i915_gem_execbuffer.c 39.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
/*
 * Copyright © 2008,2010 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *    Chris Wilson <chris@chris-wilson.co.uk>
 *
 */

#include "drmP.h"
#include "drm.h"
#include "i915_drm.h"
#include "i915_drv.h"
#include "i915_trace.h"
#include "intel_drv.h"
35
#include <linux/dma_remapping.h>
36 37 38 39 40

struct change_domains {
	uint32_t invalidate_domains;
	uint32_t flush_domains;
	uint32_t flush_rings;
41
	uint32_t flips;
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
};

/*
 * Set the next domain for the specified object. This
 * may not actually perform the necessary flushing/invaliding though,
 * as that may want to be batched with other set_domain operations
 *
 * This is (we hope) the only really tricky part of gem. The goal
 * is fairly simple -- track which caches hold bits of the object
 * and make sure they remain coherent. A few concrete examples may
 * help to explain how it works. For shorthand, we use the notation
 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
 * a pair of read and write domain masks.
 *
 * Case 1: the batch buffer
 *
 *	1. Allocated
 *	2. Written by CPU
 *	3. Mapped to GTT
 *	4. Read by GPU
 *	5. Unmapped from GTT
 *	6. Freed
 *
 *	Let's take these a step at a time
 *
 *	1. Allocated
 *		Pages allocated from the kernel may still have
 *		cache contents, so we set them to (CPU, CPU) always.
 *	2. Written by CPU (using pwrite)
 *		The pwrite function calls set_domain (CPU, CPU) and
 *		this function does nothing (as nothing changes)
 *	3. Mapped by GTT
 *		This function asserts that the object is not
 *		currently in any GPU-based read or write domains
 *	4. Read by GPU
 *		i915_gem_execbuffer calls set_domain (COMMAND, 0).
 *		As write_domain is zero, this function adds in the
 *		current read domains (CPU+COMMAND, 0).
 *		flush_domains is set to CPU.
 *		invalidate_domains is set to COMMAND
 *		clflush is run to get data out of the CPU caches
 *		then i915_dev_set_domain calls i915_gem_flush to
 *		emit an MI_FLUSH and drm_agp_chipset_flush
 *	5. Unmapped from GTT
 *		i915_gem_object_unbind calls set_domain (CPU, CPU)
 *		flush_domains and invalidate_domains end up both zero
 *		so no flushing/invalidating happens
 *	6. Freed
 *		yay, done
 *
 * Case 2: The shared render buffer
 *
 *	1. Allocated
 *	2. Mapped to GTT
 *	3. Read/written by GPU
 *	4. set_domain to (CPU,CPU)
 *	5. Read/written by CPU
 *	6. Read/written by GPU
 *
 *	1. Allocated
 *		Same as last example, (CPU, CPU)
 *	2. Mapped to GTT
 *		Nothing changes (assertions find that it is not in the GPU)
 *	3. Read/written by GPU
 *		execbuffer calls set_domain (RENDER, RENDER)
 *		flush_domains gets CPU
 *		invalidate_domains gets GPU
 *		clflush (obj)
 *		MI_FLUSH and drm_agp_chipset_flush
 *	4. set_domain (CPU, CPU)
 *		flush_domains gets GPU
 *		invalidate_domains gets CPU
 *		wait_rendering (obj) to make sure all drawing is complete.
 *		This will include an MI_FLUSH to get the data from GPU
 *		to memory
 *		clflush (obj) to invalidate the CPU cache
 *		Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
 *	5. Read/written by CPU
 *		cache lines are loaded and dirtied
 *	6. Read written by GPU
 *		Same as last GPU access
 *
 * Case 3: The constant buffer
 *
 *	1. Allocated
 *	2. Written by CPU
 *	3. Read by GPU
 *	4. Updated (written) by CPU again
 *	5. Read by GPU
 *
 *	1. Allocated
 *		(CPU, CPU)
 *	2. Written by CPU
 *		(CPU, CPU)
 *	3. Read by GPU
 *		(CPU+RENDER, 0)
 *		flush_domains = CPU
 *		invalidate_domains = RENDER
 *		clflush (obj)
 *		MI_FLUSH
 *		drm_agp_chipset_flush
 *	4. Updated (written) by CPU again
 *		(CPU, CPU)
 *		flush_domains = 0 (no previous write domain)
 *		invalidate_domains = 0 (no new read domains)
 *	5. Read by GPU
 *		(CPU+RENDER, 0)
 *		flush_domains = CPU
 *		invalidate_domains = RENDER
 *		clflush (obj)
 *		MI_FLUSH
 *		drm_agp_chipset_flush
 */
static void
i915_gem_object_set_to_gpu_domain(struct drm_i915_gem_object *obj,
				  struct intel_ring_buffer *ring,
				  struct change_domains *cd)
{
	uint32_t invalidate_domains = 0, flush_domains = 0;

	/*
	 * If the object isn't moving to a new write domain,
	 * let the object stay in multiple read domains
	 */
	if (obj->base.pending_write_domain == 0)
		obj->base.pending_read_domains |= obj->base.read_domains;

	/*
	 * Flush the current write domain if
	 * the new read domains don't match. Invalidate
	 * any read domains which differ from the old
	 * write domain
	 */
	if (obj->base.write_domain &&
	    (((obj->base.write_domain != obj->base.pending_read_domains ||
	       obj->ring != ring)) ||
	     (obj->fenced_gpu_access && !obj->pending_fenced_gpu_access))) {
		flush_domains |= obj->base.write_domain;
		invalidate_domains |=
			obj->base.pending_read_domains & ~obj->base.write_domain;
	}
	/*
	 * Invalidate any read caches which may have
	 * stale data. That is, any new read domains.
	 */
	invalidate_domains |= obj->base.pending_read_domains & ~obj->base.read_domains;
	if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
		i915_gem_clflush_object(obj);

191 192 193
	if (obj->base.pending_write_domain)
		cd->flips |= atomic_read(&obj->pending_flip);

194 195 196 197 198 199 200 201 202 203 204 205
	/* The actual obj->write_domain will be updated with
	 * pending_write_domain after we emit the accumulated flush for all
	 * of our domain changes in execbuffers (which clears objects'
	 * write_domains).  So if we have a current write domain that we
	 * aren't changing, set pending_write_domain to that.
	 */
	if (flush_domains == 0 && obj->base.pending_write_domain == 0)
		obj->base.pending_write_domain = obj->base.write_domain;

	cd->invalidate_domains |= invalidate_domains;
	cd->flush_domains |= flush_domains;
	if (flush_domains & I915_GEM_GPU_DOMAINS)
206
		cd->flush_rings |= intel_ring_flag(obj->ring);
207
	if (invalidate_domains & I915_GEM_GPU_DOMAINS)
208
		cd->flush_rings |= intel_ring_flag(ring);
209 210
}

