update.c 20.5 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 * Read-Copy Update mechanism for mutual exclusion
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
15 16
 * along with this program; if not, you can access it online at
 * http://www.gnu.org/licenses/gpl-2.0.html.
L
Linus Torvalds 已提交
17
 *
18
 * Copyright IBM Corporation, 2001
L
Linus Torvalds 已提交
19 20 21
 *
 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
 *	    Manfred Spraul <manfred@colorfullife.com>
22
 *
L
Linus Torvalds 已提交
23 24 25 26 27 28 29
 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
 * Papers:
 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
 *
 * For detailed explanation of Read-Copy Update mechanism see -
30
 *		http://lse.sourceforge.net/locking/rcupdate.html
L
Linus Torvalds 已提交
31 32 33 34 35 36 37 38 39
 *
 */
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/smp.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
A
Arun Sharma 已提交
40
#include <linux/atomic.h>
L
Linus Torvalds 已提交
41 42 43 44
#include <linux/bitops.h>
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/cpu.h>
45
#include <linux/mutex.h>
46
#include <linux/export.h>
47
#include <linux/hardirq.h>
48
#include <linux/delay.h>
49
#include <linux/module.h>
P
Paul E. McKenney 已提交
50
#include <linux/kthread.h>
51
#include <linux/tick.h>
L
Linus Torvalds 已提交
52

53 54 55 56
#define CREATE_TRACE_POINTS

#include "rcu.h"

57 58 59 60 61 62
MODULE_ALIAS("rcupdate");
#ifdef MODULE_PARAM_PREFIX
#undef MODULE_PARAM_PREFIX
#endif
#define MODULE_PARAM_PREFIX "rcupdate."

63 64
module_param(rcu_expedited, int, 0);

65 66
#ifdef CONFIG_PREEMPT_RCU

67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
/*
 * Preemptible RCU implementation for rcu_read_lock().
 * Just increment ->rcu_read_lock_nesting, shared state will be updated
 * if we block.
 */
void __rcu_read_lock(void)
{
	current->rcu_read_lock_nesting++;
	barrier();  /* critical section after entry code. */
}
EXPORT_SYMBOL_GPL(__rcu_read_lock);

/*
 * Preemptible RCU implementation for rcu_read_unlock().
 * Decrement ->rcu_read_lock_nesting.  If the result is zero (outermost
 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
 * invoke rcu_read_unlock_special() to clean up after a context switch
 * in an RCU read-side critical section and other special cases.
 */
void __rcu_read_unlock(void)
{
	struct task_struct *t = current;

	if (t->rcu_read_lock_nesting != 1) {
		--t->rcu_read_lock_nesting;
	} else {
		barrier();  /* critical section before exit code. */
		t->rcu_read_lock_nesting = INT_MIN;
		barrier();  /* assign before ->rcu_read_unlock_special load */
		if (unlikely(ACCESS_ONCE(t->rcu_read_unlock_special)))
			rcu_read_unlock_special(t);
		barrier();  /* ->rcu_read_unlock_special load before assign */
		t->rcu_read_lock_nesting = 0;
	}
#ifdef CONFIG_PROVE_LOCKING
	{
		int rrln = ACCESS_ONCE(t->rcu_read_lock_nesting);

		WARN_ON_ONCE(rrln < 0 && rrln > INT_MIN / 2);
	}
#endif /* #ifdef CONFIG_PROVE_LOCKING */
}
EXPORT_SYMBOL_GPL(__rcu_read_unlock);

111
#endif /* #ifdef CONFIG_PREEMPT_RCU */
112

113 114 115 116 117
#ifdef CONFIG_DEBUG_LOCK_ALLOC
static struct lock_class_key rcu_lock_key;
struct lockdep_map rcu_lock_map =
	STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key);
EXPORT_SYMBOL_GPL(rcu_lock_map);
118 119 120 121 122 123 124 125 126 127

static struct lock_class_key rcu_bh_lock_key;
struct lockdep_map rcu_bh_lock_map =
	STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_bh", &rcu_bh_lock_key);
EXPORT_SYMBOL_GPL(rcu_bh_lock_map);

static struct lock_class_key rcu_sched_lock_key;
struct lockdep_map rcu_sched_lock_map =
	STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_sched", &rcu_sched_lock_key);
EXPORT_SYMBOL_GPL(rcu_sched_lock_map);
128

