rcupdate.h 40.7 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 * Read-Copy Update mechanism for mutual exclusion
L
Linus Torvalds 已提交
3 4 5 6 7 8 9 10 11 12 13 14
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
15 16
 * along with this program; if not, you can access it online at
 * http://www.gnu.org/licenses/gpl-2.0.html.
L
Linus Torvalds 已提交
17
 *
18
 * Copyright IBM Corporation, 2001
L
Linus Torvalds 已提交
19 20
 *
 * Author: Dipankar Sarma <dipankar@in.ibm.com>
21
 *
22
 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
L
Linus Torvalds 已提交
23 24 25 26 27 28
 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
 * Papers:
 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
 *
 * For detailed explanation of Read-Copy Update mechanism see -
29
 *		http://lse.sourceforge.net/locking/rcupdate.html
L
Linus Torvalds 已提交
30 31 32 33 34 35
 *
 */

#ifndef __LINUX_RCUPDATE_H
#define __LINUX_RCUPDATE_H

36
#include <linux/types.h>
L
Linus Torvalds 已提交
37 38 39 40 41
#include <linux/cache.h>
#include <linux/spinlock.h>
#include <linux/threads.h>
#include <linux/cpumask.h>
#include <linux/seqlock.h>
42
#include <linux/lockdep.h>
P
Paul E. McKenney 已提交
43
#include <linux/completion.h>
44
#include <linux/debugobjects.h>
45
#include <linux/bug.h>
46
#include <linux/compiler.h>
47 48
#include <linux/ktime.h>

49
#include <asm/barrier.h>
L
Linus Torvalds 已提交
50

51
#ifndef CONFIG_TINY_RCU
52
extern int rcu_expedited; /* for sysctl */
53
extern int rcu_normal;    /* also for sysctl */
54
#endif /* #ifndef CONFIG_TINY_RCU */
D
Dave Young 已提交
55

56 57
#ifdef CONFIG_TINY_RCU
/* Tiny RCU doesn't expedite, as its purpose in life is instead to be tiny. */
58 59 60 61
static inline bool rcu_gp_is_normal(void)  /* Internal RCU use. */
{
	return true;
}
62 63 64 65 66 67 68 69 70 71 72 73 74
static inline bool rcu_gp_is_expedited(void)  /* Internal RCU use. */
{
	return false;
}

static inline void rcu_expedite_gp(void)
{
}

static inline void rcu_unexpedite_gp(void)
{
}
#else /* #ifdef CONFIG_TINY_RCU */
75
bool rcu_gp_is_normal(void);     /* Internal RCU use. */
76 77 78 79 80
bool rcu_gp_is_expedited(void);  /* Internal RCU use. */
void rcu_expedite_gp(void);
void rcu_unexpedite_gp(void);
#endif /* #else #ifdef CONFIG_TINY_RCU */

81 82 83 84
enum rcutorture_type {
	RCU_FLAVOR,
	RCU_BH_FLAVOR,
	RCU_SCHED_FLAVOR,
85
	RCU_TASKS_FLAVOR,
86 87 88 89
	SRCU_FLAVOR,
	INVALID_RCU_FLAVOR
};

90
#if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU)
91 92
void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
			    unsigned long *gpnum, unsigned long *completed);
93 94 95 96 97 98 99
void rcutorture_record_test_transition(void);
void rcutorture_record_progress(unsigned long vernum);
void do_trace_rcu_torture_read(const char *rcutorturename,
			       struct rcu_head *rhp,
			       unsigned long secs,
			       unsigned long c_old,
			       unsigned long c);
100
#else
101 102 103 104 105 106 107 108 109
static inline void rcutorture_get_gp_data(enum rcutorture_type test_type,
					  int *flags,
					  unsigned long *gpnum,
					  unsigned long *completed)
{
	*flags = 0;
	*gpnum = 0;
	*completed = 0;
}
110 111 112 113 114 115
static inline void rcutorture_record_test_transition(void)
{
}
static inline void rcutorture_record_progress(unsigned long vernum)
{
}
116
#ifdef CONFIG_RCU_TRACE
117 118 119 120 121
void do_trace_rcu_torture_read(const char *rcutorturename,
			       struct rcu_head *rhp,
			       unsigned long secs,
			       unsigned long c_old,
			       unsigned long c);
122
#else
123 124
#define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
	do { } while (0)
125
#endif
126 127
#endif

128 129
#define UINT_CMP_GE(a, b)	(UINT_MAX / 2 >= (a) - (b))
#define UINT_CMP_LT(a, b)	(UINT_MAX / 2 < (a) - (b))
130 131
#define ULONG_CMP_GE(a, b)	(ULONG_MAX / 2 >= (a) - (b))
#define ULONG_CMP_LT(a, b)	(ULONG_MAX / 2 < (a) - (b))
132
#define ulong2long(a)		(*(long *)(&(a)))
133

134
/* Exported common interfaces */
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149

#ifdef CONFIG_PREEMPT_RCU

/**
 * call_rcu() - Queue an RCU callback for invocation after a grace period.
 * @head: structure to be used for queueing the RCU updates.
 * @func: actual callback function to be invoked after the grace period
 *
 * The callback function will be invoked some time after a full grace
 * period elapses, in other words after all pre-existing RCU read-side
 * critical sections have completed.  However, the callback function
 * might well execute concurrently with RCU read-side critical sections
 * that started after call_rcu() was invoked.  RCU read-side critical
 * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
 * and may be nested.
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
 *
 * Note that all CPUs must agree that the grace period extended beyond
 * all pre-existing RCU read-side critical section.  On systems with more
 * than one CPU, this means that when "func()" is invoked, each CPU is
 * guaranteed to have executed a full memory barrier since the end of its
 * last RCU read-side critical section whose beginning preceded the call
 * to call_rcu().  It also means that each CPU executing an RCU read-side
 * critical section that continues beyond the start of "func()" must have
 * executed a memory barrier after the call_rcu() but before the beginning
 * of that RCU read-side critical section.  Note that these guarantees
 * include CPUs that are offline, idle, or executing in user mode, as
 * well as CPUs that are executing in the kernel.
 *
 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
 * resulting RCU callback function "func()", then both CPU A and CPU B are
 * guaranteed to execute a full memory barrier during the time interval
 * between the call to call_rcu() and the invocation of "func()" -- even
 * if CPU A and CPU B are the same CPU (but again only if the system has
 * more than one CPU).
169
 */
170
void call_rcu(struct rcu_head *head,
171
	      rcu_callback_t func);
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196