211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
struct eb_objects {
	int and;
	struct hlist_head buckets[0];
};

static struct eb_objects *
eb_create(int size)
{
	struct eb_objects *eb;
	int count = PAGE_SIZE / sizeof(struct hlist_head) / 2;
	while (count > size)
		count >>= 1;
	eb = kzalloc(count*sizeof(struct hlist_head) +
		     sizeof(struct eb_objects),
		     GFP_KERNEL);
	if (eb == NULL)
		return eb;

	eb->and = count - 1;
	return eb;
}

static void
eb_reset(struct eb_objects *eb)
{
	memset(eb->buckets, 0, (eb->and+1)*sizeof(struct hlist_head));
}

static void
eb_add_object(struct eb_objects *eb, struct drm_i915_gem_object *obj)
{
	hlist_add_head(&obj->exec_node,
		       &eb->buckets[obj->exec_handle & eb->and]);
}

static struct drm_i915_gem_object *
eb_get_object(struct eb_objects *eb, unsigned long handle)
{
	struct hlist_head *head;
	struct hlist_node *node;
	struct drm_i915_gem_object *obj;

	head = &eb->buckets[handle & eb->and];
	hlist_for_each(node, head) {
		obj = hlist_entry(node, struct drm_i915_gem_object, exec_node);
		if (obj->exec_handle == handle)
			return obj;
	}

	return NULL;
}

static void
eb_destroy(struct eb_objects *eb)
{
	kfree(eb);
}

269 270 271 272 273 274
static inline int use_cpu_reloc(struct drm_i915_gem_object *obj)
{
	return (obj->base.write_domain == I915_GEM_DOMAIN_CPU ||
		obj->cache_level != I915_CACHE_NONE);
}

275 276
static int
i915_gem_execbuffer_relocate_entry(struct drm_i915_gem_object *obj,
277
				   struct eb_objects *eb,
278 279 280 281
				   struct drm_i915_gem_relocation_entry *reloc)
{
	struct drm_device *dev = obj->base.dev;
	struct drm_gem_object *target_obj;
282
	struct drm_i915_gem_object *target_i915_obj;
283 284 285
	uint32_t target_offset;
	int ret = -EINVAL;

286 287 288
	/* we've already hold a reference to all valid objects */
	target_obj = &eb_get_object(eb, reloc->target_handle)->base;
	if (unlikely(target_obj == NULL))
289 290
		return -ENOENT;

291 292
	target_i915_obj = to_intel_bo(target_obj);
	target_offset = target_i915_obj->gtt_offset;
293 294 295 296

	/* The target buffer should have appeared before us in the
	 * exec_object list, so it should have a GTT space bound by now.
	 */
297
	if (unlikely(target_offset == 0)) {
298
		DRM_DEBUG("No GTT space found for object %d\n",
299
			  reloc->target_handle);
300
		return ret;
301 302 303
	}

	/* Validate that the target is in a valid r/w GPU domain */
304
	if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
305
		DRM_DEBUG("reloc with multiple write domains: "
306 307 308 309 310 311
			  "obj %p target %d offset %d "
			  "read %08x write %08x",
			  obj, reloc->target_handle,
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
312
		return ret;
313
	}
314 315
	if (unlikely((reloc->write_domain | reloc->read_domains)
		     & ~I915_GEM_GPU_DOMAINS)) {
316
		DRM_DEBUG("reloc with read/write non-GPU domains: "
317 318 319 320 321 322
			  "obj %p target %d offset %d "
			  "read %08x write %08x",
			  obj, reloc->target_handle,
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
323
		return ret;
324
	}
325 326
	if (unlikely(reloc->write_domain && target_obj->pending_write_domain &&
		     reloc->write_domain != target_obj->pending_write_domain)) {
327
		DRM_DEBUG("Write domain conflict: "
328 329 330 331 332 333
			  "obj %p target %d offset %d "
			  "new %08x old %08x\n",
			  obj, reloc->target_handle,
			  (int) reloc->offset,
			  reloc->write_domain,
			  target_obj->pending_write_domain);
334
		return ret;
335 336 337 338 339 340 341 342 343
	}

	target_obj->pending_read_domains |= reloc->read_domains;
	target_obj->pending_write_domain |= reloc->write_domain;

	/* If the relocation already has the right value in it, no
	 * more work needs to be done.
	 */
	if (target_offset == reloc->presumed_offset)
344
		return 0;
345 346

	/* Check that the relocation address is valid... */
347
	if (unlikely(reloc->offset > obj->base.size - 4)) {
348
		DRM_DEBUG("Relocation beyond object bounds: "
349 350 351 352
			  "obj %p target %d offset %d size %d.\n",
			  obj, reloc->target_handle,
			  (int) reloc->offset,
			  (int) obj->base.size);
353
		return ret;
354
	}
355
	if (unlikely(reloc->offset & 3)) {
356
		DRM_DEBUG("Relocation not 4-byte aligned: "
357 358 359
			  "obj %p target %d offset %d.\n",
			  obj, reloc->target_handle,
			  (int) reloc->offset);
360
		return ret;
361 362
	}

363 364 365 366
	/* We can't wait for rendering with pagefaults disabled */
	if (obj->active && in_atomic())
		return -EFAULT;

367
	reloc->delta += target_offset;
368
	if (use_cpu_reloc(obj)) {
369 370 371
		uint32_t page_offset = reloc->offset & ~PAGE_MASK;
		char *vaddr;

372 373 374 375
		ret = i915_gem_object_set_to_cpu_domain(obj, 1);
		if (ret)
			return ret;

376 377 378 379 380 381 382 383 384 385
		vaddr = kmap_atomic(obj->pages[reloc->offset >> PAGE_SHIFT]);
		*(uint32_t *)(vaddr + page_offset) = reloc->delta;
		kunmap_atomic(vaddr);
	} else {
		struct drm_i915_private *dev_priv = dev->dev_private;
		uint32_t __iomem *reloc_entry;
		void __iomem *reloc_page;

		ret = i915_gem_object_set_to_gtt_domain(obj, 1);
		if (ret)
386
			return ret;
387 388 389 390 391 392 393 394 395 396 397

