rcupdate.h 32.7 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 * Read-Copy Update mechanism for mutual exclusion
L
Linus Torvalds 已提交
3 4 5 6 7 8 9 10 11 12 13 14
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
15 16
 * along with this program; if not, you can access it online at
 * http://www.gnu.org/licenses/gpl-2.0.html.
L
Linus Torvalds 已提交
17
 *
18
 * Copyright IBM Corporation, 2001
L
Linus Torvalds 已提交
19 20
 *
 * Author: Dipankar Sarma <dipankar@in.ibm.com>
21
 *
22
 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
L
Linus Torvalds 已提交
23 24 25 26 27 28
 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
 * Papers:
 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
 *
 * For detailed explanation of Read-Copy Update mechanism see -
29
 *		http://lse.sourceforge.net/locking/rcupdate.html
L
Linus Torvalds 已提交
30 31 32 33 34 35
 *
 */

#ifndef __LINUX_RCUPDATE_H
#define __LINUX_RCUPDATE_H

36
#include <linux/types.h>
37
#include <linux/compiler.h>
38
#include <linux/atomic.h>
39
#include <linux/irqflags.h>
40 41 42 43 44
#include <linux/preempt.h>
#include <linux/bottom_half.h>
#include <linux/lockdep.h>
#include <asm/processor.h>
#include <linux/cpumask.h>
45

46 47
#define ULONG_CMP_GE(a, b)	(ULONG_MAX / 2 >= (a) - (b))
#define ULONG_CMP_LT(a, b)	(ULONG_MAX / 2 < (a) - (b))
48
#define ulong2long(a)		(*(long *)(&(a)))
49

50
/* Exported common interfaces */
51 52

#ifdef CONFIG_PREEMPT_RCU
53
void call_rcu(struct rcu_head *head, rcu_callback_t func);
54 55 56 57
#else /* #ifdef CONFIG_PREEMPT_RCU */
#define	call_rcu	call_rcu_sched
#endif /* #else #ifdef CONFIG_PREEMPT_RCU */

58 59
void call_rcu_bh(struct rcu_head *head, rcu_callback_t func);
void call_rcu_sched(struct rcu_head *head, rcu_callback_t func);
60
void synchronize_sched(void);
61
void rcu_barrier_tasks(void);
P
Paul E. McKenney 已提交
62

63 64
#ifdef CONFIG_PREEMPT_RCU

65 66 67
void __rcu_read_lock(void);
void __rcu_read_unlock(void);
void rcu_read_unlock_special(struct task_struct *t);
68 69
void synchronize_rcu(void);

70 71 72 73 74 75 76 77
/*
 * Defined as a macro as it is a very low level header included from
 * areas that don't even know about current.  This gives the rcu_read_lock()
 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
 */
#define rcu_preempt_depth() (current->rcu_read_lock_nesting)

78 79 80 81
#else /* #ifdef CONFIG_PREEMPT_RCU */

static inline void __rcu_read_lock(void)
{
82 83
	if (IS_ENABLED(CONFIG_PREEMPT_COUNT))
		preempt_disable();
84 85 86 87
}

static inline void __rcu_read_unlock(void)
{
88 89
	if (IS_ENABLED(CONFIG_PREEMPT_COUNT))
		preempt_enable();
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
}

static inline void synchronize_rcu(void)
{
	synchronize_sched();
}

static inline int rcu_preempt_depth(void)
{
	return 0;
}

#endif /* #else #ifdef CONFIG_PREEMPT_RCU */

/* Internal to kernel */
105
void rcu_init(void);
106
extern int rcu_scheduler_active __read_mostly;
107 108
void rcu_sched_qs(void);
void rcu_bh_qs(void);
109
void rcu_check_callbacks(int user);
110
void rcu_report_dead(unsigned int cpu);
111
void rcu_cpu_starting(unsigned int cpu);
112
void rcutree_migrate_callbacks(int cpu);
113

114 115 116 117
#ifdef CONFIG_RCU_STALL_COMMON
void rcu_sysrq_start(void);
void rcu_sysrq_end(void);
#else /* #ifdef CONFIG_RCU_STALL_COMMON */
118 119
static inline void rcu_sysrq_start(void) { }
static inline void rcu_sysrq_end(void) { }
120 121
#endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */

122
#ifdef CONFIG_NO_HZ_FULL
123 124
void rcu_user_enter(void);
void rcu_user_exit(void);
125 126 127
#else
static inline void rcu_user_enter(void) { }
static inline void rcu_user_exit(void) { }
128
#endif /* CONFIG_NO_HZ_FULL */
129

130 131 132
#ifdef CONFIG_RCU_NOCB_CPU
void rcu_init_nohz(void);
#else /* #ifdef CONFIG_RCU_NOCB_CPU */
133
static inline void rcu_init_nohz(void) { }
134 135
#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */

136 137 138 139 140 141 142 143 144 145 146
/**
 * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers
 * @a: Code that RCU needs to pay attention to.
 *
 * RCU, RCU-bh, and RCU-sched read-side critical sections are forbidden
 * in the inner idle loop, that is, between the rcu_idle_enter() and
 * the rcu_idle_exit() -- RCU will happily ignore any such read-side
 * critical sections.  However, things like powertop need tracepoints
 * in the inner idle loop.
 *
 * This macro provides the way out:  RCU_NONIDLE(do_something_with_RCU())
147 148
 * will tell RCU that it needs to pay attention, invoke its argument
 * (in this example, calling the do_something_with_RCU() function),
149
 * and then tell RCU to go back to ignoring this CPU.  It is permissible
150 151 152 153
 * to nest RCU_NONIDLE() wrappers, but not indefinitely (but the limit is
 * on the order of a million or so, even on 32-bit systems).  It is
 * not legal to block within RCU_NONIDLE(), nor is it permissible to
 * transfer control either into or out of RCU_NONIDLE()'s statement.
154 155 156
 */
#define RCU_NONIDLE(a) \
	do { \
157
		rcu_irq_enter_irqson(); \
158
		do { a; } while (0); \
159
		rcu_irq_exit_irqson(); \
160 161
	} while (0)

P
Paul E. McKenney 已提交
162 163 164 165 166
/*
 * Note a voluntary context switch for RCU-tasks benefit.  This is a
 * macro rather than an inline function to avoid #include hell.
 */
#ifdef CONFIG_TASKS_RCU
167
#define rcu_note_voluntary_context_switch_lite(t) \
P
Paul E. McKenney 已提交
168
	do { \
169 170
		if (READ_ONCE((t)->rcu_tasks_holdout)) \
			WRITE_ONCE((t)->rcu_tasks_holdout, false); \
P
Paul E. McKenney 已提交
171
	} while (0)
172 173 174 175 176
#define rcu_note_voluntary_context_switch(t) \
	do { \
		rcu_all_qs(); \
		rcu_note_voluntary_context_switch_lite(t); \
	} while (0)
177 178
void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func);
void synchronize_rcu_tasks(void);
179 180
void exit_tasks_rcu_start(void);
void exit_tasks_rcu_finish(void);
P
Paul E. McKenney 已提交
181
#else /* #ifdef CONFIG_TASKS_RCU */
182 183
#define rcu_note_voluntary_context_switch_lite(t)	do { } while (0)
#define rcu_note_voluntary_context_switch(t)		rcu_all_qs()
184 185
#define call_rcu_tasks call_rcu_sched
#define synchronize_rcu_tasks synchronize_sched
186 187
static inline void exit_tasks_rcu_start(void) { }
static inline void exit_tasks_rcu_finish(void) { }
P
Paul E. McKenney 已提交
188 189
#endif /* #else #ifdef CONFIG_TASKS_RCU */

190 191 192 193 194 195 196 197 198
/**
 * cond_resched_rcu_qs - Report potential quiescent states to RCU
 *
 * This macro resembles cond_resched(), except that it is defined to
 * report potential quiescent states to RCU-tasks even if the cond_resched()
 * machinery were to be shut off, as some advocate for PREEMPT kernels.
 */
#define cond_resched_rcu_qs() \
do { \
199 200
	if (!cond_resched()) \
		rcu_note_voluntary_context_switch(current); \
201 202
} while (0)

203 204 205 206 207
/*
 * Infrastructure to implement the synchronize_() primitives in
 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
 */

208
#if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU)
209
#include <linux/rcutree.h>
P
Paul E. McKenney 已提交
210
#elif defined(CONFIG_TINY_RCU)
211
#include <linux/rcutiny.h>
212 213
#else
#error "Unknown RCU implementation specified to kernel configuration"
214
#endif
215

216 217 218 219 220 221 222
/*
 * init_rcu_head_on_stack()/destroy_rcu_head_on_stack() are needed for dynamic
 * initialization and destruction of rcu_head on the stack. rcu_head structures
 * allocated dynamically in the heap or defined statically don't need any
 * initialization.
 */
#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
223 224
void init_rcu_head(struct rcu_head *head);
void destroy_rcu_head(struct rcu_head *head);
225 226
void init_rcu_head_on_stack(struct rcu_head *head);
void destroy_rcu_head_on_stack(struct rcu_head *head);
227
#else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
228 229 230 231
static inline void init_rcu_head(struct rcu_head *head) { }
static inline void destroy_rcu_head(struct rcu_head *head) { }
static inline void init_rcu_head_on_stack(struct rcu_head *head) { }
static inline void destroy_rcu_head_on_stack(struct rcu_head *head) { }
232
#endif	/* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
233

