solos-pci.c 33.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/*
 * Driver for the Solos PCI ADSL2+ card, designed to support Linux by
 *  Traverse Technologies -- http://www.traverse.com.au/
 *  Xrio Limited          -- http://www.xrio.com/
 *
 *
 * Copyright © 2008 Traverse Technologies
 * Copyright © 2008 Intel Corporation
 *
 * Authors: Nathan Williams <nathan@traverse.com.au>
 *          David Woodhouse <dwmw2@infradead.org>
12
 *          Treker Chen <treker@xrio.com>
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#define DEBUG
#define VERBOSE_DEBUG

#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/types.h>
#include <linux/pci.h>
#include <linux/atm.h>
#include <linux/atmdev.h>
#include <linux/skbuff.h>
#include <linux/sysfs.h>
#include <linux/device.h>
#include <linux/kobject.h>
40
#include <linux/firmware.h>
41 42
#include <linux/ctype.h>
#include <linux/swab.h>
43

44
#define VERSION "0.07"
45 46 47 48 49 50 51
#define PTAG "solos-pci"

#define CONFIG_RAM_SIZE	128
#define FLAGS_ADDR	0x7C
#define IRQ_EN_ADDR	0x78
#define FPGA_VER	0x74
#define IRQ_CLEAR	0x70
52 53 54 55 56 57
#define WRITE_FLASH	0x6C
#define PORTS		0x68
#define FLASH_BLOCK	0x64
#define FLASH_BUSY	0x60
#define FPGA_MODE	0x5C
#define FLASH_MODE	0x58
58 59
#define TX_DMA_ADDR(port)	(0x40 + (4 * (port)))
#define RX_DMA_ADDR(port)	(0x30 + (4 * (port)))
60 61

#define DATA_RAM_SIZE	32768
62 63
#define BUF_SIZE	2048
#define OLD_BUF_SIZE	4096 /* For FPGA versions <= 2*/
64 65 66 67
#define FPGA_PAGE	528 /* FPGA flash page size*/
#define SOLOS_PAGE	512 /* Solos flash page size*/
#define FPGA_BLOCK	(FPGA_PAGE * 8) /* FPGA flash block size*/
#define SOLOS_BLOCK	(SOLOS_PAGE * 8) /* Solos flash block size*/
68

69 70 71
#define RX_BUF(card, nr) ((card->buffers) + (nr)*(card->buffer_size)*2)
#define TX_BUF(card, nr) ((card->buffers) + (nr)*(card->buffer_size)*2 + (card->buffer_size))
#define FLASH_BUF ((card->buffers) + 4*(card->buffer_size)*2)
72

73 74
#define RX_DMA_SIZE	2048

75 76 77 78
#define FPGA_VERSION(a,b) (((a) << 8) + (b))
#define LEGACY_BUFFERS	2
#define DMA_SUPPORTED	4

79
static int reset = 0;
80
static int atmdebug = 0;
81 82
static int firmware_upgrade = 0;
static int fpga_upgrade = 0;
83 84
static int db_firmware_upgrade = 0;
static int db_fpga_upgrade = 0;
85 86 87 88 89 90 91 92

struct pkt_hdr {
	__le16 size;
	__le16 vpi;
	__le16 vci;
	__le16 type;
};

93 94 95 96 97 98 99 100
struct solos_skb_cb {
	struct atm_vcc *vcc;
	uint32_t dma_addr;
};


#define SKB_CB(skb)		((struct solos_skb_cb *)skb->cb)

101 102 103 104
#define PKT_DATA	0
#define PKT_COMMAND	1
#define PKT_POPEN	3
#define PKT_PCLOSE	4
105
#define PKT_STATUS	5
106 107 108 109 110

struct solos_card {
	void __iomem *config_regs;
	void __iomem *buffers;
	int nr_ports;
111
	int tx_mask;
112 113 114 115 116 117
	struct pci_dev *dev;
	struct atm_dev *atmdev[4];
	struct tasklet_struct tlet;
	spinlock_t tx_lock;
	spinlock_t tx_queue_lock;
	spinlock_t cli_queue_lock;
118 119
	spinlock_t param_queue_lock;
	struct list_head param_queue;
120 121
	struct sk_buff_head tx_queue[4];
	struct sk_buff_head cli_queue[4];
122 123
	struct sk_buff *tx_skb[4];
	struct sk_buff *rx_skb[4];
124
	wait_queue_head_t param_wq;
125
	wait_queue_head_t fw_wq;
126
	int using_dma;
127 128
	int fpga_version;
	int buffer_size;
129 130
};

131 132 133 134 135 136 137 138

struct solos_param {
	struct list_head list;
	pid_t pid;
	int port;
	struct sk_buff *response;
};

139 140 141 142 143 144
#define SOLOS_CHAN(atmdev) ((int)(unsigned long)(atmdev)->phy_data)

MODULE_AUTHOR("Traverse Technologies <support@traverse.com.au>");
MODULE_DESCRIPTION("Solos PCI driver");
MODULE_VERSION(VERSION);
MODULE_LICENSE("GPL");
145
MODULE_PARM_DESC(reset, "Reset Solos chips on startup");
146
MODULE_PARM_DESC(atmdebug, "Print ATM data");
147 148
MODULE_PARM_DESC(firmware_upgrade, "Initiate Solos firmware upgrade");
MODULE_PARM_DESC(fpga_upgrade, "Initiate FPGA upgrade");
149 150
MODULE_PARM_DESC(db_firmware_upgrade, "Initiate daughter board Solos firmware upgrade");
MODULE_PARM_DESC(db_fpga_upgrade, "Initiate daughter board FPGA upgrade");
151
module_param(reset, int, 0444);
152
module_param(atmdebug, int, 0644);
153 154
module_param(firmware_upgrade, int, 0444);
module_param(fpga_upgrade, int, 0444);
155 156
module_param(db_firmware_upgrade, int, 0444);
module_param(db_fpga_upgrade, int, 0444);
157 158 159

static void fpga_queue(struct solos_card *card, int port, struct sk_buff *skb,
		       struct atm_vcc *vcc);
160
static uint32_t fpga_tx(struct solos_card *);
161 162 163
static irqreturn_t solos_irq(int irq, void *dev_id);
static struct atm_vcc* find_vcc(struct atm_dev *dev, short vpi, int vci);
static int list_vccs(int vci);
164
static void release_vccs(struct atm_dev *dev);
165 166 167 168 169 170 171 172 173 174 175 176 177 178
static int atm_init(struct solos_card *);
static void atm_remove(struct solos_card *);
static int send_command(struct solos_card *card, int dev, const char *buf, size_t size);
static void solos_bh(unsigned long);
static int print_buffer(struct sk_buff *buf);

static inline void solos_pop(struct atm_vcc *vcc, struct sk_buff *skb)
{
        if (vcc->pop)
                vcc->pop(vcc, skb);
        else
                dev_kfree_skb_any(skb);
}