#else /* #ifdef CONFIG_PREEMPT_RCU */

/* In classic RCU, call_rcu() is just call_rcu_sched(). */
#define	call_rcu	call_rcu_sched

#endif /* #else #ifdef CONFIG_PREEMPT_RCU */

/**
 * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period.
 * @head: structure to be used for queueing the RCU updates.
 * @func: actual callback function to be invoked after the grace period
 *
 * The callback function will be invoked some time after a full grace
 * period elapses, in other words after all currently executing RCU
 * read-side critical sections have completed. call_rcu_bh() assumes
 * that the read-side critical sections end on completion of a softirq
 * handler. This means that read-side critical sections in process
 * context must not be interrupted by softirqs. This interface is to be
 * used when most of the read-side critical sections are in softirq context.
 * RCU read-side critical sections are delimited by :
 *  - rcu_read_lock() and  rcu_read_unlock(), if in interrupt context.
 *  OR
 *  - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context.
 *  These may be nested.
197 198 199
 *
 * See the description of call_rcu() for more detailed information on
 * memory ordering guarantees.
200
 */
201
void call_rcu_bh(struct rcu_head *head,
202
		 rcu_callback_t func);
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218

/**
 * call_rcu_sched() - Queue an RCU for invocation after sched grace period.
 * @head: structure to be used for queueing the RCU updates.
 * @func: actual callback function to be invoked after the grace period
 *
 * The callback function will be invoked some time after a full grace
 * period elapses, in other words after all currently executing RCU
 * read-side critical sections have completed. call_rcu_sched() assumes
 * that the read-side critical sections end on enabling of preemption
 * or on voluntary preemption.
 * RCU read-side critical sections are delimited by :
 *  - rcu_read_lock_sched() and  rcu_read_unlock_sched(),
 *  OR
 *  anything that disables preemption.
 *  These may be nested.
219 220 221
 *
 * See the description of call_rcu() for more detailed information on
 * memory ordering guarantees.
222
 */
223
void call_rcu_sched(struct rcu_head *head,
224
		    rcu_callback_t func);
225

226
void synchronize_sched(void);
227

228 229 230 231 232 233 234 235 236
/*
 * Structure allowing asynchronous waiting on RCU.
 */
struct rcu_synchronize {
	struct rcu_head head;
	struct completion completion;
};
void wakeme_after_rcu(struct rcu_head *head);

237 238 239 240
void __wait_rcu_gp(bool checktiny, int n, call_rcu_func_t *crcu_array,
		   struct rcu_synchronize *rs_array);

#define _wait_rcu_gp(checktiny, ...) \
241 242 243 244 245
do {									\
	call_rcu_func_t __crcu_array[] = { __VA_ARGS__ };		\
	struct rcu_synchronize __rs_array[ARRAY_SIZE(__crcu_array)];	\
	__wait_rcu_gp(checktiny, ARRAY_SIZE(__crcu_array),		\
			__crcu_array, __rs_array);			\
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
} while (0)

#define wait_rcu_gp(...) _wait_rcu_gp(false, __VA_ARGS__)

/**
 * synchronize_rcu_mult - Wait concurrently for multiple grace periods
 * @...: List of call_rcu() functions for the flavors to wait on.
 *
 * This macro waits concurrently for multiple flavors of RCU grace periods.
 * For example, synchronize_rcu_mult(call_rcu, call_rcu_bh) would wait
 * on concurrent RCU and RCU-bh grace periods.  Waiting on a give SRCU
 * domain requires you to write a wrapper function for that SRCU domain's
 * call_srcu() function, supplying the corresponding srcu_struct.
 *
 * If Tiny RCU, tell _wait_rcu_gp() not to bother waiting for RCU
 * or RCU-bh, given that anywhere synchronize_rcu_mult() can be called
 * is automatically a grace period.
 */
#define synchronize_rcu_mult(...) \
	_wait_rcu_gp(IS_ENABLED(CONFIG_TINY_RCU), __VA_ARGS__)

P
Paul E. McKenney 已提交
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
/**
 * call_rcu_tasks() - Queue an RCU for invocation task-based grace period
 * @head: structure to be used for queueing the RCU updates.
 * @func: actual callback function to be invoked after the grace period
 *
 * The callback function will be invoked some time after a full grace
 * period elapses, in other words after all currently executing RCU
 * read-side critical sections have completed. call_rcu_tasks() assumes
 * that the read-side critical sections end at a voluntary context
 * switch (not a preemption!), entry into idle, or transition to usermode
 * execution.  As such, there are no read-side primitives analogous to
 * rcu_read_lock() and rcu_read_unlock() because this primitive is intended
 * to determine that all tasks have passed through a safe state, not so
 * much for data-strcuture synchronization.
 *
 * See the description of call_rcu() for more detailed information on
 * memory ordering guarantees.
 */
285
void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func);
286 287
void synchronize_rcu_tasks(void);
void rcu_barrier_tasks(void);
P
Paul E. McKenney 已提交
288

289 290
#ifdef CONFIG_PREEMPT_RCU

291 292 293
void __rcu_read_lock(void);
void __rcu_read_unlock(void);
void rcu_read_unlock_special(struct task_struct *t);
294 295
void synchronize_rcu(void);