234 235 236
#if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
bool rcu_lockdep_current_cpu_online(void);
#else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
237
static inline bool rcu_lockdep_current_cpu_online(void) { return true; }
238 239
#endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */

240
#ifdef CONFIG_DEBUG_LOCK_ALLOC
241

242 243
static inline void rcu_lock_acquire(struct lockdep_map *map)
{
244
	lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_);
245 246 247 248 249 250 251
}

static inline void rcu_lock_release(struct lockdep_map *map)
{
	lock_release(map, 1, _THIS_IP_);
}

252
extern struct lockdep_map rcu_lock_map;
253 254
extern struct lockdep_map rcu_bh_lock_map;
extern struct lockdep_map rcu_sched_lock_map;
255
extern struct lockdep_map rcu_callback_map;
256
int debug_lockdep_rcu_enabled(void);
257
int rcu_read_lock_held(void);
258
int rcu_read_lock_bh_held(void);
259
int rcu_read_lock_sched_held(void);
260 261 262

#else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */

263 264
# define rcu_lock_acquire(a)		do { } while (0)
# define rcu_lock_release(a)		do { } while (0)
265 266 267 268 269 270 271 272 273 274 275 276 277

static inline int rcu_read_lock_held(void)
{
	return 1;
}

static inline int rcu_read_lock_bh_held(void)
{
	return 1;
}

static inline int rcu_read_lock_sched_held(void)
{
278
	return !preemptible();
279 280 281 282 283
}
#endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */

#ifdef CONFIG_PROVE_RCU

284 285 286 287 288 289 290 291 292 293 294 295 296 297
/**
 * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met
 * @c: condition to check
 * @s: informative message
 */
#define RCU_LOCKDEP_WARN(c, s)						\
	do {								\
		static bool __section(.data.unlikely) __warned;		\
		if (debug_lockdep_rcu_enabled() && !__warned && (c)) {	\
			__warned = true;				\
			lockdep_rcu_suspicious(__FILE__, __LINE__, s);	\
		}							\
	} while (0)

298 299 300
#if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU)
static inline void rcu_preempt_sleep_check(void)
{
301 302
	RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
			 "Illegal context switch in RCU read-side critical section");
303 304
}
#else /* #ifdef CONFIG_PROVE_RCU */
305
static inline void rcu_preempt_sleep_check(void) { }
306 307
#endif /* #else #ifdef CONFIG_PROVE_RCU */

308 309
#define rcu_sleep_check()						\
	do {								\
310
		rcu_preempt_sleep_check();				\
311 312 313 314
		RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),	\
				 "Illegal context switch in RCU-bh read-side critical section"); \
		RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),	\
				 "Illegal context switch in RCU-sched read-side critical section"); \
315 316
	} while (0)

317 318
#else /* #ifdef CONFIG_PROVE_RCU */

319
#define RCU_LOCKDEP_WARN(c, s) do { } while (0)
320
#define rcu_sleep_check() do { } while (0)
321 322 323 324 325 326 327 328 329 330 331

#endif /* #else #ifdef CONFIG_PROVE_RCU */

/*
 * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
 * and rcu_assign_pointer().  Some of these could be folded into their
 * callers, but they are left separate in order to ease introduction of
 * multiple flavors of pointers to match the multiple flavors of RCU
 * (e.g., __rcu_bh, * __rcu_sched, and __srcu), should this make sense in
 * the future.
 */
332 333 334 335 336 337 338 339

#ifdef __CHECKER__
#define rcu_dereference_sparse(p, space) \
	((void)(((typeof(*p) space *)p) == p))
#else /* #ifdef __CHECKER__ */
#define rcu_dereference_sparse(p, space)
#endif /* #else #ifdef __CHECKER__ */

340
#define __rcu_access_pointer(p, space) \
341
({ \
342
	typeof(*p) *_________p1 = (typeof(*p) *__force)READ_ONCE(p); \
343 344 345
	rcu_dereference_sparse(p, space); \
	((typeof(*p) __force __kernel *)(_________p1)); \
})
346
#define __rcu_dereference_check(p, c, space) \
347
({ \
348
	/* Dependency order vs. p above. */ \
349
	typeof(*p) *________p1 = (typeof(*p) *__force)READ_ONCE(p); \
350
	RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \
351
	rcu_dereference_sparse(p, space); \
352
	((typeof(*p) __force __kernel *)(________p1)); \
353
})
354
#define __rcu_dereference_protected(p, c, space) \
355
({ \
356
	RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \
357 358 359
	rcu_dereference_sparse(p, space); \
	((typeof(*p) __force __kernel *)(p)); \
})
360 361 362
#define rcu_dereference_raw(p) \
({ \
	/* Dependency order vs. p above. */ \
363
	typeof(p) ________p1 = READ_ONCE(p); \
364 365
	((typeof(*p) __force __kernel *)(________p1)); \
})
366