179 180 181 182 183 184 185 186 187 188 189 190
static ssize_t solos_param_show(struct device *dev, struct device_attribute *attr,
				char *buf)
{
	struct atm_dev *atmdev = container_of(dev, struct atm_dev, class_dev);
	struct solos_card *card = atmdev->dev_data;
	struct solos_param prm;
	struct sk_buff *skb;
	struct pkt_hdr *header;
	int buflen;

	buflen = strlen(attr->attr.name) + 10;

191
	skb = alloc_skb(sizeof(*header) + buflen, GFP_KERNEL);
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
	if (!skb) {
		dev_warn(&card->dev->dev, "Failed to allocate sk_buff in solos_param_show()\n");
		return -ENOMEM;
	}

	header = (void *)skb_put(skb, sizeof(*header));

	buflen = snprintf((void *)&header[1], buflen - 1,
			  "L%05d\n%s\n", current->pid, attr->attr.name);
	skb_put(skb, buflen);

	header->size = cpu_to_le16(buflen);
	header->vpi = cpu_to_le16(0);
	header->vci = cpu_to_le16(0);
	header->type = cpu_to_le16(PKT_COMMAND);

	prm.pid = current->pid;
	prm.response = NULL;
	prm.port = SOLOS_CHAN(atmdev);

	spin_lock_irq(&card->param_queue_lock);
	list_add(&prm.list, &card->param_queue);
	spin_unlock_irq(&card->param_queue_lock);

	fpga_queue(card, prm.port, skb, NULL);

	wait_event_timeout(card->param_wq, prm.response, 5 * HZ);

	spin_lock_irq(&card->param_queue_lock);
	list_del(&prm.list);
	spin_unlock_irq(&card->param_queue_lock);

	if (!prm.response)
		return -EIO;

	buflen = prm.response->len;
	memcpy(buf, prm.response->data, buflen);
	kfree_skb(prm.response);

	return buflen;
}

static ssize_t solos_param_store(struct device *dev, struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct atm_dev *atmdev = container_of(dev, struct atm_dev, class_dev);
	struct solos_card *card = atmdev->dev_data;
	struct solos_param prm;
	struct sk_buff *skb;
	struct pkt_hdr *header;
	int buflen;
	ssize_t ret;

	buflen = strlen(attr->attr.name) + 11 + count;

247
	skb = alloc_skb(sizeof(*header) + buflen, GFP_KERNEL);
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
	if (!skb) {
		dev_warn(&card->dev->dev, "Failed to allocate sk_buff in solos_param_store()\n");
		return -ENOMEM;
	}

	header = (void *)skb_put(skb, sizeof(*header));

	buflen = snprintf((void *)&header[1], buflen - 1,
			  "L%05d\n%s\n%s\n", current->pid, attr->attr.name, buf);

	skb_put(skb, buflen);
	header->size = cpu_to_le16(buflen);
	header->vpi = cpu_to_le16(0);
	header->vci = cpu_to_le16(0);
	header->type = cpu_to_le16(PKT_COMMAND);

	prm.pid = current->pid;
	prm.response = NULL;
	prm.port = SOLOS_CHAN(atmdev);

	spin_lock_irq(&card->param_queue_lock);
	list_add(&prm.list, &card->param_queue);
	spin_unlock_irq(&card->param_queue_lock);

	fpga_queue(card, prm.port, skb, NULL);

	wait_event_timeout(card->param_wq, prm.response, 5 * HZ);

	spin_lock_irq(&card->param_queue_lock);
	list_del(&prm.list);
	spin_unlock_irq(&card->param_queue_lock);

	skb = prm.response;

	if (!skb)
		return -EIO;

	buflen = skb->len;

	/* Sometimes it has a newline, sometimes it doesn't. */
	if (skb->data[buflen - 1] == '\n')
		buflen--;

	if (buflen == 2 && !strncmp(skb->data, "OK", 2))
		ret = count;
	else if (buflen == 5 && !strncmp(skb->data, "ERROR", 5))
		ret = -EIO;
	else {
		/* We know we have enough space allocated for this; we allocated 
		   it ourselves */
		skb->data[buflen] = 0;
	
		dev_warn(&card->dev->dev, "Unexpected parameter response: '%s'\n",
			 skb->data);
		ret = -EIO;
	}
	kfree_skb(skb);

	return ret;
}

309 310 311 312
static char *next_string(struct sk_buff *skb)
{
	int i = 0;
	char *this = skb->data;
313 314
	
	for (i = 0; i < skb->len; i++) {
315 316
		if (this[i] == '\n') {
			this[i] = 0;
317
			skb_pull(skb, i + 1);
318 319
			return this;
		}
320 321
		if (!isprint(this[i]))
			return NULL;
322 323 324 325 326 327 328 329 330 331
	}
	return NULL;
}