296 297 298 299 300 301 302 303
/*
 * Defined as a macro as it is a very low level header included from
 * areas that don't even know about current.  This gives the rcu_read_lock()
 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
 */
#define rcu_preempt_depth() (current->rcu_read_lock_nesting)

304 305 306 307
#else /* #ifdef CONFIG_PREEMPT_RCU */

static inline void __rcu_read_lock(void)
{
308 309
	if (IS_ENABLED(CONFIG_PREEMPT_COUNT))
		preempt_disable();
310 311 312 313
}

static inline void __rcu_read_unlock(void)
{
314 315
	if (IS_ENABLED(CONFIG_PREEMPT_COUNT))
		preempt_enable();
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
}

static inline void synchronize_rcu(void)
{
	synchronize_sched();
}

static inline int rcu_preempt_depth(void)
{
	return 0;
}

#endif /* #else #ifdef CONFIG_PREEMPT_RCU */

/* Internal to kernel */
331
void rcu_init(void);
332 333
void rcu_sched_qs(void);
void rcu_bh_qs(void);
334
void rcu_check_callbacks(int user);
335
struct notifier_block;
336 337
int rcu_cpu_notify(struct notifier_block *self,
		   unsigned long action, void *hcpu);
338

339 340 341 342 343 344
#ifndef CONFIG_TINY_RCU
void rcu_end_inkernel_boot(void);
#else /* #ifndef CONFIG_TINY_RCU */
static inline void rcu_end_inkernel_boot(void) { }
#endif /* #ifndef CONFIG_TINY_RCU */

345 346 347 348 349 350 351 352 353 354 355 356
#ifdef CONFIG_RCU_STALL_COMMON
void rcu_sysrq_start(void);
void rcu_sysrq_end(void);
#else /* #ifdef CONFIG_RCU_STALL_COMMON */
static inline void rcu_sysrq_start(void)
{
}
static inline void rcu_sysrq_end(void)
{
}
#endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */

357
#ifdef CONFIG_NO_HZ_FULL
358 359
void rcu_user_enter(void);
void rcu_user_exit(void);
360 361 362
#else
static inline void rcu_user_enter(void) { }
static inline void rcu_user_exit(void) { }
F
Frederic Weisbecker 已提交
363 364
static inline void rcu_user_hooks_switch(struct task_struct *prev,
					 struct task_struct *next) { }
365
#endif /* CONFIG_NO_HZ_FULL */
366

367 368 369 370 371 372 373 374
#ifdef CONFIG_RCU_NOCB_CPU
void rcu_init_nohz(void);
#else /* #ifdef CONFIG_RCU_NOCB_CPU */
static inline void rcu_init_nohz(void)
{
}
#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */

375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
/**
 * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers
 * @a: Code that RCU needs to pay attention to.
 *
 * RCU, RCU-bh, and RCU-sched read-side critical sections are forbidden
 * in the inner idle loop, that is, between the rcu_idle_enter() and
 * the rcu_idle_exit() -- RCU will happily ignore any such read-side
 * critical sections.  However, things like powertop need tracepoints
 * in the inner idle loop.
 *
 * This macro provides the way out:  RCU_NONIDLE(do_something_with_RCU())
 * will tell RCU that it needs to pay attending, invoke its argument
 * (in this example, a call to the do_something_with_RCU() function),
 * and then tell RCU to go back to ignoring this CPU.  It is permissible
 * to nest RCU_NONIDLE() wrappers, but the nesting level is currently
 * quite limited.  If deeper nesting is required, it will be necessary
 * to adjust DYNTICK_TASK_NESTING_VALUE accordingly.
 */
#define RCU_NONIDLE(a) \
	do { \
395
		rcu_irq_enter_irqson(); \
396
		do { a; } while (0); \
397
		rcu_irq_exit_irqson(); \
398 399
	} while (0)

P
Paul E. McKenney 已提交
400 401 402 403 404
/*
 * Note a voluntary context switch for RCU-tasks benefit.  This is a
 * macro rather than an inline function to avoid #include hell.
 */
#ifdef CONFIG_TASKS_RCU
405 406
#define TASKS_RCU(x) x
extern struct srcu_struct tasks_rcu_exit_srcu;
P
Paul E. McKenney 已提交
407 408
#define rcu_note_voluntary_context_switch(t) \
	do { \
409
		rcu_all_qs(); \
410 411
		if (READ_ONCE((t)->rcu_tasks_holdout)) \
			WRITE_ONCE((t)->rcu_tasks_holdout, false); \
P
Paul E. McKenney 已提交
412 413
	} while (0)
#else /* #ifdef CONFIG_TASKS_RCU */
414
#define TASKS_RCU(x) do { } while (0)
415
#define rcu_note_voluntary_context_switch(t)	rcu_all_qs()
P
Paul E. McKenney 已提交
416 417
#endif /* #else #ifdef CONFIG_TASKS_RCU */

418 419 420 421 422 423 424 425 426
/**
 * cond_resched_rcu_qs - Report potential quiescent states to RCU
 *
 * This macro resembles cond_resched(), except that it is defined to
 * report potential quiescent states to RCU-tasks even if the cond_resched()
 * machinery were to be shut off, as some advocate for PREEMPT kernels.
 */
#define cond_resched_rcu_qs() \
do { \
427 428
	if (!cond_resched()) \
		rcu_note_voluntary_context_switch(current); \
429 430
} while (0)

431
#if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_RCU_TRACE) || defined(CONFIG_SMP)
432
bool __rcu_is_watching(void);
433 434
#endif /* #if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_RCU_TRACE) || defined(CONFIG_SMP) */

435 436 437 438 439
/*
 * Infrastructure to implement the synchronize_() primitives in
 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
 */