		/* Map the page containing the relocation we're going to perform.  */
		reloc->offset += obj->gtt_offset;
		reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
						      reloc->offset & PAGE_MASK);
		reloc_entry = (uint32_t __iomem *)
			(reloc_page + (reloc->offset & ~PAGE_MASK));
		iowrite32(reloc->delta, reloc_entry);
		io_mapping_unmap_atomic(reloc_page);
	}

398 399 400 401 402 403 404 405 406 407
	/* Sandybridge PPGTT errata: We need a global gtt mapping for MI and
	 * pipe_control writes because the gpu doesn't properly redirect them
	 * through the ppgtt for non_secure batchbuffers. */
	if (unlikely(IS_GEN6(dev) &&
	    reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
	    !target_i915_obj->has_global_gtt_mapping)) {
		i915_gem_gtt_bind_object(target_i915_obj,
					 target_i915_obj->cache_level);
	}

408 409 410
	/* and update the user's relocation entry */
	reloc->presumed_offset = target_offset;

411
	return 0;
412 413 414 415
}

static int
i915_gem_execbuffer_relocate_object(struct drm_i915_gem_object *obj,
416
				    struct eb_objects *eb)
417
{
418 419
#define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
	struct drm_i915_gem_relocation_entry stack_reloc[N_RELOC(512)];
420
	struct drm_i915_gem_relocation_entry __user *user_relocs;
421
	struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
422
	int remain, ret;
423 424 425

	user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;

426 427 428 429 430 431 432 433 434
	remain = entry->relocation_count;
	while (remain) {
		struct drm_i915_gem_relocation_entry *r = stack_reloc;
		int count = remain;
		if (count > ARRAY_SIZE(stack_reloc))
			count = ARRAY_SIZE(stack_reloc);
		remain -= count;

		if (__copy_from_user_inatomic(r, user_relocs, count*sizeof(r[0])))
435 436
			return -EFAULT;

437 438
		do {
			u64 offset = r->presumed_offset;
439

440 441 442 443 444 445 446 447 448 449 450 451 452 453
			ret = i915_gem_execbuffer_relocate_entry(obj, eb, r);
			if (ret)
				return ret;

			if (r->presumed_offset != offset &&
			    __copy_to_user_inatomic(&user_relocs->presumed_offset,
						    &r->presumed_offset,
						    sizeof(r->presumed_offset))) {
				return -EFAULT;
			}

			user_relocs++;
			r++;
		} while (--count);
454 455 456
	}

	return 0;
457
#undef N_RELOC
458 459 460 461
}

static int
i915_gem_execbuffer_relocate_object_slow(struct drm_i915_gem_object *obj,
462
					 struct eb_objects *eb,
463 464
					 struct drm_i915_gem_relocation_entry *relocs)
{
465
	const struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
466 467 468
	int i, ret;

	for (i = 0; i < entry->relocation_count; i++) {
469
		ret = i915_gem_execbuffer_relocate_entry(obj, eb, &relocs[i]);
470 471 472 473 474 475 476 477 478
		if (ret)
			return ret;
	}

	return 0;
}

static int
i915_gem_execbuffer_relocate(struct drm_device *dev,
479
			     struct eb_objects *eb,
480
			     struct list_head *objects)
481
{
482
	struct drm_i915_gem_object *obj;
483 484 485 486 487 488 489 490 491 492
	int ret = 0;

	/* This is the fast path and we cannot handle a pagefault whilst
	 * holding the struct mutex lest the user pass in the relocations
	 * contained within a mmaped bo. For in such a case we, the page
	 * fault handler would call i915_gem_fault() and we would try to
	 * acquire the struct mutex again. Obviously this is bad and so
	 * lockdep complains vehemently.
	 */
	pagefault_disable();
493
	list_for_each_entry(obj, objects, exec_list) {
494
		ret = i915_gem_execbuffer_relocate_object(obj, eb);
495
		if (ret)
496
			break;
497
	}
498
	pagefault_enable();
499

500
	return ret;
501 502
}

503 504
#define  __EXEC_OBJECT_HAS_FENCE (1<<31)

505 506 507 508 509 510 511
static int
need_reloc_mappable(struct drm_i915_gem_object *obj)
{
	struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
	return entry->relocation_count && !use_cpu_reloc(obj);
}

512 513 514 515 516 517 518 519 520 521 522 523 524
static int
pin_and_fence_object(struct drm_i915_gem_object *obj,
		     struct intel_ring_buffer *ring)
{
	struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
	bool has_fenced_gpu_access = INTEL_INFO(ring->dev)->gen < 4;
	bool need_fence, need_mappable;
	int ret;

	need_fence =
		has_fenced_gpu_access &&
		entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
		obj->tiling_mode != I915_TILING_NONE;
525
	need_mappable = need_fence || need_reloc_mappable(obj);
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556

	ret = i915_gem_object_pin(obj, entry->alignment, need_mappable);
	if (ret)
		return ret;

	if (has_fenced_gpu_access) {
		if (entry->flags & EXEC_OBJECT_NEEDS_FENCE) {
			if (obj->tiling_mode) {
				ret = i915_gem_object_get_fence(obj, ring);
				if (ret)
					goto err_unpin;

				entry->flags |= __EXEC_OBJECT_HAS_FENCE;
				i915_gem_object_pin_fence(obj);
			} else {
				ret = i915_gem_object_put_fence(obj);
				if (ret)
					goto err_unpin;
			}
		}
		obj->pending_fenced_gpu_access = need_fence;
	}

	entry->offset = obj->gtt_offset;
	return 0;

err_unpin:
	i915_gem_object_unpin(obj);
	return ret;
}

557
static int
558
i915_gem_execbuffer_reserve(struct intel_ring_buffer *ring,
559
			    struct drm_file *file,
560
			    struct list_head *objects)
561
{
562
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
563 564
	struct drm_i915_gem_object *obj;
	int ret, retry;
565
	bool has_fenced_gpu_access = INTEL_INFO(ring->dev)->gen < 4;
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
	struct list_head ordered_objects;