367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
/**
 * RCU_INITIALIZER() - statically initialize an RCU-protected global variable
 * @v: The value to statically initialize with.
 */
#define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v)

/**
 * rcu_assign_pointer() - assign to RCU-protected pointer
 * @p: pointer to assign to
 * @v: value to assign (publish)
 *
 * Assigns the specified value to the specified RCU-protected
 * pointer, ensuring that any concurrent RCU readers will see
 * any prior initialization.
 *
 * Inserts memory barriers on architectures that require them
 * (which is most of them), and also prevents the compiler from
 * reordering the code that initializes the structure after the pointer
 * assignment.  More importantly, this call documents which pointers
 * will be dereferenced by RCU read-side code.
 *
 * In some special cases, you may use RCU_INIT_POINTER() instead
 * of rcu_assign_pointer().  RCU_INIT_POINTER() is a bit faster due
 * to the fact that it does not constrain either the CPU or the compiler.
 * That said, using RCU_INIT_POINTER() when you should have used
 * rcu_assign_pointer() is a very bad thing that results in
 * impossible-to-diagnose memory corruption.  So please be careful.
 * See the RCU_INIT_POINTER() comment header for details.
 *
 * Note that rcu_assign_pointer() evaluates each of its arguments only
 * once, appearances notwithstanding.  One of the "extra" evaluations
 * is in typeof() and the other visible only to sparse (__CHECKER__),
 * neither of which actually execute the argument.  As with most cpp
 * macros, this execute-arguments-only-once property is important, so
 * please be careful when making changes to rcu_assign_pointer() and the
 * other macros that it invokes.
 */
404 405 406 407 408 409 410 411 412 413
#define rcu_assign_pointer(p, v)					      \
({									      \
	uintptr_t _r_a_p__v = (uintptr_t)(v);				      \
									      \
	if (__builtin_constant_p(v) && (_r_a_p__v) == (uintptr_t)NULL)	      \
		WRITE_ONCE((p), (typeof(p))(_r_a_p__v));		      \
	else								      \
		smp_store_release(&p, RCU_INITIALIZER((typeof(p))_r_a_p__v)); \
	_r_a_p__v;							      \
})
414

415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
/**
 * rcu_swap_protected() - swap an RCU and a regular pointer
 * @rcu_ptr: RCU pointer
 * @ptr: regular pointer
 * @c: the conditions under which the dereference will take place
 *
 * Perform swap(@rcu_ptr, @ptr) where @rcu_ptr is an RCU-annotated pointer and
 * @c is the argument that is passed to the rcu_dereference_protected() call
 * used to read that pointer.
 */
#define rcu_swap_protected(rcu_ptr, ptr, c) do {			\
	typeof(ptr) __tmp = rcu_dereference_protected((rcu_ptr), (c));	\
	rcu_assign_pointer((rcu_ptr), (ptr));				\
	(ptr) = __tmp;							\
} while (0)

431 432 433 434 435
/**
 * rcu_access_pointer() - fetch RCU pointer with no dereferencing
 * @p: The pointer to read
 *
 * Return the value of the specified RCU-protected pointer, but omit the
436
 * smp_read_barrier_depends() and keep the READ_ONCE().  This is useful
437 438 439 440 441
 * when the value of this pointer is accessed, but the pointer is not
 * dereferenced, for example, when testing an RCU-protected pointer against
 * NULL.  Although rcu_access_pointer() may also be used in cases where
 * update-side locks prevent the value of the pointer from changing, you
 * should instead use rcu_dereference_protected() for this use case.
442 443 444 445 446 447 448
 *
 * It is also permissible to use rcu_access_pointer() when read-side
 * access to the pointer was removed at least one grace period ago, as
 * is the case in the context of the RCU callback that is freeing up
 * the data, or after a synchronize_rcu() returns.  This can be useful
 * when tearing down multi-linked structures after a grace period
 * has elapsed.
449 450 451
 */
#define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu)