440
#if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU)
441
#include <linux/rcutree.h>
P
Paul E. McKenney 已提交
442
#elif defined(CONFIG_TINY_RCU)
443
#include <linux/rcutiny.h>
444 445
#else
#error "Unknown RCU implementation specified to kernel configuration"
446
#endif
447

448 449 450 451 452 453 454
/*
 * init_rcu_head_on_stack()/destroy_rcu_head_on_stack() are needed for dynamic
 * initialization and destruction of rcu_head on the stack. rcu_head structures
 * allocated dynamically in the heap or defined statically don't need any
 * initialization.
 */
#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
455 456
void init_rcu_head(struct rcu_head *head);
void destroy_rcu_head(struct rcu_head *head);
457 458
void init_rcu_head_on_stack(struct rcu_head *head);
void destroy_rcu_head_on_stack(struct rcu_head *head);
459
#else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
460 461 462 463 464 465 466 467
static inline void init_rcu_head(struct rcu_head *head)
{
}

static inline void destroy_rcu_head(struct rcu_head *head)
{
}

468 469 470 471 472 473 474
static inline void init_rcu_head_on_stack(struct rcu_head *head)
{
}

static inline void destroy_rcu_head_on_stack(struct rcu_head *head)
{
}
475
#endif	/* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
476

477 478 479 480 481
#if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
bool rcu_lockdep_current_cpu_online(void);
#else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
static inline bool rcu_lockdep_current_cpu_online(void)
{
482
	return true;
483 484 485
}
#endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */

486
#ifdef CONFIG_DEBUG_LOCK_ALLOC
487

488 489
static inline void rcu_lock_acquire(struct lockdep_map *map)
{
490
	lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_);
491 492 493 494 495 496 497
}

static inline void rcu_lock_release(struct lockdep_map *map)
{
	lock_release(map, 1, _THIS_IP_);
}

498
extern struct lockdep_map rcu_lock_map;
499 500
extern struct lockdep_map rcu_bh_lock_map;
extern struct lockdep_map rcu_sched_lock_map;
501
extern struct lockdep_map rcu_callback_map;
502
int debug_lockdep_rcu_enabled(void);
503

504
int rcu_read_lock_held(void);
505
int rcu_read_lock_bh_held(void);
506 507

/**
508
 * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section?
509
 *
510 511 512
 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an
 * RCU-sched read-side critical section.  In absence of
 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
513
 * critical section unless it can prove otherwise.
514
 */
515
#ifdef CONFIG_PREEMPT_COUNT
516
int rcu_read_lock_sched_held(void);
517
#else /* #ifdef CONFIG_PREEMPT_COUNT */
518 519 520
static inline int rcu_read_lock_sched_held(void)
{
	return 1;
521
}
522
#endif /* #else #ifdef CONFIG_PREEMPT_COUNT */
523 524 525

#else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */

526 527
# define rcu_lock_acquire(a)		do { } while (0)
# define rcu_lock_release(a)		do { } while (0)
528 529 530 531 532 533 534 535 536 537 538

static inline int rcu_read_lock_held(void)
{
	return 1;
}

static inline int rcu_read_lock_bh_held(void)
{
	return 1;
}

539
#ifdef CONFIG_PREEMPT_COUNT
540 541
static inline int rcu_read_lock_sched_held(void)
{
542
	return preempt_count() != 0 || irqs_disabled();
543
}
544
#else /* #ifdef CONFIG_PREEMPT_COUNT */
545 546 547
static inline int rcu_read_lock_sched_held(void)
{
	return 1;
548
}
549
#endif /* #else #ifdef CONFIG_PREEMPT_COUNT */
550 551 552 553 554

#endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */

#ifdef CONFIG_PROVE_RCU

555 556 557 558 559 560 561 562 563 564 565 566 567 568
/**
 * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met
 * @c: condition to check
 * @s: informative message
 */
#define RCU_LOCKDEP_WARN(c, s)						\
	do {								\
		static bool __section(.data.unlikely) __warned;		\
		if (debug_lockdep_rcu_enabled() && !__warned && (c)) {	\
			__warned = true;				\
			lockdep_rcu_suspicious(__FILE__, __LINE__, s);	\
		}							\
	} while (0)

569 570 571
#if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU)
static inline void rcu_preempt_sleep_check(void)
{
572 573
	RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
			 "Illegal context switch in RCU read-side critical section");
574 575 576 577 578 579 580
}
#else /* #ifdef CONFIG_PROVE_RCU */
static inline void rcu_preempt_sleep_check(void)
{
}
#endif /* #else #ifdef CONFIG_PROVE_RCU */

581 582
#define rcu_sleep_check()						\
	do {								\
583
		rcu_preempt_sleep_check();				\
584 585 586 587
		RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),	\
				 "Illegal context switch in RCU-bh read-side critical section"); \
		RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),	\
				 "Illegal context switch in RCU-sched read-side critical section"); \
588 589
	} while (0)

590 591
#else /* #ifdef CONFIG_PROVE_RCU */

592
#define RCU_LOCKDEP_WARN(c, s) do { } while (0)
593
#define rcu_sleep_check() do { } while (0)
594 595 596 597 598 599 600 601 602 603 604

#endif /* #else #ifdef CONFIG_PROVE_RCU */

/*
 * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
 * and rcu_assign_pointer().  Some of these could be folded into their
 * callers, but they are left separate in order to ease introduction of
 * multiple flavors of pointers to match the multiple flavors of RCU
 * (e.g., __rcu_bh, * __rcu_sched, and __srcu), should this make sense in
 * the future.
 */
605 606 607 608 609 610 611 612

#ifdef __CHECKER__
#define rcu_dereference_sparse(p, space) \
	((void)(((typeof(*p) space *)p) == p))
#else /* #ifdef __CHECKER__ */
#define rcu_dereference_sparse(p, space)
#endif /* #else #ifdef __CHECKER__ */