/*
 * Status packet has fields separated by \n, starting with a version number
 * for the information therein. Fields are....
 *
 *     packet version
 *     RxBitRate	(version >= 1)
332
 *     TxBitRate	(version >= 1)
333
 *     State		(version >= 1)
334 335
 *     LocalSNRMargin	(version >= 1)
 *     LocalLineAttn	(version >= 1)
336 337 338
 */       
static int process_status(struct solos_card *card, int port, struct sk_buff *skb)
{
339 340
	char *str, *end, *state_str, *snr, *attn;
	int ver, rate_up, rate_down;
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356

	if (!card->atmdev[port])
		return -ENODEV;

	str = next_string(skb);
	if (!str)
		return -EIO;

	ver = simple_strtol(str, NULL, 10);
	if (ver < 1) {
		dev_warn(&card->dev->dev, "Unexpected status interrupt version %d\n",
			 ver);
		return -EIO;
	}

	str = next_string(skb);
357 358
	if (!str)
		return -EIO;
359 360 361 362 363 364
	if (!strcmp(str, "ERROR")) {
		dev_dbg(&card->dev->dev, "Status packet indicated Solos error on port %d (starting up?)\n",
			 port);
		return 0;
	}

365
	rate_down = simple_strtol(str, &end, 10);
366 367 368 369
	if (*end)
		return -EIO;

	str = next_string(skb);
370 371
	if (!str)
		return -EIO;
372
	rate_up = simple_strtol(str, &end, 10);
373 374 375
	if (*end)
		return -EIO;

376
	state_str = next_string(skb);
377 378
	if (!state_str)
		return -EIO;
379 380 381 382

	/* Anything but 'Showtime' is down */
	if (strcmp(state_str, "Showtime")) {
		card->atmdev[port]->signal = ATM_PHY_SIG_LOST;
383
		release_vccs(card->atmdev[port]);
384 385
		dev_info(&card->dev->dev, "Port %d: %s\n", port, state_str);
		return 0;
386
	}
387

388 389 390 391 392 393 394 395 396 397 398
	snr = next_string(skb);
	if (!str)
		return -EIO;
	attn = next_string(skb);
	if (!attn)
		return -EIO;

	dev_info(&card->dev->dev, "Port %d: %s @%d/%d kb/s%s%s%s%s\n",
		 port, state_str, rate_down/1000, rate_up/1000,
		 snr[0]?", SNR ":"", snr, attn[0]?", Attn ":"", attn);
	
399
	card->atmdev[port]->link_rate = rate_down / 424;
400
	card->atmdev[port]->signal = ATM_PHY_SIG_FOUND;
401 402 403 404

	return 0;
}

405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
static int process_command(struct solos_card *card, int port, struct sk_buff *skb)
{
	struct solos_param *prm;
	unsigned long flags;
	int cmdpid;
	int found = 0;

	if (skb->len < 7)
		return 0;

	if (skb->data[0] != 'L'    || !isdigit(skb->data[1]) ||
	    !isdigit(skb->data[2]) || !isdigit(skb->data[3]) ||
	    !isdigit(skb->data[4]) || !isdigit(skb->data[5]) ||
	    skb->data[6] != '\n')
		return 0;

	cmdpid = simple_strtol(&skb->data[1], NULL, 10);

	spin_lock_irqsave(&card->param_queue_lock, flags);
	list_for_each_entry(prm, &card->param_queue, list) {
		if (prm->port == port && prm->pid == cmdpid) {
			prm->response = skb;
			skb_pull(skb, 7);
			wake_up(&card->param_wq);
			found = 1;
			break;
		}
	}
	spin_unlock_irqrestore(&card->param_queue_lock, flags);
	return found;
}

437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
static ssize_t console_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct atm_dev *atmdev = container_of(dev, struct atm_dev, class_dev);
	struct solos_card *card = atmdev->dev_data;
	struct sk_buff *skb;

	spin_lock(&card->cli_queue_lock);
	skb = skb_dequeue(&card->cli_queue[SOLOS_CHAN(atmdev)]);
	spin_unlock(&card->cli_queue_lock);
	if(skb == NULL)
		return sprintf(buf, "No data.\n");

	memcpy(buf, skb->data, skb->len);
	dev_dbg(&card->dev->dev, "len: %d\n", skb->len);

	kfree_skb(skb);
	return skb->len;
}

static int send_command(struct solos_card *card, int dev, const char *buf, size_t size)
{
	struct sk_buff *skb;
	struct pkt_hdr *header;

	if (size > (BUF_SIZE - sizeof(*header))) {
		dev_dbg(&card->dev->dev, "Command is too big.  Dropping request\n");
		return 0;
	}
	skb = alloc_skb(size + sizeof(*header), GFP_ATOMIC);
	if (!skb) {
		dev_warn(&card->dev->dev, "Failed to allocate sk_buff in send_command()\n");
		return 0;
	}

	header = (void *)skb_put(skb, sizeof(*header));

	header->size = cpu_to_le16(size);
	header->vpi = cpu_to_le16(0);
	header->vci = cpu_to_le16(0);
	header->type = cpu_to_le16(PKT_COMMAND);

	memcpy(skb_put(skb, size), buf, size);

	fpga_queue(card, dev, skb, NULL);

	return 0;
}

static ssize_t console_store(struct device *dev, struct device_attribute *attr,
			     const char *buf, size_t count)
{
	struct atm_dev *atmdev = container_of(dev, struct atm_dev, class_dev);
	struct solos_card *card = atmdev->dev_data;
	int err;

	err = send_command(card, SOLOS_CHAN(atmdev), buf, count);

	return err?:count;
}

static DEVICE_ATTR(console, 0644, console_show, console_store);
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520


#define SOLOS_ATTR_RO(x) static DEVICE_ATTR(x, 0444, solos_param_show, NULL);
#define SOLOS_ATTR_RW(x) static DEVICE_ATTR(x, 0644, solos_param_show, solos_param_store);

#include "solos-attrlist.c"

#undef SOLOS_ATTR_RO
#undef SOLOS_ATTR_RW

#define SOLOS_ATTR_RO(x) &dev_attr_##x.attr,
#define SOLOS_ATTR_RW(x) &dev_attr_##x.attr,

static struct attribute *solos_attrs[] = {
#include "solos-attrlist.c"
	NULL
};

static struct attribute_group solos_attr_group = {
	.attrs = solos_attrs,
	.name = "parameters",
};
521