129 130 131 132 133
static struct lock_class_key rcu_callback_key;
struct lockdep_map rcu_callback_map =
	STATIC_LOCKDEP_MAP_INIT("rcu_callback", &rcu_callback_key);
EXPORT_SYMBOL_GPL(rcu_callback_map);

134
int notrace debug_lockdep_rcu_enabled(void)
135 136 137 138 139 140
{
	return rcu_scheduler_active && debug_locks &&
	       current->lockdep_recursion == 0;
}
EXPORT_SYMBOL_GPL(debug_lockdep_rcu_enabled);

141
/**
142
 * rcu_read_lock_bh_held() - might we be in RCU-bh read-side critical section?
143 144 145 146
 *
 * Check for bottom half being disabled, which covers both the
 * CONFIG_PROVE_RCU and not cases.  Note that if someone uses
 * rcu_read_lock_bh(), but then later enables BH, lockdep (if enabled)
147 148 149
 * will show the situation.  This is useful for debug checks in functions
 * that require that they be called within an RCU read-side critical
 * section.
150 151
 *
 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot.
152 153 154
 *
 * Note that rcu_read_lock() is disallowed if the CPU is either idle or
 * offline from an RCU perspective, so check for those as well.
155 156 157 158 159
 */
int rcu_read_lock_bh_held(void)
{
	if (!debug_lockdep_rcu_enabled())
		return 1;
160
	if (!rcu_is_watching())
161
		return 0;
162 163
	if (!rcu_lockdep_current_cpu_online())
		return 0;
164
	return in_softirq() || irqs_disabled();
165 166 167 168 169
}
EXPORT_SYMBOL_GPL(rcu_read_lock_bh_held);

#endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */

170 171 172 173 174
struct rcu_synchronize {
	struct rcu_head head;
	struct completion completion;
};

P
Paul E. McKenney 已提交
175 176 177 178
/*
 * Awaken the corresponding synchronize_rcu() instance now that a
 * grace period has elapsed.
 */
179
static void wakeme_after_rcu(struct rcu_head  *head)
D
Dipankar Sarma 已提交
180
{
181 182 183 184
	struct rcu_synchronize *rcu;

	rcu = container_of(head, struct rcu_synchronize, head);
	complete(&rcu->completion);
D
Dipankar Sarma 已提交
185
}
186

187 188 189 190 191 192 193 194 195 196 197 198 199 200
void wait_rcu_gp(call_rcu_func_t crf)
{
	struct rcu_synchronize rcu;

	init_rcu_head_on_stack(&rcu.head);
	init_completion(&rcu.completion);
	/* Will wake me after RCU finished. */
	crf(&rcu.head, wakeme_after_rcu);
	/* Wait for it. */
	wait_for_completion(&rcu.completion);
	destroy_rcu_head_on_stack(&rcu.head);
}
EXPORT_SYMBOL_GPL(wait_rcu_gp);

201
#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
202
void init_rcu_head(struct rcu_head *head)
203 204 205 206
{
	debug_object_init(head, &rcuhead_debug_descr);
}

207
void destroy_rcu_head(struct rcu_head *head)
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
{
	debug_object_free(head, &rcuhead_debug_descr);
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 * Activation is performed internally by call_rcu().
 */
static int rcuhead_fixup_activate(void *addr, enum debug_obj_state state)
{
	struct rcu_head *head = addr;

	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		/*
		 * This is not really a fixup. We just make sure that it is
		 * tracked in the object tracker.
		 */
		debug_object_init(head, &rcuhead_debug_descr);
		debug_object_activate(head, &rcuhead_debug_descr);
		return 0;
	default:
		return 1;
	}
}

/**
 * init_rcu_head_on_stack() - initialize on-stack rcu_head for debugobjects
 * @head: pointer to rcu_head structure to be initialized
 *
 * This function informs debugobjects of a new rcu_head structure that
 * has been allocated as an auto variable on the stack.  This function
 * is not required for rcu_head structures that are statically defined or
 * that are dynamically allocated on the heap.  This function has no
 * effect for !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
 */
void init_rcu_head_on_stack(struct rcu_head *head)
{
	debug_object_init_on_stack(head, &rcuhead_debug_descr);
}
EXPORT_SYMBOL_GPL(init_rcu_head_on_stack);