613
#define __rcu_access_pointer(p, space) \
614
({ \
615
	typeof(*p) *_________p1 = (typeof(*p) *__force)READ_ONCE(p); \
616 617 618
	rcu_dereference_sparse(p, space); \
	((typeof(*p) __force __kernel *)(_________p1)); \
})
619
#define __rcu_dereference_check(p, c, space) \
620
({ \
621 622
	/* Dependency order vs. p above. */ \
	typeof(*p) *________p1 = (typeof(*p) *__force)lockless_dereference(p); \
623
	RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \
624
	rcu_dereference_sparse(p, space); \
625
	((typeof(*p) __force __kernel *)(________p1)); \
626
})
627
#define __rcu_dereference_protected(p, c, space) \
628
({ \
629
	RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \
630 631 632
	rcu_dereference_sparse(p, space); \
	((typeof(*p) __force __kernel *)(p)); \
})
633

634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
/**
 * RCU_INITIALIZER() - statically initialize an RCU-protected global variable
 * @v: The value to statically initialize with.
 */
#define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v)

/**
 * rcu_assign_pointer() - assign to RCU-protected pointer
 * @p: pointer to assign to
 * @v: value to assign (publish)
 *
 * Assigns the specified value to the specified RCU-protected
 * pointer, ensuring that any concurrent RCU readers will see
 * any prior initialization.
 *
 * Inserts memory barriers on architectures that require them
 * (which is most of them), and also prevents the compiler from
 * reordering the code that initializes the structure after the pointer
 * assignment.  More importantly, this call documents which pointers
 * will be dereferenced by RCU read-side code.
 *
 * In some special cases, you may use RCU_INIT_POINTER() instead
 * of rcu_assign_pointer().  RCU_INIT_POINTER() is a bit faster due
 * to the fact that it does not constrain either the CPU or the compiler.
 * That said, using RCU_INIT_POINTER() when you should have used
 * rcu_assign_pointer() is a very bad thing that results in
 * impossible-to-diagnose memory corruption.  So please be careful.
 * See the RCU_INIT_POINTER() comment header for details.
 *
 * Note that rcu_assign_pointer() evaluates each of its arguments only
 * once, appearances notwithstanding.  One of the "extra" evaluations
 * is in typeof() and the other visible only to sparse (__CHECKER__),
 * neither of which actually execute the argument.  As with most cpp
 * macros, this execute-arguments-only-once property is important, so
 * please be careful when making changes to rcu_assign_pointer() and the
 * other macros that it invokes.
 */
671
#define rcu_assign_pointer(p, v) smp_store_release(&p, RCU_INITIALIZER(v))
672 673 674 675 676 677

/**
 * rcu_access_pointer() - fetch RCU pointer with no dereferencing
 * @p: The pointer to read
 *
 * Return the value of the specified RCU-protected pointer, but omit the
678
 * smp_read_barrier_depends() and keep the READ_ONCE().  This is useful
679 680 681 682 683
 * when the value of this pointer is accessed, but the pointer is not
 * dereferenced, for example, when testing an RCU-protected pointer against
 * NULL.  Although rcu_access_pointer() may also be used in cases where
 * update-side locks prevent the value of the pointer from changing, you
 * should instead use rcu_dereference_protected() for this use case.
684 685 686 687 688 689 690
 *
 * It is also permissible to use rcu_access_pointer() when read-side
 * access to the pointer was removed at least one grace period ago, as
 * is the case in the context of the RCU callback that is freeing up
 * the data, or after a synchronize_rcu() returns.  This can be useful
 * when tearing down multi-linked structures after a grace period
 * has elapsed.
691 692 693
 */
#define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu)

694
/**
695
 * rcu_dereference_check() - rcu_dereference with debug checking
696 697
 * @p: The pointer to read, prior to dereferencing
 * @c: The conditions under which the dereference will take place
698
 *
699
 * Do an rcu_dereference(), but check that the conditions under which the
700 701 702 703 704
 * dereference will take place are correct.  Typically the conditions
 * indicate the various locking conditions that should be held at that
 * point.  The check should return true if the conditions are satisfied.
 * An implicit check for being in an RCU read-side critical section
 * (rcu_read_lock()) is included.
705 706 707
 *
 * For example:
 *
708
 *	bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
709 710
 *
 * could be used to indicate to lockdep that foo->bar may only be dereferenced
711
 * if either rcu_read_lock() is held, or that the lock required to replace
712 713 714 715 716 717
 * the bar struct at foo->bar is held.
 *
 * Note that the list of conditions may also include indications of when a lock
 * need not be held, for example during initialisation or destruction of the
 * target struct:
 *
718
 *	bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
719
 *					      atomic_read(&foo->usage) == 0);
720 721 722 723 724 725
 *
 * Inserts memory barriers on architectures that require them
 * (currently only the Alpha), prevents the compiler from refetching
 * (and from merging fetches), and, more importantly, documents exactly
 * which pointers are protected by RCU and checks that the pointer is
 * annotated as __rcu.
726 727
 */
#define rcu_dereference_check(p, c) \
728
	__rcu_dereference_check((p), (c) || rcu_read_lock_held(), __rcu)
729 730 731 732 733 734 735 736 737

/**
 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
 * @p: The pointer to read, prior to dereferencing
 * @c: The conditions under which the dereference will take place
 *
 * This is the RCU-bh counterpart to rcu_dereference_check().
 */
#define rcu_dereference_bh_check(p, c) \
738
	__rcu_dereference_check((p), (c) || rcu_read_lock_bh_held(), __rcu)
739

740
/**
741 742 743 744 745 746 747
 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
 * @p: The pointer to read, prior to dereferencing
 * @c: The conditions under which the dereference will take place
 *
 * This is the RCU-sched counterpart to rcu_dereference_check().
 */
#define rcu_dereference_sched_check(p, c) \
748
	__rcu_dereference_check((p), (c) || rcu_read_lock_sched_held(), \
749 750 751 752
				__rcu)