522 523 524 525
static int flash_upgrade(struct solos_card *card, int chip)
{
	const struct firmware *fw;
	const char *fw_name;
526 527 528
	uint32_t data32 = 0;
	int blocksize = 0;
	int numblocks = 0;
529 530 531 532
	int offset;

	if (chip == 0) {
		fw_name = "solos-FPGA.bin";
533
		blocksize = FPGA_BLOCK;
534 535 536
	} 
	
	if (chip == 1) {
537
		fw_name = "solos-Firmware.bin";
538 539
		blocksize = SOLOS_BLOCK;
	}
540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
	
	if (chip == 2){
		if (card->fpga_version > LEGACY_BUFFERS){
			fw_name = "solos-db-FPGA.bin";
			blocksize = FPGA_BLOCK;
		} else {
			dev_info(&card->dev->dev, "FPGA version doesn't support daughter board upgrades\n");
			return -EPERM;
		}
	}
	
	if (chip == 3){
		if (card->fpga_version > LEGACY_BUFFERS){
			fw_name = "solos-Firmware.bin";
			blocksize = SOLOS_BLOCK;
		} else {
		dev_info(&card->dev->dev, "FPGA version doesn't support daughter board upgrades\n");
		return -EPERM;
		}
	}
560 561 562 563 564 565 566 567

	if (request_firmware(&fw, fw_name, &card->dev->dev))
		return -ENOENT;

	dev_info(&card->dev->dev, "Flash upgrade starting\n");

	numblocks = fw->size / blocksize;
	dev_info(&card->dev->dev, "Firmware size: %zd\n", fw->size);
568 569 570 571 572 573
	dev_info(&card->dev->dev, "Number of blocks: %d\n", numblocks);
	
	dev_info(&card->dev->dev, "Changing FPGA to Update mode\n");
	iowrite32(1, card->config_regs + FPGA_MODE);
	data32 = ioread32(card->config_regs + FPGA_MODE); 

574
	/* Set mode to Chip Erase */
575 576 577 578
	if(chip == 0 || chip == 2)
		dev_info(&card->dev->dev, "Set FPGA Flash mode to FPGA Chip Erase\n");
	if(chip == 1 || chip == 3)
		dev_info(&card->dev->dev, "Set FPGA Flash mode to Solos Chip Erase\n");
579
	iowrite32((chip * 2), card->config_regs + FLASH_MODE);
580 581


582 583 584 585 586 587 588
	iowrite32(1, card->config_regs + WRITE_FLASH);
	wait_event(card->fw_wq, !ioread32(card->config_regs + FLASH_BUSY));

	for (offset = 0; offset < fw->size; offset += blocksize) {
		int i;

		/* Clear write flag */
589 590
		iowrite32(0, card->config_regs + WRITE_FLASH);

591 592 593 594 595 596 597
		/* Set mode to Block Write */
		/* dev_info(&card->dev->dev, "Set FPGA Flash mode to Block Write\n"); */
		iowrite32(((chip * 2) + 1), card->config_regs + FLASH_MODE);

		/* Copy block to buffer, swapping each 16 bits */
		for(i = 0; i < blocksize; i += 4) {
			uint32_t word = swahb32p((uint32_t *)(fw->data + offset + i));
598 599 600 601
			if(card->fpga_version > LEGACY_BUFFERS)
				iowrite32(word, FLASH_BUF + i);
			else
				iowrite32(word, RX_BUF(card, 3) + i);
602
		}
603 604 605 606 607

		/* Specify block number and then trigger flash write */
		iowrite32(offset / blocksize, card->config_regs + FLASH_BLOCK);
		iowrite32(1, card->config_regs + WRITE_FLASH);
		wait_event(card->fw_wq, !ioread32(card->config_regs + FLASH_BUSY));
608 609
	}

610 611 612 613 614 615
	release_firmware(fw);
	iowrite32(0, card->config_regs + WRITE_FLASH);
	iowrite32(0, card->config_regs + FPGA_MODE);
	iowrite32(0, card->config_regs + FLASH_MODE);
	dev_info(&card->dev->dev, "Returning FPGA to Data mode\n");
	return 0;
616 617
}

618 619 620 621 622 623 624
static irqreturn_t solos_irq(int irq, void *dev_id)
{
	struct solos_card *card = dev_id;
	int handled = 1;

	iowrite32(0, card->config_regs + IRQ_CLEAR);

625
	/* If we're up and running, just kick the tasklet to process TX/RX */
626
	if (card->atmdev[0])
627
		tasklet_schedule(&card->tlet);
628 629
	else
		wake_up(&card->fw_wq);
630 631 632 633 634 635 636 637 638

	return IRQ_RETVAL(handled);
}

void solos_bh(unsigned long card_arg)
{
	struct solos_card *card = (void *)card_arg;
	uint32_t card_flags;
	uint32_t rx_done = 0;
639
	int port;
640

641 642 643 644 645 646
	/*
	 * Since fpga_tx() is going to need to read the flags under its lock,
	 * it can return them to us so that we don't have to hit PCI MMIO
	 * again for the same information
	 */
	card_flags = fpga_tx(card);
647 648 649

	for (port = 0; port < card->nr_ports; port++) {
		if (card_flags & (0x10 << port)) {
650
			struct pkt_hdr _hdr, *header;
651 652 653 654
			struct sk_buff *skb;
			struct atm_vcc *vcc;
			int size;

655 656
			if (card->using_dma) {
				skb = card->rx_skb[port];
657 658 659 660 661
				card->rx_skb[port] = NULL;

				pci_unmap_single(card->dev, SKB_CB(skb)->dma_addr,
						 RX_DMA_SIZE, PCI_DMA_FROMDEVICE);

662 663 664 665 666 667
				header = (void *)skb->data;
				size = le16_to_cpu(header->size);
				skb_put(skb, size + sizeof(*header));
				skb_pull(skb, sizeof(*header));
			} else {
				header = &_hdr;
668

669
				rx_done |= 0x10 << port;
670

671
				memcpy_fromio(header, RX_BUF(card, port), sizeof(*header));
672

673
				size = le16_to_cpu(header->size);
674

675 676 677 678 679 680
				skb = alloc_skb(size + 1, GFP_ATOMIC);
				if (!skb) {
					if (net_ratelimit())
						dev_warn(&card->dev->dev, "Failed to allocate sk_buff for RX\n");
					continue;
				}
681