/**
 * destroy_rcu_head_on_stack() - destroy on-stack rcu_head for debugobjects
 * @head: pointer to rcu_head structure to be initialized
 *
 * This function informs debugobjects that an on-stack rcu_head structure
 * is about to go out of scope.  As with init_rcu_head_on_stack(), this
 * function is not required for rcu_head structures that are statically
 * defined or that are dynamically allocated on the heap.  Also as with
 * init_rcu_head_on_stack(), this function has no effect for
 * !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
 */
void destroy_rcu_head_on_stack(struct rcu_head *head)
{
	debug_object_free(head, &rcuhead_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_rcu_head_on_stack);

struct debug_obj_descr rcuhead_debug_descr = {
	.name = "rcu_head",
	.fixup_activate = rcuhead_fixup_activate,
};
EXPORT_SYMBOL_GPL(rcuhead_debug_descr);
#endif /* #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD */
276 277

#if defined(CONFIG_TREE_RCU) || defined(CONFIG_TREE_PREEMPT_RCU) || defined(CONFIG_RCU_TRACE)
278
void do_trace_rcu_torture_read(const char *rcutorturename, struct rcu_head *rhp,
279 280
			       unsigned long secs,
			       unsigned long c_old, unsigned long c)
281
{
282
	trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c);
283 284 285
}
EXPORT_SYMBOL_GPL(do_trace_rcu_torture_read);
#else
286 287
#define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
	do { } while (0)
288
#endif
289 290 291 292 293 294 295 296 297 298

#ifdef CONFIG_RCU_STALL_COMMON

#ifdef CONFIG_PROVE_RCU
#define RCU_STALL_DELAY_DELTA	       (5 * HZ)
#else
#define RCU_STALL_DELAY_DELTA	       0
#endif

int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */
299
static int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321

module_param(rcu_cpu_stall_suppress, int, 0644);
module_param(rcu_cpu_stall_timeout, int, 0644);

int rcu_jiffies_till_stall_check(void)
{
	int till_stall_check = ACCESS_ONCE(rcu_cpu_stall_timeout);

	/*
	 * Limit check must be consistent with the Kconfig limits
	 * for CONFIG_RCU_CPU_STALL_TIMEOUT.
	 */
	if (till_stall_check < 3) {
		ACCESS_ONCE(rcu_cpu_stall_timeout) = 3;
		till_stall_check = 3;
	} else if (till_stall_check > 300) {
		ACCESS_ONCE(rcu_cpu_stall_timeout) = 300;
		till_stall_check = 300;
	}
	return till_stall_check * HZ + RCU_STALL_DELAY_DELTA;
}

322 323 324 325 326 327 328 329 330 331 332 333
void rcu_sysrq_start(void)
{
	if (!rcu_cpu_stall_suppress)
		rcu_cpu_stall_suppress = 2;
}

void rcu_sysrq_end(void)
{
	if (rcu_cpu_stall_suppress == 2)
		rcu_cpu_stall_suppress = 0;
}

334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
{
	rcu_cpu_stall_suppress = 1;
	return NOTIFY_DONE;
}

static struct notifier_block rcu_panic_block = {
	.notifier_call = rcu_panic,
};

static int __init check_cpu_stall_init(void)
{
	atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
	return 0;
}
early_initcall(check_cpu_stall_init);

#endif /* #ifdef CONFIG_RCU_STALL_COMMON */
P
Paul E. McKenney 已提交
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368

#ifdef CONFIG_TASKS_RCU

/*
 * Simple variant of RCU whose quiescent states are voluntary context switch,
 * user-space execution, and idle.  As such, grace periods can take one good
 * long time.  There are no read-side primitives similar to rcu_read_lock()
 * and rcu_read_unlock() because this implementation is intended to get
 * the system into a safe state for some of the manipulations involved in
 * tracing and the like.  Finally, this implementation does not support
 * high call_rcu_tasks() rates from multiple CPUs.  If this is required,
 * per-CPU callback lists will be needed.
 */

