);
	}

789
	ret = i915_gem_execbuffer_reserve(ring, file, objects);
790 791 792
	if (ret)
		goto err;

793
	list_for_each_entry(obj, objects, exec_list) {
794
		int offset = obj->exec_entry - exec;
795
		ret = i915_gem_execbuffer_relocate_object_slow(obj, eb,
796
							       reloc + reloc_offset[offset]);
797 798 799 800 801 802 803 804 805 806 807 808
		if (ret)
			goto err;
	}

	/* Leave the user relocations as are, this is the painfully slow path,
	 * and we want to avoid the complication of dropping the lock whilst
	 * having buffers reserved in the aperture and so causing spurious
	 * ENOSPC for random operations.
	 */

err:
	drm_free_large(reloc);
809
	drm_free_large(reloc_offset);
810 811 812
	return ret;
}

813
static int
814 815 816 817 818 819
i915_gem_execbuffer_flush(struct drm_device *dev,
			  uint32_t invalidate_domains,
			  uint32_t flush_domains,
			  uint32_t flush_rings)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
820
	int i, ret;
821 822 823 824

	if (flush_domains & I915_GEM_DOMAIN_CPU)
		intel_gtt_chipset_flush();

825 826 827
	if (flush_domains & I915_GEM_DOMAIN_GTT)
		wmb();

828
	if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
829
		for (i = 0; i < I915_NUM_RINGS; i++)
830
			if (flush_rings & (1 << i)) {
C
Chris Wilson 已提交
831
				ret = i915_gem_flush_ring(&dev_priv->ring[i],
832 833 834 835 836
							  invalidate_domains,
							  flush_domains);
				if (ret)
					return ret;
			}
837
	}
838 839

	return 0;
840 841
}

842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874
static int
i915_gem_execbuffer_wait_for_flips(struct intel_ring_buffer *ring, u32 flips)
{
	u32 plane, flip_mask;
	int ret;

	/* Check for any pending flips. As we only maintain a flip queue depth
	 * of 1, we can simply insert a WAIT for the next display flip prior
	 * to executing the batch and avoid stalling the CPU.
	 */

	for (plane = 0; flips >> plane; plane++) {
		if (((flips >> plane) & 1) == 0)
			continue;

		if (plane)
			flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
		else
			flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;

		ret = intel_ring_begin(ring, 2);
		if (ret)
			return ret;

		intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
		intel_ring_emit(ring, MI_NOOP);
		intel_ring_advance(ring);
	}

	return 0;
}


875
static int
876 877
i915_gem_execbuffer_move_to_gpu(struct intel_ring_buffer *ring,
				struct list_head *objects)
878
{
879
	struct drm_i915_gem_object *obj;
880
	struct change_domains cd;
881
	int ret;
882

883
	memset(&cd, 0, sizeof(cd));
884 885
	list_for_each_entry(obj, objects, exec_list)
		i915_gem_object_set_to_gpu_domain(obj, ring, &cd);
886 887

	if (cd.invalidate_domains | cd.flush_domains) {
888 889 890 891 892 893
		ret = i915_gem_execbuffer_flush(ring->dev,
						cd.invalidate_domains,
						cd.flush_domains,
						cd.flush_rings);
		if (ret)
			return ret;
894 895
	}

896 897 898 899 900 901
	if (cd.flips) {
		ret = i915_gem_execbuffer_wait_for_flips(ring, cd.flips);
		if (ret)
			return ret;
	}

902
	list_for_each_entry(obj, objects, exec_list) {
903
		ret = i915_gem_object_sync(obj, ring);
904 905
		if (ret)
			return ret;
906 907 908 909 910
	}

	return 0;
}

911 912
static bool
i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
913
{
914
	return ((exec->batch_start_offset | exec->batch_len) & 0x7) == 0;
915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940
}

static int
validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
		   int count)
{
	int i;

	for (i = 0; i < count; i++) {
		char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
		int length; /* limited by fault_in_pages_readable() */

		/* First check for malicious input causing overflow */
		if (exec[i].relocation_count >
		    INT_MAX / sizeof(struct drm_i915_gem_relocation_entry))
			return -EINVAL;

		length = exec[i].relocation_count *
			sizeof(struct drm_i915_gem_relocation_entry);
		if (!access_ok(VERIFY_READ, ptr, length))
			return -EFAULT;

		/* we may also need to update the presumed offsets */
		if (!access_ok(VERIFY_WRITE, ptr, length))
			return -EFAULT;