452
/**
453
 * rcu_dereference_check() - rcu_dereference with debug checking
454 455
 * @p: The pointer to read, prior to dereferencing
 * @c: The conditions under which the dereference will take place
456
 *
457
 * Do an rcu_dereference(), but check that the conditions under which the
458 459 460 461 462
 * dereference will take place are correct.  Typically the conditions
 * indicate the various locking conditions that should be held at that
 * point.  The check should return true if the conditions are satisfied.
 * An implicit check for being in an RCU read-side critical section
 * (rcu_read_lock()) is included.
463 464 465
 *
 * For example:
 *
466
 *	bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
467 468
 *
 * could be used to indicate to lockdep that foo->bar may only be dereferenced
469
 * if either rcu_read_lock() is held, or that the lock required to replace
470 471 472 473 474 475
 * the bar struct at foo->bar is held.
 *
 * Note that the list of conditions may also include indications of when a lock
 * need not be held, for example during initialisation or destruction of the
 * target struct:
 *
476
 *	bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
477
 *					      atomic_read(&foo->usage) == 0);
478 479 480 481 482 483
 *
 * Inserts memory barriers on architectures that require them
 * (currently only the Alpha), prevents the compiler from refetching
 * (and from merging fetches), and, more importantly, documents exactly
 * which pointers are protected by RCU and checks that the pointer is
 * annotated as __rcu.
484 485
 */
#define rcu_dereference_check(p, c) \
486
	__rcu_dereference_check((p), (c) || rcu_read_lock_held(), __rcu)
487 488 489 490 491 492 493 494 495

/**
 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
 * @p: The pointer to read, prior to dereferencing
 * @c: The conditions under which the dereference will take place
 *
 * This is the RCU-bh counterpart to rcu_dereference_check().
 */
#define rcu_dereference_bh_check(p, c) \
496
	__rcu_dereference_check((p), (c) || rcu_read_lock_bh_held(), __rcu)
497

498
/**
499 500 501 502 503 504 505
 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
 * @p: The pointer to read, prior to dereferencing
 * @c: The conditions under which the dereference will take place
 *
 * This is the RCU-sched counterpart to rcu_dereference_check().
 */
#define rcu_dereference_sched_check(p, c) \
506
	__rcu_dereference_check((p), (c) || rcu_read_lock_sched_held(), \
507 508
				__rcu)

509 510 511 512
/*
 * The tracing infrastructure traces RCU (we want that), but unfortunately
 * some of the RCU checks causes tracing to lock up the system.
 *
513
 * The no-tracing version of rcu_dereference_raw() must not call
514 515 516 517
 * rcu_read_lock_held().
 */
#define rcu_dereference_raw_notrace(p) __rcu_dereference_check((p), 1, __rcu)

518 519 520 521
/**
 * rcu_dereference_protected() - fetch RCU pointer when updates prevented
 * @p: The pointer to read, prior to dereferencing
 * @c: The conditions under which the dereference will take place
522 523
 *
 * Return the value of the specified RCU-protected pointer, but omit
524
 * both the smp_read_barrier_depends() and the READ_ONCE().  This
525
 * is useful in cases where update-side locks prevent the value of the
526
 * pointer from changing.  Please note that this primitive does *not*
527 528 529
 * prevent the compiler from repeating this reference or combining it
 * with other references, so it should not be used without protection
 * of appropriate locks.
530 531 532 533
 *
 * This function is only for update-side use.  Using this function
 * when protected only by rcu_read_lock() will result in infrequent
 * but very ugly failures.
534 535
 */
#define rcu_dereference_protected(p, c) \
536
	__rcu_dereference_protected((p), (c), __rcu)
537

538

539
/**
540 541
 * rcu_dereference() - fetch RCU-protected pointer for dereferencing
 * @p: The pointer to read, prior to dereferencing
542
 *
543
 * This is a simple wrapper around rcu_dereference_check().
544
 */
545
#define rcu_dereference(p) rcu_dereference_check(p, 0)
546

L
Linus Torvalds 已提交
547
/**
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
 * @p: The pointer to read, prior to dereferencing
 *
 * Makes rcu_dereference_check() do the dirty work.
 */
#define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)

/**
 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
 * @p: The pointer to read, prior to dereferencing
 *
 * Makes rcu_dereference_check() do the dirty work.
 */
#define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)

P
Paul E. McKenney 已提交
563 564 565 566 567 568 569 570
/**
 * rcu_pointer_handoff() - Hand off a pointer from RCU to other mechanism
 * @p: The pointer to hand off
 *
 * This is simply an identity function, but it documents where a pointer
 * is handed off from RCU to some other synchronization mechanism, for
 * example, reference counting or locking.  In C11, it would map to
 * kill_dependency().  It could be used as follows:
571
 * ``
P
Paul E. McKenney 已提交
572 573 574 575 576 577 578 579 580 581
 *	rcu_read_lock();
 *	p = rcu_dereference(gp);
 *	long_lived = is_long_lived(p);
 *	if (long_lived) {
 *		if (!atomic_inc_not_zero(p->refcnt))
 *			long_lived = false;
 *		else
 *			p = rcu_pointer_handoff(p);
 *	}
 *	rcu_read_unlock();
582
 *``
P
Paul E. McKenney 已提交
583 584 585
 */
#define rcu_pointer_handoff(p) (p)