/* Global list of callbacks and associated lock. */
static struct rcu_head *rcu_tasks_cbs_head;
static struct rcu_head **rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
369
static DECLARE_WAIT_QUEUE_HEAD(rcu_tasks_cbs_wq);
P
Paul E. McKenney 已提交
370 371
static DEFINE_RAW_SPINLOCK(rcu_tasks_cbs_lock);

372 373 374 375
/* Track exiting tasks in order to allow them to be waited for. */
DEFINE_SRCU(tasks_rcu_exit_srcu);

/* Control stall timeouts.  Disable with <= 0, otherwise jiffies till stall. */
376
static int rcu_task_stall_timeout __read_mostly = HZ * 60 * 10;
377 378
module_param(rcu_task_stall_timeout, int, 0644);

379 380 381 382 383 384
static void rcu_spawn_tasks_kthread(void);

/*
 * Post an RCU-tasks callback.  First call must be from process context
 * after the scheduler if fully operational.
 */
P
Paul E. McKenney 已提交
385 386 387
void call_rcu_tasks(struct rcu_head *rhp, void (*func)(struct rcu_head *rhp))
{
	unsigned long flags;
388
	bool needwake;
P
Paul E. McKenney 已提交
389 390 391 392

	rhp->next = NULL;
	rhp->func = func;
	raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
393
	needwake = !rcu_tasks_cbs_head;
P
Paul E. McKenney 已提交
394 395 396
	*rcu_tasks_cbs_tail = rhp;
	rcu_tasks_cbs_tail = &rhp->next;
	raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
397 398
	if (needwake) {
		rcu_spawn_tasks_kthread();
399
		wake_up(&rcu_tasks_cbs_wq);
400
	}
P
Paul E. McKenney 已提交
401 402 403
}
EXPORT_SYMBOL_GPL(call_rcu_tasks);

404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
/**
 * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu-tasks
 * grace period has elapsed, in other words after all currently
 * executing rcu-tasks read-side critical sections have elapsed.  These
 * read-side critical sections are delimited by calls to schedule(),
 * cond_resched_rcu_qs(), idle execution, userspace execution, calls
 * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched().
 *
 * This is a very specialized primitive, intended only for a few uses in
 * tracing and other situations requiring manipulation of function
 * preambles and profiling hooks.  The synchronize_rcu_tasks() function
 * is not (yet) intended for heavy use from multiple CPUs.
 *
 * Note that this guarantee implies further memory-ordering guarantees.
 * On systems with more than one CPU, when synchronize_rcu_tasks() returns,
 * each CPU is guaranteed to have executed a full memory barrier since the
 * end of its last RCU-tasks read-side critical section whose beginning
 * preceded the call to synchronize_rcu_tasks().  In addition, each CPU
 * having an RCU-tasks read-side critical section that extends beyond
 * the return from synchronize_rcu_tasks() is guaranteed to have executed
 * a full memory barrier after the beginning of synchronize_rcu_tasks()
 * and before the beginning of that RCU-tasks read-side critical section.
 * Note that these guarantees include CPUs that are offline, idle, or
 * executing in user mode, as well as CPUs that are executing in the kernel.
 *
 * Furthermore, if CPU A invoked synchronize_rcu_tasks(), which returned
 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
 * to have executed a full memory barrier during the execution of
 * synchronize_rcu_tasks() -- even if CPU A and CPU B are the same CPU
 * (but again only if the system has more than one CPU).
 */
void synchronize_rcu_tasks(void)
{
	/* Complain if the scheduler has not started.  */
	rcu_lockdep_assert(!rcu_scheduler_active,
			   "synchronize_rcu_tasks called too soon");

	/* Wait for the grace period. */
	wait_rcu_gp(call_rcu_tasks);
}
446
EXPORT_SYMBOL_GPL(synchronize_rcu_tasks);
447 448 449 450 451 452 453 454 455 456 457 458

/**
 * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks.
 *
 * Although the current implementation is guaranteed to wait, it is not
 * obligated to, for example, if there are no pending callbacks.
 */
void rcu_barrier_tasks(void)
{
	/* There is only one callback queue, so this is easy.  ;-) */
	synchronize_rcu_tasks();
}
459
EXPORT_SYMBOL_GPL(rcu_barrier_tasks);
460