#define rcu_dereference_raw(p) rcu_dereference_check(p, 1) /*@@@ needed? @@@*/

753 754 755 756
/*
 * The tracing infrastructure traces RCU (we want that), but unfortunately
 * some of the RCU checks causes tracing to lock up the system.
 *
757
 * The no-tracing version of rcu_dereference_raw() must not call
758 759 760 761
 * rcu_read_lock_held().
 */
#define rcu_dereference_raw_notrace(p) __rcu_dereference_check((p), 1, __rcu)

762 763 764 765
/**
 * rcu_dereference_protected() - fetch RCU pointer when updates prevented
 * @p: The pointer to read, prior to dereferencing
 * @c: The conditions under which the dereference will take place
766 767
 *
 * Return the value of the specified RCU-protected pointer, but omit
768
 * both the smp_read_barrier_depends() and the READ_ONCE().  This
769 770 771 772 773
 * is useful in cases where update-side locks prevent the value of the
 * pointer from changing.  Please note that this primitive does -not-
 * prevent the compiler from repeating this reference or combining it
 * with other references, so it should not be used without protection
 * of appropriate locks.
774 775 776 777
 *
 * This function is only for update-side use.  Using this function
 * when protected only by rcu_read_lock() will result in infrequent
 * but very ugly failures.
778 779
 */
#define rcu_dereference_protected(p, c) \
780
	__rcu_dereference_protected((p), (c), __rcu)
781

782

783
/**
784 785
 * rcu_dereference() - fetch RCU-protected pointer for dereferencing
 * @p: The pointer to read, prior to dereferencing
786
 *
787
 * This is a simple wrapper around rcu_dereference_check().
788
 */
789
#define rcu_dereference(p) rcu_dereference_check(p, 0)
790

L
Linus Torvalds 已提交
791
/**
792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
 * @p: The pointer to read, prior to dereferencing
 *
 * Makes rcu_dereference_check() do the dirty work.
 */
#define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)

/**
 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
 * @p: The pointer to read, prior to dereferencing
 *
 * Makes rcu_dereference_check() do the dirty work.
 */
#define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)

P
Paul E. McKenney 已提交
807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
/**
 * rcu_pointer_handoff() - Hand off a pointer from RCU to other mechanism
 * @p: The pointer to hand off
 *
 * This is simply an identity function, but it documents where a pointer
 * is handed off from RCU to some other synchronization mechanism, for
 * example, reference counting or locking.  In C11, it would map to
 * kill_dependency().  It could be used as follows:
 *
 *	rcu_read_lock();
 *	p = rcu_dereference(gp);
 *	long_lived = is_long_lived(p);
 *	if (long_lived) {
 *		if (!atomic_inc_not_zero(p->refcnt))
 *			long_lived = false;
 *		else
 *			p = rcu_pointer_handoff(p);
 *	}
 *	rcu_read_unlock();
 */
#define rcu_pointer_handoff(p) (p)

829 830
/**
 * rcu_read_lock() - mark the beginning of an RCU read-side critical section
L
Linus Torvalds 已提交
831
 *
832
 * When synchronize_rcu() is invoked on one CPU while other CPUs
L
Linus Torvalds 已提交
833
 * are within RCU read-side critical sections, then the
834
 * synchronize_rcu() is guaranteed to block until after all the other
L
Linus Torvalds 已提交
835 836 837 838 839 840
 * CPUs exit their critical sections.  Similarly, if call_rcu() is invoked
 * on one CPU while other CPUs are within RCU read-side critical
 * sections, invocation of the corresponding RCU callback is deferred
 * until after the all the other CPUs exit their critical sections.
 *
 * Note, however, that RCU callbacks are permitted to run concurrently
841
 * with new RCU read-side critical sections.  One way that this can happen
L
Linus Torvalds 已提交
842 843 844 845 846 847 848 849 850 851 852 853 854 855
 * is via the following sequence of events: (1) CPU 0 enters an RCU
 * read-side critical section, (2) CPU 1 invokes call_rcu() to register
 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
 * callback is invoked.  This is legal, because the RCU read-side critical
 * section that was running concurrently with the call_rcu() (and which
 * therefore might be referencing something that the corresponding RCU
 * callback would free up) has completed before the corresponding
 * RCU callback is invoked.
 *
 * RCU read-side critical sections may be nested.  Any deferred actions
 * will be deferred until the outermost RCU read-side critical section
 * completes.
 *
856 857 858 859 860
 * You can avoid reading and understanding the next paragraph by
 * following this rule: don't put anything in an rcu_read_lock() RCU
 * read-side critical section that would block in a !PREEMPT kernel.
 * But if you want the full story, read on!
 *
861 862
 * In non-preemptible RCU implementations (TREE_RCU and TINY_RCU),
 * it is illegal to block while in an RCU read-side critical section.
863
 * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPT
864 865 866 867 868
 * kernel builds, RCU read-side critical sections may be preempted,
 * but explicit blocking is illegal.  Finally, in preemptible RCU
 * implementations in real-time (with -rt patchset) kernel builds, RCU
 * read-side critical sections may be preempted and they may also block, but
 * only when acquiring spinlocks that are subject to priority inheritance.
L
Linus Torvalds 已提交
869
 */
870 871 872 873
static inline void rcu_read_lock(void)
{
	__rcu_read_lock();
	__acquire(RCU);
874
	rcu_lock_acquire(&rcu_lock_map);
875 876
	RCU_LOCKDEP_WARN(!rcu_is_watching(),
			 "rcu_read_lock() used illegally while idle");
877
}
L
Linus Torvalds 已提交
878 879 880 881 882 883 884 885 886 887