	INIT_LIST_HEAD(&ordered_objects);
	while (!list_empty(objects)) {
		struct drm_i915_gem_exec_object2 *entry;
		bool need_fence, need_mappable;

		obj = list_first_entry(objects,
				       struct drm_i915_gem_object,
				       exec_list);
		entry = obj->exec_entry;

		need_fence =
			has_fenced_gpu_access &&
			entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
			obj->tiling_mode != I915_TILING_NONE;
582
		need_mappable = need_fence || need_reloc_mappable(obj);
583 584 585 586 587

		if (need_mappable)
			list_move(&obj->exec_list, &ordered_objects);
		else
			list_move_tail(&obj->exec_list, &ordered_objects);
588 589 590

		obj->base.pending_read_domains = 0;
		obj->base.pending_write_domain = 0;
591 592
	}
	list_splice(&ordered_objects, objects);
593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610

	/* Attempt to pin all of the buffers into the GTT.
	 * This is done in 3 phases:
	 *
	 * 1a. Unbind all objects that do not match the GTT constraints for
	 *     the execbuffer (fenceable, mappable, alignment etc).
	 * 1b. Increment pin count for already bound objects.
	 * 2.  Bind new objects.
	 * 3.  Decrement pin count.
	 *
	 * This avoid unnecessary unbinding of later objects in order to makr
	 * room for the earlier objects *unless* we need to defragment.
	 */
	retry = 0;
	do {
		ret = 0;

		/* Unbind any ill-fitting objects or pin. */
611
		list_for_each_entry(obj, objects, exec_list) {
612
			struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
613
			bool need_fence, need_mappable;
614

615
			if (!obj->gtt_space)
616 617 618
				continue;

			need_fence =
619
				has_fenced_gpu_access &&
620 621
				entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
				obj->tiling_mode != I915_TILING_NONE;
622
			need_mappable = need_fence || need_reloc_mappable(obj);
623 624 625 626 627

			if ((entry->alignment && obj->gtt_offset & (entry->alignment - 1)) ||
			    (need_mappable && !obj->map_and_fenceable))
				ret = i915_gem_object_unbind(obj);
			else
628
				ret = pin_and_fence_object(obj, ring);
629
			if (ret)
630 631 632 633
				goto err;
		}

		/* Bind fresh objects */
634
		list_for_each_entry(obj, objects, exec_list) {
635 636
			if (obj->gtt_space)
				continue;
637

638 639 640 641 642 643 644 645 646 647 648 649 650 651
			ret = pin_and_fence_object(obj, ring);
			if (ret) {
				int ret_ignore;

				/* This can potentially raise a harmless
				 * -EINVAL if we failed to bind in the above
				 * call. It cannot raise -EINTR since we know
				 * that the bo is freshly bound and so will
				 * not need to be flushed or waited upon.
				 */
				ret_ignore = i915_gem_object_unbind(obj);
				(void)ret_ignore;
				WARN_ON(obj->gtt_space);
				break;
652 653 654
			}
		}

655 656
		/* Decrement pin count for bound objects */
		list_for_each_entry(obj, objects, exec_list) {
657 658 659 660 661 662 663 664 665 666 667 668
			struct drm_i915_gem_exec_object2 *entry;

			if (!obj->gtt_space)
				continue;

			entry = obj->exec_entry;
			if (entry->flags & __EXEC_OBJECT_HAS_FENCE) {
				i915_gem_object_unpin_fence(obj);
				entry->flags &= ~__EXEC_OBJECT_HAS_FENCE;
			}

			i915_gem_object_unpin(obj);
669 670 671 672 673 674 675 676

			/* ... and ensure ppgtt mapping exist if needed. */
			if (dev_priv->mm.aliasing_ppgtt && !obj->has_aliasing_ppgtt_mapping) {
				i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
						       obj, obj->cache_level);

				obj->has_aliasing_ppgtt_mapping = 1;
			}
677 678 679 680 681 682 683 684
		}

		if (ret != -ENOSPC || retry > 1)
			return ret;

		/* First attempt, just clear anything that is purgeable.
		 * Second attempt, clear the entire GTT.
		 */
685
		ret = i915_gem_evict_everything(ring->dev, retry == 0);
686 687 688 689 690
		if (ret)
			return ret;

		retry++;
	} while (1);
691 692

err:
693 694 695 696 697 698 699 700 701 702 703
	list_for_each_entry_continue_reverse(obj, objects, exec_list) {
		struct drm_i915_gem_exec_object2 *entry;

		if (!obj->gtt_space)
			continue;

		entry = obj->exec_entry;
		if (entry->flags & __EXEC_OBJECT_HAS_FENCE) {
			i915_gem_object_unpin_fence(obj);
			entry->flags &= ~__EXEC_OBJECT_HAS_FENCE;
		}
704

705
		i915_gem_object_unpin(obj);
706 707 708
	}

	return ret;
709 710 711 712 713
}

static int
i915_gem_execbuffer_relocate_slow(struct drm_device *dev,
				  struct drm_file *file,
714
				  struct intel_ring_buffer *ring,
715
				  struct list_head *objects,
716
				  struct eb_objects *eb,
717
				  struct drm_i915_gem_exec_object2 *exec,
718 719 720
				  int count)
{
	struct drm_i915_gem_relocation_entry *reloc;
721
	struct drm_i915_gem_object *obj;
722
	int *reloc_offset;
723 724
	int i, total, ret;

725
	/* We may process another execbuffer during the unlock... */
726
	while (!list_empty(objects)) {
727 728 729 730 731 732 733
		obj = list_first_entry(objects,
				       struct drm_i915_gem_object,
				       exec_list);
		list_del_init(&obj->exec_list);
		drm_gem_object_unreference(&obj->base);
	}

734 735 736 737
	mutex_unlock(&dev->struct_mutex);

	total = 0;
	for (i = 0; i < count; i++)
738
		total += exec[i].relocation_count;
739

740
	reloc_offset = drm_malloc_ab(count, sizeof(*reloc_offset));
741
	reloc = drm_malloc_ab(total, sizeof(*reloc));
742 743 744
	if (reloc == NULL || reloc_offset == NULL) {
		drm_free_large(reloc);
		drm_free_large(reloc_offset);
745 746 747 748 749 750 751 752
		mutex_lock(&dev->struct_mutex);
		return -ENOMEM;
	}

	total = 0;
	for (i = 0; i < count; i++) {
		struct drm_i915_gem_relocation_entry __user *user_relocs;

753
		user_relocs = (void __user *)(uintptr_t)exec[i].relocs_ptr;
754 755

		if (copy_from_user(reloc+total, user_relocs,
756
				   exec[i].relocation_count * sizeof(*reloc))) {
757 758 759 760 761
			ret = -EFAULT;
			mutex_lock(&dev->struct_mutex);
			goto err;
		}