682 683 684 685
				memcpy_fromio(skb_put(skb, size),
					      RX_BUF(card, port) + sizeof(*header),
					      size);
			}
686 687 688
			if (atmdebug) {
				dev_info(&card->dev->dev, "Received: device %d\n", port);
				dev_info(&card->dev->dev, "size: %d VPI: %d VCI: %d\n",
689 690
					 size, le16_to_cpu(header->vpi),
					 le16_to_cpu(header->vci));
691 692 693
				print_buffer(skb);
			}

694
			switch (le16_to_cpu(header->type)) {
695
			case PKT_DATA:
696 697
				vcc = find_vcc(card->atmdev[port], le16_to_cpu(header->vpi),
					       le16_to_cpu(header->vci));
698 699 700
				if (!vcc) {
					if (net_ratelimit())
						dev_warn(&card->dev->dev, "Received packet for unknown VCI.VPI %d.%d on port %d\n",
701
							 le16_to_cpu(header->vci), le16_to_cpu(header->vpi),
702 703 704 705 706 707 708 709
							 port);
					continue;
				}
				atm_charge(vcc, skb->truesize);
				vcc->push(vcc, skb);
				atomic_inc(&vcc->stats->rx);
				break;

710
			case PKT_STATUS:
711 712 713 714 715
				if (process_status(card, port, skb) &&
				    net_ratelimit()) {
					dev_warn(&card->dev->dev, "Bad status packet of %d bytes on port %d:\n", skb->len, port);
					print_buffer(skb);
				}
716
				dev_kfree_skb_any(skb);
717 718
				break;

719 720
			case PKT_COMMAND:
			default: /* FIXME: Not really, surely? */
721 722
				if (process_command(card, port, skb))
					break;
723 724 725 726 727
				spin_lock(&card->cli_queue_lock);
				if (skb_queue_len(&card->cli_queue[port]) > 10) {
					if (net_ratelimit())
						dev_warn(&card->dev->dev, "Dropping console response on port %d\n",
							 port);
728
					dev_kfree_skb_any(skb);
729 730 731 732 733 734
				} else
					skb_queue_tail(&card->cli_queue[port], skb);
				spin_unlock(&card->cli_queue_lock);
				break;
			}
		}
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
		/* Allocate RX skbs for any ports which need them */
		if (card->using_dma && card->atmdev[port] &&
		    !card->rx_skb[port]) {
			struct sk_buff *skb = alloc_skb(RX_DMA_SIZE, GFP_ATOMIC);
			if (skb) {
				SKB_CB(skb)->dma_addr =
					pci_map_single(card->dev, skb->data,
						       RX_DMA_SIZE, PCI_DMA_FROMDEVICE);
				iowrite32(SKB_CB(skb)->dma_addr,
					  card->config_regs + RX_DMA_ADDR(port));
				card->rx_skb[port] = skb;
			} else {
				if (net_ratelimit())
					dev_warn(&card->dev->dev, "Failed to allocate RX skb");

				/* We'll have to try again later */
				tasklet_schedule(&card->tlet);
			}
		}
754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
	}
	if (rx_done)
		iowrite32(rx_done, card->config_regs + FLAGS_ADDR);

	return;
}

static struct atm_vcc *find_vcc(struct atm_dev *dev, short vpi, int vci)
{
	struct hlist_head *head;
	struct atm_vcc *vcc = NULL;
	struct hlist_node *node;
	struct sock *s;

	read_lock(&vcc_sklist_lock);
	head = &vcc_hash[vci & (VCC_HTABLE_SIZE -1)];
	sk_for_each(s, node, head) {
		vcc = atm_sk(s);
		if (vcc->dev == dev && vcc->vci == vci &&
		    vcc->vpi == vpi && vcc->qos.rxtp.traffic_class != ATM_NONE)
			goto out;
	}
	vcc = NULL;
 out:
	read_unlock(&vcc_sklist_lock);
	return vcc;
}

static int list_vccs(int vci)
{
	struct hlist_head *head;
	struct atm_vcc *vcc;
	struct hlist_node *node;
	struct sock *s;
	int num_found = 0;
	int i;

	read_lock(&vcc_sklist_lock);
	if (vci != 0){
		head = &vcc_hash[vci & (VCC_HTABLE_SIZE -1)];
		sk_for_each(s, node, head) {
			num_found ++;
			vcc = atm_sk(s);
			printk(KERN_DEBUG "Device: %d Vpi: %d Vci: %d\n",
			       vcc->dev->number,
			       vcc->vpi,
			       vcc->vci);
		}
	} else {
803
		for(i = 0; i < VCC_HTABLE_SIZE; i++){
804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
			head = &vcc_hash[i];
			sk_for_each(s, node, head) {
				num_found ++;
				vcc = atm_sk(s);
				printk(KERN_DEBUG "Device: %d Vpi: %d Vci: %d\n",
				       vcc->dev->number,
				       vcc->vpi,
				       vcc->vci);
			}
		}
	}
	read_unlock(&vcc_sklist_lock);
	return num_found;
}

819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
static void release_vccs(struct atm_dev *dev)
{
        int i;

        write_lock_irq(&vcc_sklist_lock);
        for (i = 0; i < VCC_HTABLE_SIZE; i++) {
                struct hlist_head *head = &vcc_hash[i];
                struct hlist_node *node, *tmp;
                struct sock *s;
                struct atm_vcc *vcc;

                sk_for_each_safe(s, node, tmp, head) {
                        vcc = atm_sk(s);
                        if (vcc->dev == dev) {
                                vcc_release_async(vcc, -EPIPE);
                                sk_del_node_init(s);
                        }
                }
        }
        write_unlock_irq(&vcc_sklist_lock);
}

841 842 843 844 845 846 847

static int popen(struct atm_vcc *vcc)
{
	struct solos_card *card = vcc->dev->dev_data;
	struct sk_buff *skb;
	struct pkt_hdr *header;

848 849 850 851 852 853
	if (vcc->qos.aal != ATM_AAL5) {
		dev_warn(&card->dev->dev, "Unsupported ATM type %d\n",
			 vcc->qos.aal);
		return -EINVAL;
	}