/*
 * So where is rcu_write_lock()?  It does not exist, as there is no
 * way for writers to lock out RCU readers.  This is a feature, not
 * a bug -- this property is what provides RCU's performance benefits.
 * Of course, writers must coordinate with each other.  The normal
 * spinlock primitives work well for this, but any other technique may be
 * used as well.  RCU does not care how the writers keep out of each
 * others' way, as long as they do so.
 */
888 889

/**
890
 * rcu_read_unlock() - marks the end of an RCU read-side critical section.
891
 *
892 893 894 895 896 897
 * In most situations, rcu_read_unlock() is immune from deadlock.
 * However, in kernels built with CONFIG_RCU_BOOST, rcu_read_unlock()
 * is responsible for deboosting, which it does via rt_mutex_unlock().
 * Unfortunately, this function acquires the scheduler's runqueue and
 * priority-inheritance spinlocks.  This means that deadlock could result
 * if the caller of rcu_read_unlock() already holds one of these locks or
898 899 900
 * any lock that is ever acquired while holding them; or any lock which
 * can be taken from interrupt context because rcu_boost()->rt_mutex_lock()
 * does not disable irqs while taking ->wait_lock.
901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921
 *
 * That said, RCU readers are never priority boosted unless they were
 * preempted.  Therefore, one way to avoid deadlock is to make sure
 * that preemption never happens within any RCU read-side critical
 * section whose outermost rcu_read_unlock() is called with one of
 * rt_mutex_unlock()'s locks held.  Such preemption can be avoided in
 * a number of ways, for example, by invoking preempt_disable() before
 * critical section's outermost rcu_read_lock().
 *
 * Given that the set of locks acquired by rt_mutex_unlock() might change
 * at any time, a somewhat more future-proofed approach is to make sure
 * that that preemption never happens within any RCU read-side critical
 * section whose outermost rcu_read_unlock() is called with irqs disabled.
 * This approach relies on the fact that rt_mutex_unlock() currently only
 * acquires irq-disabled locks.
 *
 * The second of these two approaches is best in most situations,
 * however, the first approach can also be useful, at least to those
 * developers willing to keep abreast of the set of locks acquired by
 * rt_mutex_unlock().
 *
922 923
 * See rcu_read_lock() for more information.
 */
924 925
static inline void rcu_read_unlock(void)
{
926 927
	RCU_LOCKDEP_WARN(!rcu_is_watching(),
			 "rcu_read_unlock() used illegally while idle");
928 929
	__release(RCU);
	__rcu_read_unlock();
930
	rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */
931
}
L
Linus Torvalds 已提交
932 933

/**
934
 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
L
Linus Torvalds 已提交
935 936
 *
 * This is equivalent of rcu_read_lock(), but to be used when updates
937 938 939 940 941 942 943
 * are being done using call_rcu_bh() or synchronize_rcu_bh(). Since
 * both call_rcu_bh() and synchronize_rcu_bh() consider completion of a
 * softirq handler to be a quiescent state, a process in RCU read-side
 * critical section must be protected by disabling softirqs. Read-side
 * critical sections in interrupt context can use just rcu_read_lock(),
 * though this should at least be commented to avoid confusing people
 * reading the code.
944 945 946 947 948
 *
 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
 * must occur in the same context, for example, it is illegal to invoke
 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
 * was invoked from some other task.
L
Linus Torvalds 已提交
949
 */
950 951
static inline void rcu_read_lock_bh(void)
{
952
	local_bh_disable();
953
	__acquire(RCU_BH);
954
	rcu_lock_acquire(&rcu_bh_lock_map);
955 956
	RCU_LOCKDEP_WARN(!rcu_is_watching(),
			 "rcu_read_lock_bh() used illegally while idle");
957
}
L
Linus Torvalds 已提交
958 959 960 961 962 963

/*
 * rcu_read_unlock_bh - marks the end of a softirq-only RCU critical section
 *
 * See rcu_read_lock_bh() for more information.
 */
964 965
static inline void rcu_read_unlock_bh(void)
{
966 967
	RCU_LOCKDEP_WARN(!rcu_is_watching(),
			 "rcu_read_unlock_bh() used illegally while idle");
968
	rcu_lock_release(&rcu_bh_lock_map);
969
	__release(RCU_BH);
970
	local_bh_enable();
971
}
L
Linus Torvalds 已提交
972

973
/**
974
 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
975
 *
976 977 978 979
 * This is equivalent of rcu_read_lock(), but to be used when updates
 * are being done using call_rcu_sched() or synchronize_rcu_sched().
 * Read-side critical sections can also be introduced by anything that
 * disables preemption, including local_irq_disable() and friends.
980 981 982 983 984
 *
 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
 * must occur in the same context, for example, it is illegal to invoke
 * rcu_read_unlock_sched() from process context if the matching
 * rcu_read_lock_sched() was invoked from an NMI handler.
985
 */
986 987 988
static inline void rcu_read_lock_sched(void)
{
	preempt_disable();
989
	__acquire(RCU_SCHED);
990
	rcu_lock_acquire(&rcu_sched_lock_map);
991 992
	RCU_LOCKDEP_WARN(!rcu_is_watching(),
			 "rcu_read_lock_sched() used illegally while idle");
993
}
994 995

/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
996
static inline notrace void rcu_read_lock_sched_notrace(void)
997 998
{
	preempt_disable_notrace();
999
	__acquire(RCU_SCHED);
1000
}
1001 1002 1003 1004 1005 1006

/*
 * rcu_read_unlock_sched - marks the end of a RCU-classic critical section
 *
 * See rcu_read_lock_sched for more information.
 */
1007 1008
static inline void rcu_read_unlock_sched(void)
{
1009 1010
	RCU_LOCKDEP_WARN(!rcu_is_watching(),
			 "rcu_read_unlock_sched() used illegally while idle");
1011
	rcu_lock_release(&rcu_sched_lock_map);
1012
	__release(RCU_SCHED);
1013 1014
	preempt_enable();
}
1015 1016