762
		reloc_offset[i] = total;
763
		total += exec[i].relocation_count;
764 765 766 767 768 769 770 771
	}

	ret = i915_mutex_lock_interruptible(dev);
	if (ret) {
		mutex_lock(&dev->struct_mutex);
		goto err;
	}

772 773 774 775 776
	/* reacquire the objects */
	eb_reset(eb);
	for (i = 0; i < count; i++) {
		obj = to_intel_bo(drm_gem_object_lookup(dev, file,
							exec[i].handle));
777
		if (&obj->base == NULL) {
778
			DRM_DEBUG("Invalid object handle %d at index %d\n",
779 780 781 782 783 784 785
				   exec[i].handle, i);
			ret = -ENOENT;
			goto err;
		}

		list_add_tail(&obj->exec_list, objects);
		obj->exec_handle = exec[i].handle;
786
		obj->exec_entry = &exec[i];
787 788 789
		eb_add_object(eb, obj);
	}

790
	ret = i915_gem_execbuffer_reserve(ring, file, objects);
791 792 793
	if (ret)
		goto err;

794
	list_for_each_entry(obj, objects, exec_list) {
795
		int offset = obj->exec_entry - exec;
796
		ret = i915_gem_execbuffer_relocate_object_slow(obj, eb,
797
							       reloc + reloc_offset[offset]);
798 799 800 801 802 803 804 805 806 807 808 809
		if (ret)
			goto err;
	}

	/* Leave the user relocations as are, this is the painfully slow path,
	 * and we want to avoid the complication of dropping the lock whilst
	 * having buffers reserved in the aperture and so causing spurious
	 * ENOSPC for random operations.
	 */

err:
	drm_free_large(reloc);
810
	drm_free_large(reloc_offset);
811 812 813
	return ret;
}

814
static int
815 816 817 818 819 820
i915_gem_execbuffer_flush(struct drm_device *dev,
			  uint32_t invalidate_domains,
			  uint32_t flush_domains,
			  uint32_t flush_rings)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
821
	int i, ret;
822 823 824 825

	if (flush_domains & I915_GEM_DOMAIN_CPU)
		intel_gtt_chipset_flush();

826 827 828
	if (flush_domains & I915_GEM_DOMAIN_GTT)
		wmb();

829
	if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
830
		for (i = 0; i < I915_NUM_RINGS; i++)
831
			if (flush_rings & (1 << i)) {
C
Chris Wilson 已提交
832
				ret = i915_gem_flush_ring(&dev_priv->ring[i],
833 834 835 836 837
							  invalidate_domains,
							  flush_domains);
				if (ret)
					return ret;
			}
838
	}
839 840

	return 0;
841 842
}

843 844 845 846 847 848 849 850 851
static bool
intel_enable_semaphores(struct drm_device *dev)
{
	if (INTEL_INFO(dev)->gen < 6)
		return 0;

	if (i915_semaphores >= 0)
		return i915_semaphores;

852
	/* Disable semaphores on SNB */
853
	if (INTEL_INFO(dev)->gen == 6)
854
		return 0;
855 856 857 858

	return 1;
}

859 860 861 862 863 864 865 866 867 868 869
static int
i915_gem_execbuffer_sync_rings(struct drm_i915_gem_object *obj,
			       struct intel_ring_buffer *to)
{
	struct intel_ring_buffer *from = obj->ring;
	u32 seqno;
	int ret, idx;

	if (from == NULL || to == from)
		return 0;

870
	/* XXX gpu semaphores are implicated in various hard hangs on SNB */
871
	if (!intel_enable_semaphores(obj->base.dev))
872
		return i915_gem_object_wait_rendering(obj);
873 874 875 876 877 878 879 880 881 882 883 884 885 886

	idx = intel_ring_sync_index(from, to);

	seqno = obj->last_rendering_seqno;
	if (seqno <= from->sync_seqno[idx])
		return 0;

	if (seqno == from->outstanding_lazy_request) {
		struct drm_i915_gem_request *request;

		request = kzalloc(sizeof(*request), GFP_KERNEL);
		if (request == NULL)
			return -ENOMEM;

C
Chris Wilson 已提交
887
		ret = i915_add_request(from, NULL, request);
888 889 890 891 892 893 894 895 896
		if (ret) {
			kfree(request);
			return ret;
		}

		seqno = request->seqno;
	}

	from->sync_seqno[idx] = seqno;
897 898

	return to->sync_to(to, from, seqno - 1);
899
}
900

901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933
static int
i915_gem_execbuffer_wait_for_flips(struct intel_ring_buffer *ring, u32 flips)
{
	u32 plane, flip_mask;
	int ret;

	/* Check for any pending flips. As we only maintain a flip queue depth
	 * of 1, we can simply insert a WAIT for the next display flip prior
	 * to executing the batch and avoid stalling the CPU.
	 */

	for (plane = 0; flips >> plane; plane++) {
		if (((flips >> plane) & 1) == 0)
			continue;

		if (plane)
			flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
		else
			flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;

		ret = intel_ring_begin(ring, 2);
		if (ret)
			return ret;

		intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
		intel_ring_emit(ring, MI_NOOP);
		intel_ring_advance(ring);
	}

	return 0;
}


934
static int
935 936
i915_gem_execbuffer_move_to_gpu(struct intel_ring_buffer *ring,
				struct list_head *objects)
937
{
938
	struct drm_i915_gem_object *obj;
939
	struct change_domains cd;
940
	int ret;
941

942
	memset(&cd, 0, sizeof(cd));
943 944
	list_for_each_entry(obj, objects, exec_list)
		i915_gem_object_set_to_gpu_domain(obj, ring, &cd);
945 946

	if (cd.invalidate_domains | cd.flush_domains) {
947 948 949 950 951 952
		ret = i915_gem_execbuffer_flush(ring->dev,
						cd.invalidate_domains,
						cd.flush_domains,
						cd.flush_rings);
		if (ret)
			return ret;
953 954
	}

955 956 957 958 959 960
	if (cd.flips) {
		ret = i915_gem_execbuffer_wait_for_flips(ring, cd.flips);
		if (ret)
			return ret;
	}