941
		if (fault_in_multipages_readable(ptr, length))
942 943 944 945 946 947
			return -EFAULT;
	}

	return 0;
}

948 949
static void
i915_gem_execbuffer_move_to_active(struct list_head *objects,
950 951
				   struct intel_ring_buffer *ring,
				   u32 seqno)
952 953 954 955
{
	struct drm_i915_gem_object *obj;

	list_for_each_entry(obj, objects, exec_list) {
C
Chris Wilson 已提交
956 957 958 959
		  u32 old_read = obj->base.read_domains;
		  u32 old_write = obj->base.write_domain;


960 961 962 963
		obj->base.read_domains = obj->base.pending_read_domains;
		obj->base.write_domain = obj->base.pending_write_domain;
		obj->fenced_gpu_access = obj->pending_fenced_gpu_access;

964
		i915_gem_object_move_to_active(obj, ring, seqno);
965 966
		if (obj->base.write_domain) {
			obj->dirty = 1;
967
			obj->pending_gpu_write = true;
968 969 970 971 972
			list_move_tail(&obj->gpu_write_list,
				       &ring->gpu_write_list);
			intel_mark_busy(ring->dev, obj);
		}

C
Chris Wilson 已提交
973
		trace_i915_gem_object_change_domain(obj, old_read, old_write);
974 975 976
	}
}

977 978
static void
i915_gem_execbuffer_retire_commands(struct drm_device *dev,
979
				    struct drm_file *file,
980 981
				    struct intel_ring_buffer *ring)
{
982
	struct drm_i915_gem_request *request;
983
	u32 invalidate;
984

985 986 987 988 989 990
	/*
	 * Ensure that the commands in the batch buffer are
	 * finished before the interrupt fires.
	 *
	 * The sampler always gets flushed on i965 (sigh).
	 */
991
	invalidate = I915_GEM_DOMAIN_COMMAND;
992
	if (INTEL_INFO(dev)->gen >= 4)
993 994
		invalidate |= I915_GEM_DOMAIN_SAMPLER;
	if (ring->flush(ring, invalidate, 0)) {
C
Chris Wilson 已提交
995
		i915_gem_next_request_seqno(ring);
996 997
		return;
	}
998

999 1000
	/* Add a breadcrumb for the completion of the batch buffer */
	request = kzalloc(sizeof(*request), GFP_KERNEL);
C
Chris Wilson 已提交
1001 1002
	if (request == NULL || i915_add_request(ring, file, request)) {
		i915_gem_next_request_seqno(ring);
1003 1004 1005
		kfree(request);
	}
}
1006

1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
static int
i915_reset_gen7_sol_offsets(struct drm_device *dev,
			    struct intel_ring_buffer *ring)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret, i;

	if (!IS_GEN7(dev) || ring != &dev_priv->ring[RCS])
		return 0;

	ret = intel_ring_begin(ring, 4 * 3);
	if (ret)
		return ret;

	for (i = 0; i < 4; i++) {
		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
		intel_ring_emit(ring, GEN7_SO_WRITE_OFFSET(i));
		intel_ring_emit(ring, 0);
	}

	intel_ring_advance(ring);

	return 0;
}

1032 1033 1034 1035
static int
i915_gem_do_execbuffer(struct drm_device *dev, void *data,
		       struct drm_file *file,
		       struct drm_i915_gem_execbuffer2 *args,
1036
		       struct drm_i915_gem_exec_object2 *exec)
1037 1038
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1039
	struct list_head objects;
1040
	struct eb_objects *eb;
1041 1042 1043
	struct drm_i915_gem_object *batch_obj;
	struct drm_clip_rect *cliprects = NULL;
	struct intel_ring_buffer *ring;
1044
	u32 exec_start, exec_len;
1045
	u32 seqno;
1046
	u32 mask;
1047
	int ret, mode, i;
1048

1049
	if (!i915_gem_check_execbuffer(args)) {
1050
		DRM_DEBUG("execbuf with invalid offset/length\n");
1051 1052 1053 1054
		return -EINVAL;
	}

	ret = validate_exec_list(exec, args->buffer_count);
1055 1056 1057 1058 1059 1060
	if (ret)
		return ret;

	switch (args->flags & I915_EXEC_RING_MASK) {
	case I915_EXEC_DEFAULT:
	case I915_EXEC_RENDER:
1061
		ring = &dev_priv->ring[RCS];
1062 1063 1064
		break;
	case I915_EXEC_BSD:
		if (!HAS_BSD(dev)) {
1065
			DRM_DEBUG("execbuf with invalid ring (BSD)\n");
1066 1067
			return -EINVAL;
		}
1068
		ring = &dev_priv->ring[VCS];
1069 1070 1071
		break;
	case I915_EXEC_BLT:
		if (!HAS_BLT(dev)) {
1072
			DRM_DEBUG("execbuf with invalid ring (BLT)\n");
1073 1074
			return -EINVAL;
		}
1075
		ring = &dev_priv->ring[BCS];
1076 1077
		break;
	default:
1078
		DRM_DEBUG("execbuf with unknown ring: %d\n",
1079 1080 1081 1082
			  (int)(args->flags & I915_EXEC_RING_MASK));
		return -EINVAL;
	}