854 855 856 857 858 859 860
	skb = alloc_skb(sizeof(*header), GFP_ATOMIC);
	if (!skb && net_ratelimit()) {
		dev_warn(&card->dev->dev, "Failed to allocate sk_buff in popen()\n");
		return -ENOMEM;
	}
	header = (void *)skb_put(skb, sizeof(*header));

861
	header->size = cpu_to_le16(0);
862 863 864 865 866 867
	header->vpi = cpu_to_le16(vcc->vpi);
	header->vci = cpu_to_le16(vcc->vci);
	header->type = cpu_to_le16(PKT_POPEN);

	fpga_queue(card, SOLOS_CHAN(vcc->dev), skb, NULL);

868
	set_bit(ATM_VF_ADDR, &vcc->flags);
869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
	set_bit(ATM_VF_READY, &vcc->flags);
	list_vccs(0);


	return 0;
}

static void pclose(struct atm_vcc *vcc)
{
	struct solos_card *card = vcc->dev->dev_data;
	struct sk_buff *skb;
	struct pkt_hdr *header;

	skb = alloc_skb(sizeof(*header), GFP_ATOMIC);
	if (!skb) {
		dev_warn(&card->dev->dev, "Failed to allocate sk_buff in pclose()\n");
		return;
	}
	header = (void *)skb_put(skb, sizeof(*header));

889
	header->size = cpu_to_le16(0);
890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934
	header->vpi = cpu_to_le16(vcc->vpi);
	header->vci = cpu_to_le16(vcc->vci);
	header->type = cpu_to_le16(PKT_PCLOSE);

	fpga_queue(card, SOLOS_CHAN(vcc->dev), skb, NULL);

	clear_bit(ATM_VF_ADDR, &vcc->flags);
	clear_bit(ATM_VF_READY, &vcc->flags);

	return;
}

static int print_buffer(struct sk_buff *buf)
{
	int len,i;
	char msg[500];
	char item[10];

	len = buf->len;
	for (i = 0; i < len; i++){
		if(i % 8 == 0)
			sprintf(msg, "%02X: ", i);

		sprintf(item,"%02X ",*(buf->data + i));
		strcat(msg, item);
		if(i % 8 == 7) {
			sprintf(item, "\n");
			strcat(msg, item);
			printk(KERN_DEBUG "%s", msg);
		}
	}
	if (i % 8 != 0) {
		sprintf(item, "\n");
		strcat(msg, item);
		printk(KERN_DEBUG "%s", msg);
	}
	printk(KERN_DEBUG "\n");

	return 0;
}

static void fpga_queue(struct solos_card *card, int port, struct sk_buff *skb,
		       struct atm_vcc *vcc)
{
	int old_len;
935
	unsigned long flags;
936

937
	SKB_CB(skb)->vcc = vcc;
938

939
	spin_lock_irqsave(&card->tx_queue_lock, flags);
940 941
	old_len = skb_queue_len(&card->tx_queue[port]);
	skb_queue_tail(&card->tx_queue[port], skb);
942
	if (!old_len)
943 944
		card->tx_mask |= (1 << port);
	spin_unlock_irqrestore(&card->tx_queue_lock, flags);
945

946 947
	/* Theoretically we could just schedule the tasklet here, but
	   that introduces latency we don't want -- it's noticeable */
948 949 950 951
	if (!old_len)
		fpga_tx(card);
}

952
static uint32_t fpga_tx(struct solos_card *card)
953
{
954
	uint32_t tx_pending, card_flags;
955 956 957 958 959 960 961
	uint32_t tx_started = 0;
	struct sk_buff *skb;
	struct atm_vcc *vcc;
	unsigned char port;
	unsigned long flags;

	spin_lock_irqsave(&card->tx_lock, flags);
962 963 964 965 966 967 968 969 970 971 972 973 974
	
	card_flags = ioread32(card->config_regs + FLAGS_ADDR);
	/*
	 * The queue lock is required for _writing_ to tx_mask, but we're
	 * OK to read it here without locking. The only potential update
	 * that we could race with is in fpga_queue() where it sets a bit
	 * for a new port... but it's going to call this function again if
	 * it's doing that, anyway.
	 */
	tx_pending = card->tx_mask & ~card_flags;

	for (port = 0; tx_pending; tx_pending >>= 1, port++) {
		if (tx_pending & 1) {
975 976 977 978
			struct sk_buff *oldskb = card->tx_skb[port];
			if (oldskb)
				pci_unmap_single(card->dev, SKB_CB(oldskb)->dma_addr,
						 oldskb->len, PCI_DMA_TODEVICE);
979

980 981
			spin_lock(&card->tx_queue_lock);
			skb = skb_dequeue(&card->tx_queue[port]);
982 983
			if (!skb)
				card->tx_mask &= ~(1 << port);
984 985
			spin_unlock(&card->tx_queue_lock);

986 987
			if (skb && !card->using_dma) {
				memcpy_toio(TX_BUF(card, port), skb->data, skb->len);
988
				tx_started |= 1 << port;
989 990 991 992 993 994 995 996 997
				oldskb = skb; /* We're done with this skb already */
			} else if (skb && card->using_dma) {
				SKB_CB(skb)->dma_addr = pci_map_single(card->dev, skb->data,
								       skb->len, PCI_DMA_TODEVICE);
				iowrite32(SKB_CB(skb)->dma_addr,
					  card->config_regs + TX_DMA_ADDR(port));
			}

			if (!oldskb)
998 999
				continue;

1000
			/* Clean up and free oldskb now it's gone */
1001 1002 1003
			if (atmdebug) {
				dev_info(&card->dev->dev, "Transmitted: port %d\n",
					 port);
1004
				print_buffer(oldskb);
1005
			}
1006

1007
			vcc = SKB_CB(oldskb)->vcc;
1008

1009 1010 1011 1012 1013
			if (vcc) {
				atomic_inc(&vcc->stats->tx);
				solos_pop(vcc, oldskb);
			} else
				dev_kfree_skb_irq(oldskb);
1014