961
	list_for_each_entry(obj, objects, exec_list) {
962 963 964
		ret = i915_gem_execbuffer_sync_rings(obj, ring);
		if (ret)
			return ret;
965 966 967 968 969
	}

	return 0;
}

970 971
static bool
i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
972
{
973
	return ((exec->batch_start_offset | exec->batch_len) & 0x7) == 0;
974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
}

static int
validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
		   int count)
{
	int i;

	for (i = 0; i < count; i++) {
		char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
		int length; /* limited by fault_in_pages_readable() */

		/* First check for malicious input causing overflow */
		if (exec[i].relocation_count >
		    INT_MAX / sizeof(struct drm_i915_gem_relocation_entry))
			return -EINVAL;

		length = exec[i].relocation_count *
			sizeof(struct drm_i915_gem_relocation_entry);
		if (!access_ok(VERIFY_READ, ptr, length))
			return -EFAULT;

		/* we may also need to update the presumed offsets */
		if (!access_ok(VERIFY_WRITE, ptr, length))
			return -EFAULT;

		if (fault_in_pages_readable(ptr, length))
			return -EFAULT;
	}

	return 0;
}

1007 1008
static void
i915_gem_execbuffer_move_to_active(struct list_head *objects,
1009 1010
				   struct intel_ring_buffer *ring,
				   u32 seqno)
1011 1012 1013 1014
{
	struct drm_i915_gem_object *obj;

	list_for_each_entry(obj, objects, exec_list) {
C
Chris Wilson 已提交
1015 1016 1017 1018
		  u32 old_read = obj->base.read_domains;
		  u32 old_write = obj->base.write_domain;


1019 1020 1021 1022
		obj->base.read_domains = obj->base.pending_read_domains;
		obj->base.write_domain = obj->base.pending_write_domain;
		obj->fenced_gpu_access = obj->pending_fenced_gpu_access;

1023
		i915_gem_object_move_to_active(obj, ring, seqno);
1024 1025
		if (obj->base.write_domain) {
			obj->dirty = 1;
1026
			obj->pending_gpu_write = true;
1027 1028 1029 1030 1031
			list_move_tail(&obj->gpu_write_list,
				       &ring->gpu_write_list);
			intel_mark_busy(ring->dev, obj);
		}

C
Chris Wilson 已提交
1032
		trace_i915_gem_object_change_domain(obj, old_read, old_write);
1033 1034 1035
	}
}

1036 1037
static void
i915_gem_execbuffer_retire_commands(struct drm_device *dev,
1038
				    struct drm_file *file,
1039 1040
				    struct intel_ring_buffer *ring)
{
1041
	struct drm_i915_gem_request *request;
1042
	u32 invalidate;
1043

1044 1045 1046 1047 1048 1049
	/*
	 * Ensure that the commands in the batch buffer are
	 * finished before the interrupt fires.
	 *
	 * The sampler always gets flushed on i965 (sigh).
	 */
1050
	invalidate = I915_GEM_DOMAIN_COMMAND;
1051
	if (INTEL_INFO(dev)->gen >= 4)
1052 1053
		invalidate |= I915_GEM_DOMAIN_SAMPLER;
	if (ring->flush(ring, invalidate, 0)) {
C
Chris Wilson 已提交
1054
		i915_gem_next_request_seqno(ring);
1055 1056
		return;
	}
1057

1058 1059
	/* Add a breadcrumb for the completion of the batch buffer */
	request = kzalloc(sizeof(*request), GFP_KERNEL);
C
Chris Wilson 已提交
1060 1061
	if (request == NULL || i915_add_request(ring, file, request)) {
		i915_gem_next_request_seqno(ring);
1062 1063 1064
		kfree(request);
	}
}
1065

1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
static int
i915_reset_gen7_sol_offsets(struct drm_device *dev,
			    struct intel_ring_buffer *ring)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret, i;

	if (!IS_GEN7(dev) || ring != &dev_priv->ring[RCS])
		return 0;

	ret = intel_ring_begin(ring, 4 * 3);
	if (ret)
		return ret;

	for (i = 0; i < 4; i++) {
		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
		intel_ring_emit(ring, GEN7_SO_WRITE_OFFSET(i));
		intel_ring_emit(ring, 0);
	}

	intel_ring_advance(ring);

	return 0;
}

1091 1092 1093 1094
static int
i915_gem_do_execbuffer(struct drm_device *dev, void *data,
		       struct drm_file *file,
		       struct drm_i915_gem_execbuffer2 *args,
1095
		       struct drm_i915_gem_exec_object2 *exec)
1096 1097
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1098
	struct list_head objects;
1099
	struct eb_objects *eb;
1100 1101 1102
	struct drm_i915_gem_object *batch_obj;
	struct drm_clip_rect *cliprects = NULL;
	struct intel_ring_buffer *ring;
1103
	u32 exec_start, exec_len;
1104
	u32 seqno;
1105
	u32 mask;
1106
	int ret, mode, i;
1107

1108
	if (!i915_gem_check_execbuffer(args)) {
1109
		DRM_DEBUG("execbuf with invalid offset/length\n");
1110 1111 1112 1113
		return -EINVAL;
	}

	ret = validate_exec_list(exec, args->buffer_count);
1114 1115 1116 1117 1118 1119
	if (ret)
		return ret;

	switch (args->flags & I915_EXEC_RING_MASK) {
	case I915_EXEC_DEFAULT:
	case I915_EXEC_RENDER:
1120
		ring = &dev_priv->ring[RCS];
1121 1122 1123
		break;
	case I915_EXEC_BSD:
		if (!HAS_BSD(dev)) {
1124
			DRM_DEBUG("execbuf with invalid ring (BSD)\n");
1125 1126
			return -EINVAL;
		}
1127
		ring = &dev_priv->ring[VCS];
1128 1129 1130
		break;
	case I915_EXEC_BLT:
		if (!HAS_BLT(dev)) {
1131
			DRM_DEBUG("execbuf with invalid ring (BLT)\n");
1132 1133
			return -EINVAL;
		}
1134
		ring = &dev_priv->ring[BCS];
1135 1136
		break;
	default:
1137
		DRM_DEBUG("execbuf with unknown ring: %d\n",
1138 1139 1140 1141
			  (int)(args->flags & I915_EXEC_RING_MASK));
		return -EINVAL;
	}