1083
	mode = args->flags & I915_EXEC_CONSTANTS_MASK;
1084
	mask = I915_EXEC_CONSTANTS_MASK;
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
	switch (mode) {
	case I915_EXEC_CONSTANTS_REL_GENERAL:
	case I915_EXEC_CONSTANTS_ABSOLUTE:
	case I915_EXEC_CONSTANTS_REL_SURFACE:
		if (ring == &dev_priv->ring[RCS] &&
		    mode != dev_priv->relative_constants_mode) {
			if (INTEL_INFO(dev)->gen < 4)
				return -EINVAL;

			if (INTEL_INFO(dev)->gen > 5 &&
			    mode == I915_EXEC_CONSTANTS_REL_SURFACE)
				return -EINVAL;
1097 1098 1099 1100

			/* The HW changed the meaning on this bit on gen6 */
			if (INTEL_INFO(dev)->gen >= 6)
				mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
1101 1102 1103
		}
		break;
	default:
1104
		DRM_DEBUG("execbuf with unknown constants: %d\n", mode);
1105 1106 1107
		return -EINVAL;
	}

1108
	if (args->buffer_count < 1) {
1109
		DRM_DEBUG("execbuf with %d buffers\n", args->buffer_count);
1110 1111 1112 1113
		return -EINVAL;
	}

	if (args->num_cliprects != 0) {
1114
		if (ring != &dev_priv->ring[RCS]) {
1115
			DRM_DEBUG("clip rectangles are only valid with the render ring\n");
1116 1117 1118
			return -EINVAL;
		}

1119
		cliprects = kmalloc(args->num_cliprects * sizeof(*cliprects),
1120 1121 1122 1123 1124 1125
				    GFP_KERNEL);
		if (cliprects == NULL) {
			ret = -ENOMEM;
			goto pre_mutex_err;
		}

1126 1127 1128 1129
		if (copy_from_user(cliprects,
				     (struct drm_clip_rect __user *)(uintptr_t)
				     args->cliprects_ptr,
				     sizeof(*cliprects)*args->num_cliprects)) {
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
			ret = -EFAULT;
			goto pre_mutex_err;
		}
	}

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto pre_mutex_err;

	if (dev_priv->mm.suspended) {
		mutex_unlock(&dev->struct_mutex);
		ret = -EBUSY;
		goto pre_mutex_err;
	}

1145 1146 1147 1148 1149 1150 1151
	eb = eb_create(args->buffer_count);
	if (eb == NULL) {
		mutex_unlock(&dev->struct_mutex);
		ret = -ENOMEM;
		goto pre_mutex_err;
	}

1152
	/* Look up object handles */
1153
	INIT_LIST_HEAD(&objects);
1154 1155 1156
	for (i = 0; i < args->buffer_count; i++) {
		struct drm_i915_gem_object *obj;

1157 1158
		obj = to_intel_bo(drm_gem_object_lookup(dev, file,
							exec[i].handle));
1159
		if (&obj->base == NULL) {
1160
			DRM_DEBUG("Invalid object handle %d at index %d\n",
1161
				   exec[i].handle, i);
1162 1163 1164 1165 1166
			/* prevent error path from reading uninitialized data */
			ret = -ENOENT;
			goto err;
		}

1167
		if (!list_empty(&obj->exec_list)) {
1168
			DRM_DEBUG("Object %p [handle %d, index %d] appears more than once in object list\n",
1169
				   obj, exec[i].handle, i);
1170 1171 1172
			ret = -EINVAL;
			goto err;
		}
1173 1174

		list_add_tail(&obj->exec_list, &objects);
1175
		obj->exec_handle = exec[i].handle;
1176
		obj->exec_entry = &exec[i];
1177
		eb_add_object(eb, obj);
1178 1179
	}

1180 1181 1182 1183 1184
	/* take note of the batch buffer before we might reorder the lists */
	batch_obj = list_entry(objects.prev,
			       struct drm_i915_gem_object,
			       exec_list);