1015 1016
		}
	}
1017
	/* For non-DMA TX, write the 'TX start' bit for all four ports simultaneously */
1018 1019 1020 1021
	if (tx_started)
		iowrite32(tx_started, card->config_regs + FLAGS_ADDR);

	spin_unlock_irqrestore(&card->tx_lock, flags);
1022
	return card_flags;
1023 1024 1025 1026 1027 1028
}

static int psend(struct atm_vcc *vcc, struct sk_buff *skb)
{
	struct solos_card *card = vcc->dev->dev_data;
	struct pkt_hdr *header;
1029
	int pktlen;
1030

1031 1032
	pktlen = skb->len;
	if (pktlen > (BUF_SIZE - sizeof(*header))) {
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
		dev_warn(&card->dev->dev, "Length of PDU is too large. Dropping PDU.\n");
		solos_pop(vcc, skb);
		return 0;
	}

	if (!skb_clone_writable(skb, sizeof(*header))) {
		int expand_by = 0;
		int ret;

		if (skb_headroom(skb) < sizeof(*header))
			expand_by = sizeof(*header) - skb_headroom(skb);

		ret = pskb_expand_head(skb, expand_by, 0, GFP_ATOMIC);
		if (ret) {
1047
			dev_warn(&card->dev->dev, "pskb_expand_head failed.\n");
1048 1049 1050 1051 1052 1053 1054
			solos_pop(vcc, skb);
			return ret;
		}
	}

	header = (void *)skb_push(skb, sizeof(*header));

1055 1056
	/* This does _not_ include the size of the header */
	header->size = cpu_to_le16(pktlen);
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
	header->vpi = cpu_to_le16(vcc->vpi);
	header->vci = cpu_to_le16(vcc->vci);
	header->type = cpu_to_le16(PKT_DATA);

	fpga_queue(card, SOLOS_CHAN(vcc->dev), skb, vcc);

	return 0;
}

static struct atmdev_ops fpga_ops = {
	.open =		popen,
	.close =	pclose,
	.ioctl =	NULL,
	.getsockopt =	NULL,
	.setsockopt =	NULL,
	.send =		psend,
	.send_oam =	NULL,
	.phy_put =	NULL,
	.phy_get =	NULL,
	.change_qos =	NULL,
	.proc_read =	NULL,
	.owner =	THIS_MODULE
};

static int fpga_probe(struct pci_dev *dev, const struct pci_device_id *id)
{
1083
	int err;
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
	uint16_t fpga_ver;
	uint8_t major_ver, minor_ver;
	uint32_t data32;
	struct solos_card *card;

	card = kzalloc(sizeof(*card), GFP_KERNEL);
	if (!card)
		return -ENOMEM;

	card->dev = dev;
1094
	init_waitqueue_head(&card->fw_wq);
1095
	init_waitqueue_head(&card->param_wq);
1096 1097 1098 1099 1100 1101 1102

	err = pci_enable_device(dev);
	if (err) {
		dev_warn(&dev->dev,  "Failed to enable PCI device\n");
		goto out;
	}

1103 1104 1105 1106 1107 1108
	err = pci_set_dma_mask(dev, DMA_32BIT_MASK);
	if (err) {
		dev_warn(&dev->dev, "Failed to set 32-bit DMA mask\n");
		goto out;
	}

1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
	err = pci_request_regions(dev, "solos");
	if (err) {
		dev_warn(&dev->dev, "Failed to request regions\n");
		goto out;
	}

	card->config_regs = pci_iomap(dev, 0, CONFIG_RAM_SIZE);
	if (!card->config_regs) {
		dev_warn(&dev->dev, "Failed to ioremap config registers\n");
		goto out_release_regions;
	}
	card->buffers = pci_iomap(dev, 1, DATA_RAM_SIZE);
	if (!card->buffers) {
		dev_warn(&dev->dev, "Failed to ioremap data buffers\n");
		goto out_unmap_config;
	}

1126 1127 1128 1129 1130 1131 1132
	if (reset) {
		iowrite32(1, card->config_regs + FPGA_MODE);
		data32 = ioread32(card->config_regs + FPGA_MODE); 

		iowrite32(0, card->config_regs + FPGA_MODE);
		data32 = ioread32(card->config_regs + FPGA_MODE); 
	}
1133 1134 1135 1136 1137

	data32 = ioread32(card->config_regs + FPGA_VER);
	fpga_ver = (data32 & 0x0000FFFF);
	major_ver = ((data32 & 0xFF000000) >> 24);
	minor_ver = ((data32 & 0x00FF0000) >> 16);
1138 1139 1140 1141 1142
	card->fpga_version = FPGA_VERSION(major_ver,minor_ver);
	if (card->fpga_version > LEGACY_BUFFERS)
		card->buffer_size = BUF_SIZE;
	else
		card->buffer_size = OLD_BUF_SIZE;
1143 1144 1145
	dev_info(&dev->dev, "Solos FPGA Version %d.%02d svn-%d\n",
		 major_ver, minor_ver, fpga_ver);

1146
	if (card->fpga_version >= DMA_SUPPORTED){
1147
		card->using_dma = 1;
1148 1149
	} else {
		card->using_dma = 0;
1150 1151 1152
		/* Set RX empty flag for all ports */
		iowrite32(0xF0, card->config_regs + FLAGS_ADDR);
	}
1153

1154 1155
	data32 = ioread32(card->config_regs + PORTS);
	card->nr_ports = (data32 & 0x000000FF);
1156 1157

	pci_set_drvdata(dev, card);
1158

1159 1160 1161 1162
	tasklet_init(&card->tlet, solos_bh, (unsigned long)card);
	spin_lock_init(&card->tx_lock);
	spin_lock_init(&card->tx_queue_lock);
	spin_lock_init(&card->cli_queue_lock);
1163 1164
	spin_lock_init(&card->param_queue_lock);
	INIT_LIST_HEAD(&card->param_queue);
1165

1166
	err = request_irq(dev->irq, solos_irq, IRQF_SHARED,
1167
			  "solos-pci", card);
1168
	if (err) {
1169
		dev_dbg(&card->dev->dev, "Failed to request interrupt IRQ: %d\n", dev->irq);
1170 1171
		goto out_unmap_both;
	}
1172 1173 1174

	iowrite32(1, card->config_regs + IRQ_EN_ADDR);