1142
	mode = args->flags & I915_EXEC_CONSTANTS_MASK;
1143
	mask = I915_EXEC_CONSTANTS_MASK;
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
	switch (mode) {
	case I915_EXEC_CONSTANTS_REL_GENERAL:
	case I915_EXEC_CONSTANTS_ABSOLUTE:
	case I915_EXEC_CONSTANTS_REL_SURFACE:
		if (ring == &dev_priv->ring[RCS] &&
		    mode != dev_priv->relative_constants_mode) {
			if (INTEL_INFO(dev)->gen < 4)
				return -EINVAL;

			if (INTEL_INFO(dev)->gen > 5 &&
			    mode == I915_EXEC_CONSTANTS_REL_SURFACE)
				return -EINVAL;
1156 1157 1158 1159

			/* The HW changed the meaning on this bit on gen6 */
			if (INTEL_INFO(dev)->gen >= 6)
				mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
1160 1161 1162
		}
		break;
	default:
1163
		DRM_DEBUG("execbuf with unknown constants: %d\n", mode);
1164 1165 1166
		return -EINVAL;
	}

1167
	if (args->buffer_count < 1) {
1168
		DRM_DEBUG("execbuf with %d buffers\n", args->buffer_count);
1169 1170 1171 1172
		return -EINVAL;
	}

	if (args->num_cliprects != 0) {
1173
		if (ring != &dev_priv->ring[RCS]) {
1174
			DRM_DEBUG("clip rectangles are only valid with the render ring\n");
1175 1176 1177
			return -EINVAL;
		}

1178
		cliprects = kmalloc(args->num_cliprects * sizeof(*cliprects),
1179 1180 1181 1182 1183 1184
				    GFP_KERNEL);
		if (cliprects == NULL) {
			ret = -ENOMEM;
			goto pre_mutex_err;
		}

1185 1186 1187 1188
		if (copy_from_user(cliprects,
				     (struct drm_clip_rect __user *)(uintptr_t)
				     args->cliprects_ptr,
				     sizeof(*cliprects)*args->num_cliprects)) {
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
			ret = -EFAULT;
			goto pre_mutex_err;
		}
	}

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto pre_mutex_err;

	if (dev_priv->mm.suspended) {
		mutex_unlock(&dev->struct_mutex);
		ret = -EBUSY;
		goto pre_mutex_err;
	}

1204 1205 1206 1207 1208 1209 1210
	eb = eb_create(args->buffer_count);
	if (eb == NULL) {
		mutex_unlock(&dev->struct_mutex);
		ret = -ENOMEM;
		goto pre_mutex_err;
	}

1211
	/* Look up object handles */
1212
	INIT_LIST_HEAD(&objects);
1213 1214 1215
	for (i = 0; i < args->buffer_count; i++) {
		struct drm_i915_gem_object *obj;

1216 1217
		obj = to_intel_bo(drm_gem_object_lookup(dev, file,
							exec[i].handle));
1218
		if (&obj->base == NULL) {
1219
			DRM_DEBUG("Invalid object handle %d at index %d\n",
1220
				   exec[i].handle, i);
1221 1222 1223 1224 1225
			/* prevent error path from reading uninitialized data */
			ret = -ENOENT;
			goto err;
		}

1226
		if (!list_empty(&obj->exec_list)) {
1227
			DRM_DEBUG("Object %p [handle %d, index %d] appears more than once in object list\n",
1228
				   obj, exec[i].handle, i);
1229 1230 1231
			ret = -EINVAL;
			goto err;
		}
1232 1233

		list_add_tail(&obj->exec_list, &objects);
1234
		obj->exec_handle = exec[i].handle;
1235
		obj->exec_entry = &exec[i];
1236
		eb_add_object(eb, obj);
1237 1238
	}

1239 1240 1241 1242 1243
	/* take note of the batch buffer before we might reorder the lists */
	batch_obj = list_entry(objects.prev,
			       struct drm_i915_gem_object,
			       exec_list);

1244
	/* Move the objects en-masse into the GTT, evicting if necessary. */
1245
	ret = i915_gem_execbuffer_reserve(ring, file, &objects);
1246 1247 1248 1249
	if (ret)
		goto err;

	/* The objects are in their final locations, apply the relocations. */
1250
	ret = i915_gem_execbuffer_relocate(dev, eb, &objects);
1251 1252
	if (ret) {
		if (ret == -EFAULT) {
1253
			ret = i915_gem_execbuffer_relocate_slow(dev, file, ring,
1254 1255
								&objects, eb,
								exec,
1256 1257 1258 1259 1260 1261 1262 1263 1264
								args->buffer_count);
			BUG_ON(!mutex_is_locked(&dev->struct_mutex));
		}
		if (ret)
			goto err;
	}

	/* Set the pending read domains for the batch buffer to COMMAND */
	if (batch_obj->base.pending_write_domain) {
1265
		DRM_DEBUG("Attempting to use self-modifying batch buffer\n");
1266 1267 1268 1269 1270
		ret = -EINVAL;
		goto err;
	}
	batch_obj->base.pending_read_domains |= I915_GEM_DOMAIN_COMMAND;

1271 1272
	ret = i915_gem_execbuffer_move_to_gpu(ring, &objects);
	if (ret)
1273 1274
		goto err;

C
Chris Wilson 已提交
1275
	seqno = i915_gem_next_request_seqno(ring);
1276
	for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++) {
1277 1278 1279 1280 1281
		if (seqno < ring->sync_seqno[i]) {
			/* The GPU can not handle its semaphore value wrapping,
			 * so every billion or so execbuffers, we need to stall
			 * the GPU in order to reset the counters.
			 */
1282
			ret = i915_gpu_idle(dev, true);
1283 1284 1285 1286 1287 1288 1289
			if (ret)
				goto err;

			BUG_ON(ring->sync_seqno[i]);
		}
	}

1290 1291 1292 1293 1294 1295 1296 1297 1298
	if (ring == &dev_priv->ring[RCS] &&
	    mode != dev_priv->relative_constants_mode) {
		ret = intel_ring_begin(ring, 4);
		if (ret)
				goto err;

		intel_ring_emit(ring, MI_NOOP);
		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
		intel_ring_emit(ring, INSTPM);
1299
		intel_ring_emit(ring, mask << 16 | mode);
1300 1301 1302 1303 1304
		intel_ring_advance(ring);

		dev_priv->relative_constants_mode = mode;
	}

1305 1306 1307 1308 1309 1310
	if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
		ret = i915_reset_gen7_sol_offsets(dev, ring);
		if (ret)
			goto err;
	}

C
Chris Wilson 已提交
1311 1312
	trace_i915_gem_ring_dispatch(ring, seqno);