586 587
/**
 * rcu_read_lock() - mark the beginning of an RCU read-side critical section
L
Linus Torvalds 已提交
588
 *
589
 * When synchronize_rcu() is invoked on one CPU while other CPUs
L
Linus Torvalds 已提交
590
 * are within RCU read-side critical sections, then the
591
 * synchronize_rcu() is guaranteed to block until after all the other
L
Linus Torvalds 已提交
592 593 594 595 596 597
 * CPUs exit their critical sections.  Similarly, if call_rcu() is invoked
 * on one CPU while other CPUs are within RCU read-side critical
 * sections, invocation of the corresponding RCU callback is deferred
 * until after the all the other CPUs exit their critical sections.
 *
 * Note, however, that RCU callbacks are permitted to run concurrently
598
 * with new RCU read-side critical sections.  One way that this can happen
L
Linus Torvalds 已提交
599 600 601 602 603 604 605 606 607 608 609 610 611 612
 * is via the following sequence of events: (1) CPU 0 enters an RCU
 * read-side critical section, (2) CPU 1 invokes call_rcu() to register
 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
 * callback is invoked.  This is legal, because the RCU read-side critical
 * section that was running concurrently with the call_rcu() (and which
 * therefore might be referencing something that the corresponding RCU
 * callback would free up) has completed before the corresponding
 * RCU callback is invoked.
 *
 * RCU read-side critical sections may be nested.  Any deferred actions
 * will be deferred until the outermost RCU read-side critical section
 * completes.
 *
613 614 615 616 617
 * You can avoid reading and understanding the next paragraph by
 * following this rule: don't put anything in an rcu_read_lock() RCU
 * read-side critical section that would block in a !PREEMPT kernel.
 * But if you want the full story, read on!
 *
618 619
 * In non-preemptible RCU implementations (TREE_RCU and TINY_RCU),
 * it is illegal to block while in an RCU read-side critical section.
620
 * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPT
621 622 623 624 625
 * kernel builds, RCU read-side critical sections may be preempted,
 * but explicit blocking is illegal.  Finally, in preemptible RCU
 * implementations in real-time (with -rt patchset) kernel builds, RCU
 * read-side critical sections may be preempted and they may also block, but
 * only when acquiring spinlocks that are subject to priority inheritance.
L
Linus Torvalds 已提交
626
 */
627 628 629 630
static inline void rcu_read_lock(void)
{
	__rcu_read_lock();
	__acquire(RCU);
631
	rcu_lock_acquire(&rcu_lock_map);
632 633
	RCU_LOCKDEP_WARN(!rcu_is_watching(),
			 "rcu_read_lock() used illegally while idle");
634
}
L
Linus Torvalds 已提交
635 636 637 638 639 640 641 642 643 644

/*
 * So where is rcu_write_lock()?  It does not exist, as there is no
 * way for writers to lock out RCU readers.  This is a feature, not
 * a bug -- this property is what provides RCU's performance benefits.
 * Of course, writers must coordinate with each other.  The normal
 * spinlock primitives work well for this, but any other technique may be
 * used as well.  RCU does not care how the writers keep out of each
 * others' way, as long as they do so.
 */
645 646

/**
647
 * rcu_read_unlock() - marks the end of an RCU read-side critical section.
648
 *
649 650 651 652 653 654
 * In most situations, rcu_read_unlock() is immune from deadlock.
 * However, in kernels built with CONFIG_RCU_BOOST, rcu_read_unlock()
 * is responsible for deboosting, which it does via rt_mutex_unlock().
 * Unfortunately, this function acquires the scheduler's runqueue and
 * priority-inheritance spinlocks.  This means that deadlock could result
 * if the caller of rcu_read_unlock() already holds one of these locks or
655 656 657
 * any lock that is ever acquired while holding them; or any lock which
 * can be taken from interrupt context because rcu_boost()->rt_mutex_lock()
 * does not disable irqs while taking ->wait_lock.
658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
 *
 * That said, RCU readers are never priority boosted unless they were
 * preempted.  Therefore, one way to avoid deadlock is to make sure
 * that preemption never happens within any RCU read-side critical
 * section whose outermost rcu_read_unlock() is called with one of
 * rt_mutex_unlock()'s locks held.  Such preemption can be avoided in
 * a number of ways, for example, by invoking preempt_disable() before
 * critical section's outermost rcu_read_lock().
 *
 * Given that the set of locks acquired by rt_mutex_unlock() might change
 * at any time, a somewhat more future-proofed approach is to make sure
 * that that preemption never happens within any RCU read-side critical
 * section whose outermost rcu_read_unlock() is called with irqs disabled.
 * This approach relies on the fact that rt_mutex_unlock() currently only
 * acquires irq-disabled locks.
 *
 * The second of these two approaches is best in most situations,
 * however, the first approach can also be useful, at least to those
 * developers willing to keep abreast of the set of locks acquired by
 * rt_mutex_unlock().
 *
679 680
 * See rcu_read_lock() for more information.
 */
681 682
static inline void rcu_read_unlock(void)
{
683 684
	RCU_LOCKDEP_WARN(!rcu_is_watching(),
			 "rcu_read_unlock() used illegally while idle");
685 686
	__release(RCU);
	__rcu_read_unlock();
687
	rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */
688
}
L
Linus Torvalds 已提交
689 690