/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
1017
static inline notrace void rcu_read_unlock_sched_notrace(void)
1018
{
1019
	__release(RCU_SCHED);
1020 1021
	preempt_enable_notrace();
}
1022

1023 1024 1025
/**
 * RCU_INIT_POINTER() - initialize an RCU protected pointer
 *
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
 * Initialize an RCU-protected pointer in special cases where readers
 * do not need ordering constraints on the CPU or the compiler.  These
 * special cases are:
 *
 * 1.	This use of RCU_INIT_POINTER() is NULLing out the pointer -or-
 * 2.	The caller has taken whatever steps are required to prevent
 *	RCU readers from concurrently accessing this pointer -or-
 * 3.	The referenced data structure has already been exposed to
 *	readers either at compile time or via rcu_assign_pointer() -and-
 *	a.	You have not made -any- reader-visible changes to
 *		this structure since then -or-
 *	b.	It is OK for readers accessing this structure from its
 *		new location to see the old state of the structure.  (For
 *		example, the changes were to statistical counters or to
 *		other state where exact synchronization is not required.)
 *
 * Failure to follow these rules governing use of RCU_INIT_POINTER() will
 * result in impossible-to-diagnose memory corruption.  As in the structures
 * will look OK in crash dumps, but any concurrent RCU readers might
 * see pre-initialized values of the referenced data structure.  So
 * please be very careful how you use RCU_INIT_POINTER()!!!
 *
 * If you are creating an RCU-protected linked structure that is accessed
 * by a single external-to-structure RCU-protected pointer, then you may
 * use RCU_INIT_POINTER() to initialize the internal RCU-protected
 * pointers, but you must use rcu_assign_pointer() to initialize the
 * external-to-structure pointer -after- you have completely initialized
 * the reader-accessible portions of the linked structure.
1054 1055 1056
 *
 * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no
 * ordering guarantees for either the CPU or the compiler.
1057 1058
 */
#define RCU_INIT_POINTER(p, v) \
1059
	do { \
1060
		rcu_dereference_sparse(p, __rcu); \
1061
		WRITE_ONCE(p, RCU_INITIALIZER(v)); \
1062
	} while (0)
L
Lai Jiangshan 已提交
1063

1064 1065 1066 1067 1068 1069
/**
 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer
 *
 * GCC-style initialization for an RCU-protected pointer in a structure field.
 */
#define RCU_POINTER_INITIALIZER(p, v) \
1070
		.p = RCU_INITIALIZER(v)
L
Lai Jiangshan 已提交
1071

1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
/*
 * Does the specified offset indicate that the corresponding rcu_head
 * structure can be handled by kfree_rcu()?
 */
#define __is_kfree_rcu_offset(offset) ((offset) < 4096)

/*
 * Helper macro for kfree_rcu() to prevent argument-expansion eyestrain.
 */
#define __kfree_rcu(head, offset) \
	do { \
		BUILD_BUG_ON(!__is_kfree_rcu_offset(offset)); \
1084
		kfree_call_rcu(head, (rcu_callback_t)(unsigned long)(offset)); \
1085 1086
	} while (0)

L
Lai Jiangshan 已提交
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
/**
 * kfree_rcu() - kfree an object after a grace period.
 * @ptr:	pointer to kfree
 * @rcu_head:	the name of the struct rcu_head within the type of @ptr.
 *
 * Many rcu callbacks functions just call kfree() on the base structure.
 * These functions are trivial, but their size adds up, and furthermore
 * when they are used in a kernel module, that module must invoke the
 * high-latency rcu_barrier() function at module-unload time.
 *
 * The kfree_rcu() function handles this issue.  Rather than encoding a
 * function address in the embedded rcu_head structure, kfree_rcu() instead
 * encodes the offset of the rcu_head structure within the base structure.
 * Because the functions are not allowed in the low-order 4096 bytes of
 * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
 * If the offset is larger than 4095 bytes, a compile-time error will
 * be generated in __kfree_rcu().  If this error is triggered, you can
 * either fall back to use of call_rcu() or rearrange the structure to
 * position the rcu_head structure into the first 4096 bytes.
 *
 * Note that the allowable offset might decrease in the future, for example,
 * to allow something like kmem_cache_free_rcu().
1109 1110 1111
 *
 * The BUILD_BUG_ON check must not involve any function calls, hence the
 * checks are done in macros here.
L
Lai Jiangshan 已提交
1112 1113 1114 1115
 */
#define kfree_rcu(ptr, rcu_head)					\
	__kfree_rcu(&((ptr)->rcu_head), offsetof(typeof(*(ptr)), rcu_head))

1116
#ifdef CONFIG_TINY_RCU
1117
static inline int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1118
{
1119
	*nextevt = KTIME_MAX;
1120 1121
	return 0;
}
1122
#endif /* #ifdef CONFIG_TINY_RCU */
1123

1124 1125 1126
#if defined(CONFIG_RCU_NOCB_CPU_ALL)
static inline bool rcu_is_nocb_cpu(int cpu) { return true; }
#elif defined(CONFIG_RCU_NOCB_CPU)
1127
bool rcu_is_nocb_cpu(int cpu);
1128 1129
#else
static inline bool rcu_is_nocb_cpu(int cpu) { return false; }
1130
#endif
1131 1132


1133 1134
/* Only for use by adaptive-ticks code. */
#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
1135 1136
bool rcu_sys_is_idle(void);
void rcu_sysidle_force_exit(void);
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */

static inline bool rcu_sys_is_idle(void)
{
	return false;
}

static inline void rcu_sysidle_force_exit(void)
{
}

#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */


L
Linus Torvalds 已提交
1151
#endif /* __LINUX_RCUPDATE_H */