461 462 463
/* See if tasks are still holding out, complain if so. */
static void check_holdout_task(struct task_struct *t,
			       bool needreport, bool *firstreport)
P
Paul E. McKenney 已提交
464
{
465 466
	int cpu;

P
Paul E. McKenney 已提交
467 468
	if (!ACCESS_ONCE(t->rcu_tasks_holdout) ||
	    t->rcu_tasks_nvcsw != ACCESS_ONCE(t->nvcsw) ||
469 470 471
	    !ACCESS_ONCE(t->on_rq) ||
	    (IS_ENABLED(CONFIG_NO_HZ_FULL) &&
	     !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) {
P
Paul E. McKenney 已提交
472
		ACCESS_ONCE(t->rcu_tasks_holdout) = false;
473
		list_del_init(&t->rcu_tasks_holdout_list);
P
Paul E. McKenney 已提交
474
		put_task_struct(t);
475
		return;
P
Paul E. McKenney 已提交
476
	}
477 478 479 480 481 482
	if (!needreport)
		return;
	if (*firstreport) {
		pr_err("INFO: rcu_tasks detected stalls on tasks:\n");
		*firstreport = false;
	}
483 484 485 486 487 488
	cpu = task_cpu(t);
	pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n",
		 t, ".I"[is_idle_task(t)],
		 "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)],
		 t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout,
		 t->rcu_tasks_idle_cpu, cpu);
489
	sched_show_task(t);
P
Paul E. McKenney 已提交
490 491 492 493 494 495 496
}

/* RCU-tasks kthread that detects grace periods and invokes callbacks. */
static int __noreturn rcu_tasks_kthread(void *arg)
{
	unsigned long flags;
	struct task_struct *g, *t;
497
	unsigned long lastreport;
P
Paul E. McKenney 已提交
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
	struct rcu_head *list;
	struct rcu_head *next;
	LIST_HEAD(rcu_tasks_holdouts);

	/* FIXME: Add housekeeping affinity. */

	/*
	 * Each pass through the following loop makes one check for
	 * newly arrived callbacks, and, if there are some, waits for
	 * one RCU-tasks grace period and then invokes the callbacks.
	 * This loop is terminated by the system going down.  ;-)
	 */
	for (;;) {

		/* Pick up any new callbacks. */
		raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
		list = rcu_tasks_cbs_head;
		rcu_tasks_cbs_head = NULL;
		rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
		raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);

		/* If there were none, wait a bit and start over. */
		if (!list) {
521 522 523 524 525 526
			wait_event_interruptible(rcu_tasks_cbs_wq,
						 rcu_tasks_cbs_head);
			if (!rcu_tasks_cbs_head) {
				WARN_ON(signal_pending(current));
				schedule_timeout_interruptible(HZ/10);
			}
P
Paul E. McKenney 已提交
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
			continue;
		}

		/*
		 * Wait for all pre-existing t->on_rq and t->nvcsw
		 * transitions to complete.  Invoking synchronize_sched()
		 * suffices because all these transitions occur with
		 * interrupts disabled.  Without this synchronize_sched(),
		 * a read-side critical section that started before the
		 * grace period might be incorrectly seen as having started
		 * after the grace period.
		 *
		 * This synchronize_sched() also dispenses with the
		 * need for a memory barrier on the first store to
		 * ->rcu_tasks_holdout, as it forces the store to happen
		 * after the beginning of the grace period.
		 */
		synchronize_sched();

		/*
		 * There were callbacks, so we need to wait for an
		 * RCU-tasks grace period.  Start off by scanning
		 * the task list for tasks that are not already
		 * voluntarily blocked.  Mark these tasks and make
		 * a list of them in rcu_tasks_holdouts.
		 */
		rcu_read_lock();
		for_each_process_thread(g, t) {
			if (t != current && ACCESS_ONCE(t->on_rq) &&
			    !is_idle_task(t)) {
				get_task_struct(t);
				t->rcu_tasks_nvcsw = ACCESS_ONCE(t->nvcsw);
				ACCESS_ONCE(t->rcu_tasks_holdout) = true;
				list_add(&t->rcu_tasks_holdout_list,
					 &rcu_tasks_holdouts);
			}
		}
		rcu_read_unlock();