1185
	/* Move the objects en-masse into the GTT, evicting if necessary. */
1186
	ret = i915_gem_execbuffer_reserve(ring, file, &objects);
1187 1188 1189 1190
	if (ret)
		goto err;

	/* The objects are in their final locations, apply the relocations. */
1191
	ret = i915_gem_execbuffer_relocate(dev, eb, &objects);
1192 1193
	if (ret) {
		if (ret == -EFAULT) {
1194
			ret = i915_gem_execbuffer_relocate_slow(dev, file, ring,
1195 1196
								&objects, eb,
								exec,
1197 1198 1199 1200 1201 1202 1203 1204 1205
								args->buffer_count);
			BUG_ON(!mutex_is_locked(&dev->struct_mutex));
		}
		if (ret)
			goto err;
	}

	/* Set the pending read domains for the batch buffer to COMMAND */
	if (batch_obj->base.pending_write_domain) {
1206
		DRM_DEBUG("Attempting to use self-modifying batch buffer\n");
1207 1208 1209 1210 1211
		ret = -EINVAL;
		goto err;
	}
	batch_obj->base.pending_read_domains |= I915_GEM_DOMAIN_COMMAND;

1212 1213
	ret = i915_gem_execbuffer_move_to_gpu(ring, &objects);
	if (ret)
1214 1215
		goto err;

C
Chris Wilson 已提交
1216
	seqno = i915_gem_next_request_seqno(ring);
1217
	for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++) {
1218 1219 1220 1221 1222
		if (seqno < ring->sync_seqno[i]) {
			/* The GPU can not handle its semaphore value wrapping,
			 * so every billion or so execbuffers, we need to stall
			 * the GPU in order to reset the counters.
			 */
1223
			ret = i915_gpu_idle(dev, true);
1224 1225 1226 1227 1228 1229 1230
			if (ret)
				goto err;

			BUG_ON(ring->sync_seqno[i]);
		}
	}

1231 1232 1233 1234 1235 1236 1237 1238 1239
	if (ring == &dev_priv->ring[RCS] &&
	    mode != dev_priv->relative_constants_mode) {
		ret = intel_ring_begin(ring, 4);
		if (ret)
				goto err;

		intel_ring_emit(ring, MI_NOOP);
		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
		intel_ring_emit(ring, INSTPM);
1240
		intel_ring_emit(ring, mask << 16 | mode);
1241 1242 1243 1244 1245
		intel_ring_advance(ring);

		dev_priv->relative_constants_mode = mode;
	}

1246 1247 1248 1249 1250 1251
	if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
		ret = i915_reset_gen7_sol_offsets(dev, ring);
		if (ret)
			goto err;
	}

C
Chris Wilson 已提交
1252 1253
	trace_i915_gem_ring_dispatch(ring, seqno);

1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
	exec_start = batch_obj->gtt_offset + args->batch_start_offset;
	exec_len = args->batch_len;
	if (cliprects) {
		for (i = 0; i < args->num_cliprects; i++) {
			ret = i915_emit_box(dev, &cliprects[i],
					    args->DR1, args->DR4);
			if (ret)
				goto err;

			ret = ring->dispatch_execbuffer(ring,
							exec_start, exec_len);
			if (ret)
				goto err;
		}
	} else {
		ret = ring->dispatch_execbuffer(ring, exec_start, exec_len);
		if (ret)
			goto err;
	}
1273

1274
	i915_gem_execbuffer_move_to_active(&objects, ring, seqno);
1275
	i915_gem_execbuffer_retire_commands(dev, file, ring);
1276 1277

err:
1278
	eb_destroy(eb);
1279 1280 1281 1282 1283 1284 1285 1286
	while (!list_empty(&objects)) {
		struct drm_i915_gem_object *obj;

		obj = list_first_entry(&objects,
				       struct drm_i915_gem_object,
				       exec_list);
		list_del_init(&obj->exec_list);
		drm_gem_object_unreference(&obj->base);
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
	}

	mutex_unlock(&dev->struct_mutex);

pre_mutex_err:
	kfree(cliprects);
	return ret;
}

/*
 * Legacy execbuffer just creates an exec2 list from the original exec object
 * list array and passes it to the real function.
 */
int
i915_gem_execbuffer(struct drm_device *dev, void *data,
		    struct drm_file *file)
{
	struct drm_i915_gem_execbuffer *args = data;
	struct drm_i915_gem_execbuffer2 exec2;
	struct drm_i915_gem_exec_object *exec_list = NULL;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
	int ret, i;

	if (args->buffer_count < 1) {
1311
		DRM_DEBUG("execbuf with %d buffers\n", args->buffer_count);
1312 1313 1314 1315 1316 1317 1318
		return -EINVAL;
	}