/**
691
 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
L
Linus Torvalds 已提交
692 693
 *
 * This is equivalent of rcu_read_lock(), but to be used when updates
694 695 696 697 698 699 700
 * are being done using call_rcu_bh() or synchronize_rcu_bh(). Since
 * both call_rcu_bh() and synchronize_rcu_bh() consider completion of a
 * softirq handler to be a quiescent state, a process in RCU read-side
 * critical section must be protected by disabling softirqs. Read-side
 * critical sections in interrupt context can use just rcu_read_lock(),
 * though this should at least be commented to avoid confusing people
 * reading the code.
701 702 703 704 705
 *
 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
 * must occur in the same context, for example, it is illegal to invoke
 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
 * was invoked from some other task.
L
Linus Torvalds 已提交
706
 */
707 708
static inline void rcu_read_lock_bh(void)
{
709
	local_bh_disable();
710
	__acquire(RCU_BH);
711
	rcu_lock_acquire(&rcu_bh_lock_map);
712 713
	RCU_LOCKDEP_WARN(!rcu_is_watching(),
			 "rcu_read_lock_bh() used illegally while idle");
714
}
L
Linus Torvalds 已提交
715 716 717 718 719 720

/*
 * rcu_read_unlock_bh - marks the end of a softirq-only RCU critical section
 *
 * See rcu_read_lock_bh() for more information.
 */
721 722
static inline void rcu_read_unlock_bh(void)
{
723 724
	RCU_LOCKDEP_WARN(!rcu_is_watching(),
			 "rcu_read_unlock_bh() used illegally while idle");
725
	rcu_lock_release(&rcu_bh_lock_map);
726
	__release(RCU_BH);
727
	local_bh_enable();
728
}
L
Linus Torvalds 已提交
729

730
/**
731
 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
732
 *
733 734 735 736
 * This is equivalent of rcu_read_lock(), but to be used when updates
 * are being done using call_rcu_sched() or synchronize_rcu_sched().
 * Read-side critical sections can also be introduced by anything that
 * disables preemption, including local_irq_disable() and friends.
737 738 739 740 741
 *
 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
 * must occur in the same context, for example, it is illegal to invoke
 * rcu_read_unlock_sched() from process context if the matching
 * rcu_read_lock_sched() was invoked from an NMI handler.
742
 */
743 744 745
static inline void rcu_read_lock_sched(void)
{
	preempt_disable();
746
	__acquire(RCU_SCHED);
747
	rcu_lock_acquire(&rcu_sched_lock_map);
748 749
	RCU_LOCKDEP_WARN(!rcu_is_watching(),
			 "rcu_read_lock_sched() used illegally while idle");
750
}
751 752

/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
753
static inline notrace void rcu_read_lock_sched_notrace(void)
754 755
{
	preempt_disable_notrace();
756
	__acquire(RCU_SCHED);
757
}
758 759 760 761 762 763

/*
 * rcu_read_unlock_sched - marks the end of a RCU-classic critical section
 *
 * See rcu_read_lock_sched for more information.
 */
764 765
static inline void rcu_read_unlock_sched(void)
{
766 767
	RCU_LOCKDEP_WARN(!rcu_is_watching(),
			 "rcu_read_unlock_sched() used illegally while idle");
768
	rcu_lock_release(&rcu_sched_lock_map);
769
	__release(RCU_SCHED);
770 771
	preempt_enable();
}
772 773

/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
774
static inline notrace void rcu_read_unlock_sched_notrace(void)
775
{
776
	__release(RCU_SCHED);
777 778
	preempt_enable_notrace();
}
779