1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
	exec_start = batch_obj->gtt_offset + args->batch_start_offset;
	exec_len = args->batch_len;
	if (cliprects) {
		for (i = 0; i < args->num_cliprects; i++) {
			ret = i915_emit_box(dev, &cliprects[i],
					    args->DR1, args->DR4);
			if (ret)
				goto err;

			ret = ring->dispatch_execbuffer(ring,
							exec_start, exec_len);
			if (ret)
				goto err;
		}
	} else {
		ret = ring->dispatch_execbuffer(ring, exec_start, exec_len);
		if (ret)
			goto err;
	}
1332

1333
	i915_gem_execbuffer_move_to_active(&objects, ring, seqno);
1334
	i915_gem_execbuffer_retire_commands(dev, file, ring);
1335 1336

err:
1337
	eb_destroy(eb);
1338 1339 1340 1341 1342 1343 1344 1345
	while (!list_empty(&objects)) {
		struct drm_i915_gem_object *obj;

		obj = list_first_entry(&objects,
				       struct drm_i915_gem_object,
				       exec_list);
		list_del_init(&obj->exec_list);
		drm_gem_object_unreference(&obj->base);
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
	}

	mutex_unlock(&dev->struct_mutex);

pre_mutex_err:
	kfree(cliprects);
	return ret;
}

/*
 * Legacy execbuffer just creates an exec2 list from the original exec object
 * list array and passes it to the real function.
 */
int
i915_gem_execbuffer(struct drm_device *dev, void *data,
		    struct drm_file *file)
{
	struct drm_i915_gem_execbuffer *args = data;
	struct drm_i915_gem_execbuffer2 exec2;
	struct drm_i915_gem_exec_object *exec_list = NULL;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
	int ret, i;

	if (args->buffer_count < 1) {
1370
		DRM_DEBUG("execbuf with %d buffers\n", args->buffer_count);
1371 1372 1373 1374 1375 1376 1377
		return -EINVAL;
	}

	/* Copy in the exec list from userland */
	exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
	exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
	if (exec_list == NULL || exec2_list == NULL) {
1378
		DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
			  args->buffer_count);
		drm_free_large(exec_list);
		drm_free_large(exec2_list);
		return -ENOMEM;
	}
	ret = copy_from_user(exec_list,
			     (struct drm_i915_relocation_entry __user *)
			     (uintptr_t) args->buffers_ptr,
			     sizeof(*exec_list) * args->buffer_count);
	if (ret != 0) {
1389
		DRM_DEBUG("copy %d exec entries failed %d\n",
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
			  args->buffer_count, ret);
		drm_free_large(exec_list);
		drm_free_large(exec2_list);
		return -EFAULT;
	}

	for (i = 0; i < args->buffer_count; i++) {
		exec2_list[i].handle = exec_list[i].handle;
		exec2_list[i].relocation_count = exec_list[i].relocation_count;
		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
		exec2_list[i].alignment = exec_list[i].alignment;
		exec2_list[i].offset = exec_list[i].offset;
		if (INTEL_INFO(dev)->gen < 4)
			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
		else
			exec2_list[i].flags = 0;
	}

	exec2.buffers_ptr = args->buffers_ptr;
	exec2.buffer_count = args->buffer_count;
	exec2.batch_start_offset = args->batch_start_offset;
	exec2.batch_len = args->batch_len;
	exec2.DR1 = args->DR1;
	exec2.DR4 = args->DR4;
	exec2.num_cliprects = args->num_cliprects;
	exec2.cliprects_ptr = args->cliprects_ptr;
	exec2.flags = I915_EXEC_RENDER;

	ret = i915_gem_do_execbuffer(dev, data, file, &exec2, exec2_list);
	if (!ret) {
		/* Copy the new buffer offsets back to the user's exec list. */
		for (i = 0; i < args->buffer_count; i++)
			exec_list[i].offset = exec2_list[i].offset;
		/* ... and back out to userspace */
		ret = copy_to_user((struct drm_i915_relocation_entry __user *)
				   (uintptr_t) args->buffers_ptr,
				   exec_list,
				   sizeof(*exec_list) * args->buffer_count);
		if (ret) {
			ret = -EFAULT;
1430
			DRM_DEBUG("failed to copy %d exec entries "
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
				  "back to user (%d)\n",
				  args->buffer_count, ret);
		}
	}

	drm_free_large(exec_list);
	drm_free_large(exec2_list);
	return ret;
}

int
i915_gem_execbuffer2(struct drm_device *dev, void *data,
		     struct drm_file *file)
{
	struct drm_i915_gem_execbuffer2 *args = data;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
	int ret;

	if (args->buffer_count < 1) {
1450
		DRM_DEBUG("execbuf2 with %d buffers\n", args->buffer_count);
1451 1452 1453
		return -EINVAL;
	}

1454 1455 1456 1457 1458
	exec2_list = kmalloc(sizeof(*exec2_list)*args->buffer_count,
			     GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY);
	if (exec2_list == NULL)
		exec2_list = drm_malloc_ab(sizeof(*exec2_list),
					   args->buffer_count);
1459
	if (exec2_list == NULL) {
1460
		DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
1461 1462 1463 1464 1465 1466 1467 1468
			  args->buffer_count);
		return -ENOMEM;
	}
	ret = copy_from_user(exec2_list,
			     (struct drm_i915_relocation_entry __user *)
			     (uintptr_t) args->buffers_ptr,
			     sizeof(*exec2_list) * args->buffer_count);
	if (ret != 0) {
1469
		DRM_DEBUG("copy %d exec entries failed %d\n",
1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
			  args->buffer_count, ret);
		drm_free_large(exec2_list);
		return -EFAULT;
	}

	ret = i915_gem_do_execbuffer(dev, data, file, args, exec2_list);
	if (!ret) {
		/* Copy the new buffer offsets back to the user's exec list. */
		ret = copy_to_user((struct drm_i915_relocation_entry __user *)
				   (uintptr_t) args->buffers_ptr,
				   exec2_list,
				   sizeof(*exec2_list) * args->buffer_count);
		if (ret) {
			ret = -EFAULT;
1484
			DRM_DEBUG("failed to copy %d exec entries "
1485 1486 1487 1488 1489 1490 1491 1492
				  "back to user (%d)\n",
				  args->buffer_count, ret);
		}
	}

	drm_free_large(exec2_list);
	return ret;
}