1175 1176 1177 1178 1179 1180
	if (fpga_upgrade)
		flash_upgrade(card, 0);

	if (firmware_upgrade)
		flash_upgrade(card, 1);

1181 1182 1183 1184 1185 1186
	if (db_fpga_upgrade)
		flash_upgrade(card, 2);

	if (db_firmware_upgrade)
		flash_upgrade(card, 3);

1187 1188 1189 1190
	err = atm_init(card);
	if (err)
		goto out_free_irq;

1191 1192
	return 0;

1193 1194 1195 1196 1197
 out_free_irq:
	iowrite32(0, card->config_regs + IRQ_EN_ADDR);
	free_irq(dev->irq, card);
	tasklet_kill(&card->tlet);
	
1198
 out_unmap_both:
1199
	pci_set_drvdata(dev, NULL);
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
	pci_iounmap(dev, card->config_regs);
 out_unmap_config:
	pci_iounmap(dev, card->buffers);
 out_release_regions:
	pci_release_regions(dev);
 out:
	return err;
}

static int atm_init(struct solos_card *card)
{
	int i;

	for (i = 0; i < card->nr_ports; i++) {
1214 1215 1216
		struct sk_buff *skb;
		struct pkt_hdr *header;

1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
		skb_queue_head_init(&card->tx_queue[i]);
		skb_queue_head_init(&card->cli_queue[i]);

		card->atmdev[i] = atm_dev_register("solos-pci", &fpga_ops, -1, NULL);
		if (!card->atmdev[i]) {
			dev_err(&card->dev->dev, "Could not register ATM device %d\n", i);
			atm_remove(card);
			return -ENODEV;
		}
		if (device_create_file(&card->atmdev[i]->class_dev, &dev_attr_console))
			dev_err(&card->dev->dev, "Could not register console for ATM device %d\n", i);
1228 1229
		if (sysfs_create_group(&card->atmdev[i]->class_dev.kobj, &solos_attr_group))
			dev_err(&card->dev->dev, "Could not register parameter group for ATM device %d\n", i);
1230 1231 1232 1233 1234 1235 1236

		dev_info(&card->dev->dev, "Registered ATM device %d\n", card->atmdev[i]->number);

		card->atmdev[i]->ci_range.vpi_bits = 8;
		card->atmdev[i]->ci_range.vci_bits = 16;
		card->atmdev[i]->dev_data = card;
		card->atmdev[i]->phy_data = (void *)(unsigned long)i;
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
		card->atmdev[i]->signal = ATM_PHY_SIG_UNKNOWN;

		skb = alloc_skb(sizeof(*header), GFP_ATOMIC);
		if (!skb) {
			dev_warn(&card->dev->dev, "Failed to allocate sk_buff in atm_init()\n");
			continue;
		}

		header = (void *)skb_put(skb, sizeof(*header));

		header->size = cpu_to_le16(0);
		header->vpi = cpu_to_le16(0);
		header->vci = cpu_to_le16(0);
		header->type = cpu_to_le16(PKT_STATUS);

		fpga_queue(card, i, skb, NULL);
1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
	}
	return 0;
}

static void atm_remove(struct solos_card *card)
{
	int i;

	for (i = 0; i < card->nr_ports; i++) {
		if (card->atmdev[i]) {
1263 1264
			struct sk_buff *skb;

1265
			dev_info(&card->dev->dev, "Unregistering ATM device %d\n", card->atmdev[i]->number);
1266 1267

			sysfs_remove_group(&card->atmdev[i]->class_dev.kobj, &solos_attr_group);
1268
			atm_dev_deregister(card->atmdev[i]);
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284

			skb = card->rx_skb[i];
			if (skb) {
				pci_unmap_single(card->dev, SKB_CB(skb)->dma_addr,
						 RX_DMA_SIZE, PCI_DMA_FROMDEVICE);
				dev_kfree_skb(skb);
			}
			skb = card->tx_skb[i];
			if (skb) {
				pci_unmap_single(card->dev, SKB_CB(skb)->dma_addr,
						 skb->len, PCI_DMA_TODEVICE);
				dev_kfree_skb(skb);
			}
			while ((skb = skb_dequeue(&card->tx_queue[i])))
				dev_kfree_skb(skb);
 
1285 1286 1287 1288 1289 1290 1291
		}
	}
}

static void fpga_remove(struct pci_dev *dev)
{
	struct solos_card *card = pci_get_drvdata(dev);
1292 1293 1294 1295 1296 1297 1298
	
	/* Disable IRQs */
	iowrite32(0, card->config_regs + IRQ_EN_ADDR);

	/* Reset FPGA */
	iowrite32(1, card->config_regs + FPGA_MODE);
	(void)ioread32(card->config_regs + FPGA_MODE); 
1299 1300 1301 1302 1303 1304

	atm_remove(card);

	free_irq(dev->irq, card);
	tasklet_kill(&card->tlet);

1305 1306 1307 1308
	/* Release device from reset */
	iowrite32(0, card->config_regs + FPGA_MODE);
	(void)ioread32(card->config_regs + FPGA_MODE); 

1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
	pci_iounmap(dev, card->buffers);
	pci_iounmap(dev, card->config_regs);

	pci_release_regions(dev);
	pci_disable_device(dev);

	pci_set_drvdata(dev, NULL);
	kfree(card);
}

static struct pci_device_id fpga_pci_tbl[] __devinitdata = {
	{ 0x10ee, 0x0300, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
	{ 0, }
};

MODULE_DEVICE_TABLE(pci,fpga_pci_tbl);

static struct pci_driver fpga_driver = {
	.name =		"solos",
	.id_table =	fpga_pci_tbl,
	.probe =	fpga_probe,
	.remove =	fpga_remove,
};


static int __init solos_pci_init(void)
{
	printk(KERN_INFO "Solos PCI Driver Version %s\n", VERSION);
	return pci_register_driver(&fpga_driver);
}

static void __exit solos_pci_exit(void)
{
	pci_unregister_driver(&fpga_driver);
	printk(KERN_INFO "Solos PCI Driver %s Unloaded\n", VERSION);
}

module_init(solos_pci_init);
module_exit(solos_pci_exit);