	/* Copy in the exec list from userland */
	exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
	exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
	if (exec_list == NULL || exec2_list == NULL) {
1319
		DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
			  args->buffer_count);
		drm_free_large(exec_list);
		drm_free_large(exec2_list);
		return -ENOMEM;
	}
	ret = copy_from_user(exec_list,
			     (struct drm_i915_relocation_entry __user *)
			     (uintptr_t) args->buffers_ptr,
			     sizeof(*exec_list) * args->buffer_count);
	if (ret != 0) {
1330
		DRM_DEBUG("copy %d exec entries failed %d\n",
1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
			  args->buffer_count, ret);
		drm_free_large(exec_list);
		drm_free_large(exec2_list);
		return -EFAULT;
	}

	for (i = 0; i < args->buffer_count; i++) {
		exec2_list[i].handle = exec_list[i].handle;
		exec2_list[i].relocation_count = exec_list[i].relocation_count;
		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
		exec2_list[i].alignment = exec_list[i].alignment;
		exec2_list[i].offset = exec_list[i].offset;
		if (INTEL_INFO(dev)->gen < 4)
			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
		else
			exec2_list[i].flags = 0;
	}

	exec2.buffers_ptr = args->buffers_ptr;
	exec2.buffer_count = args->buffer_count;
	exec2.batch_start_offset = args->batch_start_offset;
	exec2.batch_len = args->batch_len;
	exec2.DR1 = args->DR1;
	exec2.DR4 = args->DR4;
	exec2.num_cliprects = args->num_cliprects;
	exec2.cliprects_ptr = args->cliprects_ptr;
	exec2.flags = I915_EXEC_RENDER;

	ret = i915_gem_do_execbuffer(dev, data, file, &exec2, exec2_list);
	if (!ret) {
		/* Copy the new buffer offsets back to the user's exec list. */
		for (i = 0; i < args->buffer_count; i++)
			exec_list[i].offset = exec2_list[i].offset;
		/* ... and back out to userspace */
		ret = copy_to_user((struct drm_i915_relocation_entry __user *)
				   (uintptr_t) args->buffers_ptr,
				   exec_list,
				   sizeof(*exec_list) * args->buffer_count);
		if (ret) {
			ret = -EFAULT;
1371
			DRM_DEBUG("failed to copy %d exec entries "
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
				  "back to user (%d)\n",
				  args->buffer_count, ret);
		}
	}

	drm_free_large(exec_list);
	drm_free_large(exec2_list);
	return ret;
}

int
i915_gem_execbuffer2(struct drm_device *dev, void *data,
		     struct drm_file *file)
{
	struct drm_i915_gem_execbuffer2 *args = data;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
	int ret;

	if (args->buffer_count < 1) {
1391
		DRM_DEBUG("execbuf2 with %d buffers\n", args->buffer_count);
1392 1393 1394
		return -EINVAL;
	}

1395 1396 1397 1398 1399
	exec2_list = kmalloc(sizeof(*exec2_list)*args->buffer_count,
			     GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY);
	if (exec2_list == NULL)
		exec2_list = drm_malloc_ab(sizeof(*exec2_list),
					   args->buffer_count);
1400
	if (exec2_list == NULL) {
1401
		DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
1402 1403 1404 1405 1406 1407 1408 1409
			  args->buffer_count);
		return -ENOMEM;
	}
	ret = copy_from_user(exec2_list,
			     (struct drm_i915_relocation_entry __user *)
			     (uintptr_t) args->buffers_ptr,
			     sizeof(*exec2_list) * args->buffer_count);
	if (ret != 0) {
1410
		DRM_DEBUG("copy %d exec entries failed %d\n",
1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
			  args->buffer_count, ret);
		drm_free_large(exec2_list);
		return -EFAULT;
	}

	ret = i915_gem_do_execbuffer(dev, data, file, args, exec2_list);
	if (!ret) {
		/* Copy the new buffer offsets back to the user's exec list. */
		ret = copy_to_user((struct drm_i915_relocation_entry __user *)
				   (uintptr_t) args->buffers_ptr,
				   exec2_list,
				   sizeof(*exec2_list) * args->buffer_count);
		if (ret) {
			ret = -EFAULT;
1425
			DRM_DEBUG("failed to copy %d exec entries "
1426 1427 1428 1429 1430 1431 1432 1433
				  "back to user (%d)\n",
				  args->buffer_count, ret);
		}
	}

	drm_free_large(exec2_list);
	return ret;
}