566 567 568 569 570 571 572 573 574
		/*
		 * Wait for tasks that are in the process of exiting.
		 * This does only part of the job, ensuring that all
		 * tasks that were previously exiting reach the point
		 * where they have disabled preemption, allowing the
		 * later synchronize_sched() to finish the job.
		 */
		synchronize_srcu(&tasks_rcu_exit_srcu);

P
Paul E. McKenney 已提交
575 576 577 578 579
		/*
		 * Each pass through the following loop scans the list
		 * of holdout tasks, removing any that are no longer
		 * holdouts.  When the list is empty, we are done.
		 */
580
		lastreport = jiffies;
P
Paul E. McKenney 已提交
581
		while (!list_empty(&rcu_tasks_holdouts)) {
582 583 584
			bool firstreport;
			bool needreport;
			int rtst;
585
			struct task_struct *t1;
586

P
Paul E. McKenney 已提交
587
			schedule_timeout_interruptible(HZ);
588 589 590 591 592 593
			rtst = ACCESS_ONCE(rcu_task_stall_timeout);
			needreport = rtst > 0 &&
				     time_after(jiffies, lastreport + rtst);
			if (needreport)
				lastreport = jiffies;
			firstreport = true;
P
Paul E. McKenney 已提交
594
			WARN_ON(signal_pending(current));
595 596
			list_for_each_entry_safe(t, t1, &rcu_tasks_holdouts,
						rcu_tasks_holdout_list) {
597
				check_holdout_task(t, needreport, &firstreport);
598 599
				cond_resched();
			}
P
Paul E. McKenney 已提交
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
		}

		/*
		 * Because ->on_rq and ->nvcsw are not guaranteed
		 * to have a full memory barriers prior to them in the
		 * schedule() path, memory reordering on other CPUs could
		 * cause their RCU-tasks read-side critical sections to
		 * extend past the end of the grace period.  However,
		 * because these ->nvcsw updates are carried out with
		 * interrupts disabled, we can use synchronize_sched()
		 * to force the needed ordering on all such CPUs.
		 *
		 * This synchronize_sched() also confines all
		 * ->rcu_tasks_holdout accesses to be within the grace
		 * period, avoiding the need for memory barriers for
		 * ->rcu_tasks_holdout accesses.
616 617 618 619 620
		 *
		 * In addition, this synchronize_sched() waits for exiting
		 * tasks to complete their final preempt_disable() region
		 * of execution, cleaning up after the synchronize_srcu()
		 * above.
P
Paul E. McKenney 已提交
621 622 623 624 625 626 627 628 629 630 631 632
		 */
		synchronize_sched();

		/* Invoke the callbacks. */
		while (list) {
			next = list->next;
			local_bh_disable();
			list->func(list);
			local_bh_enable();
			list = next;
			cond_resched();
		}
633
		schedule_timeout_uninterruptible(HZ/10);
P
Paul E. McKenney 已提交
634 635 636
	}
}

637 638
/* Spawn rcu_tasks_kthread() at first call to call_rcu_tasks(). */
static void rcu_spawn_tasks_kthread(void)
P
Paul E. McKenney 已提交
639
{
640 641 642
	static DEFINE_MUTEX(rcu_tasks_kthread_mutex);
	static struct task_struct *rcu_tasks_kthread_ptr;
	struct task_struct *t;
P
Paul E. McKenney 已提交
643

644 645 646 647 648 649 650 651 652
	if (ACCESS_ONCE(rcu_tasks_kthread_ptr)) {
		smp_mb(); /* Ensure caller sees full kthread. */
		return;
	}
	mutex_lock(&rcu_tasks_kthread_mutex);
	if (rcu_tasks_kthread_ptr) {
		mutex_unlock(&rcu_tasks_kthread_mutex);
		return;
	}
P
Paul E. McKenney 已提交
653 654
	t = kthread_run(rcu_tasks_kthread, NULL, "rcu_tasks_kthread");
	BUG_ON(IS_ERR(t));
655 656 657
	smp_mb(); /* Ensure others see full kthread. */
	ACCESS_ONCE(rcu_tasks_kthread_ptr) = t;
	mutex_unlock(&rcu_tasks_kthread_mutex);
P
Paul E. McKenney 已提交
658 659 660
}

#endif /* #ifdef CONFIG_TASKS_RCU */