780 781
/**
 * RCU_INIT_POINTER() - initialize an RCU protected pointer
782 783
 * @p: The pointer to be initialized.
 * @v: The value to initialized the pointer to.
784
 *
785 786 787 788
 * Initialize an RCU-protected pointer in special cases where readers
 * do not need ordering constraints on the CPU or the compiler.  These
 * special cases are:
 *
789
 * 1.	This use of RCU_INIT_POINTER() is NULLing out the pointer *or*
790
 * 2.	The caller has taken whatever steps are required to prevent
791
 *	RCU readers from concurrently accessing this pointer *or*
792
 * 3.	The referenced data structure has already been exposed to
793 794 795 796
 *	readers either at compile time or via rcu_assign_pointer() *and*
 *
 *	a.	You have not made *any* reader-visible changes to
 *		this structure since then *or*
797 798 799 800 801 802 803 804 805 806 807 808 809 810 811
 *	b.	It is OK for readers accessing this structure from its
 *		new location to see the old state of the structure.  (For
 *		example, the changes were to statistical counters or to
 *		other state where exact synchronization is not required.)
 *
 * Failure to follow these rules governing use of RCU_INIT_POINTER() will
 * result in impossible-to-diagnose memory corruption.  As in the structures
 * will look OK in crash dumps, but any concurrent RCU readers might
 * see pre-initialized values of the referenced data structure.  So
 * please be very careful how you use RCU_INIT_POINTER()!!!
 *
 * If you are creating an RCU-protected linked structure that is accessed
 * by a single external-to-structure RCU-protected pointer, then you may
 * use RCU_INIT_POINTER() to initialize the internal RCU-protected
 * pointers, but you must use rcu_assign_pointer() to initialize the
812
 * external-to-structure pointer *after* you have completely initialized
813
 * the reader-accessible portions of the linked structure.
814 815 816
 *
 * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no
 * ordering guarantees for either the CPU or the compiler.
817 818
 */
#define RCU_INIT_POINTER(p, v) \
819
	do { \
820
		rcu_dereference_sparse(p, __rcu); \
821
		WRITE_ONCE(p, RCU_INITIALIZER(v)); \
822
	} while (0)
L
Lai Jiangshan 已提交
823

824 825
/**
 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer
826 827
 * @p: The pointer to be initialized.
 * @v: The value to initialized the pointer to.
828 829 830 831
 *
 * GCC-style initialization for an RCU-protected pointer in a structure field.
 */
#define RCU_POINTER_INITIALIZER(p, v) \
832
		.p = RCU_INITIALIZER(v)
L
Lai Jiangshan 已提交
833

834 835 836 837 838 839 840 841 842 843 844 845
/*
 * Does the specified offset indicate that the corresponding rcu_head
 * structure can be handled by kfree_rcu()?
 */
#define __is_kfree_rcu_offset(offset) ((offset) < 4096)

/*
 * Helper macro for kfree_rcu() to prevent argument-expansion eyestrain.
 */
#define __kfree_rcu(head, offset) \
	do { \
		BUILD_BUG_ON(!__is_kfree_rcu_offset(offset)); \
846
		kfree_call_rcu(head, (rcu_callback_t)(unsigned long)(offset)); \
847 848
	} while (0)

L
Lai Jiangshan 已提交
849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
/**
 * kfree_rcu() - kfree an object after a grace period.
 * @ptr:	pointer to kfree
 * @rcu_head:	the name of the struct rcu_head within the type of @ptr.
 *
 * Many rcu callbacks functions just call kfree() on the base structure.
 * These functions are trivial, but their size adds up, and furthermore
 * when they are used in a kernel module, that module must invoke the
 * high-latency rcu_barrier() function at module-unload time.
 *
 * The kfree_rcu() function handles this issue.  Rather than encoding a
 * function address in the embedded rcu_head structure, kfree_rcu() instead
 * encodes the offset of the rcu_head structure within the base structure.
 * Because the functions are not allowed in the low-order 4096 bytes of
 * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
 * If the offset is larger than 4095 bytes, a compile-time error will
 * be generated in __kfree_rcu().  If this error is triggered, you can
 * either fall back to use of call_rcu() or rearrange the structure to
 * position the rcu_head structure into the first 4096 bytes.
 *
 * Note that the allowable offset might decrease in the future, for example,
 * to allow something like kmem_cache_free_rcu().
871 872 873
 *
 * The BUILD_BUG_ON check must not involve any function calls, hence the
 * checks are done in macros here.
L
Lai Jiangshan 已提交
874 875 876 877
 */
#define kfree_rcu(ptr, rcu_head)					\
	__kfree_rcu(&((ptr)->rcu_head), offsetof(typeof(*(ptr)), rcu_head))

878

879 880 881 882 883 884
/*
 * Place this after a lock-acquisition primitive to guarantee that
 * an UNLOCK+LOCK pair acts as a full barrier.  This guarantee applies
 * if the UNLOCK and LOCK are executed by the same CPU or if the
 * UNLOCK and LOCK operate on the same lock variable.
 */
885
#ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE
886
#define smp_mb__after_unlock_lock()	smp_mb()  /* Full ordering for lock. */
887
#else /* #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
888
#define smp_mb__after_unlock_lock()	do { } while (0)
889
#endif /* #else #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
890

891

L
Linus Torvalds 已提交
892
#endif /* __LINUX_RCUPDATE_H */